Properties

Label 600.6.f.o
Level $600$
Weight $6$
Character orbit 600.f
Analytic conductor $96.230$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [600,6,Mod(49,600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("600.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 600.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(96.2302918878\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 179x^{4} + 8287x^{2} + 33489 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{37}]\)
Coefficient ring index: \( 2^{11}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 9 \beta_1 q^{3} + ( - \beta_{4} + 27 \beta_1) q^{7} - 81 q^{9} + (3 \beta_{3} - \beta_{2} + 13) q^{11} + (7 \beta_{5} - 4 \beta_{4} + 240 \beta_1) q^{13} + (3 \beta_{5} - 13 \beta_{4} - 297 \beta_1) q^{17}+ \cdots + ( - 243 \beta_{3} + 81 \beta_{2} - 1053) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 486 q^{9} + 76 q^{11} + 2938 q^{19} + 1458 q^{21} + 13548 q^{29} - 20078 q^{31} + 12834 q^{39} - 6424 q^{41} + 4820 q^{49} - 16092 q^{51} + 34244 q^{59} - 52686 q^{61} + 21564 q^{69} - 101368 q^{71}+ \cdots - 6156 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 179x^{4} + 8287x^{2} + 33489 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{5} + 4\nu^{3} + 8183\nu ) / 17202 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 8\nu^{4} + 344\nu^{2} - 20673 ) / 141 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 22\nu^{4} + 2356\nu^{2} + 27150 ) / 141 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 162\nu^{5} + 22288\nu^{3} + 589510\nu ) / 8601 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 331\nu^{5} + 44548\nu^{3} + 1465779\nu ) / 17202 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} - \beta_{4} + 7\beta_1 ) / 20 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 4\beta_{3} - 11\beta_{2} - 2383 ) / 40 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -167\beta_{5} + 182\beta_{4} + 3691\beta_1 ) / 40 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -86\beta_{3} + 589\beta_{2} + 102917 ) / 20 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 7849\beta_{5} - 7819\beta_{4} - 279377\beta_1 ) / 20 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
2.11190i
9.88123i
8.76933i
8.76933i
9.88123i
2.11190i
0 9.00000i 0 0 0 94.1318i 0 −81.0000 0
49.2 0 9.00000i 0 0 0 21.5548i 0 −81.0000 0
49.3 0 9.00000i 0 0 0 196.687i 0 −81.0000 0
49.4 0 9.00000i 0 0 0 196.687i 0 −81.0000 0
49.5 0 9.00000i 0 0 0 21.5548i 0 −81.0000 0
49.6 0 9.00000i 0 0 0 94.1318i 0 −81.0000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.6.f.o 6
5.b even 2 1 inner 600.6.f.o 6
5.c odd 4 1 600.6.a.p 3
5.c odd 4 1 600.6.a.u yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
600.6.a.p 3 5.c odd 4 1
600.6.a.u yes 3 5.c odd 4 1
600.6.f.o 6 1.a even 1 1 trivial
600.6.f.o 6 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{6} + 48011T_{7}^{4} + 364875475T_{7}^{2} + 159260855625 \) acting on \(S_{6}^{\mathrm{new}}(600, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T^{2} + 81)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 159260855625 \) Copy content Toggle raw display
$11$ \( (T^{3} - 38 T^{2} + \cdots + 687480)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 65\!\cdots\!81 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 13\!\cdots\!64 \) Copy content Toggle raw display
$19$ \( (T^{3} - 1469 T^{2} + \cdots + 10898987009)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 93\!\cdots\!44 \) Copy content Toggle raw display
$29$ \( (T^{3} - 6774 T^{2} + \cdots + 65540735544)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + 10039 T^{2} + \cdots - 30382097115)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 30\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( (T^{3} + 3212 T^{2} + \cdots - 503596157760)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 35\!\cdots\!61 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 36\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 36\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( (T^{3} + \cdots + 19463994415080)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + 26343 T^{2} + \cdots - 318660736299)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 29\!\cdots\!01 \) Copy content Toggle raw display
$71$ \( (T^{3} + \cdots - 171119857803840)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 53\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( (T^{3} + \cdots - 238255782882816)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 35\!\cdots\!64 \) Copy content Toggle raw display
$89$ \( (T^{3} + \cdots + 162093891612672)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 69\!\cdots\!49 \) Copy content Toggle raw display
show more
show less