Properties

Label 605.4.a.t.1.7
Level $605$
Weight $4$
Character 605.1
Self dual yes
Analytic conductor $35.696$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,4,Mod(1,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 605.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.6961555535\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5 x^{11} - 58 x^{10} + 264 x^{9} + 1280 x^{8} - 5073 x^{7} - 13326 x^{6} + 43166 x^{5} + \cdots + 123904 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 11^{2} \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-0.661955\) of defining polynomial
Character \(\chi\) \(=\) 605.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.66196 q^{2} +1.98058 q^{3} -5.23790 q^{4} +5.00000 q^{5} +3.29164 q^{6} -8.81834 q^{7} -22.0008 q^{8} -23.0773 q^{9} +8.30978 q^{10} -10.3741 q^{12} -10.3377 q^{13} -14.6557 q^{14} +9.90292 q^{15} +5.33888 q^{16} +48.5862 q^{17} -38.3534 q^{18} +97.1627 q^{19} -26.1895 q^{20} -17.4655 q^{21} +196.403 q^{23} -43.5745 q^{24} +25.0000 q^{25} -17.1808 q^{26} -99.1823 q^{27} +46.1896 q^{28} +169.043 q^{29} +16.4582 q^{30} +40.8279 q^{31} +184.879 q^{32} +80.7481 q^{34} -44.0917 q^{35} +120.877 q^{36} +145.892 q^{37} +161.480 q^{38} -20.4747 q^{39} -110.004 q^{40} +157.333 q^{41} -29.0268 q^{42} -266.051 q^{43} -115.386 q^{45} +326.414 q^{46} +483.044 q^{47} +10.5741 q^{48} -265.237 q^{49} +41.5489 q^{50} +96.2290 q^{51} +54.1480 q^{52} -344.896 q^{53} -164.837 q^{54} +194.010 q^{56} +192.439 q^{57} +280.942 q^{58} -772.298 q^{59} -51.8706 q^{60} +800.490 q^{61} +67.8541 q^{62} +203.503 q^{63} +264.550 q^{64} -51.6887 q^{65} +128.194 q^{67} -254.490 q^{68} +388.994 q^{69} -73.2784 q^{70} -288.991 q^{71} +507.719 q^{72} -25.4865 q^{73} +242.466 q^{74} +49.5146 q^{75} -508.929 q^{76} -34.0281 q^{78} +214.115 q^{79} +26.6944 q^{80} +426.648 q^{81} +261.481 q^{82} +518.134 q^{83} +91.4824 q^{84} +242.931 q^{85} -442.166 q^{86} +334.804 q^{87} +6.39690 q^{89} -191.767 q^{90} +91.1616 q^{91} -1028.74 q^{92} +80.8631 q^{93} +802.797 q^{94} +485.814 q^{95} +366.169 q^{96} -325.571 q^{97} -440.812 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 7 q^{2} - 3 q^{3} + 47 q^{4} + 60 q^{5} + 30 q^{6} + 97 q^{7} + 105 q^{8} + 131 q^{9} + 35 q^{10} + 5 q^{12} + 205 q^{13} + 109 q^{14} - 15 q^{15} + 115 q^{16} + 231 q^{17} + 241 q^{18} + 276 q^{19}+ \cdots + 3889 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.66196 0.587590 0.293795 0.955868i \(-0.405082\pi\)
0.293795 + 0.955868i \(0.405082\pi\)
\(3\) 1.98058 0.381164 0.190582 0.981671i \(-0.438963\pi\)
0.190582 + 0.981671i \(0.438963\pi\)
\(4\) −5.23790 −0.654738
\(5\) 5.00000 0.447214
\(6\) 3.29164 0.223968
\(7\) −8.81834 −0.476145 −0.238073 0.971247i \(-0.576516\pi\)
−0.238073 + 0.971247i \(0.576516\pi\)
\(8\) −22.0008 −0.972307
\(9\) −23.0773 −0.854714
\(10\) 8.30978 0.262778
\(11\) 0 0
\(12\) −10.3741 −0.249562
\(13\) −10.3377 −0.220552 −0.110276 0.993901i \(-0.535173\pi\)
−0.110276 + 0.993901i \(0.535173\pi\)
\(14\) −14.6557 −0.279778
\(15\) 9.90292 0.170462
\(16\) 5.33888 0.0834200
\(17\) 48.5862 0.693169 0.346585 0.938019i \(-0.387341\pi\)
0.346585 + 0.938019i \(0.387341\pi\)
\(18\) −38.3534 −0.502222
\(19\) 97.1627 1.17319 0.586596 0.809879i \(-0.300468\pi\)
0.586596 + 0.809879i \(0.300468\pi\)
\(20\) −26.1895 −0.292808
\(21\) −17.4655 −0.181489
\(22\) 0 0
\(23\) 196.403 1.78056 0.890281 0.455411i \(-0.150508\pi\)
0.890281 + 0.455411i \(0.150508\pi\)
\(24\) −43.5745 −0.370608
\(25\) 25.0000 0.200000
\(26\) −17.1808 −0.129594
\(27\) −99.1823 −0.706950
\(28\) 46.1896 0.311750
\(29\) 169.043 1.08243 0.541216 0.840884i \(-0.317964\pi\)
0.541216 + 0.840884i \(0.317964\pi\)
\(30\) 16.4582 0.100161
\(31\) 40.8279 0.236545 0.118273 0.992981i \(-0.462264\pi\)
0.118273 + 0.992981i \(0.462264\pi\)
\(32\) 184.879 1.02132
\(33\) 0 0
\(34\) 80.7481 0.407299
\(35\) −44.0917 −0.212939
\(36\) 120.877 0.559614
\(37\) 145.892 0.648229 0.324114 0.946018i \(-0.394934\pi\)
0.324114 + 0.946018i \(0.394934\pi\)
\(38\) 161.480 0.689356
\(39\) −20.4747 −0.0840662
\(40\) −110.004 −0.434829
\(41\) 157.333 0.599301 0.299650 0.954049i \(-0.403130\pi\)
0.299650 + 0.954049i \(0.403130\pi\)
\(42\) −29.0268 −0.106641
\(43\) −266.051 −0.943546 −0.471773 0.881720i \(-0.656386\pi\)
−0.471773 + 0.881720i \(0.656386\pi\)
\(44\) 0 0
\(45\) −115.386 −0.382240
\(46\) 326.414 1.04624
\(47\) 483.044 1.49913 0.749566 0.661930i \(-0.230262\pi\)
0.749566 + 0.661930i \(0.230262\pi\)
\(48\) 10.5741 0.0317967
\(49\) −265.237 −0.773286
\(50\) 41.5489 0.117518
\(51\) 96.2290 0.264211
\(52\) 54.1480 0.144404
\(53\) −344.896 −0.893871 −0.446935 0.894566i \(-0.647485\pi\)
−0.446935 + 0.894566i \(0.647485\pi\)
\(54\) −164.837 −0.415397
\(55\) 0 0
\(56\) 194.010 0.462960
\(57\) 192.439 0.447178
\(58\) 280.942 0.636026
\(59\) −772.298 −1.70415 −0.852073 0.523424i \(-0.824655\pi\)
−0.852073 + 0.523424i \(0.824655\pi\)
\(60\) −51.8706 −0.111608
\(61\) 800.490 1.68020 0.840101 0.542431i \(-0.182496\pi\)
0.840101 + 0.542431i \(0.182496\pi\)
\(62\) 67.8541 0.138992
\(63\) 203.503 0.406968
\(64\) 264.550 0.516700
\(65\) −51.6887 −0.0986337
\(66\) 0 0
\(67\) 128.194 0.233751 0.116876 0.993147i \(-0.462712\pi\)
0.116876 + 0.993147i \(0.462712\pi\)
\(68\) −254.490 −0.453844
\(69\) 388.994 0.678686
\(70\) −73.2784 −0.125121
\(71\) −288.991 −0.483055 −0.241528 0.970394i \(-0.577648\pi\)
−0.241528 + 0.970394i \(0.577648\pi\)
\(72\) 507.719 0.831045
\(73\) −25.4865 −0.0408626 −0.0204313 0.999791i \(-0.506504\pi\)
−0.0204313 + 0.999791i \(0.506504\pi\)
\(74\) 242.466 0.380893
\(75\) 49.5146 0.0762327
\(76\) −508.929 −0.768134
\(77\) 0 0
\(78\) −34.0281 −0.0493965
\(79\) 214.115 0.304934 0.152467 0.988309i \(-0.451278\pi\)
0.152467 + 0.988309i \(0.451278\pi\)
\(80\) 26.6944 0.0373066
\(81\) 426.648 0.585251
\(82\) 261.481 0.352143
\(83\) 518.134 0.685212 0.342606 0.939479i \(-0.388690\pi\)
0.342606 + 0.939479i \(0.388690\pi\)
\(84\) 91.4824 0.118828
\(85\) 242.931 0.309995
\(86\) −442.166 −0.554418
\(87\) 334.804 0.412584
\(88\) 0 0
\(89\) 6.39690 0.00761876 0.00380938 0.999993i \(-0.498787\pi\)
0.00380938 + 0.999993i \(0.498787\pi\)
\(90\) −191.767 −0.224600
\(91\) 91.1616 0.105015
\(92\) −1028.74 −1.16580
\(93\) 80.8631 0.0901625
\(94\) 802.797 0.880874
\(95\) 485.814 0.524668
\(96\) 366.169 0.389292
\(97\) −325.571 −0.340791 −0.170395 0.985376i \(-0.554504\pi\)
−0.170395 + 0.985376i \(0.554504\pi\)
\(98\) −440.812 −0.454375
\(99\) 0 0
\(100\) −130.948 −0.130948
\(101\) 1255.66 1.23706 0.618528 0.785763i \(-0.287730\pi\)
0.618528 + 0.785763i \(0.287730\pi\)
\(102\) 159.928 0.155248
\(103\) −1462.82 −1.39938 −0.699688 0.714449i \(-0.746677\pi\)
−0.699688 + 0.714449i \(0.746677\pi\)
\(104\) 227.438 0.214444
\(105\) −87.3273 −0.0811645
\(106\) −573.202 −0.525230
\(107\) 1571.15 1.41952 0.709762 0.704442i \(-0.248803\pi\)
0.709762 + 0.704442i \(0.248803\pi\)
\(108\) 519.507 0.462867
\(109\) 1292.93 1.13615 0.568074 0.822977i \(-0.307689\pi\)
0.568074 + 0.822977i \(0.307689\pi\)
\(110\) 0 0
\(111\) 288.951 0.247081
\(112\) −47.0800 −0.0397201
\(113\) 999.873 0.832390 0.416195 0.909275i \(-0.363363\pi\)
0.416195 + 0.909275i \(0.363363\pi\)
\(114\) 319.825 0.262758
\(115\) 982.017 0.796292
\(116\) −885.432 −0.708709
\(117\) 238.567 0.188509
\(118\) −1283.52 −1.00134
\(119\) −428.449 −0.330049
\(120\) −217.872 −0.165741
\(121\) 0 0
\(122\) 1330.38 0.987269
\(123\) 311.612 0.228432
\(124\) −213.853 −0.154875
\(125\) 125.000 0.0894427
\(126\) 338.213 0.239130
\(127\) −646.206 −0.451508 −0.225754 0.974184i \(-0.572485\pi\)
−0.225754 + 0.974184i \(0.572485\pi\)
\(128\) −1039.36 −0.717717
\(129\) −526.937 −0.359645
\(130\) −85.9042 −0.0579561
\(131\) 367.577 0.245155 0.122578 0.992459i \(-0.460884\pi\)
0.122578 + 0.992459i \(0.460884\pi\)
\(132\) 0 0
\(133\) −856.814 −0.558610
\(134\) 213.052 0.137350
\(135\) −495.911 −0.316157
\(136\) −1068.94 −0.673974
\(137\) −791.385 −0.493523 −0.246761 0.969076i \(-0.579366\pi\)
−0.246761 + 0.969076i \(0.579366\pi\)
\(138\) 646.490 0.398789
\(139\) −1909.61 −1.16526 −0.582629 0.812739i \(-0.697976\pi\)
−0.582629 + 0.812739i \(0.697976\pi\)
\(140\) 230.948 0.139419
\(141\) 956.709 0.571414
\(142\) −480.290 −0.283838
\(143\) 0 0
\(144\) −123.207 −0.0713003
\(145\) 845.216 0.484078
\(146\) −42.3574 −0.0240105
\(147\) −525.324 −0.294748
\(148\) −764.167 −0.424420
\(149\) 1969.24 1.08273 0.541363 0.840789i \(-0.317908\pi\)
0.541363 + 0.840789i \(0.317908\pi\)
\(150\) 82.2911 0.0447936
\(151\) 2653.58 1.43010 0.715049 0.699074i \(-0.246404\pi\)
0.715049 + 0.699074i \(0.246404\pi\)
\(152\) −2137.66 −1.14070
\(153\) −1121.24 −0.592462
\(154\) 0 0
\(155\) 204.139 0.105786
\(156\) 107.245 0.0550414
\(157\) −2060.15 −1.04725 −0.523625 0.851949i \(-0.675421\pi\)
−0.523625 + 0.851949i \(0.675421\pi\)
\(158\) 355.850 0.179176
\(159\) −683.096 −0.340711
\(160\) 924.397 0.456750
\(161\) −1731.95 −0.847807
\(162\) 709.070 0.343887
\(163\) −219.965 −0.105699 −0.0528496 0.998602i \(-0.516830\pi\)
−0.0528496 + 0.998602i \(0.516830\pi\)
\(164\) −824.096 −0.392385
\(165\) 0 0
\(166\) 861.115 0.402623
\(167\) −990.902 −0.459151 −0.229576 0.973291i \(-0.573734\pi\)
−0.229576 + 0.973291i \(0.573734\pi\)
\(168\) 384.254 0.176463
\(169\) −2090.13 −0.951357
\(170\) 403.740 0.182150
\(171\) −2242.25 −1.00274
\(172\) 1393.55 0.617775
\(173\) 1556.90 0.684213 0.342107 0.939661i \(-0.388860\pi\)
0.342107 + 0.939661i \(0.388860\pi\)
\(174\) 556.430 0.242430
\(175\) −220.458 −0.0952291
\(176\) 0 0
\(177\) −1529.60 −0.649558
\(178\) 10.6314 0.00447671
\(179\) −1344.51 −0.561417 −0.280708 0.959793i \(-0.590569\pi\)
−0.280708 + 0.959793i \(0.590569\pi\)
\(180\) 604.383 0.250267
\(181\) −1489.71 −0.611765 −0.305882 0.952069i \(-0.598951\pi\)
−0.305882 + 0.952069i \(0.598951\pi\)
\(182\) 151.506 0.0617055
\(183\) 1585.44 0.640432
\(184\) −4321.03 −1.73125
\(185\) 729.459 0.289897
\(186\) 134.391 0.0529786
\(187\) 0 0
\(188\) −2530.14 −0.981538
\(189\) 874.623 0.336611
\(190\) 807.401 0.308289
\(191\) 4194.91 1.58918 0.794589 0.607148i \(-0.207686\pi\)
0.794589 + 0.607148i \(0.207686\pi\)
\(192\) 523.964 0.196947
\(193\) −3372.22 −1.25771 −0.628854 0.777523i \(-0.716476\pi\)
−0.628854 + 0.777523i \(0.716476\pi\)
\(194\) −541.084 −0.200245
\(195\) −102.374 −0.0375956
\(196\) 1389.29 0.506300
\(197\) 5256.04 1.90090 0.950450 0.310878i \(-0.100623\pi\)
0.950450 + 0.310878i \(0.100623\pi\)
\(198\) 0 0
\(199\) 3413.08 1.21581 0.607907 0.794008i \(-0.292009\pi\)
0.607907 + 0.794008i \(0.292009\pi\)
\(200\) −550.020 −0.194461
\(201\) 253.898 0.0890975
\(202\) 2086.85 0.726881
\(203\) −1490.68 −0.515395
\(204\) −504.039 −0.172989
\(205\) 786.666 0.268015
\(206\) −2431.14 −0.822259
\(207\) −4532.46 −1.52187
\(208\) −55.1919 −0.0183984
\(209\) 0 0
\(210\) −145.134 −0.0476914
\(211\) 1088.49 0.355142 0.177571 0.984108i \(-0.443176\pi\)
0.177571 + 0.984108i \(0.443176\pi\)
\(212\) 1806.53 0.585251
\(213\) −572.371 −0.184123
\(214\) 2611.19 0.834098
\(215\) −1330.26 −0.421966
\(216\) 2182.09 0.687372
\(217\) −360.034 −0.112630
\(218\) 2148.79 0.667590
\(219\) −50.4782 −0.0155753
\(220\) 0 0
\(221\) −502.271 −0.152880
\(222\) 480.224 0.145182
\(223\) −195.453 −0.0586929 −0.0293464 0.999569i \(-0.509343\pi\)
−0.0293464 + 0.999569i \(0.509343\pi\)
\(224\) −1630.33 −0.486299
\(225\) −576.932 −0.170943
\(226\) 1661.74 0.489104
\(227\) 1935.65 0.565962 0.282981 0.959126i \(-0.408677\pi\)
0.282981 + 0.959126i \(0.408677\pi\)
\(228\) −1007.98 −0.292785
\(229\) 3483.24 1.00515 0.502575 0.864534i \(-0.332386\pi\)
0.502575 + 0.864534i \(0.332386\pi\)
\(230\) 1632.07 0.467893
\(231\) 0 0
\(232\) −3719.09 −1.05246
\(233\) −943.151 −0.265184 −0.132592 0.991171i \(-0.542330\pi\)
−0.132592 + 0.991171i \(0.542330\pi\)
\(234\) 396.487 0.110766
\(235\) 2415.22 0.670432
\(236\) 4045.22 1.11577
\(237\) 424.073 0.116230
\(238\) −712.064 −0.193934
\(239\) −402.723 −0.108996 −0.0544979 0.998514i \(-0.517356\pi\)
−0.0544979 + 0.998514i \(0.517356\pi\)
\(240\) 52.8705 0.0142199
\(241\) −4356.62 −1.16446 −0.582229 0.813025i \(-0.697819\pi\)
−0.582229 + 0.813025i \(0.697819\pi\)
\(242\) 0 0
\(243\) 3522.93 0.930026
\(244\) −4192.89 −1.10009
\(245\) −1326.18 −0.345824
\(246\) 517.885 0.134224
\(247\) −1004.44 −0.258749
\(248\) −898.246 −0.229995
\(249\) 1026.21 0.261178
\(250\) 207.744 0.0525556
\(251\) 5231.68 1.31562 0.657810 0.753184i \(-0.271483\pi\)
0.657810 + 0.753184i \(0.271483\pi\)
\(252\) −1065.93 −0.266458
\(253\) 0 0
\(254\) −1073.96 −0.265301
\(255\) 481.145 0.118159
\(256\) −3843.78 −0.938423
\(257\) 7412.38 1.79911 0.899555 0.436807i \(-0.143891\pi\)
0.899555 + 0.436807i \(0.143891\pi\)
\(258\) −875.746 −0.211324
\(259\) −1286.52 −0.308651
\(260\) 270.740 0.0645792
\(261\) −3901.06 −0.925170
\(262\) 610.896 0.144051
\(263\) −774.208 −0.181520 −0.0907599 0.995873i \(-0.528930\pi\)
−0.0907599 + 0.995873i \(0.528930\pi\)
\(264\) 0 0
\(265\) −1724.48 −0.399751
\(266\) −1423.99 −0.328234
\(267\) 12.6696 0.00290399
\(268\) −671.465 −0.153046
\(269\) −3400.24 −0.770692 −0.385346 0.922772i \(-0.625918\pi\)
−0.385346 + 0.922772i \(0.625918\pi\)
\(270\) −824.183 −0.185771
\(271\) 1107.64 0.248281 0.124140 0.992265i \(-0.460383\pi\)
0.124140 + 0.992265i \(0.460383\pi\)
\(272\) 259.396 0.0578242
\(273\) 180.553 0.0400278
\(274\) −1315.25 −0.289989
\(275\) 0 0
\(276\) −2037.51 −0.444361
\(277\) −7648.53 −1.65905 −0.829523 0.558473i \(-0.811387\pi\)
−0.829523 + 0.558473i \(0.811387\pi\)
\(278\) −3173.68 −0.684693
\(279\) −942.197 −0.202179
\(280\) 970.052 0.207042
\(281\) −4933.48 −1.04736 −0.523678 0.851917i \(-0.675440\pi\)
−0.523678 + 0.851917i \(0.675440\pi\)
\(282\) 1590.01 0.335757
\(283\) −5768.82 −1.21173 −0.605867 0.795566i \(-0.707174\pi\)
−0.605867 + 0.795566i \(0.707174\pi\)
\(284\) 1513.71 0.316275
\(285\) 962.195 0.199984
\(286\) 0 0
\(287\) −1387.42 −0.285354
\(288\) −4266.52 −0.872940
\(289\) −2552.38 −0.519516
\(290\) 1404.71 0.284440
\(291\) −644.820 −0.129897
\(292\) 133.496 0.0267543
\(293\) −6038.18 −1.20394 −0.601969 0.798519i \(-0.705617\pi\)
−0.601969 + 0.798519i \(0.705617\pi\)
\(294\) −873.065 −0.173191
\(295\) −3861.49 −0.762117
\(296\) −3209.74 −0.630278
\(297\) 0 0
\(298\) 3272.78 0.636199
\(299\) −2030.37 −0.392706
\(300\) −259.353 −0.0499125
\(301\) 2346.13 0.449265
\(302\) 4410.12 0.840312
\(303\) 2486.94 0.471520
\(304\) 518.740 0.0978677
\(305\) 4002.45 0.751409
\(306\) −1863.45 −0.348125
\(307\) 9098.53 1.69147 0.845734 0.533605i \(-0.179163\pi\)
0.845734 + 0.533605i \(0.179163\pi\)
\(308\) 0 0
\(309\) −2897.23 −0.533391
\(310\) 339.271 0.0621589
\(311\) 3814.96 0.695584 0.347792 0.937572i \(-0.386932\pi\)
0.347792 + 0.937572i \(0.386932\pi\)
\(312\) 450.461 0.0817382
\(313\) 2589.83 0.467687 0.233843 0.972274i \(-0.424870\pi\)
0.233843 + 0.972274i \(0.424870\pi\)
\(314\) −3423.88 −0.615353
\(315\) 1017.52 0.182002
\(316\) −1121.51 −0.199652
\(317\) −6968.91 −1.23474 −0.617370 0.786673i \(-0.711802\pi\)
−0.617370 + 0.786673i \(0.711802\pi\)
\(318\) −1135.28 −0.200198
\(319\) 0 0
\(320\) 1322.75 0.231075
\(321\) 3111.80 0.541071
\(322\) −2878.43 −0.498163
\(323\) 4720.77 0.813221
\(324\) −2234.74 −0.383186
\(325\) −258.443 −0.0441103
\(326\) −365.572 −0.0621078
\(327\) 2560.76 0.433059
\(328\) −3461.46 −0.582704
\(329\) −4259.64 −0.713804
\(330\) 0 0
\(331\) −2383.56 −0.395808 −0.197904 0.980221i \(-0.563413\pi\)
−0.197904 + 0.980221i \(0.563413\pi\)
\(332\) −2713.93 −0.448634
\(333\) −3366.79 −0.554050
\(334\) −1646.83 −0.269793
\(335\) 640.968 0.104537
\(336\) −93.2460 −0.0151398
\(337\) 9836.49 1.58999 0.794997 0.606613i \(-0.207472\pi\)
0.794997 + 0.606613i \(0.207472\pi\)
\(338\) −3473.70 −0.559008
\(339\) 1980.33 0.317277
\(340\) −1272.45 −0.202965
\(341\) 0 0
\(342\) −3726.52 −0.589203
\(343\) 5363.64 0.844342
\(344\) 5853.35 0.917417
\(345\) 1944.97 0.303517
\(346\) 2587.50 0.402037
\(347\) −9537.02 −1.47543 −0.737715 0.675112i \(-0.764095\pi\)
−0.737715 + 0.675112i \(0.764095\pi\)
\(348\) −1753.67 −0.270134
\(349\) −10464.6 −1.60504 −0.802519 0.596626i \(-0.796508\pi\)
−0.802519 + 0.596626i \(0.796508\pi\)
\(350\) −366.392 −0.0559556
\(351\) 1025.32 0.155919
\(352\) 0 0
\(353\) 8203.85 1.23696 0.618480 0.785800i \(-0.287749\pi\)
0.618480 + 0.785800i \(0.287749\pi\)
\(354\) −2542.13 −0.381674
\(355\) −1444.96 −0.216029
\(356\) −33.5063 −0.00498829
\(357\) −848.580 −0.125803
\(358\) −2234.52 −0.329883
\(359\) −12956.3 −1.90475 −0.952375 0.304930i \(-0.901367\pi\)
−0.952375 + 0.304930i \(0.901367\pi\)
\(360\) 2538.59 0.371655
\(361\) 2581.60 0.376381
\(362\) −2475.84 −0.359467
\(363\) 0 0
\(364\) −477.496 −0.0687571
\(365\) −127.433 −0.0182743
\(366\) 2634.93 0.376311
\(367\) −1259.31 −0.179116 −0.0895581 0.995982i \(-0.528545\pi\)
−0.0895581 + 0.995982i \(0.528545\pi\)
\(368\) 1048.57 0.148535
\(369\) −3630.82 −0.512231
\(370\) 1212.33 0.170340
\(371\) 3041.41 0.425612
\(372\) −423.553 −0.0590328
\(373\) 14100.6 1.95738 0.978691 0.205339i \(-0.0658297\pi\)
0.978691 + 0.205339i \(0.0658297\pi\)
\(374\) 0 0
\(375\) 247.573 0.0340923
\(376\) −10627.4 −1.45762
\(377\) −1747.52 −0.238732
\(378\) 1453.58 0.197789
\(379\) −11911.1 −1.61434 −0.807168 0.590322i \(-0.799001\pi\)
−0.807168 + 0.590322i \(0.799001\pi\)
\(380\) −2544.65 −0.343520
\(381\) −1279.86 −0.172098
\(382\) 6971.75 0.933785
\(383\) 8578.16 1.14445 0.572224 0.820097i \(-0.306081\pi\)
0.572224 + 0.820097i \(0.306081\pi\)
\(384\) −2058.55 −0.273567
\(385\) 0 0
\(386\) −5604.48 −0.739017
\(387\) 6139.75 0.806462
\(388\) 1705.31 0.223129
\(389\) −9962.68 −1.29853 −0.649265 0.760563i \(-0.724923\pi\)
−0.649265 + 0.760563i \(0.724923\pi\)
\(390\) −170.141 −0.0220908
\(391\) 9542.49 1.23423
\(392\) 5835.43 0.751871
\(393\) 728.016 0.0934442
\(394\) 8735.30 1.11695
\(395\) 1070.57 0.136371
\(396\) 0 0
\(397\) 9843.58 1.24442 0.622211 0.782850i \(-0.286235\pi\)
0.622211 + 0.782850i \(0.286235\pi\)
\(398\) 5672.39 0.714400
\(399\) −1696.99 −0.212922
\(400\) 133.472 0.0166840
\(401\) 4986.05 0.620926 0.310463 0.950585i \(-0.399516\pi\)
0.310463 + 0.950585i \(0.399516\pi\)
\(402\) 421.967 0.0523528
\(403\) −422.068 −0.0521704
\(404\) −6577.01 −0.809947
\(405\) 2133.24 0.261732
\(406\) −2477.44 −0.302841
\(407\) 0 0
\(408\) −2117.12 −0.256894
\(409\) 12051.2 1.45696 0.728478 0.685069i \(-0.240228\pi\)
0.728478 + 0.685069i \(0.240228\pi\)
\(410\) 1307.40 0.157483
\(411\) −1567.41 −0.188113
\(412\) 7662.10 0.916224
\(413\) 6810.38 0.811421
\(414\) −7532.74 −0.894237
\(415\) 2590.67 0.306436
\(416\) −1911.23 −0.225255
\(417\) −3782.14 −0.444154
\(418\) 0 0
\(419\) 811.934 0.0946673 0.0473336 0.998879i \(-0.484928\pi\)
0.0473336 + 0.998879i \(0.484928\pi\)
\(420\) 457.412 0.0531415
\(421\) −13342.8 −1.54463 −0.772315 0.635240i \(-0.780901\pi\)
−0.772315 + 0.635240i \(0.780901\pi\)
\(422\) 1809.02 0.208678
\(423\) −11147.3 −1.28133
\(424\) 7588.00 0.869117
\(425\) 1214.65 0.138634
\(426\) −951.255 −0.108189
\(427\) −7058.99 −0.800020
\(428\) −8229.55 −0.929416
\(429\) 0 0
\(430\) −2210.83 −0.247943
\(431\) 8448.33 0.944181 0.472090 0.881550i \(-0.343500\pi\)
0.472090 + 0.881550i \(0.343500\pi\)
\(432\) −529.522 −0.0589737
\(433\) −7630.81 −0.846913 −0.423456 0.905916i \(-0.639183\pi\)
−0.423456 + 0.905916i \(0.639183\pi\)
\(434\) −598.360 −0.0661802
\(435\) 1674.02 0.184513
\(436\) −6772.24 −0.743880
\(437\) 19083.1 2.08894
\(438\) −83.8925 −0.00915191
\(439\) −1738.52 −0.189009 −0.0945043 0.995524i \(-0.530127\pi\)
−0.0945043 + 0.995524i \(0.530127\pi\)
\(440\) 0 0
\(441\) 6120.95 0.660938
\(442\) −834.752 −0.0898305
\(443\) 1631.42 0.174968 0.0874841 0.996166i \(-0.472117\pi\)
0.0874841 + 0.996166i \(0.472117\pi\)
\(444\) −1513.50 −0.161773
\(445\) 31.9845 0.00340721
\(446\) −324.834 −0.0344873
\(447\) 3900.24 0.412696
\(448\) −2332.89 −0.246024
\(449\) 2261.67 0.237717 0.118858 0.992911i \(-0.462077\pi\)
0.118858 + 0.992911i \(0.462077\pi\)
\(450\) −958.835 −0.100444
\(451\) 0 0
\(452\) −5237.24 −0.544998
\(453\) 5255.63 0.545102
\(454\) 3216.96 0.332554
\(455\) 455.808 0.0469640
\(456\) −4233.81 −0.434795
\(457\) 6364.73 0.651486 0.325743 0.945458i \(-0.394386\pi\)
0.325743 + 0.945458i \(0.394386\pi\)
\(458\) 5788.99 0.590616
\(459\) −4818.89 −0.490036
\(460\) −5143.71 −0.521363
\(461\) 2491.39 0.251704 0.125852 0.992049i \(-0.459834\pi\)
0.125852 + 0.992049i \(0.459834\pi\)
\(462\) 0 0
\(463\) −12869.2 −1.29175 −0.645877 0.763442i \(-0.723508\pi\)
−0.645877 + 0.763442i \(0.723508\pi\)
\(464\) 902.501 0.0902965
\(465\) 404.315 0.0403219
\(466\) −1567.47 −0.155819
\(467\) 12857.1 1.27400 0.636998 0.770866i \(-0.280176\pi\)
0.636998 + 0.770866i \(0.280176\pi\)
\(468\) −1249.59 −0.123424
\(469\) −1130.45 −0.111300
\(470\) 4013.99 0.393939
\(471\) −4080.31 −0.399174
\(472\) 16991.2 1.65695
\(473\) 0 0
\(474\) 704.790 0.0682955
\(475\) 2429.07 0.234639
\(476\) 2244.18 0.216096
\(477\) 7959.27 0.764004
\(478\) −669.308 −0.0640448
\(479\) 5115.67 0.487977 0.243989 0.969778i \(-0.421544\pi\)
0.243989 + 0.969778i \(0.421544\pi\)
\(480\) 1830.85 0.174097
\(481\) −1508.19 −0.142968
\(482\) −7240.50 −0.684224
\(483\) −3430.28 −0.323153
\(484\) 0 0
\(485\) −1627.85 −0.152406
\(486\) 5854.96 0.546474
\(487\) 3968.67 0.369276 0.184638 0.982807i \(-0.440889\pi\)
0.184638 + 0.982807i \(0.440889\pi\)
\(488\) −17611.4 −1.63367
\(489\) −435.659 −0.0402887
\(490\) −2204.06 −0.203203
\(491\) −42.2164 −0.00388024 −0.00194012 0.999998i \(-0.500618\pi\)
−0.00194012 + 0.999998i \(0.500618\pi\)
\(492\) −1632.19 −0.149563
\(493\) 8213.16 0.750309
\(494\) −1669.34 −0.152039
\(495\) 0 0
\(496\) 217.975 0.0197326
\(497\) 2548.42 0.230005
\(498\) 1705.51 0.153465
\(499\) −158.607 −0.0142289 −0.00711447 0.999975i \(-0.502265\pi\)
−0.00711447 + 0.999975i \(0.502265\pi\)
\(500\) −654.738 −0.0585616
\(501\) −1962.56 −0.175012
\(502\) 8694.82 0.773045
\(503\) 8842.46 0.783828 0.391914 0.920002i \(-0.371813\pi\)
0.391914 + 0.920002i \(0.371813\pi\)
\(504\) −4477.24 −0.395698
\(505\) 6278.29 0.553228
\(506\) 0 0
\(507\) −4139.68 −0.362623
\(508\) 3384.76 0.295619
\(509\) 11018.9 0.959539 0.479770 0.877394i \(-0.340720\pi\)
0.479770 + 0.877394i \(0.340720\pi\)
\(510\) 799.642 0.0694289
\(511\) 224.749 0.0194565
\(512\) 1926.73 0.166309
\(513\) −9636.82 −0.829388
\(514\) 12319.0 1.05714
\(515\) −7314.08 −0.625820
\(516\) 2760.05 0.235473
\(517\) 0 0
\(518\) −2138.14 −0.181360
\(519\) 3083.57 0.260797
\(520\) 1137.19 0.0959022
\(521\) −21660.3 −1.82141 −0.910704 0.413060i \(-0.864460\pi\)
−0.910704 + 0.413060i \(0.864460\pi\)
\(522\) −6483.38 −0.543621
\(523\) 13269.4 1.10943 0.554715 0.832040i \(-0.312827\pi\)
0.554715 + 0.832040i \(0.312827\pi\)
\(524\) −1925.33 −0.160512
\(525\) −436.636 −0.0362979
\(526\) −1286.70 −0.106659
\(527\) 1983.67 0.163966
\(528\) 0 0
\(529\) 26407.3 2.17040
\(530\) −2866.01 −0.234890
\(531\) 17822.5 1.45656
\(532\) 4487.91 0.365743
\(533\) −1626.47 −0.132177
\(534\) 21.0563 0.00170636
\(535\) 7855.76 0.634830
\(536\) −2820.36 −0.227278
\(537\) −2662.92 −0.213992
\(538\) −5651.04 −0.452851
\(539\) 0 0
\(540\) 2597.54 0.207000
\(541\) −6801.60 −0.540524 −0.270262 0.962787i \(-0.587110\pi\)
−0.270262 + 0.962787i \(0.587110\pi\)
\(542\) 1840.84 0.145887
\(543\) −2950.50 −0.233183
\(544\) 8982.59 0.707951
\(545\) 6464.65 0.508101
\(546\) 300.071 0.0235199
\(547\) 24734.6 1.93341 0.966704 0.255898i \(-0.0823712\pi\)
0.966704 + 0.255898i \(0.0823712\pi\)
\(548\) 4145.20 0.323128
\(549\) −18473.1 −1.43609
\(550\) 0 0
\(551\) 16424.7 1.26990
\(552\) −8558.17 −0.659891
\(553\) −1888.14 −0.145193
\(554\) −12711.5 −0.974838
\(555\) 1444.76 0.110498
\(556\) 10002.3 0.762938
\(557\) −19430.2 −1.47807 −0.739033 0.673670i \(-0.764717\pi\)
−0.739033 + 0.673670i \(0.764717\pi\)
\(558\) −1565.89 −0.118798
\(559\) 2750.37 0.208101
\(560\) −235.400 −0.0177633
\(561\) 0 0
\(562\) −8199.22 −0.615415
\(563\) −12323.1 −0.922483 −0.461242 0.887275i \(-0.652596\pi\)
−0.461242 + 0.887275i \(0.652596\pi\)
\(564\) −5011.15 −0.374127
\(565\) 4999.36 0.372256
\(566\) −9587.53 −0.712003
\(567\) −3762.32 −0.278664
\(568\) 6358.04 0.469678
\(569\) −19071.5 −1.40513 −0.702564 0.711620i \(-0.747962\pi\)
−0.702564 + 0.711620i \(0.747962\pi\)
\(570\) 1599.13 0.117509
\(571\) 4453.84 0.326423 0.163211 0.986591i \(-0.447815\pi\)
0.163211 + 0.986591i \(0.447815\pi\)
\(572\) 0 0
\(573\) 8308.37 0.605737
\(574\) −2305.83 −0.167671
\(575\) 4910.09 0.356113
\(576\) −6105.10 −0.441631
\(577\) 3184.19 0.229739 0.114870 0.993381i \(-0.463355\pi\)
0.114870 + 0.993381i \(0.463355\pi\)
\(578\) −4241.95 −0.305262
\(579\) −6678.97 −0.479393
\(580\) −4427.16 −0.316944
\(581\) −4569.08 −0.326260
\(582\) −1071.66 −0.0763262
\(583\) 0 0
\(584\) 560.724 0.0397310
\(585\) 1192.83 0.0843036
\(586\) −10035.2 −0.707422
\(587\) 23915.2 1.68158 0.840788 0.541365i \(-0.182092\pi\)
0.840788 + 0.541365i \(0.182092\pi\)
\(588\) 2751.60 0.192983
\(589\) 3966.95 0.277513
\(590\) −6417.62 −0.447812
\(591\) 10410.0 0.724554
\(592\) 778.899 0.0540752
\(593\) −6201.48 −0.429451 −0.214725 0.976674i \(-0.568886\pi\)
−0.214725 + 0.976674i \(0.568886\pi\)
\(594\) 0 0
\(595\) −2142.25 −0.147603
\(596\) −10314.7 −0.708902
\(597\) 6759.90 0.463424
\(598\) −3374.38 −0.230750
\(599\) −8540.80 −0.582584 −0.291292 0.956634i \(-0.594085\pi\)
−0.291292 + 0.956634i \(0.594085\pi\)
\(600\) −1089.36 −0.0741216
\(601\) 8219.57 0.557875 0.278938 0.960309i \(-0.410018\pi\)
0.278938 + 0.960309i \(0.410018\pi\)
\(602\) 3899.16 0.263984
\(603\) −2958.36 −0.199790
\(604\) −13899.2 −0.936340
\(605\) 0 0
\(606\) 4133.18 0.277061
\(607\) 24499.1 1.63820 0.819100 0.573651i \(-0.194473\pi\)
0.819100 + 0.573651i \(0.194473\pi\)
\(608\) 17963.4 1.19821
\(609\) −2952.42 −0.196450
\(610\) 6651.89 0.441520
\(611\) −4993.58 −0.330636
\(612\) 5872.93 0.387907
\(613\) −9816.60 −0.646800 −0.323400 0.946262i \(-0.604826\pi\)
−0.323400 + 0.946262i \(0.604826\pi\)
\(614\) 15121.3 0.993889
\(615\) 1558.06 0.102158
\(616\) 0 0
\(617\) −4396.62 −0.286874 −0.143437 0.989659i \(-0.545815\pi\)
−0.143437 + 0.989659i \(0.545815\pi\)
\(618\) −4815.07 −0.313415
\(619\) −7477.57 −0.485540 −0.242770 0.970084i \(-0.578056\pi\)
−0.242770 + 0.970084i \(0.578056\pi\)
\(620\) −1069.26 −0.0692623
\(621\) −19479.7 −1.25877
\(622\) 6340.29 0.408718
\(623\) −56.4100 −0.00362764
\(624\) −109.312 −0.00701281
\(625\) 625.000 0.0400000
\(626\) 4304.19 0.274808
\(627\) 0 0
\(628\) 10790.9 0.685674
\(629\) 7088.33 0.449332
\(630\) 1691.07 0.106942
\(631\) 2168.51 0.136810 0.0684050 0.997658i \(-0.478209\pi\)
0.0684050 + 0.997658i \(0.478209\pi\)
\(632\) −4710.70 −0.296490
\(633\) 2155.85 0.135367
\(634\) −11582.0 −0.725521
\(635\) −3231.03 −0.201920
\(636\) 3577.99 0.223077
\(637\) 2741.95 0.170549
\(638\) 0 0
\(639\) 6669.13 0.412874
\(640\) −5196.82 −0.320973
\(641\) 21985.0 1.35469 0.677344 0.735666i \(-0.263131\pi\)
0.677344 + 0.735666i \(0.263131\pi\)
\(642\) 5171.67 0.317928
\(643\) 28532.7 1.74995 0.874976 0.484166i \(-0.160877\pi\)
0.874976 + 0.484166i \(0.160877\pi\)
\(644\) 9071.79 0.555091
\(645\) −2634.69 −0.160838
\(646\) 7845.70 0.477841
\(647\) −28479.4 −1.73051 −0.865255 0.501331i \(-0.832844\pi\)
−0.865255 + 0.501331i \(0.832844\pi\)
\(648\) −9386.60 −0.569044
\(649\) 0 0
\(650\) −429.521 −0.0259188
\(651\) −713.078 −0.0429304
\(652\) 1152.16 0.0692053
\(653\) 2776.35 0.166381 0.0831905 0.996534i \(-0.473489\pi\)
0.0831905 + 0.996534i \(0.473489\pi\)
\(654\) 4255.86 0.254461
\(655\) 1837.88 0.109637
\(656\) 839.983 0.0499937
\(657\) 588.159 0.0349258
\(658\) −7079.33 −0.419424
\(659\) −6085.26 −0.359709 −0.179854 0.983693i \(-0.557563\pi\)
−0.179854 + 0.983693i \(0.557563\pi\)
\(660\) 0 0
\(661\) −18103.8 −1.06529 −0.532645 0.846339i \(-0.678802\pi\)
−0.532645 + 0.846339i \(0.678802\pi\)
\(662\) −3961.37 −0.232573
\(663\) −994.790 −0.0582722
\(664\) −11399.4 −0.666236
\(665\) −4284.07 −0.249818
\(666\) −5595.45 −0.325554
\(667\) 33200.6 1.92734
\(668\) 5190.25 0.300624
\(669\) −387.112 −0.0223716
\(670\) 1065.26 0.0614247
\(671\) 0 0
\(672\) −3229.00 −0.185359
\(673\) −5229.86 −0.299548 −0.149774 0.988720i \(-0.547855\pi\)
−0.149774 + 0.988720i \(0.547855\pi\)
\(674\) 16347.8 0.934264
\(675\) −2479.56 −0.141390
\(676\) 10947.9 0.622890
\(677\) 7280.29 0.413300 0.206650 0.978415i \(-0.433744\pi\)
0.206650 + 0.978415i \(0.433744\pi\)
\(678\) 3291.22 0.186429
\(679\) 2870.99 0.162266
\(680\) −5344.68 −0.301410
\(681\) 3833.71 0.215724
\(682\) 0 0
\(683\) −4696.64 −0.263122 −0.131561 0.991308i \(-0.541999\pi\)
−0.131561 + 0.991308i \(0.541999\pi\)
\(684\) 11744.7 0.656535
\(685\) −3956.93 −0.220710
\(686\) 8914.13 0.496127
\(687\) 6898.86 0.383126
\(688\) −1420.42 −0.0787106
\(689\) 3565.45 0.197145
\(690\) 3232.45 0.178344
\(691\) −12179.0 −0.670495 −0.335248 0.942130i \(-0.608820\pi\)
−0.335248 + 0.942130i \(0.608820\pi\)
\(692\) −8154.89 −0.447980
\(693\) 0 0
\(694\) −15850.1 −0.866948
\(695\) −9548.03 −0.521119
\(696\) −7365.96 −0.401158
\(697\) 7644.22 0.415417
\(698\) −17391.7 −0.943105
\(699\) −1867.99 −0.101078
\(700\) 1154.74 0.0623501
\(701\) −12610.0 −0.679422 −0.339711 0.940530i \(-0.610329\pi\)
−0.339711 + 0.940530i \(0.610329\pi\)
\(702\) 1704.04 0.0916164
\(703\) 14175.2 0.760497
\(704\) 0 0
\(705\) 4783.54 0.255544
\(706\) 13634.4 0.726826
\(707\) −11072.8 −0.589018
\(708\) 8011.90 0.425291
\(709\) 3325.26 0.176140 0.0880698 0.996114i \(-0.471930\pi\)
0.0880698 + 0.996114i \(0.471930\pi\)
\(710\) −2401.45 −0.126936
\(711\) −4941.19 −0.260632
\(712\) −140.737 −0.00740778
\(713\) 8018.74 0.421184
\(714\) −1410.30 −0.0739205
\(715\) 0 0
\(716\) 7042.43 0.367581
\(717\) −797.627 −0.0415452
\(718\) −21532.7 −1.11921
\(719\) 19063.2 0.988787 0.494393 0.869238i \(-0.335390\pi\)
0.494393 + 0.869238i \(0.335390\pi\)
\(720\) −616.034 −0.0318865
\(721\) 12899.6 0.666306
\(722\) 4290.50 0.221158
\(723\) −8628.64 −0.443849
\(724\) 7802.97 0.400546
\(725\) 4226.08 0.216486
\(726\) 0 0
\(727\) 8017.43 0.409009 0.204505 0.978866i \(-0.434442\pi\)
0.204505 + 0.978866i \(0.434442\pi\)
\(728\) −2005.63 −0.102106
\(729\) −4542.02 −0.230759
\(730\) −211.787 −0.0107378
\(731\) −12926.4 −0.654037
\(732\) −8304.38 −0.419315
\(733\) −8712.10 −0.439003 −0.219501 0.975612i \(-0.570443\pi\)
−0.219501 + 0.975612i \(0.570443\pi\)
\(734\) −2092.92 −0.105247
\(735\) −2626.62 −0.131815
\(736\) 36310.9 1.81853
\(737\) 0 0
\(738\) −6034.27 −0.300982
\(739\) −22769.9 −1.13343 −0.566715 0.823914i \(-0.691786\pi\)
−0.566715 + 0.823914i \(0.691786\pi\)
\(740\) −3820.84 −0.189806
\(741\) −1989.38 −0.0986259
\(742\) 5054.69 0.250086
\(743\) −8449.10 −0.417184 −0.208592 0.978003i \(-0.566888\pi\)
−0.208592 + 0.978003i \(0.566888\pi\)
\(744\) −1779.05 −0.0876656
\(745\) 9846.18 0.484210
\(746\) 23434.6 1.15014
\(747\) −11957.1 −0.585660
\(748\) 0 0
\(749\) −13855.0 −0.675900
\(750\) 411.455 0.0200323
\(751\) −9469.75 −0.460128 −0.230064 0.973176i \(-0.573894\pi\)
−0.230064 + 0.973176i \(0.573894\pi\)
\(752\) 2578.91 0.125058
\(753\) 10361.8 0.501467
\(754\) −2904.30 −0.140277
\(755\) 13267.9 0.639560
\(756\) −4581.19 −0.220392
\(757\) 38387.6 1.84309 0.921545 0.388271i \(-0.126927\pi\)
0.921545 + 0.388271i \(0.126927\pi\)
\(758\) −19795.8 −0.948567
\(759\) 0 0
\(760\) −10688.3 −0.510138
\(761\) −1865.95 −0.0888841 −0.0444420 0.999012i \(-0.514151\pi\)
−0.0444420 + 0.999012i \(0.514151\pi\)
\(762\) −2127.08 −0.101123
\(763\) −11401.5 −0.540972
\(764\) −21972.5 −1.04050
\(765\) −5606.19 −0.264957
\(766\) 14256.5 0.672466
\(767\) 7983.80 0.375852
\(768\) −7612.93 −0.357693
\(769\) 29983.8 1.40604 0.703019 0.711171i \(-0.251835\pi\)
0.703019 + 0.711171i \(0.251835\pi\)
\(770\) 0 0
\(771\) 14680.8 0.685755
\(772\) 17663.4 0.823470
\(773\) 6987.07 0.325107 0.162553 0.986700i \(-0.448027\pi\)
0.162553 + 0.986700i \(0.448027\pi\)
\(774\) 10204.0 0.473869
\(775\) 1020.70 0.0473091
\(776\) 7162.82 0.331353
\(777\) −2548.07 −0.117647
\(778\) −16557.5 −0.763003
\(779\) 15286.9 0.703095
\(780\) 536.224 0.0246152
\(781\) 0 0
\(782\) 15859.2 0.725222
\(783\) −16766.1 −0.765225
\(784\) −1416.07 −0.0645075
\(785\) −10300.8 −0.468344
\(786\) 1209.93 0.0549069
\(787\) −17890.6 −0.810332 −0.405166 0.914243i \(-0.632786\pi\)
−0.405166 + 0.914243i \(0.632786\pi\)
\(788\) −27530.6 −1.24459
\(789\) −1533.38 −0.0691888
\(790\) 1779.25 0.0801301
\(791\) −8817.21 −0.396339
\(792\) 0 0
\(793\) −8275.25 −0.370571
\(794\) 16359.6 0.731210
\(795\) −3415.48 −0.152371
\(796\) −17877.4 −0.796040
\(797\) −2164.72 −0.0962087 −0.0481043 0.998842i \(-0.515318\pi\)
−0.0481043 + 0.998842i \(0.515318\pi\)
\(798\) −2820.32 −0.125111
\(799\) 23469.3 1.03915
\(800\) 4621.99 0.204265
\(801\) −147.623 −0.00651186
\(802\) 8286.59 0.364850
\(803\) 0 0
\(804\) −1329.89 −0.0583355
\(805\) −8659.76 −0.379151
\(806\) −701.458 −0.0306548
\(807\) −6734.46 −0.293760
\(808\) −27625.5 −1.20280
\(809\) −24725.8 −1.07455 −0.537277 0.843406i \(-0.680547\pi\)
−0.537277 + 0.843406i \(0.680547\pi\)
\(810\) 3545.35 0.153791
\(811\) −26049.1 −1.12788 −0.563938 0.825817i \(-0.690714\pi\)
−0.563938 + 0.825817i \(0.690714\pi\)
\(812\) 7808.04 0.337449
\(813\) 2193.77 0.0946357
\(814\) 0 0
\(815\) −1099.82 −0.0472702
\(816\) 513.755 0.0220405
\(817\) −25850.3 −1.10696
\(818\) 20028.6 0.856093
\(819\) −2103.76 −0.0897575
\(820\) −4120.48 −0.175480
\(821\) −12835.8 −0.545645 −0.272822 0.962064i \(-0.587957\pi\)
−0.272822 + 0.962064i \(0.587957\pi\)
\(822\) −2604.96 −0.110533
\(823\) 7513.40 0.318227 0.159113 0.987260i \(-0.449136\pi\)
0.159113 + 0.987260i \(0.449136\pi\)
\(824\) 32183.2 1.36062
\(825\) 0 0
\(826\) 11318.5 0.476783
\(827\) −10033.8 −0.421896 −0.210948 0.977497i \(-0.567655\pi\)
−0.210948 + 0.977497i \(0.567655\pi\)
\(828\) 23740.6 0.996428
\(829\) 1442.57 0.0604374 0.0302187 0.999543i \(-0.490380\pi\)
0.0302187 + 0.999543i \(0.490380\pi\)
\(830\) 4305.58 0.180059
\(831\) −15148.6 −0.632368
\(832\) −2734.85 −0.113959
\(833\) −12886.9 −0.536018
\(834\) −6285.74 −0.260980
\(835\) −4954.51 −0.205339
\(836\) 0 0
\(837\) −4049.40 −0.167226
\(838\) 1349.40 0.0556255
\(839\) −33081.1 −1.36125 −0.680624 0.732633i \(-0.738291\pi\)
−0.680624 + 0.732633i \(0.738291\pi\)
\(840\) 1921.27 0.0789168
\(841\) 4186.59 0.171659
\(842\) −22175.2 −0.907609
\(843\) −9771.18 −0.399214
\(844\) −5701.42 −0.232525
\(845\) −10450.7 −0.425460
\(846\) −18526.4 −0.752896
\(847\) 0 0
\(848\) −1841.36 −0.0745667
\(849\) −11425.6 −0.461869
\(850\) 2018.70 0.0814599
\(851\) 28653.6 1.15421
\(852\) 2998.03 0.120552
\(853\) −3320.28 −0.133276 −0.0666378 0.997777i \(-0.521227\pi\)
−0.0666378 + 0.997777i \(0.521227\pi\)
\(854\) −11731.7 −0.470084
\(855\) −11211.3 −0.448441
\(856\) −34566.6 −1.38021
\(857\) −14357.0 −0.572259 −0.286130 0.958191i \(-0.592369\pi\)
−0.286130 + 0.958191i \(0.592369\pi\)
\(858\) 0 0
\(859\) −36024.5 −1.43090 −0.715448 0.698666i \(-0.753778\pi\)
−0.715448 + 0.698666i \(0.753778\pi\)
\(860\) 6967.76 0.276278
\(861\) −2747.90 −0.108767
\(862\) 14040.8 0.554791
\(863\) 24955.0 0.984332 0.492166 0.870501i \(-0.336205\pi\)
0.492166 + 0.870501i \(0.336205\pi\)
\(864\) −18336.8 −0.722025
\(865\) 7784.50 0.305989
\(866\) −12682.1 −0.497637
\(867\) −5055.21 −0.198021
\(868\) 1885.82 0.0737431
\(869\) 0 0
\(870\) 2782.15 0.108418
\(871\) −1325.23 −0.0515542
\(872\) −28445.5 −1.10469
\(873\) 7513.29 0.291279
\(874\) 31715.2 1.22744
\(875\) −1102.29 −0.0425877
\(876\) 264.400 0.0101978
\(877\) −24077.3 −0.927062 −0.463531 0.886081i \(-0.653418\pi\)
−0.463531 + 0.886081i \(0.653418\pi\)
\(878\) −2889.33 −0.111060
\(879\) −11959.1 −0.458898
\(880\) 0 0
\(881\) −37851.9 −1.44752 −0.723759 0.690052i \(-0.757587\pi\)
−0.723759 + 0.690052i \(0.757587\pi\)
\(882\) 10172.7 0.388361
\(883\) −34000.9 −1.29583 −0.647917 0.761711i \(-0.724359\pi\)
−0.647917 + 0.761711i \(0.724359\pi\)
\(884\) 2630.85 0.100096
\(885\) −7648.00 −0.290491
\(886\) 2711.34 0.102810
\(887\) −14809.0 −0.560582 −0.280291 0.959915i \(-0.590431\pi\)
−0.280291 + 0.959915i \(0.590431\pi\)
\(888\) −6357.15 −0.240239
\(889\) 5698.46 0.214983
\(890\) 53.1568 0.00200204
\(891\) 0 0
\(892\) 1023.77 0.0384285
\(893\) 46933.8 1.75877
\(894\) 6482.02 0.242496
\(895\) −6722.56 −0.251073
\(896\) 9165.47 0.341737
\(897\) −4021.31 −0.149685
\(898\) 3758.79 0.139680
\(899\) 6901.67 0.256044
\(900\) 3021.92 0.111923
\(901\) −16757.2 −0.619604
\(902\) 0 0
\(903\) 4646.71 0.171243
\(904\) −21998.0 −0.809339
\(905\) −7448.56 −0.273590
\(906\) 8734.62 0.320296
\(907\) 16421.9 0.601191 0.300595 0.953752i \(-0.402815\pi\)
0.300595 + 0.953752i \(0.402815\pi\)
\(908\) −10138.7 −0.370557
\(909\) −28977.2 −1.05733
\(910\) 757.532 0.0275956
\(911\) −23657.8 −0.860394 −0.430197 0.902735i \(-0.641556\pi\)
−0.430197 + 0.902735i \(0.641556\pi\)
\(912\) 1027.41 0.0373036
\(913\) 0 0
\(914\) 10577.9 0.382807
\(915\) 7927.19 0.286410
\(916\) −18244.9 −0.658109
\(917\) −3241.41 −0.116729
\(918\) −8008.78 −0.287940
\(919\) 11134.2 0.399654 0.199827 0.979831i \(-0.435962\pi\)
0.199827 + 0.979831i \(0.435962\pi\)
\(920\) −21605.2 −0.774240
\(921\) 18020.4 0.644726
\(922\) 4140.58 0.147899
\(923\) 2987.51 0.106539
\(924\) 0 0
\(925\) 3647.29 0.129646
\(926\) −21388.0 −0.759021
\(927\) 33757.8 1.19607
\(928\) 31252.6 1.10551
\(929\) 386.886 0.0136634 0.00683172 0.999977i \(-0.497825\pi\)
0.00683172 + 0.999977i \(0.497825\pi\)
\(930\) 671.954 0.0236927
\(931\) −25771.1 −0.907213
\(932\) 4940.13 0.173626
\(933\) 7555.85 0.265131
\(934\) 21367.9 0.748587
\(935\) 0 0
\(936\) −5248.66 −0.183288
\(937\) −40709.8 −1.41935 −0.709676 0.704528i \(-0.751159\pi\)
−0.709676 + 0.704528i \(0.751159\pi\)
\(938\) −1878.76 −0.0653985
\(939\) 5129.38 0.178265
\(940\) −12650.7 −0.438957
\(941\) −33033.8 −1.14439 −0.572195 0.820117i \(-0.693908\pi\)
−0.572195 + 0.820117i \(0.693908\pi\)
\(942\) −6781.29 −0.234550
\(943\) 30900.8 1.06709
\(944\) −4123.20 −0.142160
\(945\) 4373.11 0.150537
\(946\) 0 0
\(947\) −11956.8 −0.410288 −0.205144 0.978732i \(-0.565766\pi\)
−0.205144 + 0.978732i \(0.565766\pi\)
\(948\) −2221.25 −0.0761002
\(949\) 263.473 0.00901231
\(950\) 4037.00 0.137871
\(951\) −13802.5 −0.470638
\(952\) 9426.23 0.320910
\(953\) 46066.0 1.56582 0.782909 0.622136i \(-0.213735\pi\)
0.782909 + 0.622136i \(0.213735\pi\)
\(954\) 13228.0 0.448921
\(955\) 20974.5 0.710702
\(956\) 2109.43 0.0713637
\(957\) 0 0
\(958\) 8502.02 0.286730
\(959\) 6978.70 0.234989
\(960\) 2619.82 0.0880775
\(961\) −28124.1 −0.944046
\(962\) −2506.54 −0.0840065
\(963\) −36257.9 −1.21329
\(964\) 22819.5 0.762415
\(965\) −16861.1 −0.562465
\(966\) −5700.96 −0.189881
\(967\) 14540.7 0.483555 0.241778 0.970332i \(-0.422270\pi\)
0.241778 + 0.970332i \(0.422270\pi\)
\(968\) 0 0
\(969\) 9349.88 0.309970
\(970\) −2705.42 −0.0895524
\(971\) −30945.6 −1.02275 −0.511375 0.859357i \(-0.670864\pi\)
−0.511375 + 0.859357i \(0.670864\pi\)
\(972\) −18452.8 −0.608923
\(973\) 16839.6 0.554832
\(974\) 6595.75 0.216983
\(975\) −511.869 −0.0168132
\(976\) 4273.72 0.140162
\(977\) 4588.59 0.150258 0.0751290 0.997174i \(-0.476063\pi\)
0.0751290 + 0.997174i \(0.476063\pi\)
\(978\) −724.046 −0.0236732
\(979\) 0 0
\(980\) 6946.43 0.226424
\(981\) −29837.3 −0.971083
\(982\) −70.1617 −0.00227999
\(983\) −1752.33 −0.0568571 −0.0284285 0.999596i \(-0.509050\pi\)
−0.0284285 + 0.999596i \(0.509050\pi\)
\(984\) −6855.71 −0.222106
\(985\) 26280.2 0.850108
\(986\) 13649.9 0.440874
\(987\) −8436.58 −0.272076
\(988\) 5261.17 0.169413
\(989\) −52253.4 −1.68004
\(990\) 0 0
\(991\) −23938.4 −0.767335 −0.383668 0.923471i \(-0.625339\pi\)
−0.383668 + 0.923471i \(0.625339\pi\)
\(992\) 7548.24 0.241589
\(993\) −4720.84 −0.150867
\(994\) 4235.36 0.135148
\(995\) 17065.4 0.543729
\(996\) −5375.18 −0.171003
\(997\) −31948.4 −1.01486 −0.507430 0.861693i \(-0.669404\pi\)
−0.507430 + 0.861693i \(0.669404\pi\)
\(998\) −263.598 −0.00836078
\(999\) −14469.9 −0.458265
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.4.a.t.1.7 12
11.7 odd 10 55.4.g.b.16.3 24
11.8 odd 10 55.4.g.b.31.3 yes 24
11.10 odd 2 605.4.a.p.1.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.4.g.b.16.3 24 11.7 odd 10
55.4.g.b.31.3 yes 24 11.8 odd 10
605.4.a.p.1.6 12 11.10 odd 2
605.4.a.t.1.7 12 1.1 even 1 trivial