Properties

Label 605.4.a.q.1.2
Level $605$
Weight $4$
Character 605.1
Self dual yes
Analytic conductor $35.696$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,4,Mod(1,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.6961555535\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} - 67 x^{10} + 65 x^{9} + 1558 x^{8} - 1475 x^{7} - 14915 x^{6} + 12951 x^{5} + \cdots + 27856 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 5\cdot 11^{2} \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.36383\) of defining polynomial
Character \(\chi\) \(=\) 605.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.36383 q^{2} -6.47441 q^{3} +11.0430 q^{4} -5.00000 q^{5} +28.2532 q^{6} +24.2107 q^{7} -13.2791 q^{8} +14.9180 q^{9} +21.8191 q^{10} -71.4969 q^{12} -71.3811 q^{13} -105.652 q^{14} +32.3720 q^{15} -30.3961 q^{16} +51.8749 q^{17} -65.0994 q^{18} -87.9570 q^{19} -55.2150 q^{20} -156.750 q^{21} +43.9127 q^{23} +85.9745 q^{24} +25.0000 q^{25} +311.495 q^{26} +78.2241 q^{27} +267.359 q^{28} -166.587 q^{29} -141.266 q^{30} +224.856 q^{31} +238.877 q^{32} -226.373 q^{34} -121.054 q^{35} +164.739 q^{36} +19.7264 q^{37} +383.829 q^{38} +462.151 q^{39} +66.3957 q^{40} +131.128 q^{41} +684.031 q^{42} +109.681 q^{43} -74.5898 q^{45} -191.627 q^{46} +268.086 q^{47} +196.797 q^{48} +243.160 q^{49} -109.096 q^{50} -335.860 q^{51} -788.262 q^{52} -82.4950 q^{53} -341.356 q^{54} -321.498 q^{56} +569.469 q^{57} +726.956 q^{58} -622.051 q^{59} +357.484 q^{60} -261.622 q^{61} -981.234 q^{62} +361.175 q^{63} -799.248 q^{64} +356.906 q^{65} +939.377 q^{67} +572.855 q^{68} -284.309 q^{69} +528.258 q^{70} +1084.62 q^{71} -198.098 q^{72} -339.471 q^{73} -86.0826 q^{74} -161.860 q^{75} -971.309 q^{76} -2016.75 q^{78} -1325.47 q^{79} +151.981 q^{80} -909.239 q^{81} -572.219 q^{82} +1363.89 q^{83} -1730.99 q^{84} -259.375 q^{85} -478.630 q^{86} +1078.55 q^{87} +664.950 q^{89} +325.497 q^{90} -1728.19 q^{91} +484.928 q^{92} -1455.81 q^{93} -1169.88 q^{94} +439.785 q^{95} -1546.58 q^{96} -775.214 q^{97} -1061.11 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - q^{2} + q^{3} + 39 q^{4} - 60 q^{5} - 10 q^{6} - 41 q^{7} + 9 q^{8} + 131 q^{9} + 5 q^{10} - 29 q^{12} - 109 q^{13} - 247 q^{14} - 5 q^{15} + 283 q^{16} + 167 q^{17} - 135 q^{18} - 332 q^{19} - 195 q^{20}+ \cdots + 4209 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.36383 −1.54285 −0.771423 0.636322i \(-0.780455\pi\)
−0.771423 + 0.636322i \(0.780455\pi\)
\(3\) −6.47441 −1.24600 −0.623000 0.782222i \(-0.714086\pi\)
−0.623000 + 0.782222i \(0.714086\pi\)
\(4\) 11.0430 1.38038
\(5\) −5.00000 −0.447214
\(6\) 28.2532 1.92239
\(7\) 24.2107 1.30726 0.653628 0.756816i \(-0.273246\pi\)
0.653628 + 0.756816i \(0.273246\pi\)
\(8\) −13.2791 −0.586860
\(9\) 14.9180 0.552517
\(10\) 21.8191 0.689982
\(11\) 0 0
\(12\) −71.4969 −1.71995
\(13\) −71.3811 −1.52289 −0.761445 0.648230i \(-0.775510\pi\)
−0.761445 + 0.648230i \(0.775510\pi\)
\(14\) −105.652 −2.01690
\(15\) 32.3720 0.557228
\(16\) −30.3961 −0.474940
\(17\) 51.8749 0.740090 0.370045 0.929014i \(-0.379342\pi\)
0.370045 + 0.929014i \(0.379342\pi\)
\(18\) −65.0994 −0.852449
\(19\) −87.9570 −1.06204 −0.531019 0.847360i \(-0.678191\pi\)
−0.531019 + 0.847360i \(0.678191\pi\)
\(20\) −55.2150 −0.617323
\(21\) −156.750 −1.62884
\(22\) 0 0
\(23\) 43.9127 0.398106 0.199053 0.979989i \(-0.436213\pi\)
0.199053 + 0.979989i \(0.436213\pi\)
\(24\) 85.9745 0.731228
\(25\) 25.0000 0.200000
\(26\) 311.495 2.34959
\(27\) 78.2241 0.557564
\(28\) 267.359 1.80450
\(29\) −166.587 −1.06670 −0.533351 0.845894i \(-0.679068\pi\)
−0.533351 + 0.845894i \(0.679068\pi\)
\(30\) −141.266 −0.859718
\(31\) 224.856 1.30275 0.651377 0.758754i \(-0.274192\pi\)
0.651377 + 0.758754i \(0.274192\pi\)
\(32\) 238.877 1.31962
\(33\) 0 0
\(34\) −226.373 −1.14184
\(35\) −121.054 −0.584623
\(36\) 164.739 0.762681
\(37\) 19.7264 0.0876486 0.0438243 0.999039i \(-0.486046\pi\)
0.0438243 + 0.999039i \(0.486046\pi\)
\(38\) 383.829 1.63856
\(39\) 462.151 1.89752
\(40\) 66.3957 0.262452
\(41\) 131.128 0.499481 0.249741 0.968313i \(-0.419655\pi\)
0.249741 + 0.968313i \(0.419655\pi\)
\(42\) 684.031 2.51305
\(43\) 109.681 0.388982 0.194491 0.980904i \(-0.437694\pi\)
0.194491 + 0.980904i \(0.437694\pi\)
\(44\) 0 0
\(45\) −74.5898 −0.247093
\(46\) −191.627 −0.614216
\(47\) 268.086 0.832009 0.416005 0.909363i \(-0.363430\pi\)
0.416005 + 0.909363i \(0.363430\pi\)
\(48\) 196.797 0.591775
\(49\) 243.160 0.708920
\(50\) −109.096 −0.308569
\(51\) −335.860 −0.922152
\(52\) −788.262 −2.10216
\(53\) −82.4950 −0.213803 −0.106902 0.994270i \(-0.534093\pi\)
−0.106902 + 0.994270i \(0.534093\pi\)
\(54\) −341.356 −0.860236
\(55\) 0 0
\(56\) −321.498 −0.767177
\(57\) 569.469 1.32330
\(58\) 726.956 1.64576
\(59\) −622.051 −1.37261 −0.686306 0.727313i \(-0.740769\pi\)
−0.686306 + 0.727313i \(0.740769\pi\)
\(60\) 357.484 0.769184
\(61\) −261.622 −0.549136 −0.274568 0.961568i \(-0.588535\pi\)
−0.274568 + 0.961568i \(0.588535\pi\)
\(62\) −981.234 −2.00995
\(63\) 361.175 0.722282
\(64\) −799.248 −1.56103
\(65\) 356.906 0.681057
\(66\) 0 0
\(67\) 939.377 1.71288 0.856441 0.516244i \(-0.172670\pi\)
0.856441 + 0.516244i \(0.172670\pi\)
\(68\) 572.855 1.02160
\(69\) −284.309 −0.496040
\(70\) 528.258 0.901984
\(71\) 1084.62 1.81297 0.906484 0.422241i \(-0.138756\pi\)
0.906484 + 0.422241i \(0.138756\pi\)
\(72\) −198.098 −0.324250
\(73\) −339.471 −0.544276 −0.272138 0.962258i \(-0.587731\pi\)
−0.272138 + 0.962258i \(0.587731\pi\)
\(74\) −86.0826 −0.135228
\(75\) −161.860 −0.249200
\(76\) −971.309 −1.46601
\(77\) 0 0
\(78\) −2016.75 −2.92758
\(79\) −1325.47 −1.88769 −0.943843 0.330395i \(-0.892818\pi\)
−0.943843 + 0.330395i \(0.892818\pi\)
\(80\) 151.981 0.212399
\(81\) −909.239 −1.24724
\(82\) −572.219 −0.770623
\(83\) 1363.89 1.80370 0.901848 0.432053i \(-0.142211\pi\)
0.901848 + 0.432053i \(0.142211\pi\)
\(84\) −1730.99 −2.24841
\(85\) −259.375 −0.330978
\(86\) −478.630 −0.600140
\(87\) 1078.55 1.32911
\(88\) 0 0
\(89\) 664.950 0.791961 0.395981 0.918259i \(-0.370405\pi\)
0.395981 + 0.918259i \(0.370405\pi\)
\(90\) 325.497 0.381227
\(91\) −1728.19 −1.99081
\(92\) 484.928 0.549535
\(93\) −1455.81 −1.62323
\(94\) −1169.88 −1.28366
\(95\) 439.785 0.474958
\(96\) −1546.58 −1.64425
\(97\) −775.214 −0.811455 −0.405727 0.913994i \(-0.632982\pi\)
−0.405727 + 0.913994i \(0.632982\pi\)
\(98\) −1061.11 −1.09376
\(99\) 0 0
\(100\) 276.075 0.276075
\(101\) 1572.80 1.54950 0.774748 0.632270i \(-0.217877\pi\)
0.774748 + 0.632270i \(0.217877\pi\)
\(102\) 1465.63 1.42274
\(103\) −34.7443 −0.0332375 −0.0166187 0.999862i \(-0.505290\pi\)
−0.0166187 + 0.999862i \(0.505290\pi\)
\(104\) 947.880 0.893724
\(105\) 783.751 0.728441
\(106\) 359.994 0.329865
\(107\) 369.753 0.334069 0.167034 0.985951i \(-0.446581\pi\)
0.167034 + 0.985951i \(0.446581\pi\)
\(108\) 863.829 0.769648
\(109\) −543.635 −0.477713 −0.238857 0.971055i \(-0.576773\pi\)
−0.238857 + 0.971055i \(0.576773\pi\)
\(110\) 0 0
\(111\) −127.717 −0.109210
\(112\) −735.913 −0.620868
\(113\) −230.058 −0.191522 −0.0957611 0.995404i \(-0.530528\pi\)
−0.0957611 + 0.995404i \(0.530528\pi\)
\(114\) −2485.07 −2.04165
\(115\) −219.563 −0.178038
\(116\) −1839.62 −1.47245
\(117\) −1064.86 −0.841422
\(118\) 2714.52 2.11773
\(119\) 1255.93 0.967487
\(120\) −429.873 −0.327015
\(121\) 0 0
\(122\) 1141.68 0.847233
\(123\) −848.975 −0.622354
\(124\) 2483.09 1.79829
\(125\) −125.000 −0.0894427
\(126\) −1576.10 −1.11437
\(127\) −2050.29 −1.43255 −0.716277 0.697817i \(-0.754155\pi\)
−0.716277 + 0.697817i \(0.754155\pi\)
\(128\) 1576.77 1.08881
\(129\) −710.121 −0.484672
\(130\) −1557.48 −1.05077
\(131\) −2484.58 −1.65709 −0.828545 0.559922i \(-0.810831\pi\)
−0.828545 + 0.559922i \(0.810831\pi\)
\(132\) 0 0
\(133\) −2129.50 −1.38836
\(134\) −4099.28 −2.64272
\(135\) −391.120 −0.249350
\(136\) −688.854 −0.434329
\(137\) −54.1791 −0.0337871 −0.0168935 0.999857i \(-0.505378\pi\)
−0.0168935 + 0.999857i \(0.505378\pi\)
\(138\) 1240.67 0.765313
\(139\) 228.690 0.139549 0.0697744 0.997563i \(-0.477772\pi\)
0.0697744 + 0.997563i \(0.477772\pi\)
\(140\) −1336.80 −0.806999
\(141\) −1735.70 −1.03668
\(142\) −4733.09 −2.79713
\(143\) 0 0
\(144\) −453.448 −0.262412
\(145\) 832.933 0.477044
\(146\) 1481.40 0.839734
\(147\) −1574.32 −0.883315
\(148\) 217.839 0.120988
\(149\) −1221.62 −0.671673 −0.335836 0.941920i \(-0.609019\pi\)
−0.335836 + 0.941920i \(0.609019\pi\)
\(150\) 706.330 0.384477
\(151\) −440.911 −0.237621 −0.118811 0.992917i \(-0.537908\pi\)
−0.118811 + 0.992917i \(0.537908\pi\)
\(152\) 1167.99 0.623268
\(153\) 773.868 0.408912
\(154\) 0 0
\(155\) −1124.28 −0.582609
\(156\) 5103.53 2.61929
\(157\) −22.3192 −0.0113456 −0.00567282 0.999984i \(-0.501806\pi\)
−0.00567282 + 0.999984i \(0.501806\pi\)
\(158\) 5784.13 2.91241
\(159\) 534.107 0.266399
\(160\) −1194.38 −0.590152
\(161\) 1063.16 0.520426
\(162\) 3967.76 1.92430
\(163\) −2648.57 −1.27271 −0.636355 0.771396i \(-0.719559\pi\)
−0.636355 + 0.771396i \(0.719559\pi\)
\(164\) 1448.04 0.689471
\(165\) 0 0
\(166\) −5951.80 −2.78283
\(167\) −19.4773 −0.00902516 −0.00451258 0.999990i \(-0.501436\pi\)
−0.00451258 + 0.999990i \(0.501436\pi\)
\(168\) 2081.51 0.955903
\(169\) 2898.27 1.31919
\(170\) 1131.87 0.510648
\(171\) −1312.14 −0.586794
\(172\) 1211.21 0.536941
\(173\) −2667.14 −1.17213 −0.586066 0.810263i \(-0.699324\pi\)
−0.586066 + 0.810263i \(0.699324\pi\)
\(174\) −4706.61 −2.05062
\(175\) 605.268 0.261451
\(176\) 0 0
\(177\) 4027.41 1.71027
\(178\) −2901.73 −1.22187
\(179\) −91.6342 −0.0382629 −0.0191315 0.999817i \(-0.506090\pi\)
−0.0191315 + 0.999817i \(0.506090\pi\)
\(180\) −823.695 −0.341081
\(181\) −2750.79 −1.12964 −0.564819 0.825215i \(-0.691054\pi\)
−0.564819 + 0.825215i \(0.691054\pi\)
\(182\) 7541.53 3.07151
\(183\) 1693.85 0.684224
\(184\) −583.122 −0.233632
\(185\) −98.6319 −0.0391976
\(186\) 6352.91 2.50440
\(187\) 0 0
\(188\) 2960.48 1.14848
\(189\) 1893.86 0.728879
\(190\) −1919.15 −0.732787
\(191\) 2441.77 0.925028 0.462514 0.886612i \(-0.346947\pi\)
0.462514 + 0.886612i \(0.346947\pi\)
\(192\) 5174.65 1.94504
\(193\) 1436.59 0.535792 0.267896 0.963448i \(-0.413672\pi\)
0.267896 + 0.963448i \(0.413672\pi\)
\(194\) 3382.90 1.25195
\(195\) −2310.75 −0.848597
\(196\) 2685.21 0.978576
\(197\) 2227.72 0.805677 0.402839 0.915271i \(-0.368024\pi\)
0.402839 + 0.915271i \(0.368024\pi\)
\(198\) 0 0
\(199\) 4105.01 1.46229 0.731146 0.682221i \(-0.238986\pi\)
0.731146 + 0.682221i \(0.238986\pi\)
\(200\) −331.978 −0.117372
\(201\) −6081.91 −2.13425
\(202\) −6863.42 −2.39064
\(203\) −4033.19 −1.39445
\(204\) −3708.90 −1.27292
\(205\) −655.639 −0.223375
\(206\) 151.618 0.0512803
\(207\) 655.088 0.219960
\(208\) 2169.71 0.723281
\(209\) 0 0
\(210\) −3420.15 −1.12387
\(211\) −4079.12 −1.33089 −0.665446 0.746446i \(-0.731759\pi\)
−0.665446 + 0.746446i \(0.731759\pi\)
\(212\) −910.993 −0.295128
\(213\) −7022.27 −2.25896
\(214\) −1613.54 −0.515417
\(215\) −548.406 −0.173958
\(216\) −1038.75 −0.327212
\(217\) 5443.94 1.70303
\(218\) 2372.33 0.737038
\(219\) 2197.88 0.678168
\(220\) 0 0
\(221\) −3702.89 −1.12707
\(222\) 557.334 0.168495
\(223\) −177.793 −0.0533898 −0.0266949 0.999644i \(-0.508498\pi\)
−0.0266949 + 0.999644i \(0.508498\pi\)
\(224\) 5783.38 1.72508
\(225\) 372.949 0.110503
\(226\) 1003.93 0.295489
\(227\) 988.041 0.288892 0.144446 0.989513i \(-0.453860\pi\)
0.144446 + 0.989513i \(0.453860\pi\)
\(228\) 6288.65 1.82665
\(229\) −521.699 −0.150545 −0.0752726 0.997163i \(-0.523983\pi\)
−0.0752726 + 0.997163i \(0.523983\pi\)
\(230\) 958.137 0.274686
\(231\) 0 0
\(232\) 2212.13 0.626005
\(233\) 3468.16 0.975136 0.487568 0.873085i \(-0.337884\pi\)
0.487568 + 0.873085i \(0.337884\pi\)
\(234\) 4646.87 1.29819
\(235\) −1340.43 −0.372086
\(236\) −6869.30 −1.89472
\(237\) 8581.64 2.35206
\(238\) −5480.67 −1.49268
\(239\) −4008.96 −1.08501 −0.542507 0.840051i \(-0.682525\pi\)
−0.542507 + 0.840051i \(0.682525\pi\)
\(240\) −983.985 −0.264650
\(241\) −1695.51 −0.453184 −0.226592 0.973990i \(-0.572758\pi\)
−0.226592 + 0.973990i \(0.572758\pi\)
\(242\) 0 0
\(243\) 3774.74 0.996500
\(244\) −2889.10 −0.758014
\(245\) −1215.80 −0.317039
\(246\) 3704.78 0.960196
\(247\) 6278.47 1.61737
\(248\) −2985.90 −0.764535
\(249\) −8830.40 −2.24741
\(250\) 545.479 0.137996
\(251\) −3752.81 −0.943727 −0.471864 0.881672i \(-0.656419\pi\)
−0.471864 + 0.881672i \(0.656419\pi\)
\(252\) 3988.45 0.997019
\(253\) 0 0
\(254\) 8947.14 2.21021
\(255\) 1679.30 0.412399
\(256\) −486.758 −0.118837
\(257\) −2086.02 −0.506312 −0.253156 0.967425i \(-0.581469\pi\)
−0.253156 + 0.967425i \(0.581469\pi\)
\(258\) 3098.85 0.747774
\(259\) 477.590 0.114579
\(260\) 3941.31 0.940114
\(261\) −2485.13 −0.589371
\(262\) 10842.3 2.55664
\(263\) 28.3895 0.00665617 0.00332809 0.999994i \(-0.498941\pi\)
0.00332809 + 0.999994i \(0.498941\pi\)
\(264\) 0 0
\(265\) 412.475 0.0956157
\(266\) 9292.78 2.14202
\(267\) −4305.16 −0.986784
\(268\) 10373.5 2.36442
\(269\) 1108.10 0.251159 0.125580 0.992084i \(-0.459921\pi\)
0.125580 + 0.992084i \(0.459921\pi\)
\(270\) 1706.78 0.384709
\(271\) 3007.39 0.674119 0.337059 0.941483i \(-0.390568\pi\)
0.337059 + 0.941483i \(0.390568\pi\)
\(272\) −1576.80 −0.351498
\(273\) 11189.0 2.48055
\(274\) 236.428 0.0521283
\(275\) 0 0
\(276\) −3139.62 −0.684721
\(277\) −7694.70 −1.66906 −0.834531 0.550962i \(-0.814261\pi\)
−0.834531 + 0.550962i \(0.814261\pi\)
\(278\) −997.966 −0.215302
\(279\) 3354.40 0.719794
\(280\) 1607.49 0.343092
\(281\) −4032.39 −0.856057 −0.428029 0.903765i \(-0.640792\pi\)
−0.428029 + 0.903765i \(0.640792\pi\)
\(282\) 7574.30 1.59944
\(283\) 1462.66 0.307231 0.153615 0.988131i \(-0.450908\pi\)
0.153615 + 0.988131i \(0.450908\pi\)
\(284\) 11977.5 2.50258
\(285\) −2847.35 −0.591797
\(286\) 0 0
\(287\) 3174.70 0.652950
\(288\) 3563.55 0.729112
\(289\) −2221.99 −0.452267
\(290\) −3634.78 −0.736005
\(291\) 5019.05 1.01107
\(292\) −3748.78 −0.751305
\(293\) −5268.27 −1.05043 −0.525215 0.850970i \(-0.676015\pi\)
−0.525215 + 0.850970i \(0.676015\pi\)
\(294\) 6870.04 1.36282
\(295\) 3110.25 0.613851
\(296\) −261.949 −0.0514375
\(297\) 0 0
\(298\) 5330.95 1.03629
\(299\) −3134.54 −0.606271
\(300\) −1787.42 −0.343990
\(301\) 2655.46 0.508499
\(302\) 1924.06 0.366613
\(303\) −10182.9 −1.93067
\(304\) 2673.55 0.504404
\(305\) 1308.11 0.245581
\(306\) −3377.03 −0.630888
\(307\) −5709.75 −1.06148 −0.530738 0.847536i \(-0.678085\pi\)
−0.530738 + 0.847536i \(0.678085\pi\)
\(308\) 0 0
\(309\) 224.949 0.0414139
\(310\) 4906.17 0.898877
\(311\) −3313.49 −0.604151 −0.302075 0.953284i \(-0.597679\pi\)
−0.302075 + 0.953284i \(0.597679\pi\)
\(312\) −6136.96 −1.11358
\(313\) −6393.18 −1.15452 −0.577259 0.816561i \(-0.695878\pi\)
−0.577259 + 0.816561i \(0.695878\pi\)
\(314\) 97.3971 0.0175046
\(315\) −1805.87 −0.323014
\(316\) −14637.2 −2.60571
\(317\) 3563.21 0.631324 0.315662 0.948872i \(-0.397773\pi\)
0.315662 + 0.948872i \(0.397773\pi\)
\(318\) −2330.75 −0.411012
\(319\) 0 0
\(320\) 3996.24 0.698114
\(321\) −2393.93 −0.416250
\(322\) −4639.44 −0.802938
\(323\) −4562.76 −0.786003
\(324\) −10040.7 −1.72166
\(325\) −1784.53 −0.304578
\(326\) 11557.9 1.96360
\(327\) 3519.71 0.595231
\(328\) −1741.26 −0.293126
\(329\) 6490.57 1.08765
\(330\) 0 0
\(331\) 1097.52 0.182251 0.0911253 0.995839i \(-0.470954\pi\)
0.0911253 + 0.995839i \(0.470954\pi\)
\(332\) 15061.5 2.48978
\(333\) 294.277 0.0484273
\(334\) 84.9958 0.0139244
\(335\) −4696.88 −0.766025
\(336\) 4764.60 0.773602
\(337\) −5297.23 −0.856257 −0.428129 0.903718i \(-0.640827\pi\)
−0.428129 + 0.903718i \(0.640827\pi\)
\(338\) −12647.5 −2.03531
\(339\) 1489.49 0.238637
\(340\) −2864.28 −0.456874
\(341\) 0 0
\(342\) 5725.95 0.905332
\(343\) −2417.21 −0.380516
\(344\) −1456.47 −0.228278
\(345\) 1421.54 0.221836
\(346\) 11638.9 1.80842
\(347\) −5992.28 −0.927039 −0.463520 0.886087i \(-0.653414\pi\)
−0.463520 + 0.886087i \(0.653414\pi\)
\(348\) 11910.4 1.83467
\(349\) 6907.00 1.05938 0.529689 0.848192i \(-0.322309\pi\)
0.529689 + 0.848192i \(0.322309\pi\)
\(350\) −2641.29 −0.403379
\(351\) −5583.72 −0.849109
\(352\) 0 0
\(353\) −7560.23 −1.13992 −0.569958 0.821674i \(-0.693040\pi\)
−0.569958 + 0.821674i \(0.693040\pi\)
\(354\) −17574.9 −2.63869
\(355\) −5423.10 −0.810784
\(356\) 7343.04 1.09320
\(357\) −8131.41 −1.20549
\(358\) 399.876 0.0590338
\(359\) −7797.45 −1.14633 −0.573167 0.819439i \(-0.694285\pi\)
−0.573167 + 0.819439i \(0.694285\pi\)
\(360\) 990.488 0.145009
\(361\) 877.426 0.127923
\(362\) 12004.0 1.74286
\(363\) 0 0
\(364\) −19084.4 −2.74806
\(365\) 1697.36 0.243408
\(366\) −7391.67 −1.05565
\(367\) −2201.74 −0.313161 −0.156580 0.987665i \(-0.550047\pi\)
−0.156580 + 0.987665i \(0.550047\pi\)
\(368\) −1334.78 −0.189076
\(369\) 1956.16 0.275972
\(370\) 430.413 0.0604760
\(371\) −1997.27 −0.279496
\(372\) −16076.5 −2.24067
\(373\) −5084.28 −0.705775 −0.352888 0.935666i \(-0.614800\pi\)
−0.352888 + 0.935666i \(0.614800\pi\)
\(374\) 0 0
\(375\) 809.301 0.111446
\(376\) −3559.96 −0.488273
\(377\) 11891.1 1.62447
\(378\) −8264.49 −1.12455
\(379\) −9019.04 −1.22237 −0.611183 0.791489i \(-0.709306\pi\)
−0.611183 + 0.791489i \(0.709306\pi\)
\(380\) 4856.54 0.655620
\(381\) 13274.4 1.78496
\(382\) −10655.5 −1.42718
\(383\) −8460.95 −1.12881 −0.564405 0.825498i \(-0.690894\pi\)
−0.564405 + 0.825498i \(0.690894\pi\)
\(384\) −10208.6 −1.35666
\(385\) 0 0
\(386\) −6269.03 −0.826646
\(387\) 1636.22 0.214919
\(388\) −8560.69 −1.12011
\(389\) −775.761 −0.101112 −0.0505561 0.998721i \(-0.516099\pi\)
−0.0505561 + 0.998721i \(0.516099\pi\)
\(390\) 10083.7 1.30926
\(391\) 2277.97 0.294634
\(392\) −3228.95 −0.416037
\(393\) 16086.2 2.06473
\(394\) −9721.39 −1.24304
\(395\) 6627.36 0.844199
\(396\) 0 0
\(397\) 8216.54 1.03873 0.519366 0.854552i \(-0.326168\pi\)
0.519366 + 0.854552i \(0.326168\pi\)
\(398\) −17913.6 −2.25609
\(399\) 13787.3 1.72989
\(400\) −759.903 −0.0949879
\(401\) 4372.98 0.544579 0.272289 0.962215i \(-0.412219\pi\)
0.272289 + 0.962215i \(0.412219\pi\)
\(402\) 26540.4 3.29282
\(403\) −16050.5 −1.98395
\(404\) 17368.4 2.13889
\(405\) 4546.20 0.557784
\(406\) 17600.1 2.15143
\(407\) 0 0
\(408\) 4459.92 0.541174
\(409\) −1302.48 −0.157466 −0.0787328 0.996896i \(-0.525087\pi\)
−0.0787328 + 0.996896i \(0.525087\pi\)
\(410\) 2861.10 0.344633
\(411\) 350.777 0.0420987
\(412\) −383.681 −0.0458802
\(413\) −15060.3 −1.79436
\(414\) −2858.69 −0.339365
\(415\) −6819.47 −0.806637
\(416\) −17051.3 −2.00963
\(417\) −1480.64 −0.173878
\(418\) 0 0
\(419\) 5239.74 0.610926 0.305463 0.952204i \(-0.401189\pi\)
0.305463 + 0.952204i \(0.401189\pi\)
\(420\) 8654.96 1.00552
\(421\) 15874.3 1.83769 0.918845 0.394619i \(-0.129123\pi\)
0.918845 + 0.394619i \(0.129123\pi\)
\(422\) 17800.6 2.05336
\(423\) 3999.30 0.459699
\(424\) 1095.46 0.125473
\(425\) 1296.87 0.148018
\(426\) 30644.0 3.48523
\(427\) −6334.07 −0.717862
\(428\) 4083.18 0.461141
\(429\) 0 0
\(430\) 2393.15 0.268391
\(431\) −3523.78 −0.393816 −0.196908 0.980422i \(-0.563090\pi\)
−0.196908 + 0.980422i \(0.563090\pi\)
\(432\) −2377.71 −0.264809
\(433\) −16023.1 −1.77834 −0.889168 0.457581i \(-0.848716\pi\)
−0.889168 + 0.457581i \(0.848716\pi\)
\(434\) −23756.4 −2.62752
\(435\) −5392.75 −0.594397
\(436\) −6003.36 −0.659424
\(437\) −3862.43 −0.422803
\(438\) −9591.16 −1.04631
\(439\) 3842.70 0.417773 0.208886 0.977940i \(-0.433016\pi\)
0.208886 + 0.977940i \(0.433016\pi\)
\(440\) 0 0
\(441\) 3627.45 0.391691
\(442\) 16158.8 1.73890
\(443\) 1996.23 0.214094 0.107047 0.994254i \(-0.465860\pi\)
0.107047 + 0.994254i \(0.465860\pi\)
\(444\) −1410.38 −0.150751
\(445\) −3324.75 −0.354176
\(446\) 775.860 0.0823722
\(447\) 7909.28 0.836904
\(448\) −19350.4 −2.04067
\(449\) 8028.80 0.843881 0.421940 0.906624i \(-0.361349\pi\)
0.421940 + 0.906624i \(0.361349\pi\)
\(450\) −1627.49 −0.170490
\(451\) 0 0
\(452\) −2540.53 −0.264373
\(453\) 2854.64 0.296076
\(454\) −4311.64 −0.445716
\(455\) 8640.95 0.890316
\(456\) −7562.06 −0.776592
\(457\) −1422.44 −0.145600 −0.0728000 0.997347i \(-0.523193\pi\)
−0.0728000 + 0.997347i \(0.523193\pi\)
\(458\) 2276.61 0.232268
\(459\) 4057.87 0.412647
\(460\) −2424.64 −0.245760
\(461\) −12510.0 −1.26388 −0.631939 0.775018i \(-0.717741\pi\)
−0.631939 + 0.775018i \(0.717741\pi\)
\(462\) 0 0
\(463\) 4643.04 0.466048 0.233024 0.972471i \(-0.425138\pi\)
0.233024 + 0.972471i \(0.425138\pi\)
\(464\) 5063.59 0.506619
\(465\) 7279.06 0.725932
\(466\) −15134.5 −1.50449
\(467\) 10485.6 1.03900 0.519501 0.854470i \(-0.326118\pi\)
0.519501 + 0.854470i \(0.326118\pi\)
\(468\) −11759.3 −1.16148
\(469\) 22743.0 2.23918
\(470\) 5849.42 0.574071
\(471\) 144.504 0.0141367
\(472\) 8260.29 0.805531
\(473\) 0 0
\(474\) −37448.8 −3.62886
\(475\) −2198.92 −0.212407
\(476\) 13869.2 1.33550
\(477\) −1230.66 −0.118130
\(478\) 17494.4 1.67401
\(479\) −12961.1 −1.23634 −0.618171 0.786043i \(-0.712126\pi\)
−0.618171 + 0.786043i \(0.712126\pi\)
\(480\) 7732.92 0.735329
\(481\) −1408.09 −0.133479
\(482\) 7398.90 0.699193
\(483\) −6883.32 −0.648451
\(484\) 0 0
\(485\) 3876.07 0.362894
\(486\) −16472.3 −1.53745
\(487\) 3085.83 0.287130 0.143565 0.989641i \(-0.454143\pi\)
0.143565 + 0.989641i \(0.454143\pi\)
\(488\) 3474.12 0.322266
\(489\) 17147.9 1.58580
\(490\) 5305.54 0.489142
\(491\) −7041.85 −0.647239 −0.323619 0.946187i \(-0.604900\pi\)
−0.323619 + 0.946187i \(0.604900\pi\)
\(492\) −9375.23 −0.859082
\(493\) −8641.68 −0.789455
\(494\) −27398.2 −2.49535
\(495\) 0 0
\(496\) −6834.76 −0.618730
\(497\) 26259.4 2.37001
\(498\) 38534.4 3.46740
\(499\) −9776.64 −0.877079 −0.438539 0.898712i \(-0.644504\pi\)
−0.438539 + 0.898712i \(0.644504\pi\)
\(500\) −1380.38 −0.123465
\(501\) 126.104 0.0112454
\(502\) 16376.6 1.45603
\(503\) −2075.54 −0.183984 −0.0919920 0.995760i \(-0.529323\pi\)
−0.0919920 + 0.995760i \(0.529323\pi\)
\(504\) −4796.09 −0.423878
\(505\) −7863.98 −0.692956
\(506\) 0 0
\(507\) −18764.6 −1.64372
\(508\) −22641.4 −1.97746
\(509\) 9995.05 0.870379 0.435189 0.900339i \(-0.356681\pi\)
0.435189 + 0.900339i \(0.356681\pi\)
\(510\) −7328.17 −0.636268
\(511\) −8218.85 −0.711508
\(512\) −10490.0 −0.905463
\(513\) −6880.35 −0.592154
\(514\) 9103.03 0.781162
\(515\) 173.722 0.0148642
\(516\) −7841.87 −0.669029
\(517\) 0 0
\(518\) −2084.12 −0.176778
\(519\) 17268.2 1.46048
\(520\) −4739.40 −0.399685
\(521\) 10207.7 0.858362 0.429181 0.903219i \(-0.358802\pi\)
0.429181 + 0.903219i \(0.358802\pi\)
\(522\) 10844.7 0.909309
\(523\) 15991.8 1.33704 0.668522 0.743692i \(-0.266927\pi\)
0.668522 + 0.743692i \(0.266927\pi\)
\(524\) −27437.2 −2.28741
\(525\) −3918.75 −0.325768
\(526\) −123.887 −0.0102695
\(527\) 11664.4 0.964155
\(528\) 0 0
\(529\) −10238.7 −0.841512
\(530\) −1799.97 −0.147520
\(531\) −9279.72 −0.758391
\(532\) −23516.1 −1.91645
\(533\) −9360.06 −0.760655
\(534\) 18787.0 1.52246
\(535\) −1848.77 −0.149400
\(536\) −12474.1 −1.00522
\(537\) 593.277 0.0476756
\(538\) −4835.54 −0.387500
\(539\) 0 0
\(540\) −4319.14 −0.344197
\(541\) 4784.39 0.380216 0.190108 0.981763i \(-0.439116\pi\)
0.190108 + 0.981763i \(0.439116\pi\)
\(542\) −13123.8 −1.04006
\(543\) 17809.7 1.40753
\(544\) 12391.7 0.976637
\(545\) 2718.17 0.213640
\(546\) −48826.9 −3.82710
\(547\) −18081.6 −1.41337 −0.706686 0.707527i \(-0.749811\pi\)
−0.706686 + 0.707527i \(0.749811\pi\)
\(548\) −598.300 −0.0466389
\(549\) −3902.87 −0.303407
\(550\) 0 0
\(551\) 14652.5 1.13288
\(552\) 3775.37 0.291106
\(553\) −32090.6 −2.46769
\(554\) 33578.4 2.57510
\(555\) 638.583 0.0488403
\(556\) 2525.43 0.192630
\(557\) 5283.98 0.401956 0.200978 0.979596i \(-0.435588\pi\)
0.200978 + 0.979596i \(0.435588\pi\)
\(558\) −14638.0 −1.11053
\(559\) −7829.17 −0.592377
\(560\) 3679.56 0.277661
\(561\) 0 0
\(562\) 17596.6 1.32076
\(563\) −1802.78 −0.134952 −0.0674762 0.997721i \(-0.521495\pi\)
−0.0674762 + 0.997721i \(0.521495\pi\)
\(564\) −19167.3 −1.43101
\(565\) 1150.29 0.0856514
\(566\) −6382.81 −0.474010
\(567\) −22013.4 −1.63047
\(568\) −14402.8 −1.06396
\(569\) −12941.8 −0.953516 −0.476758 0.879035i \(-0.658188\pi\)
−0.476758 + 0.879035i \(0.658188\pi\)
\(570\) 12425.3 0.913052
\(571\) −10130.7 −0.742479 −0.371240 0.928537i \(-0.621067\pi\)
−0.371240 + 0.928537i \(0.621067\pi\)
\(572\) 0 0
\(573\) −15809.0 −1.15259
\(574\) −13853.9 −1.00740
\(575\) 1097.82 0.0796211
\(576\) −11923.1 −0.862496
\(577\) 22781.5 1.64369 0.821843 0.569714i \(-0.192946\pi\)
0.821843 + 0.569714i \(0.192946\pi\)
\(578\) 9696.38 0.697779
\(579\) −9301.06 −0.667598
\(580\) 9198.09 0.658499
\(581\) 33020.9 2.35789
\(582\) −21902.3 −1.55993
\(583\) 0 0
\(584\) 4507.89 0.319414
\(585\) 5324.30 0.376296
\(586\) 22989.8 1.62065
\(587\) −22791.8 −1.60258 −0.801292 0.598273i \(-0.795854\pi\)
−0.801292 + 0.598273i \(0.795854\pi\)
\(588\) −17385.2 −1.21931
\(589\) −19777.7 −1.38357
\(590\) −13572.6 −0.947077
\(591\) −14423.2 −1.00387
\(592\) −599.606 −0.0416278
\(593\) 5399.20 0.373893 0.186947 0.982370i \(-0.440141\pi\)
0.186947 + 0.982370i \(0.440141\pi\)
\(594\) 0 0
\(595\) −6279.65 −0.432673
\(596\) −13490.4 −0.927160
\(597\) −26577.5 −1.82202
\(598\) 13678.6 0.935383
\(599\) −20755.0 −1.41574 −0.707869 0.706343i \(-0.750343\pi\)
−0.707869 + 0.706343i \(0.750343\pi\)
\(600\) 2149.36 0.146246
\(601\) −13439.7 −0.912171 −0.456086 0.889936i \(-0.650749\pi\)
−0.456086 + 0.889936i \(0.650749\pi\)
\(602\) −11588.0 −0.784537
\(603\) 14013.6 0.946397
\(604\) −4868.98 −0.328006
\(605\) 0 0
\(606\) 44436.6 2.97873
\(607\) −4140.82 −0.276888 −0.138444 0.990370i \(-0.544210\pi\)
−0.138444 + 0.990370i \(0.544210\pi\)
\(608\) −21010.9 −1.40148
\(609\) 26112.5 1.73749
\(610\) −5708.38 −0.378894
\(611\) −19136.3 −1.26706
\(612\) 8545.83 0.564452
\(613\) 11697.3 0.770714 0.385357 0.922768i \(-0.374078\pi\)
0.385357 + 0.922768i \(0.374078\pi\)
\(614\) 24916.4 1.63769
\(615\) 4244.88 0.278325
\(616\) 0 0
\(617\) 2547.40 0.166215 0.0831073 0.996541i \(-0.473516\pi\)
0.0831073 + 0.996541i \(0.473516\pi\)
\(618\) −981.638 −0.0638953
\(619\) 12888.8 0.836903 0.418451 0.908239i \(-0.362573\pi\)
0.418451 + 0.908239i \(0.362573\pi\)
\(620\) −12415.4 −0.804220
\(621\) 3435.03 0.221969
\(622\) 14459.5 0.932112
\(623\) 16098.9 1.03530
\(624\) −14047.6 −0.901208
\(625\) 625.000 0.0400000
\(626\) 27898.7 1.78124
\(627\) 0 0
\(628\) −246.471 −0.0156612
\(629\) 1023.31 0.0648678
\(630\) 7880.52 0.498361
\(631\) −26494.7 −1.67154 −0.835768 0.549083i \(-0.814977\pi\)
−0.835768 + 0.549083i \(0.814977\pi\)
\(632\) 17601.1 1.10781
\(633\) 26409.9 1.65829
\(634\) −15549.2 −0.974037
\(635\) 10251.5 0.640657
\(636\) 5898.14 0.367730
\(637\) −17357.0 −1.07961
\(638\) 0 0
\(639\) 16180.3 1.00170
\(640\) −7883.83 −0.486931
\(641\) −2538.72 −0.156433 −0.0782163 0.996936i \(-0.524922\pi\)
−0.0782163 + 0.996936i \(0.524922\pi\)
\(642\) 10446.7 0.642210
\(643\) 27573.2 1.69111 0.845554 0.533890i \(-0.179270\pi\)
0.845554 + 0.533890i \(0.179270\pi\)
\(644\) 11740.5 0.718383
\(645\) 3550.60 0.216752
\(646\) 19911.1 1.21268
\(647\) −9918.47 −0.602682 −0.301341 0.953516i \(-0.597434\pi\)
−0.301341 + 0.953516i \(0.597434\pi\)
\(648\) 12073.9 0.731957
\(649\) 0 0
\(650\) 7787.38 0.469917
\(651\) −35246.3 −2.12198
\(652\) −29248.1 −1.75682
\(653\) 5766.21 0.345558 0.172779 0.984961i \(-0.444725\pi\)
0.172779 + 0.984961i \(0.444725\pi\)
\(654\) −15359.4 −0.918350
\(655\) 12422.9 0.741073
\(656\) −3985.78 −0.237223
\(657\) −5064.22 −0.300722
\(658\) −28323.7 −1.67808
\(659\) 2659.35 0.157198 0.0785991 0.996906i \(-0.474955\pi\)
0.0785991 + 0.996906i \(0.474955\pi\)
\(660\) 0 0
\(661\) 2724.52 0.160320 0.0801600 0.996782i \(-0.474457\pi\)
0.0801600 + 0.996782i \(0.474457\pi\)
\(662\) −4789.37 −0.281185
\(663\) 23974.0 1.40434
\(664\) −18111.3 −1.05852
\(665\) 10647.5 0.620891
\(666\) −1284.18 −0.0747159
\(667\) −7315.27 −0.424660
\(668\) −215.088 −0.0124581
\(669\) 1151.11 0.0665237
\(670\) 20496.4 1.18186
\(671\) 0 0
\(672\) −37444.0 −2.14945
\(673\) 22661.2 1.29796 0.648980 0.760806i \(-0.275196\pi\)
0.648980 + 0.760806i \(0.275196\pi\)
\(674\) 23116.2 1.32107
\(675\) 1955.60 0.111513
\(676\) 32005.6 1.82098
\(677\) 30128.8 1.71041 0.855203 0.518294i \(-0.173433\pi\)
0.855203 + 0.518294i \(0.173433\pi\)
\(678\) −6499.87 −0.368180
\(679\) −18768.5 −1.06078
\(680\) 3444.27 0.194238
\(681\) −6396.98 −0.359960
\(682\) 0 0
\(683\) −30674.6 −1.71849 −0.859247 0.511561i \(-0.829067\pi\)
−0.859247 + 0.511561i \(0.829067\pi\)
\(684\) −14489.9 −0.809995
\(685\) 270.895 0.0151100
\(686\) 10548.3 0.587077
\(687\) 3377.69 0.187579
\(688\) −3333.89 −0.184743
\(689\) 5888.59 0.325599
\(690\) −6203.37 −0.342258
\(691\) 16570.2 0.912242 0.456121 0.889918i \(-0.349239\pi\)
0.456121 + 0.889918i \(0.349239\pi\)
\(692\) −29453.2 −1.61798
\(693\) 0 0
\(694\) 26149.3 1.43028
\(695\) −1143.45 −0.0624081
\(696\) −14322.2 −0.780003
\(697\) 6802.25 0.369661
\(698\) −30140.9 −1.63446
\(699\) −22454.3 −1.21502
\(700\) 6683.98 0.360901
\(701\) 4072.03 0.219398 0.109699 0.993965i \(-0.465011\pi\)
0.109699 + 0.993965i \(0.465011\pi\)
\(702\) 24366.4 1.31004
\(703\) −1735.07 −0.0930861
\(704\) 0 0
\(705\) 8678.51 0.463619
\(706\) 32991.5 1.75871
\(707\) 38078.6 2.02559
\(708\) 44474.7 2.36082
\(709\) 1994.70 0.105659 0.0528296 0.998604i \(-0.483176\pi\)
0.0528296 + 0.998604i \(0.483176\pi\)
\(710\) 23665.5 1.25091
\(711\) −19773.3 −1.04298
\(712\) −8829.96 −0.464771
\(713\) 9874.04 0.518634
\(714\) 35484.1 1.85988
\(715\) 0 0
\(716\) −1011.92 −0.0528172
\(717\) 25955.7 1.35193
\(718\) 34026.7 1.76862
\(719\) 22520.0 1.16809 0.584044 0.811722i \(-0.301469\pi\)
0.584044 + 0.811722i \(0.301469\pi\)
\(720\) 2267.24 0.117354
\(721\) −841.185 −0.0434499
\(722\) −3828.94 −0.197366
\(723\) 10977.4 0.564667
\(724\) −30377.0 −1.55932
\(725\) −4164.67 −0.213341
\(726\) 0 0
\(727\) −33707.0 −1.71956 −0.859782 0.510661i \(-0.829401\pi\)
−0.859782 + 0.510661i \(0.829401\pi\)
\(728\) 22948.9 1.16833
\(729\) 110.279 0.00560275
\(730\) −7406.98 −0.375540
\(731\) 5689.71 0.287882
\(732\) 18705.2 0.944486
\(733\) 26949.9 1.35800 0.679002 0.734136i \(-0.262413\pi\)
0.679002 + 0.734136i \(0.262413\pi\)
\(734\) 9608.02 0.483159
\(735\) 7871.58 0.395031
\(736\) 10489.7 0.525348
\(737\) 0 0
\(738\) −8536.34 −0.425782
\(739\) 19223.0 0.956872 0.478436 0.878122i \(-0.341204\pi\)
0.478436 + 0.878122i \(0.341204\pi\)
\(740\) −1089.19 −0.0541075
\(741\) −40649.4 −2.01524
\(742\) 8715.72 0.431219
\(743\) 15273.3 0.754136 0.377068 0.926186i \(-0.376932\pi\)
0.377068 + 0.926186i \(0.376932\pi\)
\(744\) 19331.9 0.952611
\(745\) 6108.11 0.300381
\(746\) 22186.9 1.08890
\(747\) 20346.5 0.996573
\(748\) 0 0
\(749\) 8951.99 0.436714
\(750\) −3531.65 −0.171944
\(751\) −14085.8 −0.684420 −0.342210 0.939624i \(-0.611175\pi\)
−0.342210 + 0.939624i \(0.611175\pi\)
\(752\) −8148.79 −0.395154
\(753\) 24297.2 1.17588
\(754\) −51890.9 −2.50631
\(755\) 2204.55 0.106267
\(756\) 20913.9 1.00613
\(757\) −31013.0 −1.48902 −0.744510 0.667611i \(-0.767317\pi\)
−0.744510 + 0.667611i \(0.767317\pi\)
\(758\) 39357.5 1.88592
\(759\) 0 0
\(760\) −5839.96 −0.278734
\(761\) 25582.1 1.21859 0.609297 0.792942i \(-0.291452\pi\)
0.609297 + 0.792942i \(0.291452\pi\)
\(762\) −57927.4 −2.75392
\(763\) −13161.8 −0.624494
\(764\) 26964.5 1.27689
\(765\) −3869.34 −0.182871
\(766\) 36922.1 1.74158
\(767\) 44402.7 2.09034
\(768\) 3151.47 0.148072
\(769\) 23181.0 1.08703 0.543517 0.839398i \(-0.317092\pi\)
0.543517 + 0.839398i \(0.317092\pi\)
\(770\) 0 0
\(771\) 13505.7 0.630865
\(772\) 15864.3 0.739595
\(773\) 3409.67 0.158651 0.0793256 0.996849i \(-0.474723\pi\)
0.0793256 + 0.996849i \(0.474723\pi\)
\(774\) −7140.18 −0.331587
\(775\) 5621.41 0.260551
\(776\) 10294.2 0.476211
\(777\) −3092.12 −0.142766
\(778\) 3385.29 0.156001
\(779\) −11533.6 −0.530468
\(780\) −25517.7 −1.17138
\(781\) 0 0
\(782\) −9940.66 −0.454575
\(783\) −13031.1 −0.594755
\(784\) −7391.12 −0.336694
\(785\) 111.596 0.00507392
\(786\) −70197.4 −3.18557
\(787\) −18292.0 −0.828510 −0.414255 0.910161i \(-0.635958\pi\)
−0.414255 + 0.910161i \(0.635958\pi\)
\(788\) 24600.7 1.11214
\(789\) −183.805 −0.00829359
\(790\) −28920.6 −1.30247
\(791\) −5569.87 −0.250369
\(792\) 0 0
\(793\) 18674.9 0.836274
\(794\) −35855.6 −1.60260
\(795\) −2670.53 −0.119137
\(796\) 45331.6 2.01851
\(797\) −32329.6 −1.43685 −0.718427 0.695603i \(-0.755137\pi\)
−0.718427 + 0.695603i \(0.755137\pi\)
\(798\) −60165.3 −2.66896
\(799\) 13907.0 0.615761
\(800\) 5971.92 0.263924
\(801\) 9919.70 0.437572
\(802\) −19082.9 −0.840202
\(803\) 0 0
\(804\) −67162.5 −2.94607
\(805\) −5315.79 −0.232742
\(806\) 70041.6 3.06093
\(807\) −7174.26 −0.312944
\(808\) −20885.4 −0.909338
\(809\) 22288.6 0.968633 0.484316 0.874893i \(-0.339068\pi\)
0.484316 + 0.874893i \(0.339068\pi\)
\(810\) −19838.8 −0.860574
\(811\) 526.439 0.0227938 0.0113969 0.999935i \(-0.496372\pi\)
0.0113969 + 0.999935i \(0.496372\pi\)
\(812\) −44538.5 −1.92487
\(813\) −19471.1 −0.839952
\(814\) 0 0
\(815\) 13242.8 0.569174
\(816\) 10208.8 0.437966
\(817\) −9647.23 −0.413113
\(818\) 5683.79 0.242945
\(819\) −25781.1 −1.09996
\(820\) −7240.22 −0.308341
\(821\) 5254.99 0.223386 0.111693 0.993743i \(-0.464373\pi\)
0.111693 + 0.993743i \(0.464373\pi\)
\(822\) −1530.73 −0.0649519
\(823\) 17504.7 0.741406 0.370703 0.928752i \(-0.379117\pi\)
0.370703 + 0.928752i \(0.379117\pi\)
\(824\) 461.374 0.0195057
\(825\) 0 0
\(826\) 65720.6 2.76842
\(827\) 11703.4 0.492100 0.246050 0.969257i \(-0.420867\pi\)
0.246050 + 0.969257i \(0.420867\pi\)
\(828\) 7234.13 0.303627
\(829\) 14165.4 0.593467 0.296734 0.954960i \(-0.404103\pi\)
0.296734 + 0.954960i \(0.404103\pi\)
\(830\) 29759.0 1.24452
\(831\) 49818.6 2.07965
\(832\) 57051.2 2.37728
\(833\) 12613.9 0.524665
\(834\) 6461.24 0.268267
\(835\) 97.3867 0.00403617
\(836\) 0 0
\(837\) 17589.2 0.726369
\(838\) −22865.3 −0.942565
\(839\) −38871.3 −1.59951 −0.799754 0.600328i \(-0.795037\pi\)
−0.799754 + 0.600328i \(0.795037\pi\)
\(840\) −10407.5 −0.427493
\(841\) 3362.13 0.137854
\(842\) −69272.8 −2.83527
\(843\) 26107.3 1.06665
\(844\) −45045.7 −1.83713
\(845\) −14491.3 −0.589961
\(846\) −17452.3 −0.709245
\(847\) 0 0
\(848\) 2507.53 0.101544
\(849\) −9469.88 −0.382810
\(850\) −5659.33 −0.228369
\(851\) 866.239 0.0348934
\(852\) −77546.9 −3.11821
\(853\) 28088.7 1.12748 0.563739 0.825953i \(-0.309362\pi\)
0.563739 + 0.825953i \(0.309362\pi\)
\(854\) 27640.8 1.10755
\(855\) 6560.69 0.262422
\(856\) −4910.00 −0.196052
\(857\) 30501.3 1.21576 0.607879 0.794030i \(-0.292021\pi\)
0.607879 + 0.794030i \(0.292021\pi\)
\(858\) 0 0
\(859\) 28243.1 1.12182 0.560909 0.827877i \(-0.310452\pi\)
0.560909 + 0.827877i \(0.310452\pi\)
\(860\) −6056.05 −0.240127
\(861\) −20554.3 −0.813576
\(862\) 15377.2 0.607598
\(863\) −23998.9 −0.946618 −0.473309 0.880897i \(-0.656941\pi\)
−0.473309 + 0.880897i \(0.656941\pi\)
\(864\) 18685.9 0.735772
\(865\) 13335.7 0.524194
\(866\) 69921.9 2.74370
\(867\) 14386.1 0.563525
\(868\) 60117.4 2.35083
\(869\) 0 0
\(870\) 23533.0 0.917063
\(871\) −67053.8 −2.60853
\(872\) 7219.00 0.280351
\(873\) −11564.6 −0.448342
\(874\) 16855.0 0.652320
\(875\) −3026.34 −0.116925
\(876\) 24271.2 0.936126
\(877\) −14032.4 −0.540295 −0.270148 0.962819i \(-0.587073\pi\)
−0.270148 + 0.962819i \(0.587073\pi\)
\(878\) −16768.9 −0.644559
\(879\) 34108.9 1.30884
\(880\) 0 0
\(881\) −28208.8 −1.07875 −0.539375 0.842065i \(-0.681340\pi\)
−0.539375 + 0.842065i \(0.681340\pi\)
\(882\) −15829.6 −0.604318
\(883\) 4261.18 0.162401 0.0812005 0.996698i \(-0.474125\pi\)
0.0812005 + 0.996698i \(0.474125\pi\)
\(884\) −40891.1 −1.55579
\(885\) −20137.0 −0.764858
\(886\) −8711.20 −0.330314
\(887\) −19077.9 −0.722181 −0.361090 0.932531i \(-0.617595\pi\)
−0.361090 + 0.932531i \(0.617595\pi\)
\(888\) 1695.97 0.0640911
\(889\) −49639.1 −1.87271
\(890\) 14508.6 0.546439
\(891\) 0 0
\(892\) −1963.37 −0.0736979
\(893\) −23580.1 −0.883625
\(894\) −34514.8 −1.29121
\(895\) 458.171 0.0171117
\(896\) 38174.7 1.42336
\(897\) 20294.3 0.755414
\(898\) −35036.3 −1.30198
\(899\) −37458.1 −1.38965
\(900\) 4118.48 0.152536
\(901\) −4279.43 −0.158233
\(902\) 0 0
\(903\) −17192.6 −0.633591
\(904\) 3054.97 0.112397
\(905\) 13753.9 0.505190
\(906\) −12457.1 −0.456800
\(907\) 15949.0 0.583877 0.291939 0.956437i \(-0.405700\pi\)
0.291939 + 0.956437i \(0.405700\pi\)
\(908\) 10910.9 0.398780
\(909\) 23462.9 0.856123
\(910\) −37707.6 −1.37362
\(911\) −32175.7 −1.17017 −0.585087 0.810970i \(-0.698940\pi\)
−0.585087 + 0.810970i \(0.698940\pi\)
\(912\) −17309.7 −0.628487
\(913\) 0 0
\(914\) 6207.31 0.224638
\(915\) −8469.25 −0.305994
\(916\) −5761.13 −0.207809
\(917\) −60153.5 −2.16624
\(918\) −17707.8 −0.636652
\(919\) −39962.4 −1.43443 −0.717213 0.696854i \(-0.754582\pi\)
−0.717213 + 0.696854i \(0.754582\pi\)
\(920\) 2915.61 0.104484
\(921\) 36967.3 1.32260
\(922\) 54591.4 1.94997
\(923\) −77421.4 −2.76095
\(924\) 0 0
\(925\) 493.160 0.0175297
\(926\) −20261.4 −0.719040
\(927\) −518.314 −0.0183643
\(928\) −39793.7 −1.40764
\(929\) 3106.30 0.109703 0.0548517 0.998495i \(-0.482531\pi\)
0.0548517 + 0.998495i \(0.482531\pi\)
\(930\) −31764.6 −1.12000
\(931\) −21387.6 −0.752900
\(932\) 38298.9 1.34605
\(933\) 21452.9 0.752772
\(934\) −45757.2 −1.60302
\(935\) 0 0
\(936\) 14140.4 0.493798
\(937\) −3732.34 −0.130128 −0.0650641 0.997881i \(-0.520725\pi\)
−0.0650641 + 0.997881i \(0.520725\pi\)
\(938\) −99246.6 −3.45471
\(939\) 41392.1 1.43853
\(940\) −14802.4 −0.513618
\(941\) 8847.41 0.306501 0.153250 0.988187i \(-0.451026\pi\)
0.153250 + 0.988187i \(0.451026\pi\)
\(942\) −630.589 −0.0218107
\(943\) 5758.18 0.198846
\(944\) 18907.9 0.651908
\(945\) −9469.31 −0.325965
\(946\) 0 0
\(947\) 30503.7 1.04671 0.523356 0.852114i \(-0.324680\pi\)
0.523356 + 0.852114i \(0.324680\pi\)
\(948\) 94767.1 3.24672
\(949\) 24231.9 0.828872
\(950\) 9595.73 0.327712
\(951\) −23069.7 −0.786630
\(952\) −16677.7 −0.567780
\(953\) 3252.13 0.110542 0.0552711 0.998471i \(-0.482398\pi\)
0.0552711 + 0.998471i \(0.482398\pi\)
\(954\) 5370.38 0.182256
\(955\) −12208.9 −0.413685
\(956\) −44271.0 −1.49773
\(957\) 0 0
\(958\) 56560.0 1.90749
\(959\) −1311.72 −0.0441684
\(960\) −25873.3 −0.869850
\(961\) 20769.4 0.697169
\(962\) 6144.67 0.205938
\(963\) 5515.96 0.184579
\(964\) −18723.5 −0.625563
\(965\) −7182.95 −0.239614
\(966\) 30037.6 1.00046
\(967\) 30327.7 1.00855 0.504277 0.863542i \(-0.331759\pi\)
0.504277 + 0.863542i \(0.331759\pi\)
\(968\) 0 0
\(969\) 29541.2 0.979360
\(970\) −16914.5 −0.559889
\(971\) −16791.6 −0.554964 −0.277482 0.960731i \(-0.589500\pi\)
−0.277482 + 0.960731i \(0.589500\pi\)
\(972\) 41684.4 1.37554
\(973\) 5536.76 0.182426
\(974\) −13466.0 −0.442997
\(975\) 11553.8 0.379504
\(976\) 7952.31 0.260807
\(977\) −42016.4 −1.37587 −0.687934 0.725773i \(-0.741482\pi\)
−0.687934 + 0.725773i \(0.741482\pi\)
\(978\) −74830.5 −2.44664
\(979\) 0 0
\(980\) −13426.1 −0.437633
\(981\) −8109.92 −0.263945
\(982\) 30729.4 0.998590
\(983\) 19773.6 0.641586 0.320793 0.947149i \(-0.396051\pi\)
0.320793 + 0.947149i \(0.396051\pi\)
\(984\) 11273.7 0.365235
\(985\) −11138.6 −0.360310
\(986\) 37710.8 1.21801
\(987\) −42022.6 −1.35521
\(988\) 69333.1 2.23257
\(989\) 4816.40 0.154856
\(990\) 0 0
\(991\) −29858.0 −0.957085 −0.478542 0.878064i \(-0.658835\pi\)
−0.478542 + 0.878064i \(0.658835\pi\)
\(992\) 53712.9 1.71914
\(993\) −7105.77 −0.227084
\(994\) −114592. −3.65657
\(995\) −20525.0 −0.653957
\(996\) −97514.2 −3.10226
\(997\) 5183.46 0.164656 0.0823278 0.996605i \(-0.473765\pi\)
0.0823278 + 0.996605i \(0.473765\pi\)
\(998\) 42663.6 1.35320
\(999\) 1543.08 0.0488697
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.4.a.q.1.2 12
11.2 odd 10 55.4.g.a.26.1 24
11.6 odd 10 55.4.g.a.36.1 yes 24
11.10 odd 2 605.4.a.s.1.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.4.g.a.26.1 24 11.2 odd 10
55.4.g.a.36.1 yes 24 11.6 odd 10
605.4.a.q.1.2 12 1.1 even 1 trivial
605.4.a.s.1.11 12 11.10 odd 2