gp: [N,k,chi] = [600,6,Mod(49,600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(600, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 6, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("600.49");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: traces = [6,0,0,0,0,0,0,0,-486,0,76]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 5 1,\beta_1,\ldots,\beta_{5} 1 , β 1 , … , β 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 6 + 179 x 4 + 8287 x 2 + 33489 x^{6} + 179x^{4} + 8287x^{2} + 33489 x 6 + 1 7 9 x 4 + 8 2 8 7 x 2 + 3 3 4 8 9
x^6 + 179*x^4 + 8287*x^2 + 33489
:
β 1 \beta_{1} β 1 = = =
( − ν 5 + 4 ν 3 + 8183 ν ) / 17202 ( -\nu^{5} + 4\nu^{3} + 8183\nu ) / 17202 ( − ν 5 + 4 ν 3 + 8 1 8 3 ν ) / 1 7 2 0 2
(-v^5 + 4*v^3 + 8183*v) / 17202
β 2 \beta_{2} β 2 = = =
( 8 ν 4 + 344 ν 2 − 20673 ) / 141 ( 8\nu^{4} + 344\nu^{2} - 20673 ) / 141 ( 8 ν 4 + 3 4 4 ν 2 − 2 0 6 7 3 ) / 1 4 1
(8*v^4 + 344*v^2 - 20673) / 141
β 3 \beta_{3} β 3 = = =
( 22 ν 4 + 2356 ν 2 + 27150 ) / 141 ( 22\nu^{4} + 2356\nu^{2} + 27150 ) / 141 ( 2 2 ν 4 + 2 3 5 6 ν 2 + 2 7 1 5 0 ) / 1 4 1
(22*v^4 + 2356*v^2 + 27150) / 141
β 4 \beta_{4} β 4 = = =
( 162 ν 5 + 22288 ν 3 + 589510 ν ) / 8601 ( 162\nu^{5} + 22288\nu^{3} + 589510\nu ) / 8601 ( 1 6 2 ν 5 + 2 2 2 8 8 ν 3 + 5 8 9 5 1 0 ν ) / 8 6 0 1
(162*v^5 + 22288*v^3 + 589510*v) / 8601
β 5 \beta_{5} β 5 = = =
( 331 ν 5 + 44548 ν 3 + 1465779 ν ) / 17202 ( 331\nu^{5} + 44548\nu^{3} + 1465779\nu ) / 17202 ( 3 3 1 ν 5 + 4 4 5 4 8 ν 3 + 1 4 6 5 7 7 9 ν ) / 1 7 2 0 2
(331*v^5 + 44548*v^3 + 1465779*v) / 17202
ν \nu ν = = =
( β 5 − β 4 + 7 β 1 ) / 20 ( \beta_{5} - \beta_{4} + 7\beta_1 ) / 20 ( β 5 − β 4 + 7 β 1 ) / 2 0
(b5 - b4 + 7*b1) / 20
ν 2 \nu^{2} ν 2 = = =
( 4 β 3 − 11 β 2 − 2383 ) / 40 ( 4\beta_{3} - 11\beta_{2} - 2383 ) / 40 ( 4 β 3 − 1 1 β 2 − 2 3 8 3 ) / 4 0
(4*b3 - 11*b2 - 2383) / 40
ν 3 \nu^{3} ν 3 = = =
( − 167 β 5 + 182 β 4 + 3691 β 1 ) / 40 ( -167\beta_{5} + 182\beta_{4} + 3691\beta_1 ) / 40 ( − 1 6 7 β 5 + 1 8 2 β 4 + 3 6 9 1 β 1 ) / 4 0
(-167*b5 + 182*b4 + 3691*b1) / 40
ν 4 \nu^{4} ν 4 = = =
( − 86 β 3 + 589 β 2 + 102917 ) / 20 ( -86\beta_{3} + 589\beta_{2} + 102917 ) / 20 ( − 8 6 β 3 + 5 8 9 β 2 + 1 0 2 9 1 7 ) / 2 0
(-86*b3 + 589*b2 + 102917) / 20
ν 5 \nu^{5} ν 5 = = =
( 7849 β 5 − 7819 β 4 − 279377 β 1 ) / 20 ( 7849\beta_{5} - 7819\beta_{4} - 279377\beta_1 ) / 20 ( 7 8 4 9 β 5 − 7 8 1 9 β 4 − 2 7 9 3 7 7 β 1 ) / 2 0
(7849*b5 - 7819*b4 - 279377*b1) / 20
Character values
We give the values of χ \chi χ on generators for ( Z / 600 Z ) × \left(\mathbb{Z}/600\mathbb{Z}\right)^\times ( Z / 6 0 0 Z ) × .
n n n
151 151 1 5 1
301 301 3 0 1
401 401 4 0 1
577 577 5 7 7
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 7 6 + 48011 T 7 4 + 364875475 T 7 2 + 159260855625 T_{7}^{6} + 48011T_{7}^{4} + 364875475T_{7}^{2} + 159260855625 T 7 6 + 4 8 0 1 1 T 7 4 + 3 6 4 8 7 5 4 7 5 T 7 2 + 1 5 9 2 6 0 8 5 5 6 2 5
T7^6 + 48011*T7^4 + 364875475*T7^2 + 159260855625
acting on S 6 n e w ( 600 , [ χ ] ) S_{6}^{\mathrm{new}}(600, [\chi]) S 6 n e w ( 6 0 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 6 T^{6} T 6
T^6
3 3 3
( T 2 + 81 ) 3 (T^{2} + 81)^{3} ( T 2 + 8 1 ) 3
(T^2 + 81)^3
5 5 5
T 6 T^{6} T 6
T^6
7 7 7
T 6 + ⋯ + 159260855625 T^{6} + \cdots + 159260855625 T 6 + ⋯ + 1 5 9 2 6 0 8 5 5 6 2 5
T^6 + 48011*T^4 + 364875475*T^2 + 159260855625
11 11 1 1
( T 3 − 38 T 2 + ⋯ + 687480 ) 2 (T^{3} - 38 T^{2} + \cdots + 687480)^{2} ( T 3 − 3 8 T 2 + ⋯ + 6 8 7 4 8 0 ) 2
(T^3 - 38*T^2 - 264884*T + 687480)^2
13 13 1 3
T 6 + ⋯ + 65 ⋯ 81 T^{6} + \cdots + 65\!\cdots\!81 T 6 + ⋯ + 6 5 ⋯ 8 1
T^6 + 2645659*T^4 + 2296167619059*T^2 + 655084182073998681
17 17 1 7
T 6 + ⋯ + 13 ⋯ 64 T^{6} + \cdots + 13\!\cdots\!64 T 6 + ⋯ + 1 3 ⋯ 6 4
T^6 + 7546412*T^4 + 18052539539248*T^2 + 13922095282509478464
19 19 1 9
( T 3 − 1469 T 2 + ⋯ + 10898987009 ) 2 (T^{3} - 1469 T^{2} + \cdots + 10898987009)^{2} ( T 3 − 1 4 6 9 T 2 + ⋯ + 1 0 8 9 8 9 8 7 0 0 9 ) 2
(T^3 - 1469*T^2 - 7891261*T + 10898987009)^2
23 23 2 3
T 6 + ⋯ + 93 ⋯ 44 T^{6} + \cdots + 93\!\cdots\!44 T 6 + ⋯ + 9 3 ⋯ 4 4
T^6 + 17043692*T^4 + 53575977514288*T^2 + 9359735545367406144
29 29 2 9
( T 3 − 6774 T 2 + ⋯ + 65540735544 ) 2 (T^{3} - 6774 T^{2} + \cdots + 65540735544)^{2} ( T 3 − 6 7 7 4 T 2 + ⋯ + 6 5 5 4 0 7 3 5 5 4 4 ) 2
(T^3 - 6774*T^2 - 9943156*T + 65540735544)^2
31 31 3 1
( T 3 + 10039 T 2 + ⋯ − 30382097115 ) 2 (T^{3} + 10039 T^{2} + \cdots - 30382097115)^{2} ( T 3 + 1 0 0 3 9 T 2 + ⋯ − 3 0 3 8 2 0 9 7 1 1 5 ) 2
(T^3 + 10039*T^2 + 6525979*T - 30382097115)^2
37 37 3 7
T 6 + ⋯ + 30 ⋯ 76 T^{6} + \cdots + 30\!\cdots\!76 T 6 + ⋯ + 3 0 ⋯ 7 6
T^6 + 335778028*T^4 + 19716579276276528*T^2 + 309941432216106570317376
41 41 4 1
( T 3 + 3212 T 2 + ⋯ − 503596157760 ) 2 (T^{3} + 3212 T^{2} + \cdots - 503596157760)^{2} ( T 3 + 3 2 1 2 T 2 + ⋯ − 5 0 3 5 9 6 1 5 7 7 6 0 ) 2
(T^3 + 3212*T^2 - 291156624*T - 503596157760)^2
43 43 4 3
T 6 + ⋯ + 35 ⋯ 61 T^{6} + \cdots + 35\!\cdots\!61 T 6 + ⋯ + 3 5 ⋯ 6 1
T^6 + 390195563*T^4 + 39841449941599123*T^2 + 358346524068944330091561
47 47 4 7
T 6 + ⋯ + 36 ⋯ 00 T^{6} + \cdots + 36\!\cdots\!00 T 6 + ⋯ + 3 6 ⋯ 0 0
T^6 + 323519724*T^4 + 22715874967671600*T^2 + 369141208417890304360000
53 53 5 3
T 6 + ⋯ + 36 ⋯ 00 T^{6} + \cdots + 36\!\cdots\!00 T 6 + ⋯ + 3 6 ⋯ 0 0
T^6 + 507230848*T^4 + 77690916959256576*T^2 + 3604622719062983937638400
59 59 5 9
( T 3 + ⋯ + 19463994415080 ) 2 (T^{3} + \cdots + 19463994415080)^{2} ( T 3 + ⋯ + 1 9 4 6 3 9 9 4 4 1 5 0 8 0 ) 2
(T^3 - 17122*T^2 - 1045699284*T + 19463994415080)^2
61 61 6 1
( T 3 + 26343 T 2 + ⋯ − 318660736299 ) 2 (T^{3} + 26343 T^{2} + \cdots - 318660736299)^{2} ( T 3 + 2 6 3 4 3 T 2 + ⋯ − 3 1 8 6 6 0 7 3 6 2 9 9 ) 2
(T^3 + 26343*T^2 - 507027205*T - 318660736299)^2
67 67 6 7
T 6 + ⋯ + 29 ⋯ 01 T^{6} + \cdots + 29\!\cdots\!01 T 6 + ⋯ + 2 9 ⋯ 0 1
T^6 + 2086696803*T^4 + 538564782146500803*T^2 + 29623491487974868089372001
71 71 7 1
( T 3 + ⋯ − 171119857803840 ) 2 (T^{3} + \cdots - 171119857803840)^{2} ( T 3 + ⋯ − 1 7 1 1 1 9 8 5 7 8 0 3 8 4 0 ) 2
(T^3 + 50684*T^2 - 3476205456*T - 171119857803840)^2
73 73 7 3
T 6 + ⋯ + 53 ⋯ 00 T^{6} + \cdots + 53\!\cdots\!00 T 6 + ⋯ + 5 3 ⋯ 0 0
T^6 + 11700264556*T^4 + 43911428020990455600*T^2 + 53476871037247531215763560000
79 79 7 9
( T 3 + ⋯ − 238255782882816 ) 2 (T^{3} + \cdots - 238255782882816)^{2} ( T 3 + ⋯ − 2 3 8 2 5 5 7 8 2 8 8 2 8 1 6 ) 2
(T^3 + 15320*T^2 - 6635300672*T - 238255782882816)^2
83 83 8 3
T 6 + ⋯ + 35 ⋯ 64 T^{6} + \cdots + 35\!\cdots\!64 T 6 + ⋯ + 3 5 ⋯ 6 4
T^6 + 5169235756*T^4 + 7980170697497584944*T^2 + 3515270476578156647558259264
89 89 8 9
( T 3 + ⋯ + 162093891612672 ) 2 (T^{3} + \cdots + 162093891612672)^{2} ( T 3 + ⋯ + 1 6 2 0 9 3 8 9 1 6 1 2 6 7 2 ) 2
(T^3 - 24080*T^2 - 7165914368*T + 162093891612672)^2
97 97 9 7
T 6 + ⋯ + 69 ⋯ 49 T^{6} + \cdots + 69\!\cdots\!49 T 6 + ⋯ + 6 9 ⋯ 4 9
T^6 + 37021471347*T^4 + 319869952481400184803*T^2 + 696690103250894113580056468849
show more
show less