Properties

Label 55.4.g.b.31.3
Level $55$
Weight $4$
Character 55.31
Analytic conductor $3.245$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,4,Mod(16,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.16");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 55.g (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.24510505032\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 31.3
Character \(\chi\) \(=\) 55.31
Dual form 55.4.g.b.16.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.513572 + 1.58061i) q^{2} +(-1.60233 + 1.16416i) q^{3} +(4.23755 + 3.07876i) q^{4} +(1.54508 + 4.75528i) q^{5} +(-1.01717 - 3.13054i) q^{6} +(-7.13418 - 5.18329i) q^{7} +(-17.7990 + 12.9317i) q^{8} +(-7.13127 + 21.9478i) q^{9} +O(q^{10})\) \(q+(-0.513572 + 1.58061i) q^{2} +(-1.60233 + 1.16416i) q^{3} +(4.23755 + 3.07876i) q^{4} +(1.54508 + 4.75528i) q^{5} +(-1.01717 - 3.13054i) q^{6} +(-7.13418 - 5.18329i) q^{7} +(-17.7990 + 12.9317i) q^{8} +(-7.13127 + 21.9478i) q^{9} -8.30978 q^{10} +(5.41658 + 36.0785i) q^{11} -10.3741 q^{12} +(3.19453 - 9.83177i) q^{13} +(11.8567 - 8.61439i) q^{14} +(-8.01163 - 5.82079i) q^{15} +(1.64980 + 5.07758i) q^{16} +(-15.0140 - 46.2082i) q^{17} +(-31.0286 - 22.5436i) q^{18} +(78.6063 - 57.1108i) q^{19} +(-8.09301 + 24.9077i) q^{20} +17.4655 q^{21} +(-59.8080 - 9.96743i) q^{22} +196.403 q^{23} +(13.4652 - 41.4418i) q^{24} +(-20.2254 + 14.6946i) q^{25} +(13.8996 + 10.0986i) q^{26} +(-30.6490 - 94.3280i) q^{27} +(-14.2734 - 43.9289i) q^{28} +(136.759 + 99.3611i) q^{29} +(13.3150 - 9.67390i) q^{30} +(12.6165 - 38.8296i) q^{31} -184.879 q^{32} +(-50.6802 - 51.5038i) q^{33} +80.7481 q^{34} +(13.6251 - 41.9337i) q^{35} +(-97.7912 + 71.0495i) q^{36} +(-118.029 - 85.7530i) q^{37} +(49.9001 + 153.577i) q^{38} +(6.32704 + 19.4726i) q^{39} +(-88.9951 - 64.6587i) q^{40} +(127.285 - 92.4781i) q^{41} +(-8.96978 + 27.6061i) q^{42} +266.051 q^{43} +(-88.1242 + 169.561i) q^{44} -115.386 q^{45} +(-100.867 + 310.438i) q^{46} +(-390.791 + 283.926i) q^{47} +(-8.55463 - 6.21530i) q^{48} +(-81.9627 - 252.255i) q^{49} +(-12.8393 - 39.5153i) q^{50} +(77.8509 + 56.5620i) q^{51} +(43.8067 - 31.8274i) q^{52} +(-106.579 + 328.016i) q^{53} +164.837 q^{54} +(-163.195 + 81.5018i) q^{55} +194.010 q^{56} +(-59.4669 + 183.020i) q^{57} +(-227.287 + 165.134i) q^{58} +(624.802 + 453.945i) q^{59} +(-16.0289 - 49.3318i) q^{60} +(-247.365 - 761.311i) q^{61} +(54.8951 + 39.8836i) q^{62} +(164.638 - 119.616i) q^{63} +(81.7505 - 251.602i) q^{64} +51.6887 q^{65} +(107.436 - 53.6549i) q^{66} +128.194 q^{67} +(78.6417 - 242.034i) q^{68} +(-314.702 + 228.645i) q^{69} +(59.2835 + 43.0720i) q^{70} +(-89.3032 - 274.847i) q^{71} +(-156.894 - 482.869i) q^{72} +(-20.6190 - 14.9806i) q^{73} +(196.159 - 142.518i) q^{74} +(15.3009 - 47.0912i) q^{75} +508.929 q^{76} +(148.363 - 285.467i) q^{77} -34.0281 q^{78} +(-66.1652 + 203.635i) q^{79} +(-21.5962 + 15.6906i) q^{80} +(-345.165 - 250.777i) q^{81} +(80.8020 + 248.683i) q^{82} +(-160.112 - 492.774i) q^{83} +(74.0108 + 53.7720i) q^{84} +(196.535 - 142.791i) q^{85} +(-136.637 + 420.525i) q^{86} -334.804 q^{87} +(-562.968 - 572.117i) q^{88} +6.39690 q^{89} +(59.2593 - 182.381i) q^{90} +(-73.7513 + 53.5834i) q^{91} +(832.270 + 604.680i) q^{92} +(24.9881 + 76.9053i) q^{93} +(-248.078 - 763.505i) q^{94} +(393.032 + 285.554i) q^{95} +(296.237 - 215.229i) q^{96} +(-100.607 + 309.636i) q^{97} +440.812 q^{98} +(-830.472 - 138.404i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 6 q^{2} + 4 q^{3} - 36 q^{4} - 30 q^{5} + 30 q^{6} + 81 q^{7} - 10 q^{8} - 48 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 6 q^{2} + 4 q^{3} - 36 q^{4} - 30 q^{5} + 30 q^{6} + 81 q^{7} - 10 q^{8} - 48 q^{9} - 70 q^{10} - 72 q^{11} + 10 q^{12} + 65 q^{13} - 47 q^{14} + 20 q^{15} - 60 q^{16} - 142 q^{17} + 283 q^{18} - 17 q^{19} - 55 q^{20} - 200 q^{21} + 87 q^{22} - 182 q^{23} + 70 q^{24} - 150 q^{25} + 736 q^{26} + 643 q^{27} - 52 q^{28} + 80 q^{29} - 210 q^{31} - 504 q^{32} + 993 q^{33} + 1046 q^{34} + 80 q^{35} - 2242 q^{36} + 560 q^{37} + 187 q^{38} - 1294 q^{39} - 50 q^{40} + 293 q^{41} - 2231 q^{42} - 3658 q^{43} + 1293 q^{44} + 1310 q^{45} - 57 q^{46} - 1824 q^{47} + 1977 q^{48} + 73 q^{49} + 150 q^{50} - 1769 q^{51} + 3342 q^{52} + 838 q^{53} + 2784 q^{54} + 290 q^{55} + 8652 q^{56} + 273 q^{57} - 3896 q^{58} + 1653 q^{59} - 875 q^{60} - 888 q^{61} - 2200 q^{62} + 3149 q^{63} - 4644 q^{64} - 2050 q^{65} - 4497 q^{66} + 3966 q^{67} - 3783 q^{68} - 3384 q^{69} - 235 q^{70} + 1664 q^{71} - 4264 q^{72} - 2210 q^{73} + 1552 q^{74} - 25 q^{75} + 3048 q^{76} - 1304 q^{77} + 10064 q^{78} + 12 q^{79} - 275 q^{80} + 5005 q^{81} + 4099 q^{82} + 1945 q^{83} - 7584 q^{84} + 1865 q^{85} - 5156 q^{86} - 3844 q^{87} + 619 q^{88} + 4568 q^{89} - 210 q^{90} - 4885 q^{91} + 3390 q^{92} + 2844 q^{93} - 8932 q^{94} - 85 q^{95} - 1249 q^{96} - 3255 q^{97} - 7778 q^{98} + 5980 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.513572 + 1.58061i −0.181575 + 0.558831i −0.999873 0.0159640i \(-0.994918\pi\)
0.818297 + 0.574795i \(0.194918\pi\)
\(3\) −1.60233 + 1.16416i −0.308368 + 0.224042i −0.731196 0.682168i \(-0.761037\pi\)
0.422828 + 0.906210i \(0.361037\pi\)
\(4\) 4.23755 + 3.07876i 0.529694 + 0.384845i
\(5\) 1.54508 + 4.75528i 0.138197 + 0.425325i
\(6\) −1.01717 3.13054i −0.0692099 0.213006i
\(7\) −7.13418 5.18329i −0.385210 0.279871i 0.378280 0.925691i \(-0.376516\pi\)
−0.763490 + 0.645820i \(0.776516\pi\)
\(8\) −17.7990 + 12.9317i −0.786613 + 0.571508i
\(9\) −7.13127 + 21.9478i −0.264121 + 0.812882i
\(10\) −8.30978 −0.262778
\(11\) 5.41658 + 36.0785i 0.148469 + 0.988917i
\(12\) −10.3741 −0.249562
\(13\) 3.19453 9.83177i 0.0681542 0.209757i −0.911179 0.412011i \(-0.864827\pi\)
0.979333 + 0.202254i \(0.0648266\pi\)
\(14\) 11.8567 8.61439i 0.226345 0.164450i
\(15\) −8.01163 5.82079i −0.137906 0.100195i
\(16\) 1.64980 + 5.07758i 0.0257782 + 0.0793371i
\(17\) −15.0140 46.2082i −0.214201 0.659243i −0.999209 0.0397580i \(-0.987341\pi\)
0.785008 0.619485i \(-0.212659\pi\)
\(18\) −31.0286 22.5436i −0.406306 0.295198i
\(19\) 78.6063 57.1108i 0.949133 0.689585i −0.00146880 0.999999i \(-0.500468\pi\)
0.950602 + 0.310414i \(0.100468\pi\)
\(20\) −8.09301 + 24.9077i −0.0904826 + 0.278477i
\(21\) 17.4655 0.181489
\(22\) −59.8080 9.96743i −0.579596 0.0965938i
\(23\) 196.403 1.78056 0.890281 0.455411i \(-0.150508\pi\)
0.890281 + 0.455411i \(0.150508\pi\)
\(24\) 13.4652 41.4418i 0.114524 0.352469i
\(25\) −20.2254 + 14.6946i −0.161803 + 0.117557i
\(26\) 13.8996 + 10.0986i 0.104844 + 0.0761734i
\(27\) −30.6490 94.3280i −0.218459 0.672349i
\(28\) −14.2734 43.9289i −0.0963362 0.296492i
\(29\) 136.759 + 99.3611i 0.875706 + 0.636238i 0.932112 0.362170i \(-0.117964\pi\)
−0.0564061 + 0.998408i \(0.517964\pi\)
\(30\) 13.3150 9.67390i 0.0810324 0.0588735i
\(31\) 12.6165 38.8296i 0.0730965 0.224968i −0.907833 0.419332i \(-0.862264\pi\)
0.980929 + 0.194364i \(0.0622643\pi\)
\(32\) −184.879 −1.02132
\(33\) −50.6802 51.5038i −0.267342 0.271687i
\(34\) 80.7481 0.407299
\(35\) 13.6251 41.9337i 0.0658017 0.202517i
\(36\) −97.7912 + 71.0495i −0.452737 + 0.328933i
\(37\) −118.029 85.7530i −0.524428 0.381019i 0.293841 0.955854i \(-0.405066\pi\)
−0.818269 + 0.574835i \(0.805066\pi\)
\(38\) 49.9001 + 153.577i 0.213023 + 0.655617i
\(39\) 6.32704 + 19.4726i 0.0259779 + 0.0799517i
\(40\) −88.9951 64.6587i −0.351784 0.255586i
\(41\) 127.285 92.4781i 0.484844 0.352260i −0.318354 0.947972i \(-0.603130\pi\)
0.803198 + 0.595712i \(0.203130\pi\)
\(42\) −8.96978 + 27.6061i −0.0329540 + 0.101422i
\(43\) 266.051 0.943546 0.471773 0.881720i \(-0.343614\pi\)
0.471773 + 0.881720i \(0.343614\pi\)
\(44\) −88.1242 + 169.561i −0.301937 + 0.580961i
\(45\) −115.386 −0.382240
\(46\) −100.867 + 310.438i −0.323306 + 0.995034i
\(47\) −390.791 + 283.926i −1.21282 + 0.881167i −0.995484 0.0949290i \(-0.969738\pi\)
−0.217339 + 0.976096i \(0.569738\pi\)
\(48\) −8.55463 6.21530i −0.0257241 0.0186896i
\(49\) −81.9627 252.255i −0.238958 0.735438i
\(50\) −12.8393 39.5153i −0.0363151 0.111766i
\(51\) 77.8509 + 56.5620i 0.213751 + 0.155299i
\(52\) 43.8067 31.8274i 0.116825 0.0848783i
\(53\) −106.579 + 328.016i −0.276221 + 0.850122i 0.712672 + 0.701497i \(0.247485\pi\)
−0.988894 + 0.148625i \(0.952515\pi\)
\(54\) 164.837 0.415397
\(55\) −163.195 + 81.5018i −0.400094 + 0.199813i
\(56\) 194.010 0.462960
\(57\) −59.4669 + 183.020i −0.138186 + 0.425292i
\(58\) −227.287 + 165.134i −0.514556 + 0.373847i
\(59\) 624.802 + 453.945i 1.37868 + 1.00167i 0.997002 + 0.0773772i \(0.0246546\pi\)
0.381681 + 0.924294i \(0.375345\pi\)
\(60\) −16.0289 49.3318i −0.0344887 0.106145i
\(61\) −247.365 761.311i −0.519211 1.59797i −0.775488 0.631363i \(-0.782496\pi\)
0.256277 0.966603i \(-0.417504\pi\)
\(62\) 54.8951 + 39.8836i 0.112447 + 0.0816972i
\(63\) 164.638 119.616i 0.329244 0.239210i
\(64\) 81.7505 251.602i 0.159669 0.491411i
\(65\) 51.6887 0.0986337
\(66\) 107.436 53.6549i 0.200370 0.100068i
\(67\) 128.194 0.233751 0.116876 0.993147i \(-0.462712\pi\)
0.116876 + 0.993147i \(0.462712\pi\)
\(68\) 78.6417 242.034i 0.140246 0.431632i
\(69\) −314.702 + 228.645i −0.549068 + 0.398921i
\(70\) 59.2835 + 43.0720i 0.101225 + 0.0735441i
\(71\) −89.3032 274.847i −0.149272 0.459413i 0.848263 0.529575i \(-0.177648\pi\)
−0.997536 + 0.0701617i \(0.977648\pi\)
\(72\) −156.894 482.869i −0.256807 0.790371i
\(73\) −20.6190 14.9806i −0.0330585 0.0240184i 0.571133 0.820857i \(-0.306504\pi\)
−0.604192 + 0.796839i \(0.706504\pi\)
\(74\) 196.159 142.518i 0.308149 0.223883i
\(75\) 15.3009 47.0912i 0.0235572 0.0725016i
\(76\) 508.929 0.768134
\(77\) 148.363 285.467i 0.219578 0.422493i
\(78\) −34.0281 −0.0493965
\(79\) −66.1652 + 203.635i −0.0942299 + 0.290010i −0.987052 0.160399i \(-0.948722\pi\)
0.892822 + 0.450409i \(0.148722\pi\)
\(80\) −21.5962 + 15.6906i −0.0301816 + 0.0219282i
\(81\) −345.165 250.777i −0.473478 0.344002i
\(82\) 80.8020 + 248.683i 0.108818 + 0.334908i
\(83\) −160.112 492.774i −0.211742 0.651675i −0.999369 0.0355224i \(-0.988690\pi\)
0.787627 0.616153i \(-0.211310\pi\)
\(84\) 74.0108 + 53.7720i 0.0961338 + 0.0698453i
\(85\) 196.535 142.791i 0.250791 0.182210i
\(86\) −136.637 + 420.525i −0.171325 + 0.527283i
\(87\) −334.804 −0.412584
\(88\) −562.968 572.117i −0.681962 0.693044i
\(89\) 6.39690 0.00761876 0.00380938 0.999993i \(-0.498787\pi\)
0.00380938 + 0.999993i \(0.498787\pi\)
\(90\) 59.2593 182.381i 0.0694053 0.213608i
\(91\) −73.7513 + 53.5834i −0.0849586 + 0.0617260i
\(92\) 832.270 + 604.680i 0.943154 + 0.685241i
\(93\) 24.9881 + 76.9053i 0.0278617 + 0.0857496i
\(94\) −248.078 763.505i −0.272205 0.837761i
\(95\) 393.032 + 285.554i 0.424465 + 0.308392i
\(96\) 296.237 215.229i 0.314944 0.228820i
\(97\) −100.607 + 309.636i −0.105310 + 0.324111i −0.989803 0.142442i \(-0.954504\pi\)
0.884493 + 0.466553i \(0.154504\pi\)
\(98\) 440.812 0.454375
\(99\) −830.472 138.404i −0.843086 0.140506i
\(100\) −130.948 −0.130948
\(101\) −388.019 + 1194.20i −0.382271 + 1.17651i 0.556170 + 0.831069i \(0.312270\pi\)
−0.938441 + 0.345441i \(0.887730\pi\)
\(102\) −129.385 + 94.0035i −0.125598 + 0.0912523i
\(103\) 1183.44 + 859.822i 1.13212 + 0.822532i 0.986002 0.166735i \(-0.0533226\pi\)
0.146117 + 0.989267i \(0.453323\pi\)
\(104\) 70.2823 + 216.307i 0.0662668 + 0.203948i
\(105\) 26.9856 + 83.0532i 0.0250812 + 0.0771920i
\(106\) −463.730 336.920i −0.424920 0.308722i
\(107\) 1271.09 923.500i 1.14842 0.834375i 0.160149 0.987093i \(-0.448803\pi\)
0.988270 + 0.152718i \(0.0488025\pi\)
\(108\) 160.537 494.081i 0.143034 0.440213i
\(109\) −1292.93 −1.13615 −0.568074 0.822977i \(-0.692311\pi\)
−0.568074 + 0.822977i \(0.692311\pi\)
\(110\) −45.0105 299.805i −0.0390144 0.259866i
\(111\) 288.951 0.247081
\(112\) 14.5485 44.7758i 0.0122742 0.0377760i
\(113\) −808.914 + 587.710i −0.673418 + 0.489267i −0.871168 0.490986i \(-0.836637\pi\)
0.197750 + 0.980253i \(0.436637\pi\)
\(114\) −258.744 187.988i −0.212575 0.154445i
\(115\) 303.460 + 933.954i 0.246068 + 0.757319i
\(116\) 273.613 + 842.096i 0.219003 + 0.674023i
\(117\) 193.005 + 140.226i 0.152507 + 0.110803i
\(118\) −1038.39 + 754.436i −0.810100 + 0.588572i
\(119\) −132.398 + 407.479i −0.101991 + 0.313896i
\(120\) 217.872 0.165741
\(121\) −1272.32 + 390.844i −0.955914 + 0.293647i
\(122\) 1330.38 0.987269
\(123\) −96.2933 + 296.360i −0.0705892 + 0.217251i
\(124\) 173.010 125.699i 0.125297 0.0910334i
\(125\) −101.127 73.4732i −0.0723607 0.0525731i
\(126\) 104.514 + 321.660i 0.0738954 + 0.227427i
\(127\) 199.689 + 614.578i 0.139524 + 0.429409i 0.996266 0.0863348i \(-0.0275155\pi\)
−0.856743 + 0.515744i \(0.827515\pi\)
\(128\) −840.864 610.923i −0.580645 0.421863i
\(129\) −426.301 + 309.726i −0.290959 + 0.211394i
\(130\) −26.5459 + 81.6998i −0.0179094 + 0.0551196i
\(131\) −367.577 −0.245155 −0.122578 0.992459i \(-0.539116\pi\)
−0.122578 + 0.992459i \(0.539116\pi\)
\(132\) −56.1922 374.283i −0.0370523 0.246796i
\(133\) −856.814 −0.558610
\(134\) −65.8367 + 202.624i −0.0424434 + 0.130627i
\(135\) 401.201 291.489i 0.255777 0.185833i
\(136\) 864.787 + 628.304i 0.545256 + 0.396152i
\(137\) −244.552 752.652i −0.152507 0.469368i 0.845393 0.534145i \(-0.179366\pi\)
−0.997900 + 0.0647770i \(0.979366\pi\)
\(138\) −199.776 614.848i −0.123233 0.379271i
\(139\) −1544.90 1122.44i −0.942713 0.684921i 0.00635929 0.999980i \(-0.497976\pi\)
−0.949072 + 0.315059i \(0.897976\pi\)
\(140\) 186.841 135.748i 0.112792 0.0819485i
\(141\) 295.639 909.884i 0.176577 0.543447i
\(142\) 480.290 0.283838
\(143\) 372.019 + 61.9996i 0.217551 + 0.0362564i
\(144\) −123.207 −0.0713003
\(145\) −261.186 + 803.848i −0.149588 + 0.460386i
\(146\) 34.2679 24.8971i 0.0194249 0.0141130i
\(147\) 424.996 + 308.778i 0.238456 + 0.173249i
\(148\) −236.141 726.766i −0.131153 0.403647i
\(149\) −608.528 1872.86i −0.334581 1.02973i −0.966928 0.255049i \(-0.917908\pi\)
0.632347 0.774685i \(-0.282092\pi\)
\(150\) 66.5749 + 48.3695i 0.0362388 + 0.0263290i
\(151\) 2146.79 1559.73i 1.15697 0.840591i 0.167582 0.985858i \(-0.446404\pi\)
0.989392 + 0.145267i \(0.0464042\pi\)
\(152\) −660.573 + 2033.03i −0.352497 + 1.08487i
\(153\) 1121.24 0.592462
\(154\) 375.017 + 381.112i 0.196232 + 0.199421i
\(155\) 204.139 0.105786
\(156\) −33.1405 + 101.996i −0.0170087 + 0.0523475i
\(157\) 1666.70 1210.93i 0.847243 0.615558i −0.0771416 0.997020i \(-0.524579\pi\)
0.924384 + 0.381462i \(0.124579\pi\)
\(158\) −287.888 209.163i −0.144957 0.105317i
\(159\) −211.088 649.663i −0.105286 0.324035i
\(160\) −285.654 879.154i −0.141144 0.434395i
\(161\) −1401.18 1018.02i −0.685890 0.498328i
\(162\) 573.649 416.781i 0.278211 0.202132i
\(163\) −67.9729 + 209.199i −0.0326629 + 0.100526i −0.966059 0.258322i \(-0.916830\pi\)
0.933396 + 0.358848i \(0.116830\pi\)
\(164\) 824.096 0.392385
\(165\) 166.610 320.577i 0.0786095 0.151254i
\(166\) 861.115 0.402623
\(167\) 306.205 942.403i 0.141886 0.436679i −0.854712 0.519103i \(-0.826266\pi\)
0.996597 + 0.0824240i \(0.0262662\pi\)
\(168\) −310.868 + 225.859i −0.142762 + 0.103723i
\(169\) 1690.95 + 1228.55i 0.769664 + 0.559194i
\(170\) 124.763 + 383.980i 0.0562874 + 0.173235i
\(171\) 692.894 + 2132.51i 0.309865 + 0.953667i
\(172\) 1127.41 + 819.109i 0.499791 + 0.363119i
\(173\) 1259.56 915.122i 0.553540 0.402170i −0.275549 0.961287i \(-0.588860\pi\)
0.829089 + 0.559117i \(0.188860\pi\)
\(174\) 171.946 529.196i 0.0749150 0.230565i
\(175\) 220.458 0.0952291
\(176\) −174.255 + 87.0256i −0.0746306 + 0.0372716i
\(177\) −1529.60 −0.649558
\(178\) −3.28527 + 10.1110i −0.00138338 + 0.00425760i
\(179\) 1087.73 790.285i 0.454196 0.329992i −0.337054 0.941485i \(-0.609431\pi\)
0.791250 + 0.611493i \(0.209431\pi\)
\(180\) −488.956 355.247i −0.202470 0.147103i
\(181\) −460.346 1416.80i −0.189046 0.581823i 0.810949 0.585117i \(-0.198951\pi\)
−0.999995 + 0.00329412i \(0.998951\pi\)
\(182\) −46.8181 144.091i −0.0190681 0.0586854i
\(183\) 1282.65 + 931.897i 0.518120 + 0.376436i
\(184\) −3495.79 + 2539.84i −1.40061 + 1.01761i
\(185\) 225.415 693.757i 0.0895830 0.275708i
\(186\) −134.391 −0.0529786
\(187\) 1585.80 791.972i 0.620135 0.309704i
\(188\) −2530.14 −0.981538
\(189\) −270.273 + 831.816i −0.104018 + 0.320136i
\(190\) −653.201 + 474.578i −0.249411 + 0.181208i
\(191\) −3393.75 2465.71i −1.28567 0.934095i −0.285963 0.958241i \(-0.592314\pi\)
−0.999708 + 0.0241454i \(0.992314\pi\)
\(192\) 161.914 + 498.320i 0.0608600 + 0.187308i
\(193\) 1042.07 + 3207.17i 0.388653 + 1.19615i 0.933795 + 0.357808i \(0.116476\pi\)
−0.545142 + 0.838344i \(0.683524\pi\)
\(194\) −437.746 318.041i −0.162002 0.117701i
\(195\) −82.8221 + 60.1738i −0.0304155 + 0.0220981i
\(196\) 429.313 1321.29i 0.156455 0.481519i
\(197\) −5256.04 −1.90090 −0.950450 0.310878i \(-0.899377\pi\)
−0.950450 + 0.310878i \(0.899377\pi\)
\(198\) 645.271 1241.57i 0.231603 0.445630i
\(199\) 3413.08 1.21581 0.607907 0.794008i \(-0.292009\pi\)
0.607907 + 0.794008i \(0.292009\pi\)
\(200\) 169.966 523.100i 0.0600919 0.184944i
\(201\) −205.408 + 149.238i −0.0720814 + 0.0523702i
\(202\) −1688.29 1226.62i −0.588059 0.427250i
\(203\) −460.645 1417.72i −0.159266 0.490170i
\(204\) 155.756 + 479.369i 0.0534565 + 0.164522i
\(205\) 636.426 + 462.391i 0.216829 + 0.157535i
\(206\) −1966.83 + 1428.99i −0.665221 + 0.483312i
\(207\) −1400.61 + 4310.62i −0.470284 + 1.44739i
\(208\) 55.1919 0.0183984
\(209\) 2486.25 + 2526.66i 0.822860 + 0.836232i
\(210\) −145.134 −0.0476914
\(211\) −336.362 + 1035.22i −0.109745 + 0.337760i −0.990815 0.135226i \(-0.956824\pi\)
0.881070 + 0.472986i \(0.156824\pi\)
\(212\) −1461.52 + 1061.85i −0.473478 + 0.344002i
\(213\) 463.058 + 336.431i 0.148959 + 0.108225i
\(214\) 806.901 + 2483.38i 0.257750 + 0.793274i
\(215\) 411.072 + 1265.15i 0.130395 + 0.401314i
\(216\) 1765.35 + 1282.60i 0.556096 + 0.404027i
\(217\) −291.274 + 211.623i −0.0911195 + 0.0662022i
\(218\) 664.013 2043.62i 0.206297 0.634915i
\(219\) 50.4782 0.0155753
\(220\) −942.470 157.069i −0.288824 0.0481346i
\(221\) −502.271 −0.152880
\(222\) −148.397 + 456.720i −0.0448638 + 0.138077i
\(223\) 158.125 114.885i 0.0474835 0.0344988i −0.563790 0.825918i \(-0.690657\pi\)
0.611274 + 0.791419i \(0.290657\pi\)
\(224\) 1318.96 + 958.283i 0.393424 + 0.285839i
\(225\) −178.282 548.695i −0.0528242 0.162576i
\(226\) −513.507 1580.41i −0.151141 0.465166i
\(227\) 1565.97 + 1137.74i 0.457873 + 0.332664i 0.792696 0.609617i \(-0.208677\pi\)
−0.334823 + 0.942281i \(0.608677\pi\)
\(228\) −815.471 + 592.474i −0.236868 + 0.172095i
\(229\) 1076.38 3312.76i 0.310608 0.955954i −0.666916 0.745132i \(-0.732386\pi\)
0.977525 0.210821i \(-0.0676138\pi\)
\(230\) −1632.07 −0.467893
\(231\) 94.6030 + 630.128i 0.0269455 + 0.179478i
\(232\) −3719.09 −1.05246
\(233\) 291.450 896.990i 0.0819463 0.252205i −0.901686 0.432391i \(-0.857670\pi\)
0.983633 + 0.180186i \(0.0576700\pi\)
\(234\) −320.765 + 233.049i −0.0896114 + 0.0651065i
\(235\) −1953.95 1419.63i −0.542391 0.394070i
\(236\) 1250.04 + 3847.23i 0.344792 + 1.06116i
\(237\) −131.046 403.317i −0.0359170 0.110541i
\(238\) −576.072 418.540i −0.156896 0.113991i
\(239\) −325.810 + 236.715i −0.0881795 + 0.0640661i −0.631001 0.775782i \(-0.717356\pi\)
0.542822 + 0.839848i \(0.317356\pi\)
\(240\) 16.3379 50.2829i 0.00439419 0.0135239i
\(241\) 4356.62 1.16446 0.582229 0.813025i \(-0.302181\pi\)
0.582229 + 0.813025i \(0.302181\pi\)
\(242\) 35.6556 2211.78i 0.00947118 0.587514i
\(243\) 3522.93 0.930026
\(244\) 1295.67 3987.68i 0.339947 1.04625i
\(245\) 1072.91 779.512i 0.279777 0.203270i
\(246\) −418.978 304.405i −0.108590 0.0788949i
\(247\) −310.390 955.281i −0.0799580 0.246085i
\(248\) 277.573 + 854.283i 0.0710723 + 0.218738i
\(249\) 830.219 + 603.190i 0.211297 + 0.153516i
\(250\) 168.069 122.109i 0.0425184 0.0308914i
\(251\) 1616.68 4975.62i 0.406549 1.25123i −0.513046 0.858361i \(-0.671483\pi\)
0.919595 0.392868i \(-0.128517\pi\)
\(252\) 1065.93 0.266458
\(253\) 1063.83 + 7085.95i 0.264358 + 1.76083i
\(254\) −1073.96 −0.265301
\(255\) −148.682 + 457.596i −0.0365131 + 0.112376i
\(256\) 3109.68 2259.32i 0.759200 0.551591i
\(257\) −5996.74 4356.89i −1.45551 1.05749i −0.984504 0.175361i \(-0.943891\pi\)
−0.471006 0.882130i \(-0.656109\pi\)
\(258\) −270.621 832.884i −0.0653027 0.200981i
\(259\) 397.557 + 1223.56i 0.0953784 + 0.293545i
\(260\) 219.033 + 159.137i 0.0522457 + 0.0379587i
\(261\) −3156.02 + 2292.98i −0.748478 + 0.543801i
\(262\) 188.777 580.996i 0.0445141 0.137000i
\(263\) 774.208 0.181520 0.0907599 0.995873i \(-0.471070\pi\)
0.0907599 + 0.995873i \(0.471070\pi\)
\(264\) 1568.09 + 261.334i 0.365566 + 0.0609242i
\(265\) −1724.48 −0.399751
\(266\) 440.036 1354.29i 0.101430 0.312169i
\(267\) −10.2499 + 7.44700i −0.00234938 + 0.00170693i
\(268\) 543.227 + 394.677i 0.123817 + 0.0899581i
\(269\) −1050.73 3233.82i −0.238157 0.732972i −0.996687 0.0813336i \(-0.974082\pi\)
0.758530 0.651638i \(-0.225918\pi\)
\(270\) 254.686 + 783.844i 0.0574064 + 0.176679i
\(271\) 896.097 + 651.053i 0.200864 + 0.145936i 0.683670 0.729791i \(-0.260383\pi\)
−0.482807 + 0.875727i \(0.660383\pi\)
\(272\) 209.856 152.469i 0.0467808 0.0339882i
\(273\) 55.7940 171.716i 0.0123693 0.0380687i
\(274\) 1315.25 0.289989
\(275\) −639.713 650.109i −0.140277 0.142557i
\(276\) −2037.51 −0.444361
\(277\) 2363.53 7274.18i 0.512673 1.57785i −0.274803 0.961501i \(-0.588613\pi\)
0.787476 0.616345i \(-0.211387\pi\)
\(278\) 2567.56 1865.44i 0.553929 0.402453i
\(279\) 762.253 + 553.809i 0.163566 + 0.118838i
\(280\) 299.763 + 922.575i 0.0639795 + 0.196909i
\(281\) 1524.53 + 4692.02i 0.323651 + 0.996094i 0.972046 + 0.234790i \(0.0754403\pi\)
−0.648396 + 0.761304i \(0.724560\pi\)
\(282\) 1286.34 + 934.583i 0.271633 + 0.197353i
\(283\) −4667.08 + 3390.83i −0.980314 + 0.712240i −0.957779 0.287506i \(-0.907174\pi\)
−0.0225352 + 0.999746i \(0.507174\pi\)
\(284\) 467.761 1439.62i 0.0977343 0.300795i
\(285\) −962.195 −0.199984
\(286\) −289.056 + 556.177i −0.0597631 + 0.114991i
\(287\) −1387.42 −0.285354
\(288\) 1318.43 4057.70i 0.269753 0.830216i
\(289\) 2064.92 1500.25i 0.420297 0.305364i
\(290\) −1136.43 825.668i −0.230116 0.167189i
\(291\) −199.260 613.261i −0.0401404 0.123539i
\(292\) −41.2525 126.962i −0.00826753 0.0254449i
\(293\) −4884.99 3549.15i −0.974007 0.707658i −0.0176458 0.999844i \(-0.505617\pi\)
−0.956361 + 0.292187i \(0.905617\pi\)
\(294\) −706.325 + 513.175i −0.140115 + 0.101799i
\(295\) −1193.27 + 3672.49i −0.235507 + 0.724816i
\(296\) 3209.74 0.630278
\(297\) 3237.20 1616.71i 0.632463 0.315861i
\(298\) 3272.78 0.636199
\(299\) 627.417 1930.99i 0.121353 0.373486i
\(300\) 209.821 152.444i 0.0403800 0.0293378i
\(301\) −1898.06 1379.02i −0.363463 0.264071i
\(302\) 1362.80 + 4194.28i 0.259671 + 0.799184i
\(303\) −768.505 2365.22i −0.145708 0.448443i
\(304\) 419.670 + 304.908i 0.0791767 + 0.0575252i
\(305\) 3238.05 2352.58i 0.607902 0.441667i
\(306\) −575.837 + 1772.24i −0.107576 + 0.331086i
\(307\) −9098.53 −1.69147 −0.845734 0.533605i \(-0.820837\pi\)
−0.845734 + 0.533605i \(0.820837\pi\)
\(308\) 1507.58 752.907i 0.278903 0.139288i
\(309\) −2897.23 −0.533391
\(310\) −104.840 + 322.666i −0.0192082 + 0.0591167i
\(311\) −3086.37 + 2242.38i −0.562739 + 0.408854i −0.832460 0.554085i \(-0.813068\pi\)
0.269721 + 0.962938i \(0.413068\pi\)
\(312\) −364.431 264.774i −0.0661276 0.0480445i
\(313\) 800.302 + 2463.08i 0.144523 + 0.444797i 0.996949 0.0780510i \(-0.0248697\pi\)
−0.852426 + 0.522848i \(0.824870\pi\)
\(314\) 1058.04 + 3256.31i 0.190155 + 0.585236i
\(315\) 823.188 + 598.081i 0.147242 + 0.106978i
\(316\) −907.324 + 659.209i −0.161522 + 0.117353i
\(317\) −2153.51 + 6627.82i −0.381556 + 1.17431i 0.557392 + 0.830249i \(0.311802\pi\)
−0.938948 + 0.344059i \(0.888198\pi\)
\(318\) 1135.28 0.200198
\(319\) −2844.04 + 5472.25i −0.499171 + 0.960462i
\(320\) 1322.75 0.231075
\(321\) −961.599 + 2959.50i −0.167200 + 0.514589i
\(322\) 2328.69 1691.90i 0.403022 0.292813i
\(323\) −3819.18 2774.80i −0.657910 0.478000i
\(324\) −690.573 2125.36i −0.118411 0.364432i
\(325\) 79.8634 + 245.794i 0.0136308 + 0.0419514i
\(326\) −295.754 214.878i −0.0502463 0.0365061i
\(327\) 2071.70 1505.17i 0.350352 0.254545i
\(328\) −1069.65 + 3292.04i −0.180066 + 0.554185i
\(329\) 4259.64 0.713804
\(330\) 421.142 + 427.985i 0.0702518 + 0.0713934i
\(331\) −2383.56 −0.395808 −0.197904 0.980221i \(-0.563413\pi\)
−0.197904 + 0.980221i \(0.563413\pi\)
\(332\) 838.652 2581.11i 0.138636 0.426676i
\(333\) 2723.79 1978.95i 0.448236 0.325663i
\(334\) 1332.32 + 967.985i 0.218267 + 0.158580i
\(335\) 198.070 + 609.596i 0.0323036 + 0.0994203i
\(336\) 28.8146 + 88.6822i 0.00467847 + 0.0143988i
\(337\) 7957.89 + 5781.75i 1.28633 + 0.934575i 0.999724 0.0234731i \(-0.00747239\pi\)
0.286608 + 0.958048i \(0.407472\pi\)
\(338\) −2810.29 + 2041.79i −0.452247 + 0.328577i
\(339\) 611.956 1883.41i 0.0980440 0.301748i
\(340\) 1272.45 0.202965
\(341\) 1469.25 + 244.862i 0.233327 + 0.0388856i
\(342\) −3726.52 −0.589203
\(343\) −1657.46 + 5101.12i −0.260916 + 0.803017i
\(344\) −4735.46 + 3440.51i −0.742206 + 0.539244i
\(345\) −1573.51 1143.22i −0.245551 0.178403i
\(346\) 799.581 + 2460.86i 0.124236 + 0.382360i
\(347\) 2947.10 + 9070.25i 0.455933 + 1.40322i 0.870036 + 0.492988i \(0.164095\pi\)
−0.414103 + 0.910230i \(0.635905\pi\)
\(348\) −1418.75 1030.78i −0.218543 0.158781i
\(349\) −8466.06 + 6150.95i −1.29850 + 0.943418i −0.999940 0.0109714i \(-0.996508\pi\)
−0.298564 + 0.954390i \(0.596508\pi\)
\(350\) −113.221 + 348.459i −0.0172912 + 0.0532170i
\(351\) −1025.32 −0.155919
\(352\) −1001.41 6670.18i −0.151635 1.01000i
\(353\) 8203.85 1.23696 0.618480 0.785800i \(-0.287749\pi\)
0.618480 + 0.785800i \(0.287749\pi\)
\(354\) 785.561 2417.71i 0.117944 0.362993i
\(355\) 1168.99 849.323i 0.174771 0.126979i
\(356\) 27.1072 + 19.6945i 0.00403561 + 0.00293205i
\(357\) −262.226 807.048i −0.0388752 0.119646i
\(358\) 690.505 + 2125.15i 0.101939 + 0.313737i
\(359\) −10481.8 7615.50i −1.54097 1.11958i −0.949721 0.313098i \(-0.898633\pi\)
−0.591254 0.806486i \(-0.701367\pi\)
\(360\) 2053.77 1492.15i 0.300675 0.218453i
\(361\) 797.758 2455.25i 0.116308 0.357960i
\(362\) 2475.84 0.359467
\(363\) 1583.67 2107.44i 0.228984 0.304717i
\(364\) −477.496 −0.0687571
\(365\) 39.3788 121.196i 0.00564707 0.0173799i
\(366\) −2131.70 + 1548.77i −0.304442 + 0.221190i
\(367\) 1018.81 + 740.206i 0.144908 + 0.105282i 0.657877 0.753125i \(-0.271455\pi\)
−0.512969 + 0.858407i \(0.671455\pi\)
\(368\) 324.027 + 997.253i 0.0458997 + 0.141265i
\(369\) 1121.99 + 3453.12i 0.158288 + 0.487160i
\(370\) 980.794 + 712.589i 0.137808 + 0.100124i
\(371\) 2460.55 1787.70i 0.344328 0.250169i
\(372\) −130.885 + 402.823i −0.0182421 + 0.0561435i
\(373\) −14100.6 −1.95738 −0.978691 0.205339i \(-0.934170\pi\)
−0.978691 + 0.205339i \(0.934170\pi\)
\(374\) 437.378 + 2913.27i 0.0604713 + 0.402785i
\(375\) 247.573 0.0340923
\(376\) 3284.03 10107.2i 0.450428 1.38628i
\(377\) 1413.78 1027.17i 0.193138 0.140323i
\(378\) −1175.97 854.395i −0.160015 0.116258i
\(379\) −3680.74 11328.2i −0.498857 1.53532i −0.810858 0.585243i \(-0.800999\pi\)
0.312001 0.950082i \(-0.399001\pi\)
\(380\) 786.339 + 2420.10i 0.106153 + 0.326707i
\(381\) −1035.43 752.286i −0.139230 0.101157i
\(382\) 5640.26 4097.89i 0.755448 0.548865i
\(383\) 2650.80 8158.32i 0.353654 1.08843i −0.603132 0.797641i \(-0.706081\pi\)
0.956786 0.290793i \(-0.0939192\pi\)
\(384\) 2058.55 0.273567
\(385\) 1586.71 + 264.436i 0.210042 + 0.0350049i
\(386\) −5604.48 −0.739017
\(387\) −1897.29 + 5839.25i −0.249210 + 0.766991i
\(388\) −1379.62 + 1002.36i −0.180515 + 0.131152i
\(389\) 8059.98 + 5855.92i 1.05053 + 0.763256i 0.972314 0.233680i \(-0.0750768\pi\)
0.0782185 + 0.996936i \(0.475077\pi\)
\(390\) −52.5763 161.813i −0.00682643 0.0210096i
\(391\) −2948.79 9075.45i −0.381399 1.17382i
\(392\) 4720.96 + 3429.98i 0.608277 + 0.441939i
\(393\) 588.978 427.917i 0.0755979 0.0549251i
\(394\) 2699.36 8307.77i 0.345156 1.06228i
\(395\) −1070.57 −0.136371
\(396\) −3093.06 3143.32i −0.392505 0.398883i
\(397\) 9843.58 1.24442 0.622211 0.782850i \(-0.286235\pi\)
0.622211 + 0.782850i \(0.286235\pi\)
\(398\) −1752.87 + 5394.77i −0.220762 + 0.679435i
\(399\) 1372.90 997.467i 0.172257 0.125152i
\(400\) −107.981 78.4529i −0.0134976 0.00980661i
\(401\) 1540.77 + 4742.01i 0.191877 + 0.590536i 0.999999 + 0.00152094i \(0.000484131\pi\)
−0.808122 + 0.589015i \(0.799516\pi\)
\(402\) −130.395 401.315i −0.0161779 0.0497904i
\(403\) −341.460 248.085i −0.0422068 0.0306650i
\(404\) −5320.92 + 3865.87i −0.655261 + 0.476075i
\(405\) 659.207 2028.83i 0.0808797 0.248922i
\(406\) 2477.44 0.302841
\(407\) 2454.53 4722.80i 0.298935 0.575185i
\(408\) −2117.12 −0.256894
\(409\) −3724.04 + 11461.4i −0.450224 + 1.38565i 0.426427 + 0.904522i \(0.359772\pi\)
−0.876651 + 0.481126i \(0.840228\pi\)
\(410\) −1057.71 + 768.473i −0.127407 + 0.0925663i
\(411\) 1268.06 + 921.298i 0.152187 + 0.110570i
\(412\) 2367.72 + 7287.09i 0.283129 + 0.871381i
\(413\) −2104.52 6477.05i −0.250743 0.771707i
\(414\) −6094.12 4427.63i −0.723453 0.525619i
\(415\) 2095.89 1522.76i 0.247912 0.180119i
\(416\) −590.604 + 1817.69i −0.0696075 + 0.214230i
\(417\) 3782.14 0.444154
\(418\) −5270.54 + 2632.18i −0.616723 + 0.308001i
\(419\) 811.934 0.0946673 0.0473336 0.998879i \(-0.484928\pi\)
0.0473336 + 0.998879i \(0.484928\pi\)
\(420\) −141.348 + 435.025i −0.0164216 + 0.0505405i
\(421\) 10794.6 7842.71i 1.24963 0.907911i 0.251431 0.967875i \(-0.419099\pi\)
0.998201 + 0.0599644i \(0.0190987\pi\)
\(422\) −1463.53 1063.32i −0.168824 0.122658i
\(423\) −3444.72 10601.7i −0.395952 1.21862i
\(424\) −2344.82 7216.61i −0.268572 0.826580i
\(425\) 982.676 + 713.956i 0.112157 + 0.0814870i
\(426\) −769.582 + 559.134i −0.0875267 + 0.0635918i
\(427\) −2181.35 + 6713.50i −0.247220 + 0.760864i
\(428\) 8229.55 0.929416
\(429\) −668.273 + 333.746i −0.0752087 + 0.0375603i
\(430\) −2210.83 −0.247943
\(431\) −2610.68 + 8034.84i −0.291768 + 0.897969i 0.692520 + 0.721399i \(0.256500\pi\)
−0.984288 + 0.176571i \(0.943500\pi\)
\(432\) 428.393 311.245i 0.0477108 0.0346639i
\(433\) 6173.45 + 4485.28i 0.685167 + 0.497803i 0.875068 0.484000i \(-0.160817\pi\)
−0.189901 + 0.981803i \(0.560817\pi\)
\(434\) −184.904 569.075i −0.0204508 0.0629411i
\(435\) −517.301 1592.09i −0.0570177 0.175482i
\(436\) −5478.86 3980.62i −0.601811 0.437242i
\(437\) 15438.5 11216.8i 1.68999 1.22785i
\(438\) −25.9242 + 79.7865i −0.00282810 + 0.00870399i
\(439\) 1738.52 0.189009 0.0945043 0.995524i \(-0.469873\pi\)
0.0945043 + 0.995524i \(0.469873\pi\)
\(440\) 1850.74 3561.04i 0.200524 0.385832i
\(441\) 6120.95 0.660938
\(442\) 257.952 793.896i 0.0277592 0.0854339i
\(443\) −1319.84 + 958.922i −0.141552 + 0.102844i −0.656308 0.754493i \(-0.727883\pi\)
0.514755 + 0.857337i \(0.327883\pi\)
\(444\) 1224.45 + 889.612i 0.130877 + 0.0950881i
\(445\) 9.88375 + 30.4191i 0.00105289 + 0.00324045i
\(446\) 100.379 + 308.936i 0.0106572 + 0.0327994i
\(447\) 3155.36 + 2292.50i 0.333878 + 0.242576i
\(448\) −1887.35 + 1371.24i −0.199038 + 0.144609i
\(449\) 698.894 2150.97i 0.0734585 0.226082i −0.907585 0.419867i \(-0.862077\pi\)
0.981044 + 0.193785i \(0.0620766\pi\)
\(450\) 958.835 0.100444
\(451\) 4025.93 + 4091.35i 0.420340 + 0.427171i
\(452\) −5237.24 −0.544998
\(453\) −1624.08 + 4998.40i −0.168446 + 0.518423i
\(454\) −2602.57 + 1890.88i −0.269042 + 0.195470i
\(455\) −368.756 267.917i −0.0379946 0.0276047i
\(456\) −1308.32 4026.60i −0.134359 0.413515i
\(457\) −1966.81 6053.21i −0.201320 0.619600i −0.999844 0.0176375i \(-0.994386\pi\)
0.798524 0.601963i \(-0.205614\pi\)
\(458\) 4683.39 + 3402.69i 0.477818 + 0.347155i
\(459\) −3898.56 + 2832.47i −0.396447 + 0.288036i
\(460\) −1589.49 + 4891.96i −0.161110 + 0.495845i
\(461\) −2491.39 −0.251704 −0.125852 0.992049i \(-0.540166\pi\)
−0.125852 + 0.992049i \(0.540166\pi\)
\(462\) −1044.57 174.086i −0.105190 0.0175307i
\(463\) −12869.2 −1.29175 −0.645877 0.763442i \(-0.723508\pi\)
−0.645877 + 0.763442i \(0.723508\pi\)
\(464\) −278.888 + 858.330i −0.0279031 + 0.0858771i
\(465\) −327.098 + 237.651i −0.0326211 + 0.0237006i
\(466\) 1268.11 + 921.338i 0.126061 + 0.0915884i
\(467\) 3973.06 + 12227.8i 0.393686 + 1.21164i 0.929980 + 0.367610i \(0.119824\pi\)
−0.536294 + 0.844031i \(0.680176\pi\)
\(468\) 386.145 + 1188.43i 0.0381400 + 0.117383i
\(469\) −914.556 664.464i −0.0900432 0.0654202i
\(470\) 3247.38 2359.36i 0.318703 0.231552i
\(471\) −1260.88 + 3880.60i −0.123351 + 0.379637i
\(472\) −16991.2 −1.65695
\(473\) 1441.09 + 9598.75i 0.140087 + 0.933089i
\(474\) 704.790 0.0682955
\(475\) −750.623 + 2310.18i −0.0725073 + 0.223155i
\(476\) −1815.58 + 1319.09i −0.174825 + 0.127018i
\(477\) −6439.19 4678.34i −0.618092 0.449070i
\(478\) −206.828 636.550i −0.0197909 0.0609103i
\(479\) −1580.83 4865.29i −0.150793 0.464094i 0.846917 0.531725i \(-0.178456\pi\)
−0.997710 + 0.0676310i \(0.978456\pi\)
\(480\) 1481.19 + 1076.14i 0.140847 + 0.102331i
\(481\) −1220.15 + 886.492i −0.115663 + 0.0840344i
\(482\) −2237.44 + 6886.12i −0.211437 + 0.650735i
\(483\) 3430.28 0.323153
\(484\) −6594.85 2260.95i −0.619351 0.212336i
\(485\) −1627.85 −0.152406
\(486\) −1809.28 + 5568.40i −0.168870 + 0.519728i
\(487\) −3210.72 + 2332.73i −0.298751 + 0.217055i −0.727055 0.686580i \(-0.759111\pi\)
0.428304 + 0.903635i \(0.359111\pi\)
\(488\) 14247.9 + 10351.7i 1.32167 + 0.960248i
\(489\) −134.626 414.336i −0.0124499 0.0383168i
\(490\) 681.092 + 2096.19i 0.0627931 + 0.193257i
\(491\) −34.1538 24.8142i −0.00313918 0.00228075i 0.586215 0.810156i \(-0.300618\pi\)
−0.589354 + 0.807875i \(0.700618\pi\)
\(492\) −1320.47 + 959.379i −0.120999 + 0.0879108i
\(493\) 2538.01 7811.18i 0.231858 0.713586i
\(494\) 1669.34 0.152039
\(495\) −624.999 4162.97i −0.0567508 0.378004i
\(496\) 217.975 0.0197326
\(497\) −787.505 + 2423.69i −0.0710753 + 0.218747i
\(498\) −1379.79 + 1002.47i −0.124156 + 0.0902047i
\(499\) 128.316 + 93.2271i 0.0115115 + 0.00836356i 0.593526 0.804815i \(-0.297735\pi\)
−0.582015 + 0.813178i \(0.697735\pi\)
\(500\) −202.325 622.693i −0.0180965 0.0556953i
\(501\) 606.466 + 1866.51i 0.0540816 + 0.166446i
\(502\) 7034.26 + 5110.69i 0.625407 + 0.454385i
\(503\) 7153.70 5197.47i 0.634131 0.460723i −0.223698 0.974658i \(-0.571813\pi\)
0.857829 + 0.513936i \(0.171813\pi\)
\(504\) −1383.54 + 4258.10i −0.122277 + 0.376331i
\(505\) −6278.29 −0.553228
\(506\) −11746.5 1957.64i −1.03201 0.171991i
\(507\) −4139.68 −0.362623
\(508\) −1045.95 + 3219.10i −0.0913514 + 0.281151i
\(509\) −8914.50 + 6476.76i −0.776284 + 0.564003i −0.903861 0.427826i \(-0.859280\pi\)
0.127578 + 0.991829i \(0.459280\pi\)
\(510\) −646.924 470.018i −0.0561692 0.0408093i
\(511\) 69.4511 + 213.749i 0.00601240 + 0.0185043i
\(512\) −595.391 1832.43i −0.0513922 0.158169i
\(513\) −7796.35 5664.38i −0.670989 0.487502i
\(514\) 9966.31 7240.95i 0.855243 0.621371i
\(515\) −2260.18 + 6956.11i −0.193389 + 0.595190i
\(516\) −2760.05 −0.235473
\(517\) −12360.4 12561.2i −1.05147 1.06855i
\(518\) −2138.14 −0.181360
\(519\) −952.876 + 2932.65i −0.0805907 + 0.248033i
\(520\) −920.008 + 668.425i −0.0775865 + 0.0563699i
\(521\) 17523.5 + 12731.6i 1.47355 + 1.07060i 0.979565 + 0.201126i \(0.0644600\pi\)
0.493984 + 0.869471i \(0.335540\pi\)
\(522\) −2003.48 6166.06i −0.167988 0.517014i
\(523\) −4100.48 12620.0i −0.342833 1.05513i −0.962734 0.270451i \(-0.912827\pi\)
0.619901 0.784680i \(-0.287173\pi\)
\(524\) −1557.63 1131.68i −0.129857 0.0943468i
\(525\) −353.246 + 256.648i −0.0293656 + 0.0213353i
\(526\) −397.612 + 1223.72i −0.0329595 + 0.101439i
\(527\) −1983.67 −0.163966
\(528\) 177.902 342.304i 0.0146633 0.0282138i
\(529\) 26407.3 2.17040
\(530\) 885.646 2725.74i 0.0725849 0.223393i
\(531\) −14418.7 + 10475.8i −1.17838 + 0.856143i
\(532\) −3630.79 2637.93i −0.295893 0.214979i
\(533\) −502.606 1546.86i −0.0408448 0.125707i
\(534\) −6.50675 20.0257i −0.000527294 0.00162284i
\(535\) 6355.45 + 4617.50i 0.513589 + 0.373144i
\(536\) −2281.72 + 1657.77i −0.183872 + 0.133591i
\(537\) −822.888 + 2532.59i −0.0661270 + 0.203518i
\(538\) 5651.04 0.452851
\(539\) 8657.05 4323.46i 0.691810 0.345500i
\(540\) 2597.54 0.207000
\(541\) 2101.81 6468.71i 0.167031 0.514069i −0.832149 0.554552i \(-0.812890\pi\)
0.999180 + 0.0404828i \(0.0128896\pi\)
\(542\) −1489.27 + 1082.02i −0.118025 + 0.0857505i
\(543\) 2387.01 + 1734.26i 0.188649 + 0.137061i
\(544\) 2775.77 + 8542.95i 0.218769 + 0.673301i
\(545\) −1997.69 6148.25i −0.157012 0.483233i
\(546\) 242.763 + 176.378i 0.0190280 + 0.0138247i
\(547\) 20010.7 14538.6i 1.56416 1.13643i 0.631666 0.775240i \(-0.282371\pi\)
0.932493 0.361188i \(-0.117629\pi\)
\(548\) 1280.94 3942.32i 0.0998521 0.307313i
\(549\) 18473.1 1.43609
\(550\) 1356.11 677.261i 0.105136 0.0525064i
\(551\) 16424.7 1.26990
\(552\) 2644.62 8139.30i 0.203918 0.627594i
\(553\) 1527.54 1109.82i 0.117464 0.0853424i
\(554\) 10283.8 + 7471.64i 0.788661 + 0.572996i
\(555\) 446.454 + 1374.04i 0.0341458 + 0.105090i
\(556\) −3090.89 9512.79i −0.235761 0.725597i
\(557\) −15719.3 11420.8i −1.19578 0.868785i −0.201917 0.979403i \(-0.564717\pi\)
−0.993863 + 0.110618i \(0.964717\pi\)
\(558\) −1266.83 + 920.406i −0.0961097 + 0.0698278i
\(559\) 849.911 2615.76i 0.0643066 0.197915i
\(560\) 235.400 0.0177633
\(561\) −1618.99 + 3115.12i −0.121843 + 0.234439i
\(562\) −8199.22 −0.615415
\(563\) 3808.06 11720.0i 0.285063 0.877334i −0.701317 0.712850i \(-0.747404\pi\)
0.986380 0.164484i \(-0.0525958\pi\)
\(564\) 4054.11 2945.48i 0.302675 0.219906i
\(565\) −4044.57 2938.55i −0.301162 0.218807i
\(566\) −2962.71 9118.28i −0.220021 0.677155i
\(567\) 1162.62 + 3578.18i 0.0861120 + 0.265026i
\(568\) 5143.76 + 3737.16i 0.379978 + 0.276070i
\(569\) −15429.2 + 11209.9i −1.13677 + 0.825914i −0.986666 0.162756i \(-0.947962\pi\)
−0.150107 + 0.988670i \(0.547962\pi\)
\(570\) 494.157 1520.86i 0.0363122 0.111757i
\(571\) −4453.84 −0.326423 −0.163211 0.986591i \(-0.552185\pi\)
−0.163211 + 0.986591i \(0.552185\pi\)
\(572\) 1385.57 + 1408.09i 0.101282 + 0.102928i
\(573\) 8308.37 0.605737
\(574\) 712.539 2192.97i 0.0518133 0.159465i
\(575\) −3972.34 + 2886.08i −0.288101 + 0.209318i
\(576\) 4939.13 + 3588.49i 0.357287 + 0.259584i
\(577\) 983.969 + 3028.35i 0.0709934 + 0.218495i 0.980258 0.197724i \(-0.0633550\pi\)
−0.909264 + 0.416219i \(0.863355\pi\)
\(578\) 1310.83 + 4034.33i 0.0943313 + 0.290322i
\(579\) −5403.40 3925.80i −0.387837 0.281780i
\(580\) −3581.65 + 2602.22i −0.256413 + 0.186295i
\(581\) −1411.92 + 4345.45i −0.100820 + 0.310292i
\(582\) 1071.66 0.0763262
\(583\) −12411.6 2068.48i −0.881710 0.146943i
\(584\) 560.724 0.0397310
\(585\) −368.606 + 1134.45i −0.0260512 + 0.0801775i
\(586\) 8118.63 5898.53i 0.572317 0.415812i
\(587\) −19347.8 14057.0i −1.36042 0.988405i −0.998418 0.0562293i \(-0.982092\pi\)
−0.362005 0.932176i \(-0.617908\pi\)
\(588\) 850.291 + 2616.93i 0.0596350 + 0.183538i
\(589\) −1225.85 3772.79i −0.0857563 0.263931i
\(590\) −5191.96 3772.18i −0.362288 0.263217i
\(591\) 8421.89 6118.86i 0.586176 0.425882i
\(592\) 240.693 740.777i 0.0167102 0.0514286i
\(593\) 6201.48 0.429451 0.214725 0.976674i \(-0.431114\pi\)
0.214725 + 0.976674i \(0.431114\pi\)
\(594\) 892.850 + 5947.06i 0.0616735 + 0.410793i
\(595\) −2142.25 −0.147603
\(596\) 3187.41 9809.84i 0.219063 0.674206i
\(597\) −5468.87 + 3973.37i −0.374918 + 0.272394i
\(598\) 2729.93 + 1983.41i 0.186681 + 0.135631i
\(599\) −2639.25 8122.78i −0.180028 0.554070i 0.819799 0.572651i \(-0.194085\pi\)
−0.999827 + 0.0185813i \(0.994085\pi\)
\(600\) 336.631 + 1036.04i 0.0229048 + 0.0704939i
\(601\) 6649.77 + 4831.34i 0.451331 + 0.327911i 0.790121 0.612951i \(-0.210018\pi\)
−0.338790 + 0.940862i \(0.610018\pi\)
\(602\) 3154.49 2291.87i 0.213567 0.155166i
\(603\) −914.183 + 2813.57i −0.0617387 + 0.190012i
\(604\) 13899.2 0.936340
\(605\) −3824.42 5446.36i −0.257000 0.365993i
\(606\) 4133.18 0.277061
\(607\) −7570.64 + 23300.0i −0.506232 + 1.55802i 0.292459 + 0.956278i \(0.405527\pi\)
−0.798690 + 0.601743i \(0.794473\pi\)
\(608\) −14532.7 + 10558.6i −0.969372 + 0.704290i
\(609\) 2388.55 + 1735.39i 0.158931 + 0.115470i
\(610\) 2055.55 + 6326.33i 0.136437 + 0.419911i
\(611\) 1543.10 + 4749.17i 0.102172 + 0.314453i
\(612\) 4751.30 + 3452.02i 0.313824 + 0.228006i
\(613\) −7941.79 + 5770.05i −0.523272 + 0.380180i −0.817835 0.575452i \(-0.804826\pi\)
0.294563 + 0.955632i \(0.404826\pi\)
\(614\) 4672.75 14381.3i 0.307129 0.945245i
\(615\) −1558.06 −0.102158
\(616\) 1050.87 + 6999.61i 0.0687352 + 0.457829i
\(617\) −4396.62 −0.286874 −0.143437 0.989659i \(-0.545815\pi\)
−0.143437 + 0.989659i \(0.545815\pi\)
\(618\) 1487.94 4579.40i 0.0968506 0.298075i
\(619\) 6049.48 4395.21i 0.392810 0.285393i −0.373796 0.927511i \(-0.621944\pi\)
0.766606 + 0.642118i \(0.221944\pi\)
\(620\) 865.052 + 628.497i 0.0560344 + 0.0407114i
\(621\) −6019.57 18526.3i −0.388981 1.19716i
\(622\) −1959.26 6029.98i −0.126301 0.388714i
\(623\) −45.6366 33.1570i −0.00293482 0.00213227i
\(624\) −88.4355 + 64.2521i −0.00567348 + 0.00412202i
\(625\) 193.136 594.410i 0.0123607 0.0380423i
\(626\) −4304.19 −0.274808
\(627\) −6925.21 1154.14i −0.441095 0.0735116i
\(628\) 10790.9 0.685674
\(629\) −2190.41 + 6741.40i −0.138851 + 0.427340i
\(630\) −1368.10 + 993.984i −0.0865182 + 0.0628592i
\(631\) −1754.36 1274.62i −0.110682 0.0804149i 0.531068 0.847329i \(-0.321791\pi\)
−0.641749 + 0.766915i \(0.721791\pi\)
\(632\) −1455.69 4480.14i −0.0916204 0.281979i
\(633\) −666.194 2050.33i −0.0418307 0.128742i
\(634\) −9370.04 6807.73i −0.586959 0.426451i
\(635\) −2613.96 + 1899.15i −0.163357 + 0.118686i
\(636\) 1105.66 3402.87i 0.0689344 0.212158i
\(637\) −2741.95 −0.170549
\(638\) −7188.90 7305.72i −0.446099 0.453348i
\(639\) 6669.13 0.412874
\(640\) 1605.91 4942.47i 0.0991860 0.305263i
\(641\) −17786.2 + 12922.5i −1.09597 + 0.796266i −0.980397 0.197033i \(-0.936869\pi\)
−0.115569 + 0.993299i \(0.536869\pi\)
\(642\) −4183.97 3039.83i −0.257209 0.186873i
\(643\) 8817.08 + 27136.2i 0.540765 + 1.66430i 0.730852 + 0.682536i \(0.239123\pi\)
−0.190087 + 0.981767i \(0.560877\pi\)
\(644\) −2803.34 8627.79i −0.171533 0.527923i
\(645\) −2131.51 1548.63i −0.130121 0.0945384i
\(646\) 6347.31 4611.59i 0.386581 0.280868i
\(647\) −8800.62 + 27085.5i −0.534757 + 1.64581i 0.209416 + 0.977827i \(0.432844\pi\)
−0.744173 + 0.667987i \(0.767156\pi\)
\(648\) 9386.60 0.569044
\(649\) −12993.4 + 25000.8i −0.785878 + 1.51212i
\(650\) −429.521 −0.0259188
\(651\) 220.353 678.177i 0.0132662 0.0408293i
\(652\) −932.113 + 677.220i −0.0559883 + 0.0406779i
\(653\) −2246.11 1631.90i −0.134605 0.0977963i 0.518445 0.855111i \(-0.326511\pi\)
−0.653050 + 0.757315i \(0.726511\pi\)
\(654\) 1315.13 + 4047.57i 0.0786327 + 0.242007i
\(655\) −567.937 1747.93i −0.0338796 0.104271i
\(656\) 679.561 + 493.730i 0.0404457 + 0.0293855i
\(657\) 475.831 345.711i 0.0282556 0.0205289i
\(658\) −2187.63 + 6732.85i −0.129609 + 0.398896i
\(659\) 6085.26 0.359709 0.179854 0.983693i \(-0.442437\pi\)
0.179854 + 0.983693i \(0.442437\pi\)
\(660\) 1693.00 845.508i 0.0998483 0.0498657i
\(661\) −18103.8 −1.06529 −0.532645 0.846339i \(-0.678802\pi\)
−0.532645 + 0.846339i \(0.678802\pi\)
\(662\) 1224.13 3767.49i 0.0718689 0.221190i
\(663\) 804.802 584.723i 0.0471432 0.0342515i
\(664\) 9222.28 + 6700.38i 0.538997 + 0.391604i
\(665\) −1323.85 4074.39i −0.0771980 0.237591i
\(666\) 1729.09 + 5321.59i 0.100602 + 0.309621i
\(667\) 26859.9 + 19514.9i 1.55925 + 1.13286i
\(668\) 4199.00 3050.75i 0.243210 0.176702i
\(669\) −119.624 + 368.165i −0.00691320 + 0.0212767i
\(670\) −1065.26 −0.0614247
\(671\) 26127.1 13048.3i 1.50317 0.750705i
\(672\) −3229.00 −0.185359
\(673\) 1616.11 4973.89i 0.0925656 0.284887i −0.894046 0.447975i \(-0.852145\pi\)
0.986612 + 0.163088i \(0.0521453\pi\)
\(674\) −13225.7 + 9609.00i −0.755836 + 0.549147i
\(675\) 2006.00 + 1457.45i 0.114387 + 0.0831069i
\(676\) 3383.09 + 10412.1i 0.192483 + 0.592403i
\(677\) −2249.73 6923.97i −0.127717 0.393072i 0.866669 0.498883i \(-0.166256\pi\)
−0.994386 + 0.105811i \(0.966256\pi\)
\(678\) 2662.66 + 1934.53i 0.150824 + 0.109580i
\(679\) 2322.68 1687.53i 0.131276 0.0953775i
\(680\) −1651.60 + 5083.09i −0.0931409 + 0.286658i
\(681\) −3833.71 −0.215724
\(682\) −1141.60 + 2196.57i −0.0640970 + 0.123330i
\(683\) −4696.64 −0.263122 −0.131561 0.991308i \(-0.541999\pi\)
−0.131561 + 0.991308i \(0.541999\pi\)
\(684\) −3629.31 + 11169.9i −0.202880 + 0.624402i
\(685\) 3201.22 2325.82i 0.178558 0.129730i
\(686\) −7211.68 5239.59i −0.401375 0.291616i
\(687\) 2131.86 + 6561.20i 0.118393 + 0.364375i
\(688\) 438.933 + 1350.90i 0.0243229 + 0.0748582i
\(689\) 2884.51 + 2095.72i 0.159493 + 0.115879i
\(690\) 2615.11 1899.99i 0.144283 0.104828i
\(691\) −3763.53 + 11582.9i −0.207194 + 0.637679i 0.792422 + 0.609974i \(0.208820\pi\)
−0.999616 + 0.0277052i \(0.991180\pi\)
\(692\) 8154.89 0.447980
\(693\) 5207.35 + 5291.97i 0.285441 + 0.290080i
\(694\) −15850.1 −0.866948
\(695\) 2950.51 9080.72i 0.161035 0.495613i
\(696\) 5959.19 4329.60i 0.324544 0.235795i
\(697\) −6184.31 4493.16i −0.336079 0.244176i
\(698\) −5374.34 16540.5i −0.291435 0.896946i
\(699\) 577.241 + 1776.56i 0.0312350 + 0.0961313i
\(700\) 934.204 + 678.739i 0.0504423 + 0.0366485i
\(701\) −10201.7 + 7412.00i −0.549664 + 0.399354i −0.827662 0.561227i \(-0.810329\pi\)
0.277998 + 0.960582i \(0.410329\pi\)
\(702\) 526.576 1620.63i 0.0283110 0.0871323i
\(703\) −14175.2 −0.760497
\(704\) 9520.25 + 1586.62i 0.509670 + 0.0849402i
\(705\) 4783.54 0.255544
\(706\) −4213.27 + 12967.1i −0.224601 + 0.691252i
\(707\) 8958.09 6508.43i 0.476526 0.346216i
\(708\) −6481.76 4709.28i −0.344067 0.249979i
\(709\) 1027.56 + 3162.51i 0.0544301 + 0.167519i 0.974576 0.224057i \(-0.0719302\pi\)
−0.920146 + 0.391576i \(0.871930\pi\)
\(710\) 742.089 + 2283.92i 0.0392255 + 0.120724i
\(711\) −3997.51 2904.36i −0.210856 0.153196i
\(712\) −113.859 + 82.7231i −0.00599302 + 0.00435418i
\(713\) 2477.93 7626.27i 0.130153 0.400570i
\(714\) 1410.30 0.0739205
\(715\) 279.975 + 1864.85i 0.0146440 + 0.0975405i
\(716\) 7042.43 0.367581
\(717\) 246.480 758.589i 0.0128382 0.0395119i
\(718\) 17420.3 12656.6i 0.905461 0.657856i
\(719\) −15422.5 11205.1i −0.799945 0.581194i 0.110953 0.993826i \(-0.464610\pi\)
−0.910898 + 0.412631i \(0.864610\pi\)
\(720\) −190.365 585.883i −0.00985346 0.0303258i
\(721\) −3986.20 12268.3i −0.205900 0.633695i
\(722\) 3471.09 + 2521.89i 0.178920 + 0.129993i
\(723\) −6980.72 + 5071.79i −0.359081 + 0.260888i
\(724\) 2411.25 7421.07i 0.123775 0.380942i
\(725\) −4226.08 −0.216486
\(726\) 2517.72 + 3585.49i 0.128707 + 0.183292i
\(727\) 8017.43 0.409009 0.204505 0.978866i \(-0.434442\pi\)
0.204505 + 0.978866i \(0.434442\pi\)
\(728\) 619.773 1907.47i 0.0315526 0.0971090i
\(729\) 3674.57 2669.73i 0.186688 0.135637i
\(730\) 171.339 + 124.485i 0.00868706 + 0.00631152i
\(731\) −3994.49 12293.8i −0.202109 0.622026i
\(732\) 2566.19 + 7897.93i 0.129575 + 0.398792i
\(733\) −7048.24 5120.85i −0.355161 0.258039i 0.395870 0.918306i \(-0.370443\pi\)
−0.751031 + 0.660267i \(0.770443\pi\)
\(734\) −1693.21 + 1230.19i −0.0851465 + 0.0618626i
\(735\) −811.671 + 2498.06i −0.0407332 + 0.125364i
\(736\) −36310.9 −1.81853
\(737\) 694.370 + 4625.03i 0.0347048 + 0.231161i
\(738\) −6034.27 −0.300982
\(739\) 7036.29 21655.5i 0.350249 1.07796i −0.608464 0.793581i \(-0.708214\pi\)
0.958713 0.284375i \(-0.0917859\pi\)
\(740\) 3091.12 2245.83i 0.153557 0.111565i
\(741\) 1609.44 + 1169.33i 0.0797900 + 0.0579708i
\(742\) 1561.99 + 4807.30i 0.0772807 + 0.237846i
\(743\) 2610.92 + 8035.57i 0.128917 + 0.396765i 0.994594 0.103837i \(-0.0331120\pi\)
−0.865678 + 0.500602i \(0.833112\pi\)
\(744\) −1439.28 1045.70i −0.0709230 0.0515286i
\(745\) 7965.73 5787.44i 0.391734 0.284611i
\(746\) 7241.70 22287.7i 0.355412 1.09385i
\(747\) 11957.1 0.585660
\(748\) 9158.21 + 1526.28i 0.447670 + 0.0746074i
\(749\) −13855.0 −0.675900
\(750\) −127.147 + 391.317i −0.00619032 + 0.0190518i
\(751\) 7661.19 5566.18i 0.372251 0.270456i −0.385893 0.922544i \(-0.626106\pi\)
0.758144 + 0.652087i \(0.226106\pi\)
\(752\) −2086.38 1515.85i −0.101174 0.0735070i
\(753\) 3201.97 + 9854.64i 0.154962 + 0.476923i
\(754\) 897.479 + 2762.16i 0.0433478 + 0.133411i
\(755\) 10733.9 + 7798.66i 0.517415 + 0.375924i
\(756\) −3706.26 + 2692.76i −0.178301 + 0.129543i
\(757\) 11862.4 36508.7i 0.569546 1.75288i −0.0844943 0.996424i \(-0.526927\pi\)
0.654041 0.756459i \(-0.273073\pi\)
\(758\) 19795.8 0.948567
\(759\) −9953.77 10115.5i −0.476020 0.483756i
\(760\) −10688.3 −0.510138
\(761\) 576.611 1774.63i 0.0274667 0.0845338i −0.936383 0.350979i \(-0.885849\pi\)
0.963850 + 0.266445i \(0.0858490\pi\)
\(762\) 1720.84 1250.27i 0.0818104 0.0594388i
\(763\) 9224.00 + 6701.63i 0.437655 + 0.317975i
\(764\) −6789.89 20897.1i −0.321531 0.989570i
\(765\) 1732.41 + 5331.80i 0.0818762 + 0.251989i
\(766\) 11533.8 + 8379.77i 0.544037 + 0.395266i
\(767\) 6459.03 4692.76i 0.304071 0.220920i
\(768\) −2352.52 + 7240.33i −0.110533 + 0.340186i
\(769\) −29983.8 −1.40604 −0.703019 0.711171i \(-0.748165\pi\)
−0.703019 + 0.711171i \(0.748165\pi\)
\(770\) −1232.86 + 2372.16i −0.0577002 + 0.111022i
\(771\) 14680.8 0.685755
\(772\) −5458.28 + 16798.9i −0.254466 + 0.783166i
\(773\) −5652.66 + 4106.90i −0.263017 + 0.191093i −0.711476 0.702710i \(-0.751973\pi\)
0.448459 + 0.893803i \(0.351973\pi\)
\(774\) −8255.20 5997.75i −0.383368 0.278533i
\(775\) 315.413 + 970.741i 0.0146193 + 0.0449936i
\(776\) −2213.43 6812.25i −0.102394 0.315136i
\(777\) −2061.43 1497.72i −0.0951781 0.0691509i
\(778\) −13395.3 + 9732.27i −0.617282 + 0.448482i
\(779\) 4723.92 14538.7i 0.217268 0.668683i
\(780\) −536.224 −0.0246152
\(781\) 9432.35 4710.66i 0.432159 0.215827i
\(782\) 15859.2 0.725222
\(783\) 5181.01 15945.5i 0.236467 0.727772i
\(784\) 1145.62 832.344i 0.0521877 0.0379166i
\(785\) 8333.50 + 6054.64i 0.378899 + 0.275286i
\(786\) 373.889 + 1150.71i 0.0169672 + 0.0522195i
\(787\) 5528.50 + 17015.0i 0.250406 + 0.770671i 0.994700 + 0.102819i \(0.0327863\pi\)
−0.744294 + 0.667852i \(0.767214\pi\)
\(788\) −22272.7 16182.1i −1.00690 0.731553i
\(789\) −1240.53 + 901.301i −0.0559749 + 0.0406681i
\(790\) 549.818 1692.17i 0.0247616 0.0762083i
\(791\) 8817.21 0.396339
\(792\) 16571.4 8276.00i 0.743483 0.371306i
\(793\) −8275.25 −0.370571
\(794\) −5055.39 + 15558.9i −0.225956 + 0.695422i
\(795\) 2763.18 2007.57i 0.123270 0.0895612i
\(796\) 14463.1 + 10508.1i 0.644010 + 0.467901i
\(797\) −668.935 2058.77i −0.0297301 0.0914999i 0.935090 0.354409i \(-0.115318\pi\)
−0.964821 + 0.262909i \(0.915318\pi\)
\(798\) 871.528 + 2682.29i 0.0386614 + 0.118987i
\(799\) 18987.0 + 13794.9i 0.840692 + 0.610798i
\(800\) 3739.26 2716.74i 0.165254 0.120064i
\(801\) −45.6180 + 140.398i −0.00201228 + 0.00619315i
\(802\) −8286.59 −0.364850
\(803\) 428.793 825.047i 0.0188441 0.0362581i
\(804\) −1329.89 −0.0583355
\(805\) 2676.01 8235.92i 0.117164 0.360594i
\(806\) 567.491 412.306i 0.0248003 0.0180185i
\(807\) 5448.29 + 3958.42i 0.237657 + 0.172668i
\(808\) −8536.74 26273.4i −0.371685 1.14393i
\(809\) 7640.70 + 23515.7i 0.332055 + 1.02196i 0.968154 + 0.250354i \(0.0805470\pi\)
−0.636099 + 0.771608i \(0.719453\pi\)
\(810\) 2868.25 + 2083.90i 0.124420 + 0.0903962i
\(811\) −21074.2 + 15311.3i −0.912471 + 0.662949i −0.941639 0.336625i \(-0.890714\pi\)
0.0291675 + 0.999575i \(0.490714\pi\)
\(812\) 2412.82 7425.88i 0.104277 0.320933i
\(813\) −2193.77 −0.0946357
\(814\) 6204.34 + 6305.16i 0.267152 + 0.271494i
\(815\) −1099.82 −0.0472702
\(816\) −158.759 + 488.610i −0.00681088 + 0.0209617i
\(817\) 20913.3 15194.4i 0.895550 0.650655i
\(818\) −16203.5 11772.5i −0.692594 0.503199i
\(819\) −650.098 2000.80i −0.0277366 0.0853644i
\(820\) 1273.30 + 3918.81i 0.0542263 + 0.166891i
\(821\) −10384.4 7544.72i −0.441436 0.320722i 0.344769 0.938687i \(-0.387957\pi\)
−0.786205 + 0.617966i \(0.787957\pi\)
\(822\) −2107.46 + 1531.16i −0.0894233 + 0.0649698i
\(823\) 2321.77 7145.67i 0.0983375 0.302652i −0.889772 0.456406i \(-0.849136\pi\)
0.988109 + 0.153754i \(0.0491365\pi\)
\(824\) −32183.2 −1.36062
\(825\) 1781.86 + 296.959i 0.0751956 + 0.0125319i
\(826\) 11318.5 0.476783
\(827\) 3100.60 9542.67i 0.130373 0.401247i −0.864469 0.502687i \(-0.832345\pi\)
0.994842 + 0.101440i \(0.0323450\pi\)
\(828\) −19206.5 + 13954.4i −0.806127 + 0.585686i
\(829\) −1167.06 847.922i −0.0488949 0.0355242i 0.563069 0.826410i \(-0.309620\pi\)
−0.611964 + 0.790885i \(0.709620\pi\)
\(830\) 1330.50 + 4094.85i 0.0556412 + 0.171246i
\(831\) 4681.16 + 14407.1i 0.195412 + 0.601418i
\(832\) −2212.54 1607.50i −0.0921947 0.0669834i
\(833\) −10425.7 + 7574.70i −0.433648 + 0.315063i
\(834\) −1942.40 + 5978.10i −0.0806473 + 0.248207i
\(835\) 4954.51 0.205339
\(836\) 2756.65 + 18361.4i 0.114044 + 0.759621i
\(837\) −4049.40 −0.167226
\(838\) −416.987 + 1283.35i −0.0171892 + 0.0529030i
\(839\) 26763.2 19444.6i 1.10127 0.800122i 0.120006 0.992773i \(-0.461709\pi\)
0.981267 + 0.192652i \(0.0617087\pi\)
\(840\) −1554.34 1129.29i −0.0638451 0.0463861i
\(841\) 1293.73 + 3981.68i 0.0530455 + 0.163257i
\(842\) 6852.50 + 21089.8i 0.280467 + 0.863187i
\(843\) −7905.05 5743.35i −0.322971 0.234652i
\(844\) −4612.54 + 3351.21i −0.188116 + 0.136675i
\(845\) −3229.43 + 9939.17i −0.131474 + 0.404636i
\(846\) 18526.4 0.752896
\(847\) 11102.8 + 3806.45i 0.450411 + 0.154417i
\(848\) −1841.36 −0.0745667
\(849\) 3530.72 10866.4i 0.142725 0.439264i
\(850\) −1633.16 + 1186.56i −0.0659024 + 0.0478809i
\(851\) −23181.3 16842.2i −0.933777 0.678429i
\(852\) 926.441 + 2851.29i 0.0372528 + 0.114652i
\(853\) 1026.02 + 3157.77i 0.0411844 + 0.126753i 0.969535 0.244954i \(-0.0787728\pi\)
−0.928350 + 0.371706i \(0.878773\pi\)
\(854\) −9491.17 6895.74i −0.380306 0.276308i
\(855\) −9070.10 + 6589.81i −0.362796 + 0.263587i
\(856\) −10681.7 + 32874.8i −0.426509 + 1.31266i
\(857\) 14357.0 0.572259 0.286130 0.958191i \(-0.407631\pi\)
0.286130 + 0.958191i \(0.407631\pi\)
\(858\) −184.316 1227.68i −0.00733385 0.0488490i
\(859\) −36024.5 −1.43090 −0.715448 0.698666i \(-0.753778\pi\)
−0.715448 + 0.698666i \(0.753778\pi\)
\(860\) −2153.16 + 6626.73i −0.0853745 + 0.262756i
\(861\) 2223.10 1615.17i 0.0879941 0.0639314i
\(862\) −11359.2 8252.95i −0.448835 0.326098i
\(863\) 7711.52 + 23733.6i 0.304175 + 0.936155i 0.979984 + 0.199078i \(0.0637947\pi\)
−0.675808 + 0.737077i \(0.736205\pi\)
\(864\) 5666.37 + 17439.3i 0.223118 + 0.686686i
\(865\) 6297.79 + 4575.61i 0.247551 + 0.179856i
\(866\) −10260.0 + 7454.33i −0.402597 + 0.292504i
\(867\) −1562.15 + 4807.79i −0.0611917 + 0.188329i
\(868\) −1885.82 −0.0737431
\(869\) −7705.26 1284.14i −0.300786 0.0501281i
\(870\) 2782.15 0.108418
\(871\) 409.519 1260.37i 0.0159311 0.0490310i
\(872\) 23012.9 16719.8i 0.893710 0.649318i
\(873\) −6078.38 4416.20i −0.235649 0.171209i
\(874\) 9800.55 + 30163.0i 0.379300 + 1.16737i
\(875\) 340.627 + 1048.34i 0.0131603 + 0.0405033i
\(876\) 213.904 + 155.410i 0.00825017 + 0.00599410i
\(877\) −19479.0 + 14152.3i −0.750009 + 0.544914i −0.895830 0.444398i \(-0.853418\pi\)
0.145821 + 0.989311i \(0.453418\pi\)
\(878\) −892.854 + 2747.92i −0.0343193 + 0.105624i
\(879\) 11959.1 0.458898
\(880\) −683.071 694.171i −0.0261663 0.0265915i
\(881\) −37851.9 −1.44752 −0.723759 0.690052i \(-0.757587\pi\)
−0.723759 + 0.690052i \(0.757587\pi\)
\(882\) −3143.55 + 9674.85i −0.120010 + 0.369353i
\(883\) 27507.3 19985.2i 1.04835 0.761672i 0.0764528 0.997073i \(-0.475641\pi\)
0.971898 + 0.235402i \(0.0756405\pi\)
\(884\) −2128.40 1546.37i −0.0809795 0.0588350i
\(885\) −2363.36 7273.68i −0.0897667 0.276274i
\(886\) −837.850 2578.64i −0.0317699 0.0977777i
\(887\) −11980.7 8704.49i −0.453521 0.329502i 0.337464 0.941339i \(-0.390431\pi\)
−0.790984 + 0.611837i \(0.790431\pi\)
\(888\) −5143.05 + 3736.64i −0.194357 + 0.141209i
\(889\) 1760.92 5419.56i 0.0664335 0.204461i
\(890\) −53.1568 −0.00200204
\(891\) 7178.06 13811.4i 0.269892 0.519304i
\(892\) 1023.77 0.0384285
\(893\) −14503.4 + 44636.7i −0.543490 + 1.67269i
\(894\) −5244.07 + 3810.04i −0.196183 + 0.142536i
\(895\) 5438.67 + 3951.42i 0.203122 + 0.147577i
\(896\) 2832.28 + 8716.88i 0.105603 + 0.325012i
\(897\) 1242.65 + 3824.49i 0.0462553 + 0.142359i
\(898\) 3040.93 + 2209.36i 0.113003 + 0.0821018i
\(899\) 5583.57 4056.70i 0.207144 0.150499i
\(900\) 933.823 2874.01i 0.0345860 0.106445i
\(901\) 16757.2 0.619604
\(902\) −8534.45 + 4262.23i −0.315040 + 0.157336i
\(903\) 4646.71 0.171243
\(904\) 6797.76 20921.3i 0.250100 0.769727i
\(905\) 6026.01 4378.15i 0.221339 0.160812i
\(906\) −7066.46 5134.08i −0.259125 0.188265i
\(907\) 5074.65 + 15618.2i 0.185778 + 0.571767i 0.999961 0.00884224i \(-0.00281461\pi\)
−0.814183 + 0.580609i \(0.802815\pi\)
\(908\) 3133.04 + 9642.51i 0.114508 + 0.352421i
\(909\) −23443.0 17032.3i −0.855397 0.621482i
\(910\) 612.857 445.266i 0.0223253 0.0162203i
\(911\) −7310.67 + 22499.9i −0.265876 + 0.818283i 0.725614 + 0.688102i \(0.241556\pi\)
−0.991490 + 0.130181i \(0.958444\pi\)
\(912\) −1027.41 −0.0373036
\(913\) 16911.3 8445.76i 0.613015 0.306149i
\(914\) 10577.9 0.382807
\(915\) −2449.64 + 7539.21i −0.0885055 + 0.272392i
\(916\) 14760.4 10724.1i 0.532422 0.386827i
\(917\) 2622.36 + 1905.26i 0.0944361 + 0.0686119i
\(918\) −2474.85 7616.80i −0.0889784 0.273847i
\(919\) −3440.64 10589.2i −0.123500 0.380094i 0.870125 0.492831i \(-0.164038\pi\)
−0.993625 + 0.112738i \(0.964038\pi\)
\(920\) −17478.9 12699.2i −0.626374 0.455087i
\(921\) 14578.8 10592.1i 0.521594 0.378960i
\(922\) 1279.51 3937.93i 0.0457033 0.140660i
\(923\) −2987.51 −0.106539
\(924\) −1539.13 + 2961.46i −0.0547983 + 0.105438i
\(925\) 3647.29 0.129646
\(926\) 6609.26 20341.2i 0.234550 0.721872i
\(927\) −27310.7 + 19842.4i −0.967638 + 0.703030i
\(928\) −25283.9 18369.8i −0.894380 0.649805i
\(929\) 119.554 + 367.951i 0.00422223 + 0.0129947i 0.953145 0.302512i \(-0.0978254\pi\)
−0.948923 + 0.315507i \(0.897825\pi\)
\(930\) −207.645 639.066i −0.00732146 0.0225331i
\(931\) −20849.3 15147.9i −0.733951 0.533246i
\(932\) 3996.65 2903.74i 0.140466 0.102055i
\(933\) 2334.89 7186.04i 0.0819301 0.252155i
\(934\) −21367.9 −0.748587
\(935\) 6216.25 + 6317.26i 0.217426 + 0.220959i
\(936\) −5248.66 −0.183288
\(937\) 12580.0 38717.4i 0.438604 1.34988i −0.450744 0.892653i \(-0.648841\pi\)
0.889348 0.457231i \(-0.151159\pi\)
\(938\) 1519.95 1104.31i 0.0529085 0.0384403i
\(939\) −4149.76 3014.97i −0.144220 0.104782i
\(940\) −3909.28 12031.5i −0.135645 0.417473i
\(941\) 10208.0 + 31417.0i 0.353636 + 1.08838i 0.956796 + 0.290760i \(0.0939081\pi\)
−0.603160 + 0.797620i \(0.706092\pi\)
\(942\) −5486.18 3985.94i −0.189755 0.137865i
\(943\) 24999.3 18163.0i 0.863296 0.627221i
\(944\) −1274.14 + 3921.40i −0.0439298 + 0.135202i
\(945\) −4373.11 −0.150537
\(946\) −15912.0 2651.85i −0.546875 0.0911406i
\(947\) −11956.8 −0.410288 −0.205144 0.978732i \(-0.565766\pi\)
−0.205144 + 0.978732i \(0.565766\pi\)
\(948\) 686.405 2112.54i 0.0235162 0.0723755i
\(949\) −213.154 + 154.865i −0.00729111 + 0.00529730i
\(950\) −3266.00 2372.89i −0.111540 0.0810387i
\(951\) −4265.21 13127.0i −0.145435 0.447604i
\(952\) −2912.87 8964.88i −0.0991665 0.305203i
\(953\) 37268.2 + 27076.9i 1.26677 + 0.920365i 0.999069 0.0431366i \(-0.0137351\pi\)
0.267704 + 0.963501i \(0.413735\pi\)
\(954\) 10701.6 7775.20i 0.363185 0.263869i
\(955\) 6481.49 19948.0i 0.219619 0.675918i
\(956\) −2109.43 −0.0713637
\(957\) −1813.49 12079.2i −0.0612559 0.408011i
\(958\) 8502.02 0.286730
\(959\) −2156.54 + 6637.14i −0.0726155 + 0.223487i
\(960\) −2119.48 + 1539.89i −0.0712562 + 0.0517706i
\(961\) 22752.9 + 16530.9i 0.763750 + 0.554897i
\(962\) −774.565 2383.87i −0.0259594 0.0798949i
\(963\) 11204.3 + 34483.3i 0.374926 + 1.15390i
\(964\) 18461.4 + 13413.0i 0.616806 + 0.448136i
\(965\) −13640.9 + 9910.71i −0.455043 + 0.330608i
\(966\) −1761.69 + 5421.94i −0.0586766 + 0.180588i
\(967\) −14540.7 −0.483555 −0.241778 0.970332i \(-0.577730\pi\)
−0.241778 + 0.970332i \(0.577730\pi\)
\(968\) 17591.8 23410.0i 0.584113 0.777299i
\(969\) 9349.88 0.309970
\(970\) 836.021 2573.01i 0.0276732 0.0851694i
\(971\) 25035.5 18189.4i 0.827423 0.601158i −0.0914062 0.995814i \(-0.529136\pi\)
0.918829 + 0.394656i \(0.129136\pi\)
\(972\) 14928.6 + 10846.3i 0.492629 + 0.357916i
\(973\) 5203.71 + 16015.4i 0.171452 + 0.527676i
\(974\) −2038.20 6272.93i −0.0670515 0.206363i
\(975\) −414.110 300.869i −0.0136022 0.00988258i
\(976\) 3457.51 2512.03i 0.113394 0.0823854i
\(977\) 1417.95 4364.01i 0.0464323 0.142904i −0.925153 0.379596i \(-0.876063\pi\)
0.971585 + 0.236692i \(0.0760631\pi\)
\(978\) 724.046 0.0236732
\(979\) 34.6493 + 230.791i 0.00113115 + 0.00753432i
\(980\) 6946.43 0.226424
\(981\) 9220.24 28377.0i 0.300081 0.923554i
\(982\) 56.7620 41.2400i 0.00184455 0.00134014i
\(983\) 1417.66 + 1029.99i 0.0459983 + 0.0334198i 0.610547 0.791980i \(-0.290950\pi\)
−0.564549 + 0.825400i \(0.690950\pi\)
\(984\) −2118.53 6520.17i −0.0686344 0.211235i
\(985\) −8121.03 24994.0i −0.262698 0.808501i
\(986\) 11043.0 + 8023.21i 0.356674 + 0.259139i
\(987\) −6825.34 + 4958.90i −0.220114 + 0.159922i
\(988\) 1625.79 5003.67i 0.0523515 0.161121i
\(989\) 52253.4 1.68004
\(990\) 6901.03 + 1150.11i 0.221545 + 0.0369220i
\(991\) −23938.4 −0.767335 −0.383668 0.923471i \(-0.625339\pi\)
−0.383668 + 0.923471i \(0.625339\pi\)
\(992\) −2332.53 + 7178.80i −0.0746552 + 0.229765i
\(993\) 3819.24 2774.84i 0.122054 0.0886777i
\(994\) −3426.48 2489.48i −0.109337 0.0794382i
\(995\) 5273.50 + 16230.2i 0.168021 + 0.517117i
\(996\) 1661.02 + 5112.10i 0.0528428 + 0.162634i
\(997\) −25846.8 18778.8i −0.821039 0.596520i 0.0959709 0.995384i \(-0.469404\pi\)
−0.917010 + 0.398864i \(0.869404\pi\)
\(998\) −213.256 + 154.939i −0.00676402 + 0.00491435i
\(999\) −4471.44 + 13761.7i −0.141612 + 0.435836i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 55.4.g.b.31.3 yes 24
11.4 even 5 605.4.a.p.1.6 12
11.5 even 5 inner 55.4.g.b.16.3 24
11.7 odd 10 605.4.a.t.1.7 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.4.g.b.16.3 24 11.5 even 5 inner
55.4.g.b.31.3 yes 24 1.1 even 1 trivial
605.4.a.p.1.6 12 11.4 even 5
605.4.a.t.1.7 12 11.7 odd 10