gp: [N,k,chi] = [6069,2,Mod(1,6069)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6069, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6069.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [9,0,9,6,-3,0,9]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 8 1,\beta_1,\ldots,\beta_{8} 1 , β 1 , … , β 8 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 9 − 12 x 7 − 3 x 6 + 45 x 5 + 21 x 4 − 53 x 3 − 39 x 2 + 3 x^{9} - 12x^{7} - 3x^{6} + 45x^{5} + 21x^{4} - 53x^{3} - 39x^{2} + 3 x 9 − 1 2 x 7 − 3 x 6 + 4 5 x 5 + 2 1 x 4 − 5 3 x 3 − 3 9 x 2 + 3
x^9 - 12*x^7 - 3*x^6 + 45*x^5 + 21*x^4 - 53*x^3 - 39*x^2 + 3
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
ν 6 − 9 ν 4 − 3 ν 3 + 19 ν 2 + 10 ν − 2 \nu^{6} - 9\nu^{4} - 3\nu^{3} + 19\nu^{2} + 10\nu - 2 ν 6 − 9 ν 4 − 3 ν 3 + 1 9 ν 2 + 1 0 ν − 2
v^6 - 9*v^4 - 3*v^3 + 19*v^2 + 10*v - 2
β 3 \beta_{3} β 3 = = =
ν 7 + ν 6 − 9 ν 5 − 12 ν 4 + 16 ν 3 + 29 ν 2 + 8 ν − 2 \nu^{7} + \nu^{6} - 9\nu^{5} - 12\nu^{4} + 16\nu^{3} + 29\nu^{2} + 8\nu - 2 ν 7 + ν 6 − 9 ν 5 − 1 2 ν 4 + 1 6 ν 3 + 2 9 ν 2 + 8 ν − 2
v^7 + v^6 - 9*v^5 - 12*v^4 + 16*v^3 + 29*v^2 + 8*v - 2
β 4 \beta_{4} β 4 = = =
− ν 7 − ν 6 + 10 ν 5 + 11 ν 4 − 23 ν 3 − 26 ν 2 + 2 ν + 5 -\nu^{7} - \nu^{6} + 10\nu^{5} + 11\nu^{4} - 23\nu^{3} - 26\nu^{2} + 2\nu + 5 − ν 7 − ν 6 + 1 0 ν 5 + 1 1 ν 4 − 2 3 ν 3 − 2 6 ν 2 + 2 ν + 5
-v^7 - v^6 + 10*v^5 + 11*v^4 - 23*v^3 - 26*v^2 + 2*v + 5
β 5 \beta_{5} β 5 = = =
ν 8 + ν 7 − 10 ν 6 − 11 ν 5 + 24 ν 4 + 25 ν 3 − 7 ν 2 − 2 ν + 2 \nu^{8} + \nu^{7} - 10\nu^{6} - 11\nu^{5} + 24\nu^{4} + 25\nu^{3} - 7\nu^{2} - 2\nu + 2 ν 8 + ν 7 − 1 0 ν 6 − 1 1 ν 5 + 2 4 ν 4 + 2 5 ν 3 − 7 ν 2 − 2 ν + 2
v^8 + v^7 - 10*v^6 - 11*v^5 + 24*v^4 + 25*v^3 - 7*v^2 - 2*v + 2
β 6 \beta_{6} β 6 = = =
− ν 8 + 11 ν 6 + 2 ν 5 − 36 ν 4 − 9 ν 3 + 37 ν 2 + 10 ν − 7 -\nu^{8} + 11\nu^{6} + 2\nu^{5} - 36\nu^{4} - 9\nu^{3} + 37\nu^{2} + 10\nu - 7 − ν 8 + 1 1 ν 6 + 2 ν 5 − 3 6 ν 4 − 9 ν 3 + 3 7 ν 2 + 1 0 ν − 7
-v^8 + 11*v^6 + 2*v^5 - 36*v^4 - 9*v^3 + 37*v^2 + 10*v - 7
β 7 \beta_{7} β 7 = = =
− ν 8 − 2 ν 7 + 9 ν 6 + 21 ν 5 − 13 ν 4 − 49 ν 3 − 18 ν 2 + 8 ν + 1 -\nu^{8} - 2\nu^{7} + 9\nu^{6} + 21\nu^{5} - 13\nu^{4} - 49\nu^{3} - 18\nu^{2} + 8\nu + 1 − ν 8 − 2 ν 7 + 9 ν 6 + 2 1 ν 5 − 1 3 ν 4 − 4 9 ν 3 − 1 8 ν 2 + 8 ν + 1
-v^8 - 2*v^7 + 9*v^6 + 21*v^5 - 13*v^4 - 49*v^3 - 18*v^2 + 8*v + 1
β 8 \beta_{8} β 8 = = =
− ν 8 + ν 7 + 12 ν 6 − 8 ν 5 − 46 ν 4 + 13 ν 3 + 56 ν 2 + 12 ν − 4 -\nu^{8} + \nu^{7} + 12\nu^{6} - 8\nu^{5} - 46\nu^{4} + 13\nu^{3} + 56\nu^{2} + 12\nu - 4 − ν 8 + ν 7 + 1 2 ν 6 − 8 ν 5 − 4 6 ν 4 + 1 3 ν 3 + 5 6 ν 2 + 1 2 ν − 4
-v^8 + v^7 + 12*v^6 - 8*v^5 - 46*v^4 + 13*v^3 + 56*v^2 + 12*v - 4
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 6 + β 5 − β 3 + 3 \beta_{6} + \beta_{5} - \beta_{3} + 3 β 6 + β 5 − β 3 + 3
b6 + b5 - b3 + 3
ν 3 \nu^{3} ν 3 = = =
− β 7 + β 6 + β 4 − β 3 + 4 β 1 + 1 -\beta_{7} + \beta_{6} + \beta_{4} - \beta_{3} + 4\beta _1 + 1 − β 7 + β 6 + β 4 − β 3 + 4 β 1 + 1
-b7 + b6 + b4 - b3 + 4*b1 + 1
ν 4 \nu^{4} ν 4 = = =
β 8 − β 7 + 7 β 6 + 7 β 5 + 2 β 4 − 8 β 3 + 14 \beta_{8} - \beta_{7} + 7\beta_{6} + 7\beta_{5} + 2\beta_{4} - 8\beta_{3} + 14 β 8 − β 7 + 7 β 6 + 7 β 5 + 2 β 4 − 8 β 3 + 1 4
b8 - b7 + 7*b6 + 7*b5 + 2*b4 - 8*b3 + 14
ν 5 \nu^{5} ν 5 = = =
β 8 − 8 β 7 + 11 β 6 + 4 β 5 + 10 β 4 − 11 β 3 + 18 β 1 + 9 \beta_{8} - 8\beta_{7} + 11\beta_{6} + 4\beta_{5} + 10\beta_{4} - 11\beta_{3} + 18\beta _1 + 9 β 8 − 8 β 7 + 1 1 β 6 + 4 β 5 + 1 0 β 4 − 1 1 β 3 + 1 8 β 1 + 9
b8 - 8*b7 + 11*b6 + 4*b5 + 10*b4 - 11*b3 + 18*b1 + 9
ν 6 \nu^{6} ν 6 = = =
9 β 8 − 12 β 7 + 47 β 6 + 44 β 5 + 21 β 4 − 56 β 3 + β 2 + 2 β 1 + 74 9\beta_{8} - 12\beta_{7} + 47\beta_{6} + 44\beta_{5} + 21\beta_{4} - 56\beta_{3} + \beta_{2} + 2\beta _1 + 74 9 β 8 − 1 2 β 7 + 4 7 β 6 + 4 4 β 5 + 2 1 β 4 − 5 6 β 3 + β 2 + 2 β 1 + 7 4
9*b8 - 12*b7 + 47*b6 + 44*b5 + 21*b4 - 56*b3 + b2 + 2*b1 + 74
ν 7 \nu^{7} ν 7 = = =
12 β 8 − 56 β 7 + 91 β 6 + 47 β 5 + 77 β 4 − 93 β 3 − β 2 + 88 β 1 + 74 12\beta_{8} - 56\beta_{7} + 91\beta_{6} + 47\beta_{5} + 77\beta_{4} - 93\beta_{3} - \beta_{2} + 88\beta _1 + 74 1 2 β 8 − 5 6 β 7 + 9 1 β 6 + 4 7 β 5 + 7 7 β 4 − 9 3 β 3 − β 2 + 8 8 β 1 + 7 4
12*b8 - 56*b7 + 91*b6 + 47*b5 + 77*b4 - 93*b3 - b2 + 88*b1 + 74
ν 8 \nu^{8} ν 8 = = =
65 β 8 − 103 β 7 + 314 β 6 + 277 β 5 + 170 β 4 − 378 β 3 + ⋯ + 423 65 \beta_{8} - 103 \beta_{7} + 314 \beta_{6} + 277 \beta_{5} + 170 \beta_{4} - 378 \beta_{3} + \cdots + 423 6 5 β 8 − 1 0 3 β 7 + 3 1 4 β 6 + 2 7 7 β 5 + 1 7 0 β 4 − 3 7 8 β 3 + ⋯ + 4 2 3
65*b8 - 103*b7 + 314*b6 + 277*b5 + 170*b4 - 378*b3 + 11*b2 + 32*b1 + 423
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
− 1 -1 − 1
7 7 7
− 1 -1 − 1
17 17 1 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 6069 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(6069)) S 2 n e w ( Γ 0 ( 6 0 6 9 ) ) :
T 2 9 − 12 T 2 7 − 3 T 2 6 + 45 T 2 5 + 21 T 2 4 − 53 T 2 3 − 39 T 2 2 + 3 T_{2}^{9} - 12T_{2}^{7} - 3T_{2}^{6} + 45T_{2}^{5} + 21T_{2}^{4} - 53T_{2}^{3} - 39T_{2}^{2} + 3 T 2 9 − 1 2 T 2 7 − 3 T 2 6 + 4 5 T 2 5 + 2 1 T 2 4 − 5 3 T 2 3 − 3 9 T 2 2 + 3
T2^9 - 12*T2^7 - 3*T2^6 + 45*T2^5 + 21*T2^4 - 53*T2^3 - 39*T2^2 + 3
T 5 9 + 3 T 5 8 − 18 T 5 7 − 49 T 5 6 + 93 T 5 5 + 261 T 5 4 − 60 T 5 3 − 456 T 5 2 − 333 T 5 − 73 T_{5}^{9} + 3T_{5}^{8} - 18T_{5}^{7} - 49T_{5}^{6} + 93T_{5}^{5} + 261T_{5}^{4} - 60T_{5}^{3} - 456T_{5}^{2} - 333T_{5} - 73 T 5 9 + 3 T 5 8 − 1 8 T 5 7 − 4 9 T 5 6 + 9 3 T 5 5 + 2 6 1 T 5 4 − 6 0 T 5 3 − 4 5 6 T 5 2 − 3 3 3 T 5 − 7 3
T5^9 + 3*T5^8 - 18*T5^7 - 49*T5^6 + 93*T5^5 + 261*T5^4 - 60*T5^3 - 456*T5^2 - 333*T5 - 73
T 11 9 + 18 T 11 8 + 120 T 11 7 + 335 T 11 6 + 171 T 11 5 − 888 T 11 4 + ⋯ − 9 T_{11}^{9} + 18 T_{11}^{8} + 120 T_{11}^{7} + 335 T_{11}^{6} + 171 T_{11}^{5} - 888 T_{11}^{4} + \cdots - 9 T 1 1 9 + 1 8 T 1 1 8 + 1 2 0 T 1 1 7 + 3 3 5 T 1 1 6 + 1 7 1 T 1 1 5 − 8 8 8 T 1 1 4 + ⋯ − 9
T11^9 + 18*T11^8 + 120*T11^7 + 335*T11^6 + 171*T11^5 - 888*T11^4 - 1187*T11^3 + 306*T11^2 + 504*T11 - 9
T 23 9 − 138 T 23 7 − 106 T 23 6 + 5262 T 23 5 + 7506 T 23 4 − 37764 T 23 3 + ⋯ − 3961 T_{23}^{9} - 138 T_{23}^{7} - 106 T_{23}^{6} + 5262 T_{23}^{5} + 7506 T_{23}^{4} - 37764 T_{23}^{3} + \cdots - 3961 T 2 3 9 − 1 3 8 T 2 3 7 − 1 0 6 T 2 3 6 + 5 2 6 2 T 2 3 5 + 7 5 0 6 T 2 3 4 − 3 7 7 6 4 T 2 3 3 + ⋯ − 3 9 6 1
T23^9 - 138*T23^7 - 106*T23^6 + 5262*T23^5 + 7506*T23^4 - 37764*T23^3 - 84156*T23^2 - 38205*T23 - 3961
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 9 − 12 T 7 + ⋯ + 3 T^{9} - 12 T^{7} + \cdots + 3 T 9 − 1 2 T 7 + ⋯ + 3
T^9 - 12*T^7 - 3*T^6 + 45*T^5 + 21*T^4 - 53*T^3 - 39*T^2 + 3
3 3 3
( T − 1 ) 9 (T - 1)^{9} ( T − 1 ) 9
(T - 1)^9
5 5 5
T 9 + 3 T 8 + ⋯ − 73 T^{9} + 3 T^{8} + \cdots - 73 T 9 + 3 T 8 + ⋯ − 7 3
T^9 + 3*T^8 - 18*T^7 - 49*T^6 + 93*T^5 + 261*T^4 - 60*T^3 - 456*T^2 - 333*T - 73
7 7 7
( T − 1 ) 9 (T - 1)^{9} ( T − 1 ) 9
(T - 1)^9
11 11 1 1
T 9 + 18 T 8 + ⋯ − 9 T^{9} + 18 T^{8} + \cdots - 9 T 9 + 1 8 T 8 + ⋯ − 9
T^9 + 18*T^8 + 120*T^7 + 335*T^6 + 171*T^5 - 888*T^4 - 1187*T^3 + 306*T^2 + 504*T - 9
13 13 1 3
T 9 + 21 T 8 + ⋯ − 321 T^{9} + 21 T^{8} + \cdots - 321 T 9 + 2 1 T 8 + ⋯ − 3 2 1
T^9 + 21*T^8 + 159*T^7 + 477*T^6 + 162*T^5 - 1488*T^4 - 827*T^3 + 2049*T^2 - 216*T - 321
17 17 1 7
T 9 T^{9} T 9
T^9
19 19 1 9
T 9 + 9 T 8 + ⋯ − 29103 T^{9} + 9 T^{8} + \cdots - 29103 T 9 + 9 T 8 + ⋯ − 2 9 1 0 3
T^9 + 9*T^8 - 48*T^7 - 527*T^6 + 429*T^5 + 9537*T^4 + 6746*T^3 - 52878*T^2 - 86193*T - 29103
23 23 2 3
T 9 − 138 T 7 + ⋯ − 3961 T^{9} - 138 T^{7} + \cdots - 3961 T 9 − 1 3 8 T 7 + ⋯ − 3 9 6 1
T^9 - 138*T^7 - 106*T^6 + 5262*T^5 + 7506*T^4 - 37764*T^3 - 84156*T^2 - 38205*T - 3961
29 29 2 9
T 9 + 6 T 8 + ⋯ + 7989 T^{9} + 6 T^{8} + \cdots + 7989 T 9 + 6 T 8 + ⋯ + 7 9 8 9
T^9 + 6*T^8 - 159*T^7 - 1141*T^6 + 4761*T^5 + 50895*T^4 + 104072*T^3 + 29181*T^2 - 46026*T + 7989
31 31 3 1
T 9 + 30 T 8 + ⋯ − 1619 T^{9} + 30 T^{8} + \cdots - 1619 T 9 + 3 0 T 8 + ⋯ − 1 6 1 9
T^9 + 30*T^8 + 330*T^7 + 1534*T^6 + 1692*T^5 - 7971*T^4 - 17456*T^3 + 6702*T^2 + 6336*T - 1619
37 37 3 7
T 9 + 12 T 8 + ⋯ − 5381 T^{9} + 12 T^{8} + \cdots - 5381 T 9 + 1 2 T 8 + ⋯ − 5 3 8 1
T^9 + 12*T^8 - 36*T^7 - 937*T^6 - 3252*T^5 + 1035*T^4 + 15875*T^3 + 8478*T^2 - 8514*T - 5381
41 41 4 1
T 9 + 9 T 8 + ⋯ + 31971 T^{9} + 9 T^{8} + \cdots + 31971 T 9 + 9 T 8 + ⋯ + 3 1 9 7 1
T^9 + 9*T^8 - 78*T^7 - 615*T^6 + 1929*T^5 + 11739*T^4 - 8846*T^3 - 71148*T^2 - 41229*T + 31971
43 43 4 3
T 9 − 249 T 7 + ⋯ + 15984369 T^{9} - 249 T^{7} + \cdots + 15984369 T 9 − 2 4 9 T 7 + ⋯ + 1 5 9 8 4 3 6 9
T^9 - 249*T^7 - 18*T^6 + 21891*T^5 + 6786*T^4 - 801080*T^3 - 652707*T^2 + 10451016*T + 15984369
47 47 4 7
T 9 + 9 T 8 + ⋯ − 10232559 T^{9} + 9 T^{8} + \cdots - 10232559 T 9 + 9 T 8 + ⋯ − 1 0 2 3 2 5 5 9
T^9 + 9*T^8 - 201*T^7 - 1312*T^6 + 16095*T^5 + 51198*T^4 - 577054*T^3 - 51624*T^2 + 6555528*T - 10232559
53 53 5 3
T 9 − 324 T 7 + ⋯ − 804383 T^{9} - 324 T^{7} + \cdots - 804383 T 9 − 3 2 4 T 7 + ⋯ − 8 0 4 3 8 3
T^9 - 324*T^7 - 267*T^6 + 33606*T^5 + 38376*T^4 - 1221801*T^3 - 853182*T^2 + 13941513*T - 804383
59 59 5 9
T 9 + 3 T 8 + ⋯ + 1436957 T^{9} + 3 T^{8} + \cdots + 1436957 T 9 + 3 T 8 + ⋯ + 1 4 3 6 9 5 7
T^9 + 3*T^8 - 285*T^7 - 1227*T^6 + 21792*T^5 + 97905*T^4 - 422178*T^3 - 1383243*T^2 + 760548*T + 1436957
61 61 6 1
T 9 + 33 T 8 + ⋯ − 203625 T^{9} + 33 T^{8} + \cdots - 203625 T 9 + 3 3 T 8 + ⋯ − 2 0 3 6 2 5
T^9 + 33*T^8 + 276*T^7 - 1186*T^6 - 24069*T^5 - 76359*T^4 + 34363*T^3 + 348120*T^2 + 136125*T - 203625
67 67 6 7
T 9 + 15 T 8 + ⋯ + 36527541 T^{9} + 15 T^{8} + \cdots + 36527541 T 9 + 1 5 T 8 + ⋯ + 3 6 5 2 7 5 4 1
T^9 + 15*T^8 - 162*T^7 - 2918*T^6 + 7179*T^5 + 192543*T^4 - 11257*T^3 - 4909236*T^2 - 3280059*T + 36527541
71 71 7 1
T 9 − 156 T 7 + ⋯ − 61071 T^{9} - 156 T^{7} + \cdots - 61071 T 9 − 1 5 6 T 7 + ⋯ − 6 1 0 7 1
T^9 - 156*T^7 - 476*T^6 + 3288*T^5 + 5952*T^4 - 28760*T^3 - 10146*T^2 + 90567*T - 61071
73 73 7 3
T 9 + 21 T 8 + ⋯ − 1478193 T^{9} + 21 T^{8} + \cdots - 1478193 T 9 + 2 1 T 8 + ⋯ − 1 4 7 8 1 9 3
T^9 + 21*T^8 + 12*T^7 - 1872*T^6 - 7890*T^5 + 38022*T^4 + 246970*T^3 + 59118*T^2 - 1260576*T - 1478193
79 79 7 9
T 9 + 30 T 8 + ⋯ − 17 T^{9} + 30 T^{8} + \cdots - 17 T 9 + 3 0 T 8 + ⋯ − 1 7
T^9 + 30*T^8 + 267*T^7 + 489*T^6 - 1992*T^5 - 2877*T^4 + 795*T^3 + 1812*T^2 + 339*T - 17
83 83 8 3
T 9 − 342 T 7 + ⋯ + 604251 T^{9} - 342 T^{7} + \cdots + 604251 T 9 − 3 4 2 T 7 + ⋯ + 6 0 4 2 5 1
T^9 - 342*T^7 + 1199*T^6 + 27552*T^5 - 144207*T^4 - 399099*T^3 + 2880567*T^2 - 2556549*T + 604251
89 89 8 9
T 9 + 12 T 8 + ⋯ + 8233703 T^{9} + 12 T^{8} + \cdots + 8233703 T 9 + 1 2 T 8 + ⋯ + 8 2 3 3 7 0 3
T^9 + 12*T^8 - 402*T^7 - 6201*T^6 + 24783*T^5 + 731742*T^4 + 2391685*T^3 - 8431992*T^2 - 37192380*T + 8233703
97 97 9 7
T 9 − 438 T 7 + ⋯ + 635977 T^{9} - 438 T^{7} + \cdots + 635977 T 9 − 4 3 8 T 7 + ⋯ + 6 3 5 9 7 7
T^9 - 438*T^7 - 1128*T^6 + 51798*T^5 + 265953*T^4 - 797273*T^3 - 5552040*T^2 - 4178457*T + 635977
show more
show less