Properties

Label 6069.2.a.bc
Level 60696069
Weight 22
Character orbit 6069.a
Self dual yes
Analytic conductor 48.46148.461
Analytic rank 11
Dimension 99
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6069,2,Mod(1,6069)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6069.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 6069=37172 6069 = 3 \cdot 7 \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 6069.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,0,9,6,-3,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 48.461208986748.4612089867
Analytic rank: 11
Dimension: 99
Coefficient field: Q[x]/(x9)\mathbb{Q}[x]/(x^{9} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x912x73x6+45x5+21x453x339x2+3 x^{9} - 12x^{7} - 3x^{6} + 45x^{5} + 21x^{4} - 53x^{3} - 39x^{2} + 3 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β81,\beta_1,\ldots,\beta_{8} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+q3+(β6+β5β3+1)q4+(β8β1)q5+β1q6+q7+(β7+β6+β4++1)q8+q9+(β8β6β5+2)q10++(β6β42)q99+O(q100) q + \beta_1 q^{2} + q^{3} + (\beta_{6} + \beta_{5} - \beta_{3} + 1) q^{4} + (\beta_{8} - \beta_1) q^{5} + \beta_1 q^{6} + q^{7} + ( - \beta_{7} + \beta_{6} + \beta_{4} + \cdots + 1) q^{8} + q^{9} + ( - \beta_{8} - \beta_{6} - \beta_{5} + \cdots - 2) q^{10}+ \cdots + ( - \beta_{6} - \beta_{4} - 2) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 9q+9q3+6q43q5+9q7+9q8+9q912q1018q11+6q1221q133q159q1915q20+9q216q22+9q24+3q26+9q27+6q28+18q99+O(q100) 9 q + 9 q^{3} + 6 q^{4} - 3 q^{5} + 9 q^{7} + 9 q^{8} + 9 q^{9} - 12 q^{10} - 18 q^{11} + 6 q^{12} - 21 q^{13} - 3 q^{15} - 9 q^{19} - 15 q^{20} + 9 q^{21} - 6 q^{22} + 9 q^{24} + 3 q^{26} + 9 q^{27} + 6 q^{28}+ \cdots - 18 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x912x73x6+45x5+21x453x339x2+3 x^{9} - 12x^{7} - 3x^{6} + 45x^{5} + 21x^{4} - 53x^{3} - 39x^{2} + 3 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν69ν43ν3+19ν2+10ν2 \nu^{6} - 9\nu^{4} - 3\nu^{3} + 19\nu^{2} + 10\nu - 2 Copy content Toggle raw display
β3\beta_{3}== ν7+ν69ν512ν4+16ν3+29ν2+8ν2 \nu^{7} + \nu^{6} - 9\nu^{5} - 12\nu^{4} + 16\nu^{3} + 29\nu^{2} + 8\nu - 2 Copy content Toggle raw display
β4\beta_{4}== ν7ν6+10ν5+11ν423ν326ν2+2ν+5 -\nu^{7} - \nu^{6} + 10\nu^{5} + 11\nu^{4} - 23\nu^{3} - 26\nu^{2} + 2\nu + 5 Copy content Toggle raw display
β5\beta_{5}== ν8+ν710ν611ν5+24ν4+25ν37ν22ν+2 \nu^{8} + \nu^{7} - 10\nu^{6} - 11\nu^{5} + 24\nu^{4} + 25\nu^{3} - 7\nu^{2} - 2\nu + 2 Copy content Toggle raw display
β6\beta_{6}== ν8+11ν6+2ν536ν49ν3+37ν2+10ν7 -\nu^{8} + 11\nu^{6} + 2\nu^{5} - 36\nu^{4} - 9\nu^{3} + 37\nu^{2} + 10\nu - 7 Copy content Toggle raw display
β7\beta_{7}== ν82ν7+9ν6+21ν513ν449ν318ν2+8ν+1 -\nu^{8} - 2\nu^{7} + 9\nu^{6} + 21\nu^{5} - 13\nu^{4} - 49\nu^{3} - 18\nu^{2} + 8\nu + 1 Copy content Toggle raw display
β8\beta_{8}== ν8+ν7+12ν68ν546ν4+13ν3+56ν2+12ν4 -\nu^{8} + \nu^{7} + 12\nu^{6} - 8\nu^{5} - 46\nu^{4} + 13\nu^{3} + 56\nu^{2} + 12\nu - 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β6+β5β3+3 \beta_{6} + \beta_{5} - \beta_{3} + 3 Copy content Toggle raw display
ν3\nu^{3}== β7+β6+β4β3+4β1+1 -\beta_{7} + \beta_{6} + \beta_{4} - \beta_{3} + 4\beta _1 + 1 Copy content Toggle raw display
ν4\nu^{4}== β8β7+7β6+7β5+2β48β3+14 \beta_{8} - \beta_{7} + 7\beta_{6} + 7\beta_{5} + 2\beta_{4} - 8\beta_{3} + 14 Copy content Toggle raw display
ν5\nu^{5}== β88β7+11β6+4β5+10β411β3+18β1+9 \beta_{8} - 8\beta_{7} + 11\beta_{6} + 4\beta_{5} + 10\beta_{4} - 11\beta_{3} + 18\beta _1 + 9 Copy content Toggle raw display
ν6\nu^{6}== 9β812β7+47β6+44β5+21β456β3+β2+2β1+74 9\beta_{8} - 12\beta_{7} + 47\beta_{6} + 44\beta_{5} + 21\beta_{4} - 56\beta_{3} + \beta_{2} + 2\beta _1 + 74 Copy content Toggle raw display
ν7\nu^{7}== 12β856β7+91β6+47β5+77β493β3β2+88β1+74 12\beta_{8} - 56\beta_{7} + 91\beta_{6} + 47\beta_{5} + 77\beta_{4} - 93\beta_{3} - \beta_{2} + 88\beta _1 + 74 Copy content Toggle raw display
ν8\nu^{8}== 65β8103β7+314β6+277β5+170β4378β3++423 65 \beta_{8} - 103 \beta_{7} + 314 \beta_{6} + 277 \beta_{5} + 170 \beta_{4} - 378 \beta_{3} + \cdots + 423 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.17095
−2.02180
−1.12893
−0.665189
−0.445735
0.244764
1.77703
1.79412
2.61669
−2.17095 1.00000 2.71304 2.62536 −2.17095 1.00000 −1.54797 1.00000 −5.69953
1.2 −2.02180 1.00000 2.08766 −0.796171 −2.02180 1.00000 −0.177223 1.00000 1.60970
1.3 −1.12893 1.00000 −0.725516 −3.93352 −1.12893 1.00000 3.07692 1.00000 4.44067
1.4 −0.665189 1.00000 −1.55752 2.61465 −0.665189 1.00000 2.36642 1.00000 −1.73924
1.5 −0.445735 1.00000 −1.80132 −0.514255 −0.445735 1.00000 1.69438 1.00000 0.229221
1.6 0.244764 1.00000 −1.94009 2.06843 0.244764 1.00000 −0.964391 1.00000 0.506278
1.7 1.77703 1.00000 1.15784 −0.740175 1.77703 1.00000 −1.49654 1.00000 −1.31531
1.8 1.79412 1.00000 1.21886 −1.56052 1.79412 1.00000 −1.40145 1.00000 −2.79976
1.9 2.61669 1.00000 4.84705 −2.76381 2.61669 1.00000 7.44985 1.00000 −7.23202
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.9
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
77 1 -1
1717 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6069.2.a.bc yes 9
17.b even 2 1 6069.2.a.z 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6069.2.a.z 9 17.b even 2 1
6069.2.a.bc yes 9 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(6069))S_{2}^{\mathrm{new}}(\Gamma_0(6069)):

T2912T273T26+45T25+21T2453T2339T22+3 T_{2}^{9} - 12T_{2}^{7} - 3T_{2}^{6} + 45T_{2}^{5} + 21T_{2}^{4} - 53T_{2}^{3} - 39T_{2}^{2} + 3 Copy content Toggle raw display
T59+3T5818T5749T56+93T55+261T5460T53456T52333T573 T_{5}^{9} + 3T_{5}^{8} - 18T_{5}^{7} - 49T_{5}^{6} + 93T_{5}^{5} + 261T_{5}^{4} - 60T_{5}^{3} - 456T_{5}^{2} - 333T_{5} - 73 Copy content Toggle raw display
T119+18T118+120T117+335T116+171T115888T114+9 T_{11}^{9} + 18 T_{11}^{8} + 120 T_{11}^{7} + 335 T_{11}^{6} + 171 T_{11}^{5} - 888 T_{11}^{4} + \cdots - 9 Copy content Toggle raw display
T239138T237106T236+5262T235+7506T23437764T233+3961 T_{23}^{9} - 138 T_{23}^{7} - 106 T_{23}^{6} + 5262 T_{23}^{5} + 7506 T_{23}^{4} - 37764 T_{23}^{3} + \cdots - 3961 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T912T7++3 T^{9} - 12 T^{7} + \cdots + 3 Copy content Toggle raw display
33 (T1)9 (T - 1)^{9} Copy content Toggle raw display
55 T9+3T8+73 T^{9} + 3 T^{8} + \cdots - 73 Copy content Toggle raw display
77 (T1)9 (T - 1)^{9} Copy content Toggle raw display
1111 T9+18T8+9 T^{9} + 18 T^{8} + \cdots - 9 Copy content Toggle raw display
1313 T9+21T8+321 T^{9} + 21 T^{8} + \cdots - 321 Copy content Toggle raw display
1717 T9 T^{9} Copy content Toggle raw display
1919 T9+9T8+29103 T^{9} + 9 T^{8} + \cdots - 29103 Copy content Toggle raw display
2323 T9138T7+3961 T^{9} - 138 T^{7} + \cdots - 3961 Copy content Toggle raw display
2929 T9+6T8++7989 T^{9} + 6 T^{8} + \cdots + 7989 Copy content Toggle raw display
3131 T9+30T8+1619 T^{9} + 30 T^{8} + \cdots - 1619 Copy content Toggle raw display
3737 T9+12T8+5381 T^{9} + 12 T^{8} + \cdots - 5381 Copy content Toggle raw display
4141 T9+9T8++31971 T^{9} + 9 T^{8} + \cdots + 31971 Copy content Toggle raw display
4343 T9249T7++15984369 T^{9} - 249 T^{7} + \cdots + 15984369 Copy content Toggle raw display
4747 T9+9T8+10232559 T^{9} + 9 T^{8} + \cdots - 10232559 Copy content Toggle raw display
5353 T9324T7+804383 T^{9} - 324 T^{7} + \cdots - 804383 Copy content Toggle raw display
5959 T9+3T8++1436957 T^{9} + 3 T^{8} + \cdots + 1436957 Copy content Toggle raw display
6161 T9+33T8+203625 T^{9} + 33 T^{8} + \cdots - 203625 Copy content Toggle raw display
6767 T9+15T8++36527541 T^{9} + 15 T^{8} + \cdots + 36527541 Copy content Toggle raw display
7171 T9156T7+61071 T^{9} - 156 T^{7} + \cdots - 61071 Copy content Toggle raw display
7373 T9+21T8+1478193 T^{9} + 21 T^{8} + \cdots - 1478193 Copy content Toggle raw display
7979 T9+30T8+17 T^{9} + 30 T^{8} + \cdots - 17 Copy content Toggle raw display
8383 T9342T7++604251 T^{9} - 342 T^{7} + \cdots + 604251 Copy content Toggle raw display
8989 T9+12T8++8233703 T^{9} + 12 T^{8} + \cdots + 8233703 Copy content Toggle raw display
9797 T9438T7++635977 T^{9} - 438 T^{7} + \cdots + 635977 Copy content Toggle raw display
show more
show less