Properties

Label 6069.2.a.l
Level 60696069
Weight 22
Character orbit 6069.a
Self dual yes
Analytic conductor 48.46148.461
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6069,2,Mod(1,6069)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6069.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 6069=37172 6069 = 3 \cdot 7 \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 6069.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-2,3,0,2,-2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 48.461208986748.4612089867
Analytic rank: 00
Dimension: 33
Coefficient field: Q(ζ14)+\Q(\zeta_{14})^+
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x3x22x+1 x^{3} - x^{2} - 2x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β21)q2+q3+(β2+β1)q4+(2β2+3β11)q5+(β21)q6+q7+(β22β1)q8+q9+(2β2β1)q10++(β2+2β1+3)q99+O(q100) q + ( - \beta_{2} - 1) q^{2} + q^{3} + (\beta_{2} + \beta_1) q^{4} + ( - 2 \beta_{2} + 3 \beta_1 - 1) q^{5} + ( - \beta_{2} - 1) q^{6} + q^{7} + (\beta_{2} - 2 \beta_1) q^{8} + q^{9} + ( - 2 \beta_{2} - \beta_1) q^{10}+ \cdots + ( - \beta_{2} + 2 \beta_1 + 3) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q2q2+3q3+2q52q6+3q73q8+3q9+q10+12q11+13q132q14+2q15+2q162q18q19+7q20+3q218q223q24++12q99+O(q100) 3 q - 2 q^{2} + 3 q^{3} + 2 q^{5} - 2 q^{6} + 3 q^{7} - 3 q^{8} + 3 q^{9} + q^{10} + 12 q^{11} + 13 q^{13} - 2 q^{14} + 2 q^{15} + 2 q^{16} - 2 q^{18} - q^{19} + 7 q^{20} + 3 q^{21} - 8 q^{22} - 3 q^{24}+ \cdots + 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of ν=ζ14+ζ141\nu = \zeta_{14} + \zeta_{14}^{-1}:

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν22 \nu^{2} - 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+2 \beta_{2} + 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
1.80194
−1.24698
0.445042
−2.24698 1.00000 3.04892 1.91185 −2.24698 1.00000 −2.35690 1.00000 −4.29590
1.2 −0.554958 1.00000 −1.69202 −3.85086 −0.554958 1.00000 2.04892 1.00000 2.13706
1.3 0.801938 1.00000 −1.35690 3.93900 0.801938 1.00000 −2.69202 1.00000 3.15883
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
77 1 -1
1717 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6069.2.a.l yes 3
17.b even 2 1 6069.2.a.j 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6069.2.a.j 3 17.b even 2 1
6069.2.a.l yes 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(6069))S_{2}^{\mathrm{new}}(\Gamma_0(6069)):

T23+2T22T21 T_{2}^{3} + 2T_{2}^{2} - T_{2} - 1 Copy content Toggle raw display
T532T5215T5+29 T_{5}^{3} - 2T_{5}^{2} - 15T_{5} + 29 Copy content Toggle raw display
T11312T112+41T1129 T_{11}^{3} - 12T_{11}^{2} + 41T_{11} - 29 Copy content Toggle raw display
T23349T2391 T_{23}^{3} - 49T_{23} - 91 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3+2T2T1 T^{3} + 2T^{2} - T - 1 Copy content Toggle raw display
33 (T1)3 (T - 1)^{3} Copy content Toggle raw display
55 T32T2++29 T^{3} - 2 T^{2} + \cdots + 29 Copy content Toggle raw display
77 (T1)3 (T - 1)^{3} Copy content Toggle raw display
1111 T312T2+29 T^{3} - 12 T^{2} + \cdots - 29 Copy content Toggle raw display
1313 T313T2++13 T^{3} - 13 T^{2} + \cdots + 13 Copy content Toggle raw display
1717 T3 T^{3} Copy content Toggle raw display
1919 T3+T2+127 T^{3} + T^{2} + \cdots - 127 Copy content Toggle raw display
2323 T349T91 T^{3} - 49T - 91 Copy content Toggle raw display
2929 T39T2++757 T^{3} - 9 T^{2} + \cdots + 757 Copy content Toggle raw display
3131 T3T2++169 T^{3} - T^{2} + \cdots + 169 Copy content Toggle raw display
3737 T3+T2++251 T^{3} + T^{2} + \cdots + 251 Copy content Toggle raw display
4141 T3+7T2+7 T^{3} + 7 T^{2} + \cdots - 7 Copy content Toggle raw display
4343 T35T2++377 T^{3} - 5 T^{2} + \cdots + 377 Copy content Toggle raw display
4747 T3+20T2++281 T^{3} + 20 T^{2} + \cdots + 281 Copy content Toggle raw display
5353 T3+19T2++127 T^{3} + 19 T^{2} + \cdots + 127 Copy content Toggle raw display
5959 T3+5T2++1 T^{3} + 5 T^{2} + \cdots + 1 Copy content Toggle raw display
6161 T39T2++351 T^{3} - 9 T^{2} + \cdots + 351 Copy content Toggle raw display
6767 T39T2++169 T^{3} - 9 T^{2} + \cdots + 169 Copy content Toggle raw display
7171 T3+3T2+83 T^{3} + 3 T^{2} + \cdots - 83 Copy content Toggle raw display
7373 T35T2+211 T^{3} - 5 T^{2} + \cdots - 211 Copy content Toggle raw display
7979 T3+13T2+97 T^{3} + 13 T^{2} + \cdots - 97 Copy content Toggle raw display
8383 T3+6T2++1 T^{3} + 6 T^{2} + \cdots + 1 Copy content Toggle raw display
8989 T3+7T2++49 T^{3} + 7 T^{2} + \cdots + 49 Copy content Toggle raw display
9797 T321T2+91 T^{3} - 21 T^{2} + \cdots - 91 Copy content Toggle raw display
show more
show less