Properties

Label 6069.2.a.l
Level $6069$
Weight $2$
Character orbit 6069.a
Self dual yes
Analytic conductor $48.461$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6069,2,Mod(1,6069)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6069, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6069.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 1) q^{2} + q^{3} + (\beta_{2} + \beta_1) q^{4} + ( - 2 \beta_{2} + 3 \beta_1 - 1) q^{5} + ( - \beta_{2} - 1) q^{6} + q^{7} + (\beta_{2} - 2 \beta_1) q^{8} + q^{9} + ( - 2 \beta_{2} - \beta_1) q^{10}+ \cdots + ( - \beta_{2} + 2 \beta_1 + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} + 3 q^{3} + 2 q^{5} - 2 q^{6} + 3 q^{7} - 3 q^{8} + 3 q^{9} + q^{10} + 12 q^{11} + 13 q^{13} - 2 q^{14} + 2 q^{15} + 2 q^{16} - 2 q^{18} - q^{19} + 7 q^{20} + 3 q^{21} - 8 q^{22} - 3 q^{24}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
−1.24698
0.445042
−2.24698 1.00000 3.04892 1.91185 −2.24698 1.00000 −2.35690 1.00000 −4.29590
1.2 −0.554958 1.00000 −1.69202 −3.85086 −0.554958 1.00000 2.04892 1.00000 2.13706
1.3 0.801938 1.00000 −1.35690 3.93900 0.801938 1.00000 −2.69202 1.00000 3.15883
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6069.2.a.l yes 3
17.b even 2 1 6069.2.a.j 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6069.2.a.j 3 17.b even 2 1
6069.2.a.l yes 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6069))\):

\( T_{2}^{3} + 2T_{2}^{2} - T_{2} - 1 \) Copy content Toggle raw display
\( T_{5}^{3} - 2T_{5}^{2} - 15T_{5} + 29 \) Copy content Toggle raw display
\( T_{11}^{3} - 12T_{11}^{2} + 41T_{11} - 29 \) Copy content Toggle raw display
\( T_{23}^{3} - 49T_{23} - 91 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 2T^{2} - T - 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 2 T^{2} + \cdots + 29 \) Copy content Toggle raw display
$7$ \( (T - 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - 12 T^{2} + \cdots - 29 \) Copy content Toggle raw display
$13$ \( T^{3} - 13 T^{2} + \cdots + 13 \) Copy content Toggle raw display
$17$ \( T^{3} \) Copy content Toggle raw display
$19$ \( T^{3} + T^{2} + \cdots - 127 \) Copy content Toggle raw display
$23$ \( T^{3} - 49T - 91 \) Copy content Toggle raw display
$29$ \( T^{3} - 9 T^{2} + \cdots + 757 \) Copy content Toggle raw display
$31$ \( T^{3} - T^{2} + \cdots + 169 \) Copy content Toggle raw display
$37$ \( T^{3} + T^{2} + \cdots + 251 \) Copy content Toggle raw display
$41$ \( T^{3} + 7 T^{2} + \cdots - 7 \) Copy content Toggle raw display
$43$ \( T^{3} - 5 T^{2} + \cdots + 377 \) Copy content Toggle raw display
$47$ \( T^{3} + 20 T^{2} + \cdots + 281 \) Copy content Toggle raw display
$53$ \( T^{3} + 19 T^{2} + \cdots + 127 \) Copy content Toggle raw display
$59$ \( T^{3} + 5 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{3} - 9 T^{2} + \cdots + 351 \) Copy content Toggle raw display
$67$ \( T^{3} - 9 T^{2} + \cdots + 169 \) Copy content Toggle raw display
$71$ \( T^{3} + 3 T^{2} + \cdots - 83 \) Copy content Toggle raw display
$73$ \( T^{3} - 5 T^{2} + \cdots - 211 \) Copy content Toggle raw display
$79$ \( T^{3} + 13 T^{2} + \cdots - 97 \) Copy content Toggle raw display
$83$ \( T^{3} + 6 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$89$ \( T^{3} + 7 T^{2} + \cdots + 49 \) Copy content Toggle raw display
$97$ \( T^{3} - 21 T^{2} + \cdots - 91 \) Copy content Toggle raw display
show more
show less