Properties

Label 6069.2.a.t
Level 60696069
Weight 22
Character orbit 6069.a
Self dual yes
Analytic conductor 48.46148.461
Analytic rank 11
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6069,2,Mod(1,6069)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6069, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6069.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 6069=37172 6069 = 3 \cdot 7 \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 6069.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 48.461208986748.4612089867
Analytic rank: 11
Dimension: 55
Coefficient field: 5.5.1669781.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x5x48x3+10x2+8x9 x^{5} - x^{4} - 8x^{3} + 10x^{2} + 8x - 9 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β3,β41,\beta_1,\beta_2,\beta_3,\beta_4 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2q3+(β2+1)q4+(β3+β11)q5+β1q6+q7+(β4β3+β2++2)q8+q9+(2β3β2+β12)q10++(β4+β3β2++1)q99+O(q100) q - \beta_1 q^{2} - q^{3} + (\beta_{2} + 1) q^{4} + ( - \beta_{3} + \beta_1 - 1) q^{5} + \beta_1 q^{6} + q^{7} + (\beta_{4} - \beta_{3} + \beta_{2} + \cdots + 2) q^{8} + q^{9} + (2 \beta_{3} - \beta_{2} + \beta_1 - 2) q^{10}+ \cdots + (\beta_{4} + \beta_{3} - \beta_{2} + \cdots + 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 5qq25q3+7q44q5+q6+5q7+9q8+5q911q107q12+3q13q14+4q15+7q16q18q1925q205q214q22+q98+O(q100) 5 q - q^{2} - 5 q^{3} + 7 q^{4} - 4 q^{5} + q^{6} + 5 q^{7} + 9 q^{8} + 5 q^{9} - 11 q^{10} - 7 q^{12} + 3 q^{13} - q^{14} + 4 q^{15} + 7 q^{16} - q^{18} - q^{19} - 25 q^{20} - 5 q^{21} - 4 q^{22}+ \cdots - q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x5x48x3+10x2+8x9 x^{5} - x^{4} - 8x^{3} + 10x^{2} + 8x - 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν23 \nu^{2} - 3 Copy content Toggle raw display
β3\beta_{3}== ν4+ν36ν22ν+4 \nu^{4} + \nu^{3} - 6\nu^{2} - 2\nu + 4 Copy content Toggle raw display
β4\beta_{4}== ν47ν2+3ν+5 \nu^{4} - 7\nu^{2} + 3\nu + 5 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+3 \beta_{2} + 3 Copy content Toggle raw display
ν3\nu^{3}== β4+β3β2+5β12 -\beta_{4} + \beta_{3} - \beta_{2} + 5\beta _1 - 2 Copy content Toggle raw display
ν4\nu^{4}== β4+7β23β1+16 \beta_{4} + 7\beta_{2} - 3\beta _1 + 16 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.20690
1.70810
0.845707
−1.03618
−2.72454
−2.20690 −1.00000 2.87042 −3.62629 2.20690 1.00000 −1.92093 1.00000 8.00288
1.2 −1.70810 −1.00000 0.917609 4.13394 1.70810 1.00000 1.84883 1.00000 −7.06119
1.3 −0.845707 −1.00000 −1.28478 0.712039 0.845707 1.00000 2.77796 1.00000 −0.602176
1.4 1.03618 −1.00000 −0.926340 −1.70681 −1.03618 1.00000 −3.03220 1.00000 −1.76856
1.5 2.72454 −1.00000 5.42309 −3.51287 −2.72454 1.00000 9.32634 1.00000 −9.57095
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
77 1 -1
1717 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6069.2.a.t 5
17.b even 2 1 6069.2.a.u yes 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6069.2.a.t 5 1.a even 1 1 trivial
6069.2.a.u yes 5 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(6069))S_{2}^{\mathrm{new}}(\Gamma_0(6069)):

T25+T248T2310T22+8T2+9 T_{2}^{5} + T_{2}^{4} - 8T_{2}^{3} - 10T_{2}^{2} + 8T_{2} + 9 Copy content Toggle raw display
T55+4T5415T5373T5232T5+64 T_{5}^{5} + 4T_{5}^{4} - 15T_{5}^{3} - 73T_{5}^{2} - 32T_{5} + 64 Copy content Toggle raw display
T11533T113+25T112+120T11+64 T_{11}^{5} - 33T_{11}^{3} + 25T_{11}^{2} + 120T_{11} + 64 Copy content Toggle raw display
T235+4T23472T233253T232+1117T23+3539 T_{23}^{5} + 4T_{23}^{4} - 72T_{23}^{3} - 253T_{23}^{2} + 1117T_{23} + 3539 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T5+T48T3++9 T^{5} + T^{4} - 8 T^{3} + \cdots + 9 Copy content Toggle raw display
33 (T+1)5 (T + 1)^{5} Copy content Toggle raw display
55 T5+4T4++64 T^{5} + 4 T^{4} + \cdots + 64 Copy content Toggle raw display
77 (T1)5 (T - 1)^{5} Copy content Toggle raw display
1111 T533T3++64 T^{5} - 33 T^{3} + \cdots + 64 Copy content Toggle raw display
1313 T53T4+68 T^{5} - 3 T^{4} + \cdots - 68 Copy content Toggle raw display
1717 T5 T^{5} Copy content Toggle raw display
1919 T5+T4+124 T^{5} + T^{4} + \cdots - 124 Copy content Toggle raw display
2323 T5+4T4++3539 T^{5} + 4 T^{4} + \cdots + 3539 Copy content Toggle raw display
2929 T5+13T4++33 T^{5} + 13 T^{4} + \cdots + 33 Copy content Toggle raw display
3131 T5+13T4++9132 T^{5} + 13 T^{4} + \cdots + 9132 Copy content Toggle raw display
3737 T5+11T4+17 T^{5} + 11 T^{4} + \cdots - 17 Copy content Toggle raw display
4141 T5T4++124 T^{5} - T^{4} + \cdots + 124 Copy content Toggle raw display
4343 T5T4++14071 T^{5} - T^{4} + \cdots + 14071 Copy content Toggle raw display
4747 T5+4T4+156 T^{5} + 4 T^{4} + \cdots - 156 Copy content Toggle raw display
5353 T5+19T4+2601 T^{5} + 19 T^{4} + \cdots - 2601 Copy content Toggle raw display
5959 T53T4+8228 T^{5} - 3 T^{4} + \cdots - 8228 Copy content Toggle raw display
6161 T55T4+7836 T^{5} - 5 T^{4} + \cdots - 7836 Copy content Toggle raw display
6767 T5+11T4++10992 T^{5} + 11 T^{4} + \cdots + 10992 Copy content Toggle raw display
7171 T5+31T4+1789 T^{5} + 31 T^{4} + \cdots - 1789 Copy content Toggle raw display
7373 T5+13T4++6564 T^{5} + 13 T^{4} + \cdots + 6564 Copy content Toggle raw display
7979 T5+5T4++4821 T^{5} + 5 T^{4} + \cdots + 4821 Copy content Toggle raw display
8383 T5+2T4++107964 T^{5} + 2 T^{4} + \cdots + 107964 Copy content Toggle raw display
8989 T55T4+6396 T^{5} - 5 T^{4} + \cdots - 6396 Copy content Toggle raw display
9797 T53T4+308732 T^{5} - 3 T^{4} + \cdots - 308732 Copy content Toggle raw display
show more
show less