Properties

Label 6069.2.a.bc
Level $6069$
Weight $2$
Character orbit 6069.a
Self dual yes
Analytic conductor $48.461$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6069,2,Mod(1,6069)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6069, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6069.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 12x^{7} - 3x^{6} + 45x^{5} + 21x^{4} - 53x^{3} - 39x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{8}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + q^{3} + (\beta_{6} + \beta_{5} - \beta_{3} + 1) q^{4} + (\beta_{8} - \beta_1) q^{5} + \beta_1 q^{6} + q^{7} + ( - \beta_{7} + \beta_{6} + \beta_{4} + \cdots + 1) q^{8}+ \cdots + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + q^{3} + (\beta_{6} + \beta_{5} - \beta_{3} + 1) q^{4} + (\beta_{8} - \beta_1) q^{5} + \beta_1 q^{6} + q^{7} + ( - \beta_{7} + \beta_{6} + \beta_{4} + \cdots + 1) q^{8}+ \cdots + ( - \beta_{6} - \beta_{4} - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{3} + 6 q^{4} - 3 q^{5} + 9 q^{7} + 9 q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 9 q + 9 q^{3} + 6 q^{4} - 3 q^{5} + 9 q^{7} + 9 q^{8} + 9 q^{9} - 12 q^{10} - 18 q^{11} + 6 q^{12} - 21 q^{13} - 3 q^{15} - 9 q^{19} - 15 q^{20} + 9 q^{21} - 6 q^{22} + 9 q^{24} + 3 q^{26} + 9 q^{27} + 6 q^{28} - 6 q^{29} - 12 q^{30} - 30 q^{31} + 3 q^{32} - 18 q^{33} - 3 q^{35} + 6 q^{36} - 12 q^{37} - 36 q^{38} - 21 q^{39} - 30 q^{40} - 9 q^{41} - 30 q^{44} - 3 q^{45} - 33 q^{46} - 9 q^{47} + 9 q^{49} - 12 q^{50} - 12 q^{52} + 30 q^{55} + 9 q^{56} - 9 q^{57} - 9 q^{58} - 3 q^{59} - 15 q^{60} - 33 q^{61} + 12 q^{62} + 9 q^{63} - 15 q^{64} + 15 q^{65} - 6 q^{66} - 15 q^{67} - 12 q^{70} + 9 q^{72} - 21 q^{73} - 6 q^{74} + 3 q^{76} - 18 q^{77} + 3 q^{78} - 30 q^{79} + 9 q^{81} - 9 q^{82} + 6 q^{84} + 72 q^{86} - 6 q^{87} - 48 q^{88} - 12 q^{89} - 12 q^{90} - 21 q^{91} - 48 q^{92} - 30 q^{93} + 48 q^{94} + 18 q^{95} + 3 q^{96} - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{9} - 12x^{7} - 3x^{6} + 45x^{5} + 21x^{4} - 53x^{3} - 39x^{2} + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{6} - 9\nu^{4} - 3\nu^{3} + 19\nu^{2} + 10\nu - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{7} + \nu^{6} - 9\nu^{5} - 12\nu^{4} + 16\nu^{3} + 29\nu^{2} + 8\nu - 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\nu^{7} - \nu^{6} + 10\nu^{5} + 11\nu^{4} - 23\nu^{3} - 26\nu^{2} + 2\nu + 5 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{8} + \nu^{7} - 10\nu^{6} - 11\nu^{5} + 24\nu^{4} + 25\nu^{3} - 7\nu^{2} - 2\nu + 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\nu^{8} + 11\nu^{6} + 2\nu^{5} - 36\nu^{4} - 9\nu^{3} + 37\nu^{2} + 10\nu - 7 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\nu^{8} - 2\nu^{7} + 9\nu^{6} + 21\nu^{5} - 13\nu^{4} - 49\nu^{3} - 18\nu^{2} + 8\nu + 1 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( -\nu^{8} + \nu^{7} + 12\nu^{6} - 8\nu^{5} - 46\nu^{4} + 13\nu^{3} + 56\nu^{2} + 12\nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + \beta_{5} - \beta_{3} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{7} + \beta_{6} + \beta_{4} - \beta_{3} + 4\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{8} - \beta_{7} + 7\beta_{6} + 7\beta_{5} + 2\beta_{4} - 8\beta_{3} + 14 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{8} - 8\beta_{7} + 11\beta_{6} + 4\beta_{5} + 10\beta_{4} - 11\beta_{3} + 18\beta _1 + 9 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 9\beta_{8} - 12\beta_{7} + 47\beta_{6} + 44\beta_{5} + 21\beta_{4} - 56\beta_{3} + \beta_{2} + 2\beta _1 + 74 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 12\beta_{8} - 56\beta_{7} + 91\beta_{6} + 47\beta_{5} + 77\beta_{4} - 93\beta_{3} - \beta_{2} + 88\beta _1 + 74 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 65 \beta_{8} - 103 \beta_{7} + 314 \beta_{6} + 277 \beta_{5} + 170 \beta_{4} - 378 \beta_{3} + \cdots + 423 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.17095
−2.02180
−1.12893
−0.665189
−0.445735
0.244764
1.77703
1.79412
2.61669
−2.17095 1.00000 2.71304 2.62536 −2.17095 1.00000 −1.54797 1.00000 −5.69953
1.2 −2.02180 1.00000 2.08766 −0.796171 −2.02180 1.00000 −0.177223 1.00000 1.60970
1.3 −1.12893 1.00000 −0.725516 −3.93352 −1.12893 1.00000 3.07692 1.00000 4.44067
1.4 −0.665189 1.00000 −1.55752 2.61465 −0.665189 1.00000 2.36642 1.00000 −1.73924
1.5 −0.445735 1.00000 −1.80132 −0.514255 −0.445735 1.00000 1.69438 1.00000 0.229221
1.6 0.244764 1.00000 −1.94009 2.06843 0.244764 1.00000 −0.964391 1.00000 0.506278
1.7 1.77703 1.00000 1.15784 −0.740175 1.77703 1.00000 −1.49654 1.00000 −1.31531
1.8 1.79412 1.00000 1.21886 −1.56052 1.79412 1.00000 −1.40145 1.00000 −2.79976
1.9 2.61669 1.00000 4.84705 −2.76381 2.61669 1.00000 7.44985 1.00000 −7.23202
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.9
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6069.2.a.bc yes 9
17.b even 2 1 6069.2.a.z 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6069.2.a.z 9 17.b even 2 1
6069.2.a.bc yes 9 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6069))\):

\( T_{2}^{9} - 12T_{2}^{7} - 3T_{2}^{6} + 45T_{2}^{5} + 21T_{2}^{4} - 53T_{2}^{3} - 39T_{2}^{2} + 3 \) Copy content Toggle raw display
\( T_{5}^{9} + 3T_{5}^{8} - 18T_{5}^{7} - 49T_{5}^{6} + 93T_{5}^{5} + 261T_{5}^{4} - 60T_{5}^{3} - 456T_{5}^{2} - 333T_{5} - 73 \) Copy content Toggle raw display
\( T_{11}^{9} + 18 T_{11}^{8} + 120 T_{11}^{7} + 335 T_{11}^{6} + 171 T_{11}^{5} - 888 T_{11}^{4} + \cdots - 9 \) Copy content Toggle raw display
\( T_{23}^{9} - 138 T_{23}^{7} - 106 T_{23}^{6} + 5262 T_{23}^{5} + 7506 T_{23}^{4} - 37764 T_{23}^{3} + \cdots - 3961 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{9} - 12 T^{7} + \cdots + 3 \) Copy content Toggle raw display
$3$ \( (T - 1)^{9} \) Copy content Toggle raw display
$5$ \( T^{9} + 3 T^{8} + \cdots - 73 \) Copy content Toggle raw display
$7$ \( (T - 1)^{9} \) Copy content Toggle raw display
$11$ \( T^{9} + 18 T^{8} + \cdots - 9 \) Copy content Toggle raw display
$13$ \( T^{9} + 21 T^{8} + \cdots - 321 \) Copy content Toggle raw display
$17$ \( T^{9} \) Copy content Toggle raw display
$19$ \( T^{9} + 9 T^{8} + \cdots - 29103 \) Copy content Toggle raw display
$23$ \( T^{9} - 138 T^{7} + \cdots - 3961 \) Copy content Toggle raw display
$29$ \( T^{9} + 6 T^{8} + \cdots + 7989 \) Copy content Toggle raw display
$31$ \( T^{9} + 30 T^{8} + \cdots - 1619 \) Copy content Toggle raw display
$37$ \( T^{9} + 12 T^{8} + \cdots - 5381 \) Copy content Toggle raw display
$41$ \( T^{9} + 9 T^{8} + \cdots + 31971 \) Copy content Toggle raw display
$43$ \( T^{9} - 249 T^{7} + \cdots + 15984369 \) Copy content Toggle raw display
$47$ \( T^{9} + 9 T^{8} + \cdots - 10232559 \) Copy content Toggle raw display
$53$ \( T^{9} - 324 T^{7} + \cdots - 804383 \) Copy content Toggle raw display
$59$ \( T^{9} + 3 T^{8} + \cdots + 1436957 \) Copy content Toggle raw display
$61$ \( T^{9} + 33 T^{8} + \cdots - 203625 \) Copy content Toggle raw display
$67$ \( T^{9} + 15 T^{8} + \cdots + 36527541 \) Copy content Toggle raw display
$71$ \( T^{9} - 156 T^{7} + \cdots - 61071 \) Copy content Toggle raw display
$73$ \( T^{9} + 21 T^{8} + \cdots - 1478193 \) Copy content Toggle raw display
$79$ \( T^{9} + 30 T^{8} + \cdots - 17 \) Copy content Toggle raw display
$83$ \( T^{9} - 342 T^{7} + \cdots + 604251 \) Copy content Toggle raw display
$89$ \( T^{9} + 12 T^{8} + \cdots + 8233703 \) Copy content Toggle raw display
$97$ \( T^{9} - 438 T^{7} + \cdots + 635977 \) Copy content Toggle raw display
show more
show less