Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [6069,2,Mod(1,6069)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6069, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6069.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 6069.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 5.5.1669781.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | |||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.20690 | −1.00000 | 2.87042 | −3.62629 | 2.20690 | 1.00000 | −1.92093 | 1.00000 | 8.00288 | |||||||||||||||||||||||||||||||||
1.2 | −1.70810 | −1.00000 | 0.917609 | 4.13394 | 1.70810 | 1.00000 | 1.84883 | 1.00000 | −7.06119 | ||||||||||||||||||||||||||||||||||
1.3 | −0.845707 | −1.00000 | −1.28478 | 0.712039 | 0.845707 | 1.00000 | 2.77796 | 1.00000 | −0.602176 | ||||||||||||||||||||||||||||||||||
1.4 | 1.03618 | −1.00000 | −0.926340 | −1.70681 | −1.03618 | 1.00000 | −3.03220 | 1.00000 | −1.76856 | ||||||||||||||||||||||||||||||||||
1.5 | 2.72454 | −1.00000 | 5.42309 | −3.51287 | −2.72454 | 1.00000 | 9.32634 | 1.00000 | −9.57095 | ||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 6069.2.a.t | ✓ | 5 |
17.b | even | 2 | 1 | 6069.2.a.u | yes | 5 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
6069.2.a.t | ✓ | 5 | 1.a | even | 1 | 1 | trivial |
6069.2.a.u | yes | 5 | 17.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|