Properties

Label 600.6.f.o
Level 600600
Weight 66
Character orbit 600.f
Analytic conductor 96.23096.230
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,6,Mod(49,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.49"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: N N == 600=23352 600 = 2^{3} \cdot 3 \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 600.f (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,-486,0,76] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 96.230291887896.2302918878
Analytic rank: 00
Dimension: 66
Coefficient field: Q[x]/(x6+)\mathbb{Q}[x]/(x^{6} + \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x6+179x4+8287x2+33489 x^{6} + 179x^{4} + 8287x^{2} + 33489 Copy content Toggle raw display
Coefficient ring: Z[a1,,a37]\Z[a_1, \ldots, a_{37}]
Coefficient ring index: 21152 2^{11}\cdot 5^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q9β1q3+(β4+27β1)q781q9+(3β3β2+13)q11+(7β54β4+240β1)q13+(3β513β4297β1)q17++(243β3+81β21053)q99+O(q100) q - 9 \beta_1 q^{3} + ( - \beta_{4} + 27 \beta_1) q^{7} - 81 q^{9} + (3 \beta_{3} - \beta_{2} + 13) q^{11} + (7 \beta_{5} - 4 \beta_{4} + 240 \beta_1) q^{13} + (3 \beta_{5} - 13 \beta_{4} - 297 \beta_1) q^{17}+ \cdots + ( - 243 \beta_{3} + 81 \beta_{2} - 1053) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q486q9+76q11+2938q19+1458q21+13548q2920078q31+12834q396424q41+4820q4916092q51+34244q5952686q61+21564q69101368q71+6156q99+O(q100) 6 q - 486 q^{9} + 76 q^{11} + 2938 q^{19} + 1458 q^{21} + 13548 q^{29} - 20078 q^{31} + 12834 q^{39} - 6424 q^{41} + 4820 q^{49} - 16092 q^{51} + 34244 q^{59} - 52686 q^{61} + 21564 q^{69} - 101368 q^{71}+ \cdots - 6156 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6+179x4+8287x2+33489 x^{6} + 179x^{4} + 8287x^{2} + 33489 : Copy content Toggle raw display

β1\beta_{1}== (ν5+4ν3+8183ν)/17202 ( -\nu^{5} + 4\nu^{3} + 8183\nu ) / 17202 Copy content Toggle raw display
β2\beta_{2}== (8ν4+344ν220673)/141 ( 8\nu^{4} + 344\nu^{2} - 20673 ) / 141 Copy content Toggle raw display
β3\beta_{3}== (22ν4+2356ν2+27150)/141 ( 22\nu^{4} + 2356\nu^{2} + 27150 ) / 141 Copy content Toggle raw display
β4\beta_{4}== (162ν5+22288ν3+589510ν)/8601 ( 162\nu^{5} + 22288\nu^{3} + 589510\nu ) / 8601 Copy content Toggle raw display
β5\beta_{5}== (331ν5+44548ν3+1465779ν)/17202 ( 331\nu^{5} + 44548\nu^{3} + 1465779\nu ) / 17202 Copy content Toggle raw display
ν\nu== (β5β4+7β1)/20 ( \beta_{5} - \beta_{4} + 7\beta_1 ) / 20 Copy content Toggle raw display
ν2\nu^{2}== (4β311β22383)/40 ( 4\beta_{3} - 11\beta_{2} - 2383 ) / 40 Copy content Toggle raw display
ν3\nu^{3}== (167β5+182β4+3691β1)/40 ( -167\beta_{5} + 182\beta_{4} + 3691\beta_1 ) / 40 Copy content Toggle raw display
ν4\nu^{4}== (86β3+589β2+102917)/20 ( -86\beta_{3} + 589\beta_{2} + 102917 ) / 20 Copy content Toggle raw display
ν5\nu^{5}== (7849β57819β4279377β1)/20 ( 7849\beta_{5} - 7819\beta_{4} - 279377\beta_1 ) / 20 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/600Z)×\left(\mathbb{Z}/600\mathbb{Z}\right)^\times.

nn 151151 301301 401401 577577
χ(n)\chi(n) 11 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
2.11190i
9.88123i
8.76933i
8.76933i
9.88123i
2.11190i
0 9.00000i 0 0 0 94.1318i 0 −81.0000 0
49.2 0 9.00000i 0 0 0 21.5548i 0 −81.0000 0
49.3 0 9.00000i 0 0 0 196.687i 0 −81.0000 0
49.4 0 9.00000i 0 0 0 196.687i 0 −81.0000 0
49.5 0 9.00000i 0 0 0 21.5548i 0 −81.0000 0
49.6 0 9.00000i 0 0 0 94.1318i 0 −81.0000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.6.f.o 6
5.b even 2 1 inner 600.6.f.o 6
5.c odd 4 1 600.6.a.p 3
5.c odd 4 1 600.6.a.u yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
600.6.a.p 3 5.c odd 4 1
600.6.a.u yes 3 5.c odd 4 1
600.6.f.o 6 1.a even 1 1 trivial
600.6.f.o 6 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T76+48011T74+364875475T72+159260855625 T_{7}^{6} + 48011T_{7}^{4} + 364875475T_{7}^{2} + 159260855625 acting on S6new(600,[χ])S_{6}^{\mathrm{new}}(600, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 (T2+81)3 (T^{2} + 81)^{3} Copy content Toggle raw display
55 T6 T^{6} Copy content Toggle raw display
77 T6++159260855625 T^{6} + \cdots + 159260855625 Copy content Toggle raw display
1111 (T338T2++687480)2 (T^{3} - 38 T^{2} + \cdots + 687480)^{2} Copy content Toggle raw display
1313 T6++65 ⁣ ⁣81 T^{6} + \cdots + 65\!\cdots\!81 Copy content Toggle raw display
1717 T6++13 ⁣ ⁣64 T^{6} + \cdots + 13\!\cdots\!64 Copy content Toggle raw display
1919 (T31469T2++10898987009)2 (T^{3} - 1469 T^{2} + \cdots + 10898987009)^{2} Copy content Toggle raw display
2323 T6++93 ⁣ ⁣44 T^{6} + \cdots + 93\!\cdots\!44 Copy content Toggle raw display
2929 (T36774T2++65540735544)2 (T^{3} - 6774 T^{2} + \cdots + 65540735544)^{2} Copy content Toggle raw display
3131 (T3+10039T2+30382097115)2 (T^{3} + 10039 T^{2} + \cdots - 30382097115)^{2} Copy content Toggle raw display
3737 T6++30 ⁣ ⁣76 T^{6} + \cdots + 30\!\cdots\!76 Copy content Toggle raw display
4141 (T3+3212T2+503596157760)2 (T^{3} + 3212 T^{2} + \cdots - 503596157760)^{2} Copy content Toggle raw display
4343 T6++35 ⁣ ⁣61 T^{6} + \cdots + 35\!\cdots\!61 Copy content Toggle raw display
4747 T6++36 ⁣ ⁣00 T^{6} + \cdots + 36\!\cdots\!00 Copy content Toggle raw display
5353 T6++36 ⁣ ⁣00 T^{6} + \cdots + 36\!\cdots\!00 Copy content Toggle raw display
5959 (T3++19463994415080)2 (T^{3} + \cdots + 19463994415080)^{2} Copy content Toggle raw display
6161 (T3+26343T2+318660736299)2 (T^{3} + 26343 T^{2} + \cdots - 318660736299)^{2} Copy content Toggle raw display
6767 T6++29 ⁣ ⁣01 T^{6} + \cdots + 29\!\cdots\!01 Copy content Toggle raw display
7171 (T3+171119857803840)2 (T^{3} + \cdots - 171119857803840)^{2} Copy content Toggle raw display
7373 T6++53 ⁣ ⁣00 T^{6} + \cdots + 53\!\cdots\!00 Copy content Toggle raw display
7979 (T3+238255782882816)2 (T^{3} + \cdots - 238255782882816)^{2} Copy content Toggle raw display
8383 T6++35 ⁣ ⁣64 T^{6} + \cdots + 35\!\cdots\!64 Copy content Toggle raw display
8989 (T3++162093891612672)2 (T^{3} + \cdots + 162093891612672)^{2} Copy content Toggle raw display
9797 T6++69 ⁣ ⁣49 T^{6} + \cdots + 69\!\cdots\!49 Copy content Toggle raw display
show more
show less