Properties

Label 6069.2.a.t
Level $6069$
Weight $2$
Character orbit 6069.a
Self dual yes
Analytic conductor $48.461$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6069,2,Mod(1,6069)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6069, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6069.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.1669781.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 8x^{3} + 10x^{2} + 8x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - q^{3} + (\beta_{2} + 1) q^{4} + ( - \beta_{3} + \beta_1 - 1) q^{5} + \beta_1 q^{6} + q^{7} + (\beta_{4} - \beta_{3} + \beta_{2} + \cdots + 2) q^{8} + q^{9} + (2 \beta_{3} - \beta_{2} + \beta_1 - 2) q^{10}+ \cdots + (\beta_{4} + \beta_{3} - \beta_{2} + \cdots + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} - 5 q^{3} + 7 q^{4} - 4 q^{5} + q^{6} + 5 q^{7} + 9 q^{8} + 5 q^{9} - 11 q^{10} - 7 q^{12} + 3 q^{13} - q^{14} + 4 q^{15} + 7 q^{16} - q^{18} - q^{19} - 25 q^{20} - 5 q^{21} - 4 q^{22}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 8x^{3} + 10x^{2} + 8x - 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} + \nu^{3} - 6\nu^{2} - 2\nu + 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 7\nu^{2} + 3\nu + 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{4} + \beta_{3} - \beta_{2} + 5\beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 7\beta_{2} - 3\beta _1 + 16 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.20690
1.70810
0.845707
−1.03618
−2.72454
−2.20690 −1.00000 2.87042 −3.62629 2.20690 1.00000 −1.92093 1.00000 8.00288
1.2 −1.70810 −1.00000 0.917609 4.13394 1.70810 1.00000 1.84883 1.00000 −7.06119
1.3 −0.845707 −1.00000 −1.28478 0.712039 0.845707 1.00000 2.77796 1.00000 −0.602176
1.4 1.03618 −1.00000 −0.926340 −1.70681 −1.03618 1.00000 −3.03220 1.00000 −1.76856
1.5 2.72454 −1.00000 5.42309 −3.51287 −2.72454 1.00000 9.32634 1.00000 −9.57095
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6069.2.a.t 5
17.b even 2 1 6069.2.a.u yes 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6069.2.a.t 5 1.a even 1 1 trivial
6069.2.a.u yes 5 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6069))\):

\( T_{2}^{5} + T_{2}^{4} - 8T_{2}^{3} - 10T_{2}^{2} + 8T_{2} + 9 \) Copy content Toggle raw display
\( T_{5}^{5} + 4T_{5}^{4} - 15T_{5}^{3} - 73T_{5}^{2} - 32T_{5} + 64 \) Copy content Toggle raw display
\( T_{11}^{5} - 33T_{11}^{3} + 25T_{11}^{2} + 120T_{11} + 64 \) Copy content Toggle raw display
\( T_{23}^{5} + 4T_{23}^{4} - 72T_{23}^{3} - 253T_{23}^{2} + 1117T_{23} + 3539 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + T^{4} - 8 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$3$ \( (T + 1)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} + 4 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$7$ \( (T - 1)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} - 33 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$13$ \( T^{5} - 3 T^{4} + \cdots - 68 \) Copy content Toggle raw display
$17$ \( T^{5} \) Copy content Toggle raw display
$19$ \( T^{5} + T^{4} + \cdots - 124 \) Copy content Toggle raw display
$23$ \( T^{5} + 4 T^{4} + \cdots + 3539 \) Copy content Toggle raw display
$29$ \( T^{5} + 13 T^{4} + \cdots + 33 \) Copy content Toggle raw display
$31$ \( T^{5} + 13 T^{4} + \cdots + 9132 \) Copy content Toggle raw display
$37$ \( T^{5} + 11 T^{4} + \cdots - 17 \) Copy content Toggle raw display
$41$ \( T^{5} - T^{4} + \cdots + 124 \) Copy content Toggle raw display
$43$ \( T^{5} - T^{4} + \cdots + 14071 \) Copy content Toggle raw display
$47$ \( T^{5} + 4 T^{4} + \cdots - 156 \) Copy content Toggle raw display
$53$ \( T^{5} + 19 T^{4} + \cdots - 2601 \) Copy content Toggle raw display
$59$ \( T^{5} - 3 T^{4} + \cdots - 8228 \) Copy content Toggle raw display
$61$ \( T^{5} - 5 T^{4} + \cdots - 7836 \) Copy content Toggle raw display
$67$ \( T^{5} + 11 T^{4} + \cdots + 10992 \) Copy content Toggle raw display
$71$ \( T^{5} + 31 T^{4} + \cdots - 1789 \) Copy content Toggle raw display
$73$ \( T^{5} + 13 T^{4} + \cdots + 6564 \) Copy content Toggle raw display
$79$ \( T^{5} + 5 T^{4} + \cdots + 4821 \) Copy content Toggle raw display
$83$ \( T^{5} + 2 T^{4} + \cdots + 107964 \) Copy content Toggle raw display
$89$ \( T^{5} - 5 T^{4} + \cdots - 6396 \) Copy content Toggle raw display
$97$ \( T^{5} - 3 T^{4} + \cdots - 308732 \) Copy content Toggle raw display
show more
show less