gp: [N,k,chi] = [6069,2,Mod(1,6069)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6069, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6069.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [3,-2,3,0,2,-2,3]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
− 1 -1 − 1
7 7 7
− 1 -1 − 1
17 17 1 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 6069 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(6069)) S 2 n e w ( Γ 0 ( 6 0 6 9 ) ) :
T 2 3 + 2 T 2 2 − T 2 − 1 T_{2}^{3} + 2T_{2}^{2} - T_{2} - 1 T 2 3 + 2 T 2 2 − T 2 − 1
T2^3 + 2*T2^2 - T2 - 1
T 5 3 − 2 T 5 2 − 15 T 5 + 29 T_{5}^{3} - 2T_{5}^{2} - 15T_{5} + 29 T 5 3 − 2 T 5 2 − 1 5 T 5 + 2 9
T5^3 - 2*T5^2 - 15*T5 + 29
T 11 3 − 12 T 11 2 + 41 T 11 − 29 T_{11}^{3} - 12T_{11}^{2} + 41T_{11} - 29 T 1 1 3 − 1 2 T 1 1 2 + 4 1 T 1 1 − 2 9
T11^3 - 12*T11^2 + 41*T11 - 29
T 23 3 − 49 T 23 − 91 T_{23}^{3} - 49T_{23} - 91 T 2 3 3 − 4 9 T 2 3 − 9 1
T23^3 - 49*T23 - 91
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 3 + 2 T 2 − T − 1 T^{3} + 2T^{2} - T - 1 T 3 + 2 T 2 − T − 1
T^3 + 2*T^2 - T - 1
3 3 3
( T − 1 ) 3 (T - 1)^{3} ( T − 1 ) 3
(T - 1)^3
5 5 5
T 3 − 2 T 2 + ⋯ + 29 T^{3} - 2 T^{2} + \cdots + 29 T 3 − 2 T 2 + ⋯ + 2 9
T^3 - 2*T^2 - 15*T + 29
7 7 7
( T − 1 ) 3 (T - 1)^{3} ( T − 1 ) 3
(T - 1)^3
11 11 1 1
T 3 − 12 T 2 + ⋯ − 29 T^{3} - 12 T^{2} + \cdots - 29 T 3 − 1 2 T 2 + ⋯ − 2 9
T^3 - 12*T^2 + 41*T - 29
13 13 1 3
T 3 − 13 T 2 + ⋯ + 13 T^{3} - 13 T^{2} + \cdots + 13 T 3 − 1 3 T 2 + ⋯ + 1 3
T^3 - 13*T^2 + 40*T + 13
17 17 1 7
T 3 T^{3} T 3
T^3
19 19 1 9
T 3 + T 2 + ⋯ − 127 T^{3} + T^{2} + \cdots - 127 T 3 + T 2 + ⋯ − 1 2 7
T^3 + T^2 - 44*T - 127
23 23 2 3
T 3 − 49 T − 91 T^{3} - 49T - 91 T 3 − 4 9 T − 9 1
T^3 - 49*T - 91
29 29 2 9
T 3 − 9 T 2 + ⋯ + 757 T^{3} - 9 T^{2} + \cdots + 757 T 3 − 9 T 2 + ⋯ + 7 5 7
T^3 - 9*T^2 - 85*T + 757
31 31 3 1
T 3 − T 2 + ⋯ + 169 T^{3} - T^{2} + \cdots + 169 T 3 − T 2 + ⋯ + 1 6 9
T^3 - T^2 - 65*T + 169
37 37 3 7
T 3 + T 2 + ⋯ + 251 T^{3} + T^{2} + \cdots + 251 T 3 + T 2 + ⋯ + 2 5 1
T^3 + T^2 - 86*T + 251
41 41 4 1
T 3 + 7 T 2 + ⋯ − 7 T^{3} + 7 T^{2} + \cdots - 7 T 3 + 7 T 2 + ⋯ − 7
T^3 + 7*T^2 - 14*T - 7
43 43 4 3
T 3 − 5 T 2 + ⋯ + 377 T^{3} - 5 T^{2} + \cdots + 377 T 3 − 5 T 2 + ⋯ + 3 7 7
T^3 - 5*T^2 - 92*T + 377
47 47 4 7
T 3 + 20 T 2 + ⋯ + 281 T^{3} + 20 T^{2} + \cdots + 281 T 3 + 2 0 T 2 + ⋯ + 2 8 1
T^3 + 20*T^2 + 131*T + 281
53 53 5 3
T 3 + 19 T 2 + ⋯ + 127 T^{3} + 19 T^{2} + \cdots + 127 T 3 + 1 9 T 2 + ⋯ + 1 2 7
T^3 + 19*T^2 + 104*T + 127
59 59 5 9
T 3 + 5 T 2 + ⋯ + 1 T^{3} + 5 T^{2} + \cdots + 1 T 3 + 5 T 2 + ⋯ + 1
T^3 + 5*T^2 + 6*T + 1
61 61 6 1
T 3 − 9 T 2 + ⋯ + 351 T^{3} - 9 T^{2} + \cdots + 351 T 3 − 9 T 2 + ⋯ + 3 5 1
T^3 - 9*T^2 - 36*T + 351
67 67 6 7
T 3 − 9 T 2 + ⋯ + 169 T^{3} - 9 T^{2} + \cdots + 169 T 3 − 9 T 2 + ⋯ + 1 6 9
T^3 - 9*T^2 - 57*T + 169
71 71 7 1
T 3 + 3 T 2 + ⋯ − 83 T^{3} + 3 T^{2} + \cdots - 83 T 3 + 3 T 2 + ⋯ − 8 3
T^3 + 3*T^2 - 25*T - 83
73 73 7 3
T 3 − 5 T 2 + ⋯ − 211 T^{3} - 5 T^{2} + \cdots - 211 T 3 − 5 T 2 + ⋯ − 2 1 1
T^3 - 5*T^2 - 113*T - 211
79 79 7 9
T 3 + 13 T 2 + ⋯ − 97 T^{3} + 13 T^{2} + \cdots - 97 T 3 + 1 3 T 2 + ⋯ − 9 7
T^3 + 13*T^2 + 19*T - 97
83 83 8 3
T 3 + 6 T 2 + ⋯ + 1 T^{3} + 6 T^{2} + \cdots + 1 T 3 + 6 T 2 + ⋯ + 1
T^3 + 6*T^2 + 5*T + 1
89 89 8 9
T 3 + 7 T 2 + ⋯ + 49 T^{3} + 7 T^{2} + \cdots + 49 T 3 + 7 T 2 + ⋯ + 4 9
T^3 + 7*T^2 - 49*T + 49
97 97 9 7
T 3 − 21 T 2 + ⋯ − 91 T^{3} - 21 T^{2} + \cdots - 91 T 3 − 2 1 T 2 + ⋯ − 9 1
T^3 - 21*T^2 + 98*T - 91
show more
show less