Properties

Label 608.4.b.b.303.28
Level $608$
Weight $4$
Character 608.303
Analytic conductor $35.873$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [608,4,Mod(303,608)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(608, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("608.303");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 608.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(35.8731612835\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: no (minimal twist has level 152)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 303.28
Character \(\chi\) \(=\) 608.303
Dual form 608.4.b.b.303.29

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.255308i q^{3} +11.8859i q^{5} +31.1204i q^{7} +26.9348 q^{9} +O(q^{10})\) \(q-0.255308i q^{3} +11.8859i q^{5} +31.1204i q^{7} +26.9348 q^{9} +21.9564 q^{11} -38.7293 q^{13} +3.03456 q^{15} +101.750 q^{17} +(20.2224 + 80.3122i) q^{19} +7.94528 q^{21} +57.3504i q^{23} -16.2739 q^{25} -13.7700i q^{27} +206.088 q^{29} -312.889 q^{31} -5.60563i q^{33} -369.893 q^{35} +156.076 q^{37} +9.88790i q^{39} -399.236i q^{41} -96.2576 q^{43} +320.144i q^{45} -209.396i q^{47} -625.479 q^{49} -25.9775i q^{51} -455.858 q^{53} +260.970i q^{55} +(20.5043 - 5.16293i) q^{57} +451.215i q^{59} +385.501i q^{61} +838.222i q^{63} -460.332i q^{65} +261.804i q^{67} +14.6420 q^{69} +546.989 q^{71} -443.977 q^{73} +4.15485i q^{75} +683.291i q^{77} -950.449 q^{79} +723.724 q^{81} +537.548 q^{83} +1209.38i q^{85} -52.6158i q^{87} +1404.85i q^{89} -1205.27i q^{91} +79.8830i q^{93} +(-954.581 + 240.361i) q^{95} -398.059i q^{97} +591.391 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 528 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q - 528 q^{9} + 40 q^{11} - 184 q^{17} + 84 q^{19} - 1504 q^{25} - 40 q^{35} - 576 q^{43} - 3664 q^{49} - 648 q^{57} - 432 q^{73} + 2296 q^{81} - 5376 q^{83} + 6152 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/608\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.255308i 0.0491340i −0.999698 0.0245670i \(-0.992179\pi\)
0.999698 0.0245670i \(-0.00782071\pi\)
\(4\) 0 0
\(5\) 11.8859i 1.06310i 0.847026 + 0.531552i \(0.178391\pi\)
−0.847026 + 0.531552i \(0.821609\pi\)
\(6\) 0 0
\(7\) 31.1204i 1.68034i 0.542320 + 0.840172i \(0.317546\pi\)
−0.542320 + 0.840172i \(0.682454\pi\)
\(8\) 0 0
\(9\) 26.9348 0.997586
\(10\) 0 0
\(11\) 21.9564 0.601827 0.300913 0.953652i \(-0.402709\pi\)
0.300913 + 0.953652i \(0.402709\pi\)
\(12\) 0 0
\(13\) −38.7293 −0.826276 −0.413138 0.910669i \(-0.635567\pi\)
−0.413138 + 0.910669i \(0.635567\pi\)
\(14\) 0 0
\(15\) 3.03456 0.0522346
\(16\) 0 0
\(17\) 101.750 1.45164 0.725821 0.687883i \(-0.241460\pi\)
0.725821 + 0.687883i \(0.241460\pi\)
\(18\) 0 0
\(19\) 20.2224 + 80.3122i 0.244175 + 0.969731i
\(20\) 0 0
\(21\) 7.94528 0.0825620
\(22\) 0 0
\(23\) 57.3504i 0.519929i 0.965618 + 0.259965i \(0.0837109\pi\)
−0.965618 + 0.259965i \(0.916289\pi\)
\(24\) 0 0
\(25\) −16.2739 −0.130191
\(26\) 0 0
\(27\) 13.7700i 0.0981494i
\(28\) 0 0
\(29\) 206.088 1.31964 0.659819 0.751424i \(-0.270633\pi\)
0.659819 + 0.751424i \(0.270633\pi\)
\(30\) 0 0
\(31\) −312.889 −1.81279 −0.906395 0.422431i \(-0.861177\pi\)
−0.906395 + 0.422431i \(0.861177\pi\)
\(32\) 0 0
\(33\) 5.60563i 0.0295702i
\(34\) 0 0
\(35\) −369.893 −1.78638
\(36\) 0 0
\(37\) 156.076 0.693481 0.346741 0.937961i \(-0.387288\pi\)
0.346741 + 0.937961i \(0.387288\pi\)
\(38\) 0 0
\(39\) 9.88790i 0.0405982i
\(40\) 0 0
\(41\) 399.236i 1.52074i −0.649493 0.760368i \(-0.725019\pi\)
0.649493 0.760368i \(-0.274981\pi\)
\(42\) 0 0
\(43\) −96.2576 −0.341375 −0.170688 0.985325i \(-0.554599\pi\)
−0.170688 + 0.985325i \(0.554599\pi\)
\(44\) 0 0
\(45\) 320.144i 1.06054i
\(46\) 0 0
\(47\) 209.396i 0.649863i −0.945737 0.324932i \(-0.894659\pi\)
0.945737 0.324932i \(-0.105341\pi\)
\(48\) 0 0
\(49\) −625.479 −1.82356
\(50\) 0 0
\(51\) 25.9775i 0.0713250i
\(52\) 0 0
\(53\) −455.858 −1.18145 −0.590725 0.806873i \(-0.701158\pi\)
−0.590725 + 0.806873i \(0.701158\pi\)
\(54\) 0 0
\(55\) 260.970i 0.639804i
\(56\) 0 0
\(57\) 20.5043 5.16293i 0.0476468 0.0119973i
\(58\) 0 0
\(59\) 451.215i 0.995647i 0.867279 + 0.497823i \(0.165867\pi\)
−0.867279 + 0.497823i \(0.834133\pi\)
\(60\) 0 0
\(61\) 385.501i 0.809154i 0.914504 + 0.404577i \(0.132581\pi\)
−0.914504 + 0.404577i \(0.867419\pi\)
\(62\) 0 0
\(63\) 838.222i 1.67629i
\(64\) 0 0
\(65\) 460.332i 0.878417i
\(66\) 0 0
\(67\) 261.804i 0.477380i 0.971096 + 0.238690i \(0.0767179\pi\)
−0.971096 + 0.238690i \(0.923282\pi\)
\(68\) 0 0
\(69\) 14.6420 0.0255462
\(70\) 0 0
\(71\) 546.989 0.914306 0.457153 0.889388i \(-0.348869\pi\)
0.457153 + 0.889388i \(0.348869\pi\)
\(72\) 0 0
\(73\) −443.977 −0.711830 −0.355915 0.934518i \(-0.615831\pi\)
−0.355915 + 0.934518i \(0.615831\pi\)
\(74\) 0 0
\(75\) 4.15485i 0.00639680i
\(76\) 0 0
\(77\) 683.291i 1.01128i
\(78\) 0 0
\(79\) −950.449 −1.35359 −0.676797 0.736170i \(-0.736632\pi\)
−0.676797 + 0.736170i \(0.736632\pi\)
\(80\) 0 0
\(81\) 723.724 0.992763
\(82\) 0 0
\(83\) 537.548 0.710886 0.355443 0.934698i \(-0.384330\pi\)
0.355443 + 0.934698i \(0.384330\pi\)
\(84\) 0 0
\(85\) 1209.38i 1.54325i
\(86\) 0 0
\(87\) 52.6158i 0.0648391i
\(88\) 0 0
\(89\) 1404.85i 1.67319i 0.547822 + 0.836595i \(0.315457\pi\)
−0.547822 + 0.836595i \(0.684543\pi\)
\(90\) 0 0
\(91\) 1205.27i 1.38843i
\(92\) 0 0
\(93\) 79.8830i 0.0890697i
\(94\) 0 0
\(95\) −954.581 + 240.361i −1.03093 + 0.259584i
\(96\) 0 0
\(97\) 398.059i 0.416668i −0.978058 0.208334i \(-0.933196\pi\)
0.978058 0.208334i \(-0.0668041\pi\)
\(98\) 0 0
\(99\) 591.391 0.600374
\(100\) 0 0
\(101\) 1111.11i 1.09464i −0.836922 0.547322i \(-0.815647\pi\)
0.836922 0.547322i \(-0.184353\pi\)
\(102\) 0 0
\(103\) 998.893 0.955571 0.477786 0.878477i \(-0.341440\pi\)
0.477786 + 0.878477i \(0.341440\pi\)
\(104\) 0 0
\(105\) 94.4366i 0.0877721i
\(106\) 0 0
\(107\) 82.6255i 0.0746515i 0.999303 + 0.0373257i \(0.0118839\pi\)
−0.999303 + 0.0373257i \(0.988116\pi\)
\(108\) 0 0
\(109\) 836.605 0.735158 0.367579 0.929992i \(-0.380187\pi\)
0.367579 + 0.929992i \(0.380187\pi\)
\(110\) 0 0
\(111\) 39.8475i 0.0340735i
\(112\) 0 0
\(113\) 580.927i 0.483620i −0.970324 0.241810i \(-0.922259\pi\)
0.970324 0.241810i \(-0.0777411\pi\)
\(114\) 0 0
\(115\) −681.659 −0.552739
\(116\) 0 0
\(117\) −1043.17 −0.824281
\(118\) 0 0
\(119\) 3166.49i 2.43926i
\(120\) 0 0
\(121\) −848.918 −0.637805
\(122\) 0 0
\(123\) −101.928 −0.0747199
\(124\) 0 0
\(125\) 1292.30i 0.924698i
\(126\) 0 0
\(127\) 1015.44 0.709496 0.354748 0.934962i \(-0.384567\pi\)
0.354748 + 0.934962i \(0.384567\pi\)
\(128\) 0 0
\(129\) 24.5753i 0.0167732i
\(130\) 0 0
\(131\) −1970.99 −1.31455 −0.657276 0.753650i \(-0.728292\pi\)
−0.657276 + 0.753650i \(0.728292\pi\)
\(132\) 0 0
\(133\) −2499.35 + 629.329i −1.62948 + 0.410299i
\(134\) 0 0
\(135\) 163.668 0.104343
\(136\) 0 0
\(137\) −755.460 −0.471119 −0.235559 0.971860i \(-0.575692\pi\)
−0.235559 + 0.971860i \(0.575692\pi\)
\(138\) 0 0
\(139\) −2128.52 −1.29884 −0.649419 0.760431i \(-0.724988\pi\)
−0.649419 + 0.760431i \(0.724988\pi\)
\(140\) 0 0
\(141\) −53.4605 −0.0319304
\(142\) 0 0
\(143\) −850.355 −0.497275
\(144\) 0 0
\(145\) 2449.53i 1.40291i
\(146\) 0 0
\(147\) 159.690i 0.0895986i
\(148\) 0 0
\(149\) 1029.90i 0.566258i 0.959082 + 0.283129i \(0.0913724\pi\)
−0.959082 + 0.283129i \(0.908628\pi\)
\(150\) 0 0
\(151\) 1189.40 0.641005 0.320502 0.947248i \(-0.396148\pi\)
0.320502 + 0.947248i \(0.396148\pi\)
\(152\) 0 0
\(153\) 2740.61 1.44814
\(154\) 0 0
\(155\) 3718.96i 1.92719i
\(156\) 0 0
\(157\) 3448.86i 1.75318i −0.481241 0.876588i \(-0.659814\pi\)
0.481241 0.876588i \(-0.340186\pi\)
\(158\) 0 0
\(159\) 116.384i 0.0580494i
\(160\) 0 0
\(161\) −1784.77 −0.873660
\(162\) 0 0
\(163\) 2774.87 1.33340 0.666701 0.745325i \(-0.267706\pi\)
0.666701 + 0.745325i \(0.267706\pi\)
\(164\) 0 0
\(165\) 66.6278 0.0314362
\(166\) 0 0
\(167\) 150.985 0.0699615 0.0349807 0.999388i \(-0.488863\pi\)
0.0349807 + 0.999388i \(0.488863\pi\)
\(168\) 0 0
\(169\) −697.039 −0.317269
\(170\) 0 0
\(171\) 544.686 + 2163.20i 0.243586 + 0.967390i
\(172\) 0 0
\(173\) 1161.80 0.510579 0.255289 0.966865i \(-0.417829\pi\)
0.255289 + 0.966865i \(0.417829\pi\)
\(174\) 0 0
\(175\) 506.449i 0.218766i
\(176\) 0 0
\(177\) 115.199 0.0489201
\(178\) 0 0
\(179\) 4506.82i 1.88188i −0.338580 0.940938i \(-0.609947\pi\)
0.338580 0.940938i \(-0.390053\pi\)
\(180\) 0 0
\(181\) −1300.89 −0.534222 −0.267111 0.963666i \(-0.586069\pi\)
−0.267111 + 0.963666i \(0.586069\pi\)
\(182\) 0 0
\(183\) 98.4215 0.0397570
\(184\) 0 0
\(185\) 1855.10i 0.737243i
\(186\) 0 0
\(187\) 2234.05 0.873637
\(188\) 0 0
\(189\) 428.527 0.164925
\(190\) 0 0
\(191\) 1713.84i 0.649263i −0.945841 0.324631i \(-0.894760\pi\)
0.945841 0.324631i \(-0.105240\pi\)
\(192\) 0 0
\(193\) 836.962i 0.312154i −0.987745 0.156077i \(-0.950115\pi\)
0.987745 0.156077i \(-0.0498849\pi\)
\(194\) 0 0
\(195\) −117.526 −0.0431602
\(196\) 0 0
\(197\) 567.220i 0.205141i −0.994726 0.102570i \(-0.967293\pi\)
0.994726 0.102570i \(-0.0327067\pi\)
\(198\) 0 0
\(199\) 3533.62i 1.25875i −0.777101 0.629376i \(-0.783310\pi\)
0.777101 0.629376i \(-0.216690\pi\)
\(200\) 0 0
\(201\) 66.8406 0.0234556
\(202\) 0 0
\(203\) 6413.53i 2.21745i
\(204\) 0 0
\(205\) 4745.27 1.61670
\(206\) 0 0
\(207\) 1544.72i 0.518674i
\(208\) 0 0
\(209\) 444.010 + 1763.36i 0.146951 + 0.583610i
\(210\) 0 0
\(211\) 3990.60i 1.30201i 0.759073 + 0.651006i \(0.225653\pi\)
−0.759073 + 0.651006i \(0.774347\pi\)
\(212\) 0 0
\(213\) 139.651i 0.0449235i
\(214\) 0 0
\(215\) 1144.11i 0.362918i
\(216\) 0 0
\(217\) 9737.23i 3.04611i
\(218\) 0 0
\(219\) 113.351i 0.0349751i
\(220\) 0 0
\(221\) −3940.70 −1.19946
\(222\) 0 0
\(223\) −1073.95 −0.322498 −0.161249 0.986914i \(-0.551552\pi\)
−0.161249 + 0.986914i \(0.551552\pi\)
\(224\) 0 0
\(225\) −438.334 −0.129877
\(226\) 0 0
\(227\) 3165.76i 0.925633i −0.886454 0.462816i \(-0.846839\pi\)
0.886454 0.462816i \(-0.153161\pi\)
\(228\) 0 0
\(229\) 2500.47i 0.721553i 0.932652 + 0.360776i \(0.117488\pi\)
−0.932652 + 0.360776i \(0.882512\pi\)
\(230\) 0 0
\(231\) 174.450 0.0496880
\(232\) 0 0
\(233\) 1034.30 0.290812 0.145406 0.989372i \(-0.453551\pi\)
0.145406 + 0.989372i \(0.453551\pi\)
\(234\) 0 0
\(235\) 2488.86 0.690873
\(236\) 0 0
\(237\) 242.657i 0.0665075i
\(238\) 0 0
\(239\) 1446.06i 0.391370i −0.980667 0.195685i \(-0.937307\pi\)
0.980667 0.195685i \(-0.0626931\pi\)
\(240\) 0 0
\(241\) 3098.89i 0.828288i 0.910211 + 0.414144i \(0.135919\pi\)
−0.910211 + 0.414144i \(0.864081\pi\)
\(242\) 0 0
\(243\) 556.562i 0.146928i
\(244\) 0 0
\(245\) 7434.37i 1.93863i
\(246\) 0 0
\(247\) −783.199 3110.44i −0.201756 0.801265i
\(248\) 0 0
\(249\) 137.240i 0.0349287i
\(250\) 0 0
\(251\) −3586.47 −0.901897 −0.450948 0.892550i \(-0.648914\pi\)
−0.450948 + 0.892550i \(0.648914\pi\)
\(252\) 0 0
\(253\) 1259.21i 0.312907i
\(254\) 0 0
\(255\) 308.765 0.0758260
\(256\) 0 0
\(257\) 6739.57i 1.63581i 0.575355 + 0.817904i \(0.304864\pi\)
−0.575355 + 0.817904i \(0.695136\pi\)
\(258\) 0 0
\(259\) 4857.16i 1.16529i
\(260\) 0 0
\(261\) 5550.93 1.31645
\(262\) 0 0
\(263\) 2998.75i 0.703083i −0.936172 0.351541i \(-0.885658\pi\)
0.936172 0.351541i \(-0.114342\pi\)
\(264\) 0 0
\(265\) 5418.26i 1.25600i
\(266\) 0 0
\(267\) 358.669 0.0822105
\(268\) 0 0
\(269\) 3587.92 0.813231 0.406615 0.913599i \(-0.366709\pi\)
0.406615 + 0.913599i \(0.366709\pi\)
\(270\) 0 0
\(271\) 2610.23i 0.585092i −0.956251 0.292546i \(-0.905498\pi\)
0.956251 0.292546i \(-0.0945025\pi\)
\(272\) 0 0
\(273\) −307.715 −0.0682190
\(274\) 0 0
\(275\) −357.315 −0.0783524
\(276\) 0 0
\(277\) 5163.37i 1.11999i −0.828497 0.559994i \(-0.810803\pi\)
0.828497 0.559994i \(-0.189197\pi\)
\(278\) 0 0
\(279\) −8427.60 −1.80841
\(280\) 0 0
\(281\) 5390.26i 1.14433i −0.820140 0.572163i \(-0.806104\pi\)
0.820140 0.572163i \(-0.193896\pi\)
\(282\) 0 0
\(283\) 7541.59 1.58410 0.792051 0.610455i \(-0.209013\pi\)
0.792051 + 0.610455i \(0.209013\pi\)
\(284\) 0 0
\(285\) 61.3659 + 243.712i 0.0127544 + 0.0506535i
\(286\) 0 0
\(287\) 12424.4 2.55536
\(288\) 0 0
\(289\) 5440.00 1.10727
\(290\) 0 0
\(291\) −101.628 −0.0204726
\(292\) 0 0
\(293\) 2730.96 0.544520 0.272260 0.962224i \(-0.412229\pi\)
0.272260 + 0.962224i \(0.412229\pi\)
\(294\) 0 0
\(295\) −5363.08 −1.05848
\(296\) 0 0
\(297\) 302.339i 0.0590689i
\(298\) 0 0
\(299\) 2221.14i 0.429605i
\(300\) 0 0
\(301\) 2995.58i 0.573628i
\(302\) 0 0
\(303\) −283.674 −0.0537843
\(304\) 0 0
\(305\) −4582.02 −0.860215
\(306\) 0 0
\(307\) 1024.35i 0.190433i −0.995457 0.0952163i \(-0.969646\pi\)
0.995457 0.0952163i \(-0.0303543\pi\)
\(308\) 0 0
\(309\) 255.025i 0.0469510i
\(310\) 0 0
\(311\) 2526.27i 0.460617i 0.973118 + 0.230308i \(0.0739735\pi\)
−0.973118 + 0.230308i \(0.926027\pi\)
\(312\) 0 0
\(313\) 10532.3 1.90199 0.950994 0.309209i \(-0.100064\pi\)
0.950994 + 0.309209i \(0.100064\pi\)
\(314\) 0 0
\(315\) −9963.00 −1.78207
\(316\) 0 0
\(317\) −6189.48 −1.09664 −0.548322 0.836267i \(-0.684733\pi\)
−0.548322 + 0.836267i \(0.684733\pi\)
\(318\) 0 0
\(319\) 4524.94 0.794194
\(320\) 0 0
\(321\) 21.0949 0.00366793
\(322\) 0 0
\(323\) 2057.62 + 8171.75i 0.354455 + 1.40770i
\(324\) 0 0
\(325\) 630.276 0.107574
\(326\) 0 0
\(327\) 213.592i 0.0361213i
\(328\) 0 0
\(329\) 6516.50 1.09199
\(330\) 0 0
\(331\) 4035.04i 0.670048i −0.942210 0.335024i \(-0.891255\pi\)
0.942210 0.335024i \(-0.108745\pi\)
\(332\) 0 0
\(333\) 4203.89 0.691807
\(334\) 0 0
\(335\) −3111.77 −0.507504
\(336\) 0 0
\(337\) 9651.06i 1.56002i 0.625767 + 0.780010i \(0.284786\pi\)
−0.625767 + 0.780010i \(0.715214\pi\)
\(338\) 0 0
\(339\) −148.315 −0.0237622
\(340\) 0 0
\(341\) −6869.90 −1.09099
\(342\) 0 0
\(343\) 8790.88i 1.38386i
\(344\) 0 0
\(345\) 174.033i 0.0271583i
\(346\) 0 0
\(347\) 1311.88 0.202955 0.101478 0.994838i \(-0.467643\pi\)
0.101478 + 0.994838i \(0.467643\pi\)
\(348\) 0 0
\(349\) 7143.37i 1.09563i −0.836599 0.547816i \(-0.815459\pi\)
0.836599 0.547816i \(-0.184541\pi\)
\(350\) 0 0
\(351\) 533.302i 0.0810985i
\(352\) 0 0
\(353\) 3355.30 0.505905 0.252952 0.967479i \(-0.418598\pi\)
0.252952 + 0.967479i \(0.418598\pi\)
\(354\) 0 0
\(355\) 6501.44i 0.972002i
\(356\) 0 0
\(357\) 808.430 0.119851
\(358\) 0 0
\(359\) 5647.41i 0.830247i 0.909765 + 0.415124i \(0.136262\pi\)
−0.909765 + 0.415124i \(0.863738\pi\)
\(360\) 0 0
\(361\) −6041.11 + 3248.21i −0.880757 + 0.473569i
\(362\) 0 0
\(363\) 216.735i 0.0313379i
\(364\) 0 0
\(365\) 5277.05i 0.756750i
\(366\) 0 0
\(367\) 6607.22i 0.939766i −0.882729 0.469883i \(-0.844296\pi\)
0.882729 0.469883i \(-0.155704\pi\)
\(368\) 0 0
\(369\) 10753.3i 1.51706i
\(370\) 0 0
\(371\) 14186.5i 1.98524i
\(372\) 0 0
\(373\) 9677.75 1.34342 0.671709 0.740815i \(-0.265561\pi\)
0.671709 + 0.740815i \(0.265561\pi\)
\(374\) 0 0
\(375\) 329.935 0.0454341
\(376\) 0 0
\(377\) −7981.64 −1.09039
\(378\) 0 0
\(379\) 7594.94i 1.02936i 0.857384 + 0.514678i \(0.172089\pi\)
−0.857384 + 0.514678i \(0.827911\pi\)
\(380\) 0 0
\(381\) 259.251i 0.0348604i
\(382\) 0 0
\(383\) 689.095 0.0919350 0.0459675 0.998943i \(-0.485363\pi\)
0.0459675 + 0.998943i \(0.485363\pi\)
\(384\) 0 0
\(385\) −8121.51 −1.07509
\(386\) 0 0
\(387\) −2592.68 −0.340551
\(388\) 0 0
\(389\) 918.749i 0.119749i 0.998206 + 0.0598746i \(0.0190701\pi\)
−0.998206 + 0.0598746i \(0.980930\pi\)
\(390\) 0 0
\(391\) 5835.38i 0.754752i
\(392\) 0 0
\(393\) 503.210i 0.0645893i
\(394\) 0 0
\(395\) 11296.9i 1.43901i
\(396\) 0 0
\(397\) 6718.99i 0.849411i 0.905332 + 0.424706i \(0.139622\pi\)
−0.905332 + 0.424706i \(0.860378\pi\)
\(398\) 0 0
\(399\) 160.673 + 638.103i 0.0201596 + 0.0800630i
\(400\) 0 0
\(401\) 2657.88i 0.330993i 0.986210 + 0.165496i \(0.0529226\pi\)
−0.986210 + 0.165496i \(0.947077\pi\)
\(402\) 0 0
\(403\) 12118.0 1.49786
\(404\) 0 0
\(405\) 8602.09i 1.05541i
\(406\) 0 0
\(407\) 3426.87 0.417355
\(408\) 0 0
\(409\) 865.521i 0.104639i 0.998630 + 0.0523194i \(0.0166614\pi\)
−0.998630 + 0.0523194i \(0.983339\pi\)
\(410\) 0 0
\(411\) 192.875i 0.0231480i
\(412\) 0 0
\(413\) −14042.0 −1.67303
\(414\) 0 0
\(415\) 6389.23i 0.755747i
\(416\) 0 0
\(417\) 543.427i 0.0638171i
\(418\) 0 0
\(419\) −10425.9 −1.21561 −0.607804 0.794087i \(-0.707949\pi\)
−0.607804 + 0.794087i \(0.707949\pi\)
\(420\) 0 0
\(421\) 8091.59 0.936722 0.468361 0.883537i \(-0.344845\pi\)
0.468361 + 0.883537i \(0.344845\pi\)
\(422\) 0 0
\(423\) 5640.05i 0.648295i
\(424\) 0 0
\(425\) −1655.86 −0.188991
\(426\) 0 0
\(427\) −11997.0 −1.35966
\(428\) 0 0
\(429\) 217.102i 0.0244331i
\(430\) 0 0
\(431\) 4972.36 0.555708 0.277854 0.960623i \(-0.410377\pi\)
0.277854 + 0.960623i \(0.410377\pi\)
\(432\) 0 0
\(433\) 4916.49i 0.545661i 0.962062 + 0.272831i \(0.0879599\pi\)
−0.962062 + 0.272831i \(0.912040\pi\)
\(434\) 0 0
\(435\) 625.384 0.0689308
\(436\) 0 0
\(437\) −4605.94 + 1159.76i −0.504192 + 0.126954i
\(438\) 0 0
\(439\) −9969.73 −1.08389 −0.541947 0.840413i \(-0.682313\pi\)
−0.541947 + 0.840413i \(0.682313\pi\)
\(440\) 0 0
\(441\) −16847.2 −1.81915
\(442\) 0 0
\(443\) 12954.5 1.38936 0.694678 0.719321i \(-0.255547\pi\)
0.694678 + 0.719321i \(0.255547\pi\)
\(444\) 0 0
\(445\) −16697.9 −1.77878
\(446\) 0 0
\(447\) 262.941 0.0278225
\(448\) 0 0
\(449\) 1992.49i 0.209424i 0.994503 + 0.104712i \(0.0333922\pi\)
−0.994503 + 0.104712i \(0.966608\pi\)
\(450\) 0 0
\(451\) 8765.77i 0.915219i
\(452\) 0 0
\(453\) 303.662i 0.0314951i
\(454\) 0 0
\(455\) 14325.7 1.47604
\(456\) 0 0
\(457\) 12912.0 1.32166 0.660831 0.750535i \(-0.270204\pi\)
0.660831 + 0.750535i \(0.270204\pi\)
\(458\) 0 0
\(459\) 1401.09i 0.142478i
\(460\) 0 0
\(461\) 14539.6i 1.46893i 0.678646 + 0.734466i \(0.262567\pi\)
−0.678646 + 0.734466i \(0.737433\pi\)
\(462\) 0 0
\(463\) 5767.23i 0.578889i 0.957195 + 0.289445i \(0.0934706\pi\)
−0.957195 + 0.289445i \(0.906529\pi\)
\(464\) 0 0
\(465\) −949.479 −0.0946904
\(466\) 0 0
\(467\) 3777.72 0.374330 0.187165 0.982329i \(-0.440070\pi\)
0.187165 + 0.982329i \(0.440070\pi\)
\(468\) 0 0
\(469\) −8147.44 −0.802162
\(470\) 0 0
\(471\) −880.520 −0.0861406
\(472\) 0 0
\(473\) −2113.47 −0.205449
\(474\) 0 0
\(475\) −329.096 1306.99i −0.0317894 0.126250i
\(476\) 0 0
\(477\) −12278.4 −1.17860
\(478\) 0 0
\(479\) 16308.7i 1.55566i 0.628474 + 0.777830i \(0.283680\pi\)
−0.628474 + 0.777830i \(0.716320\pi\)
\(480\) 0 0
\(481\) −6044.73 −0.573006
\(482\) 0 0
\(483\) 455.665i 0.0429264i
\(484\) 0 0
\(485\) 4731.28 0.442962
\(486\) 0 0
\(487\) 7770.87 0.723063 0.361532 0.932360i \(-0.382254\pi\)
0.361532 + 0.932360i \(0.382254\pi\)
\(488\) 0 0
\(489\) 708.446i 0.0655154i
\(490\) 0 0
\(491\) 16888.6 1.55228 0.776141 0.630559i \(-0.217174\pi\)
0.776141 + 0.630559i \(0.217174\pi\)
\(492\) 0 0
\(493\) 20969.4 1.91564
\(494\) 0 0
\(495\) 7029.19i 0.638260i
\(496\) 0 0
\(497\) 17022.5i 1.53635i
\(498\) 0 0
\(499\) −961.553 −0.0862626 −0.0431313 0.999069i \(-0.513733\pi\)
−0.0431313 + 0.999069i \(0.513733\pi\)
\(500\) 0 0
\(501\) 38.5477i 0.00343749i
\(502\) 0 0
\(503\) 5526.02i 0.489847i 0.969542 + 0.244924i \(0.0787629\pi\)
−0.969542 + 0.244924i \(0.921237\pi\)
\(504\) 0 0
\(505\) 13206.5 1.16372
\(506\) 0 0
\(507\) 177.960i 0.0155887i
\(508\) 0 0
\(509\) −2723.71 −0.237184 −0.118592 0.992943i \(-0.537838\pi\)
−0.118592 + 0.992943i \(0.537838\pi\)
\(510\) 0 0
\(511\) 13816.7i 1.19612i
\(512\) 0 0
\(513\) 1105.90 278.462i 0.0951785 0.0239657i
\(514\) 0 0
\(515\) 11872.7i 1.01587i
\(516\) 0 0
\(517\) 4597.58i 0.391105i
\(518\) 0 0
\(519\) 296.617i 0.0250868i
\(520\) 0 0
\(521\) 5935.63i 0.499126i −0.968359 0.249563i \(-0.919713\pi\)
0.968359 0.249563i \(-0.0802869\pi\)
\(522\) 0 0
\(523\) 1446.58i 0.120945i −0.998170 0.0604726i \(-0.980739\pi\)
0.998170 0.0604726i \(-0.0192608\pi\)
\(524\) 0 0
\(525\) −129.300 −0.0107488
\(526\) 0 0
\(527\) −31836.3 −2.63152
\(528\) 0 0
\(529\) 8877.94 0.729673
\(530\) 0 0
\(531\) 12153.4i 0.993243i
\(532\) 0 0
\(533\) 15462.1i 1.25655i
\(534\) 0 0
\(535\) −982.075 −0.0793623
\(536\) 0 0
\(537\) −1150.63 −0.0924641
\(538\) 0 0
\(539\) −13733.3 −1.09746
\(540\) 0 0
\(541\) 2569.96i 0.204235i 0.994772 + 0.102118i \(0.0325618\pi\)
−0.994772 + 0.102118i \(0.967438\pi\)
\(542\) 0 0
\(543\) 332.127i 0.0262485i
\(544\) 0 0
\(545\) 9943.78i 0.781550i
\(546\) 0 0
\(547\) 7507.83i 0.586858i −0.955981 0.293429i \(-0.905204\pi\)
0.955981 0.293429i \(-0.0947965\pi\)
\(548\) 0 0
\(549\) 10383.4i 0.807201i
\(550\) 0 0
\(551\) 4167.58 + 16551.4i 0.322223 + 1.27969i
\(552\) 0 0
\(553\) 29578.4i 2.27450i
\(554\) 0 0
\(555\) 473.622 0.0362237
\(556\) 0 0
\(557\) 12498.0i 0.950728i 0.879789 + 0.475364i \(0.157684\pi\)
−0.879789 + 0.475364i \(0.842316\pi\)
\(558\) 0 0
\(559\) 3727.99 0.282070
\(560\) 0 0
\(561\) 570.371i 0.0429253i
\(562\) 0 0
\(563\) 14437.3i 1.08075i −0.841425 0.540374i \(-0.818283\pi\)
0.841425 0.540374i \(-0.181717\pi\)
\(564\) 0 0
\(565\) 6904.83 0.514138
\(566\) 0 0
\(567\) 22522.6i 1.66818i
\(568\) 0 0
\(569\) 3732.90i 0.275029i 0.990500 + 0.137514i \(0.0439113\pi\)
−0.990500 + 0.137514i \(0.956089\pi\)
\(570\) 0 0
\(571\) −7948.75 −0.582566 −0.291283 0.956637i \(-0.594082\pi\)
−0.291283 + 0.956637i \(0.594082\pi\)
\(572\) 0 0
\(573\) −437.557 −0.0319009
\(574\) 0 0
\(575\) 933.312i 0.0676901i
\(576\) 0 0
\(577\) −1091.83 −0.0787758 −0.0393879 0.999224i \(-0.512541\pi\)
−0.0393879 + 0.999224i \(0.512541\pi\)
\(578\) 0 0
\(579\) −213.683 −0.0153374
\(580\) 0 0
\(581\) 16728.7i 1.19453i
\(582\) 0 0
\(583\) −10009.0 −0.711028
\(584\) 0 0
\(585\) 12398.9i 0.876296i
\(586\) 0 0
\(587\) −3678.42 −0.258645 −0.129322 0.991603i \(-0.541280\pi\)
−0.129322 + 0.991603i \(0.541280\pi\)
\(588\) 0 0
\(589\) −6327.36 25128.8i −0.442639 1.75792i
\(590\) 0 0
\(591\) −144.816 −0.0100794
\(592\) 0 0
\(593\) −17520.6 −1.21330 −0.606648 0.794970i \(-0.707486\pi\)
−0.606648 + 0.794970i \(0.707486\pi\)
\(594\) 0 0
\(595\) −37636.5 −2.59319
\(596\) 0 0
\(597\) −902.161 −0.0618476
\(598\) 0 0
\(599\) 14805.7 1.00992 0.504960 0.863143i \(-0.331507\pi\)
0.504960 + 0.863143i \(0.331507\pi\)
\(600\) 0 0
\(601\) 9476.86i 0.643210i −0.946874 0.321605i \(-0.895778\pi\)
0.946874 0.321605i \(-0.104222\pi\)
\(602\) 0 0
\(603\) 7051.64i 0.476227i
\(604\) 0 0
\(605\) 10090.1i 0.678053i
\(606\) 0 0
\(607\) 1962.54 0.131231 0.0656155 0.997845i \(-0.479099\pi\)
0.0656155 + 0.997845i \(0.479099\pi\)
\(608\) 0 0
\(609\) 1637.42 0.108952
\(610\) 0 0
\(611\) 8109.77i 0.536966i
\(612\) 0 0
\(613\) 9072.88i 0.597798i −0.954285 0.298899i \(-0.903381\pi\)
0.954285 0.298899i \(-0.0966194\pi\)
\(614\) 0 0
\(615\) 1211.50i 0.0794350i
\(616\) 0 0
\(617\) 9669.18 0.630902 0.315451 0.948942i \(-0.397844\pi\)
0.315451 + 0.948942i \(0.397844\pi\)
\(618\) 0 0
\(619\) −4803.50 −0.311905 −0.155952 0.987765i \(-0.549845\pi\)
−0.155952 + 0.987765i \(0.549845\pi\)
\(620\) 0 0
\(621\) 789.714 0.0510308
\(622\) 0 0
\(623\) −43719.5 −2.81153
\(624\) 0 0
\(625\) −17394.4 −1.11324
\(626\) 0 0
\(627\) 450.201 113.359i 0.0286751 0.00722031i
\(628\) 0 0
\(629\) 15880.7 1.00669
\(630\) 0 0
\(631\) 1994.73i 0.125846i 0.998018 + 0.0629232i \(0.0200423\pi\)
−0.998018 + 0.0629232i \(0.979958\pi\)
\(632\) 0 0
\(633\) 1018.83 0.0639731
\(634\) 0 0
\(635\) 12069.4i 0.754268i
\(636\) 0 0
\(637\) 24224.4 1.50676
\(638\) 0 0
\(639\) 14733.1 0.912098
\(640\) 0 0
\(641\) 12599.6i 0.776374i 0.921581 + 0.388187i \(0.126899\pi\)
−0.921581 + 0.388187i \(0.873101\pi\)
\(642\) 0 0
\(643\) −13231.7 −0.811517 −0.405759 0.913980i \(-0.632993\pi\)
−0.405759 + 0.913980i \(0.632993\pi\)
\(644\) 0 0
\(645\) −292.099 −0.0178316
\(646\) 0 0
\(647\) 345.667i 0.0210040i 0.999945 + 0.0105020i \(0.00334295\pi\)
−0.999945 + 0.0105020i \(0.996657\pi\)
\(648\) 0 0
\(649\) 9907.03i 0.599207i
\(650\) 0 0
\(651\) −2485.99 −0.149668
\(652\) 0 0
\(653\) 28907.1i 1.73234i 0.499745 + 0.866172i \(0.333427\pi\)
−0.499745 + 0.866172i \(0.666573\pi\)
\(654\) 0 0
\(655\) 23427.0i 1.39751i
\(656\) 0 0
\(657\) −11958.4 −0.710112
\(658\) 0 0
\(659\) 17748.5i 1.04914i −0.851368 0.524569i \(-0.824227\pi\)
0.851368 0.524569i \(-0.175773\pi\)
\(660\) 0 0
\(661\) −29973.2 −1.76373 −0.881864 0.471504i \(-0.843711\pi\)
−0.881864 + 0.471504i \(0.843711\pi\)
\(662\) 0 0
\(663\) 1006.09i 0.0589341i
\(664\) 0 0
\(665\) −7480.12 29706.9i −0.436190 1.73231i
\(666\) 0 0
\(667\) 11819.2i 0.686119i
\(668\) 0 0
\(669\) 274.188i 0.0158456i
\(670\) 0 0
\(671\) 8464.21i 0.486970i
\(672\) 0 0
\(673\) 26244.4i 1.50319i 0.659624 + 0.751595i \(0.270715\pi\)
−0.659624 + 0.751595i \(0.729285\pi\)
\(674\) 0 0
\(675\) 224.091i 0.0127782i
\(676\) 0 0
\(677\) 12259.6 0.695972 0.347986 0.937500i \(-0.386866\pi\)
0.347986 + 0.937500i \(0.386866\pi\)
\(678\) 0 0
\(679\) 12387.8 0.700146
\(680\) 0 0
\(681\) −808.243 −0.0454801
\(682\) 0 0
\(683\) 9968.98i 0.558495i 0.960219 + 0.279248i \(0.0900850\pi\)
−0.960219 + 0.279248i \(0.909915\pi\)
\(684\) 0 0
\(685\) 8979.29i 0.500848i
\(686\) 0 0
\(687\) 638.389 0.0354528
\(688\) 0 0
\(689\) 17655.1 0.976203
\(690\) 0 0
\(691\) 24599.5 1.35428 0.677142 0.735852i \(-0.263218\pi\)
0.677142 + 0.735852i \(0.263218\pi\)
\(692\) 0 0
\(693\) 18404.3i 1.00883i
\(694\) 0 0
\(695\) 25299.3i 1.38080i
\(696\) 0 0
\(697\) 40622.1i 2.20757i
\(698\) 0 0
\(699\) 264.064i 0.0142887i
\(700\) 0 0
\(701\) 14471.8i 0.779734i −0.920871 0.389867i \(-0.872521\pi\)
0.920871 0.389867i \(-0.127479\pi\)
\(702\) 0 0
\(703\) 3156.24 + 12534.8i 0.169331 + 0.672490i
\(704\) 0 0
\(705\) 635.424i 0.0339453i
\(706\) 0 0
\(707\) 34578.1 1.83938
\(708\) 0 0
\(709\) 18759.1i 0.993671i −0.867845 0.496836i \(-0.834495\pi\)
0.867845 0.496836i \(-0.165505\pi\)
\(710\) 0 0
\(711\) −25600.2 −1.35033
\(712\) 0 0
\(713\) 17944.3i 0.942523i
\(714\) 0 0
\(715\) 10107.2i 0.528655i
\(716\) 0 0
\(717\) −369.189 −0.0192296
\(718\) 0 0
\(719\) 4210.87i 0.218413i 0.994019 + 0.109206i \(0.0348310\pi\)
−0.994019 + 0.109206i \(0.965169\pi\)
\(720\) 0 0
\(721\) 31085.9i 1.60569i
\(722\) 0 0
\(723\) 791.172 0.0406971
\(724\) 0 0
\(725\) −3353.84 −0.171805
\(726\) 0 0
\(727\) 8248.16i 0.420780i −0.977618 0.210390i \(-0.932527\pi\)
0.977618 0.210390i \(-0.0674734\pi\)
\(728\) 0 0
\(729\) 19398.5 0.985544
\(730\) 0 0
\(731\) −9794.18 −0.495555
\(732\) 0 0
\(733\) 6704.17i 0.337823i 0.985631 + 0.168911i \(0.0540252\pi\)
−0.985631 + 0.168911i \(0.945975\pi\)
\(734\) 0 0
\(735\) −1898.05 −0.0952527
\(736\) 0 0
\(737\) 5748.26i 0.287300i
\(738\) 0 0
\(739\) 21399.5 1.06521 0.532606 0.846363i \(-0.321213\pi\)
0.532606 + 0.846363i \(0.321213\pi\)
\(740\) 0 0
\(741\) −794.119 + 199.957i −0.0393694 + 0.00991309i
\(742\) 0 0
\(743\) 27163.2 1.34121 0.670606 0.741814i \(-0.266034\pi\)
0.670606 + 0.741814i \(0.266034\pi\)
\(744\) 0 0
\(745\) −12241.2 −0.601991
\(746\) 0 0
\(747\) 14478.8 0.709170
\(748\) 0 0
\(749\) −2571.34 −0.125440
\(750\) 0 0
\(751\) −2808.18 −0.136448 −0.0682238 0.997670i \(-0.521733\pi\)
−0.0682238 + 0.997670i \(0.521733\pi\)
\(752\) 0 0
\(753\) 915.654i 0.0443138i
\(754\) 0 0
\(755\) 14137.0i 0.681455i
\(756\) 0 0
\(757\) 26808.1i 1.28713i −0.765392 0.643565i \(-0.777455\pi\)
0.765392 0.643565i \(-0.222545\pi\)
\(758\) 0 0
\(759\) 321.485 0.0153744
\(760\) 0 0
\(761\) 28180.4 1.34236 0.671182 0.741293i \(-0.265787\pi\)
0.671182 + 0.741293i \(0.265787\pi\)
\(762\) 0 0
\(763\) 26035.5i 1.23532i
\(764\) 0 0
\(765\) 32574.5i 1.53952i
\(766\) 0 0
\(767\) 17475.2i 0.822678i
\(768\) 0 0
\(769\) 9132.92 0.428272 0.214136 0.976804i \(-0.431306\pi\)
0.214136 + 0.976804i \(0.431306\pi\)
\(770\) 0 0
\(771\) 1720.66 0.0803738
\(772\) 0 0
\(773\) −12663.5 −0.589231 −0.294616 0.955616i \(-0.595192\pi\)
−0.294616 + 0.955616i \(0.595192\pi\)
\(774\) 0 0
\(775\) 5091.91 0.236009
\(776\) 0 0
\(777\) 1240.07 0.0572552
\(778\) 0 0
\(779\) 32063.5 8073.50i 1.47470 0.371326i
\(780\) 0 0
\(781\) 12009.9 0.550253
\(782\) 0 0
\(783\) 2837.82i 0.129522i
\(784\) 0 0
\(785\) 40992.7 1.86381
\(786\) 0 0
\(787\) 37712.8i 1.70815i 0.520148 + 0.854076i \(0.325877\pi\)
−0.520148 + 0.854076i \(0.674123\pi\)
\(788\) 0 0
\(789\) −765.604 −0.0345453
\(790\) 0 0
\(791\) 18078.7 0.812648
\(792\) 0 0
\(793\) 14930.2i 0.668584i
\(794\) 0 0
\(795\) −1383.33 −0.0617126
\(796\) 0 0
\(797\) −4970.27 −0.220898 −0.110449 0.993882i \(-0.535229\pi\)
−0.110449 + 0.993882i \(0.535229\pi\)
\(798\) 0 0
\(799\) 21306.0i 0.943369i
\(800\) 0 0
\(801\) 37839.4i 1.66915i
\(802\) 0 0
\(803\) −9748.12 −0.428398
\(804\) 0 0
\(805\) 21213.5i 0.928792i
\(806\) 0 0
\(807\) 916.023i 0.0399573i
\(808\) 0 0
\(809\) −20762.7 −0.902321 −0.451160 0.892443i \(-0.648990\pi\)
−0.451160 + 0.892443i \(0.648990\pi\)
\(810\) 0 0
\(811\) 36963.0i 1.60043i −0.599715 0.800214i \(-0.704719\pi\)
0.599715 0.800214i \(-0.295281\pi\)
\(812\) 0 0
\(813\) −666.411 −0.0287479
\(814\) 0 0
\(815\) 32981.8i 1.41755i
\(816\) 0 0
\(817\) −1946.56 7730.66i −0.0833555 0.331042i
\(818\) 0 0
\(819\) 32463.8i 1.38508i
\(820\) 0 0
\(821\) 10288.3i 0.437351i −0.975798 0.218675i \(-0.929826\pi\)
0.975798 0.218675i \(-0.0701736\pi\)
\(822\) 0 0
\(823\) 28596.2i 1.21118i −0.795777 0.605590i \(-0.792937\pi\)
0.795777 0.605590i \(-0.207063\pi\)
\(824\) 0 0
\(825\) 91.2253i 0.00384977i
\(826\) 0 0
\(827\) 24872.9i 1.04585i −0.852379 0.522924i \(-0.824841\pi\)
0.852379 0.522924i \(-0.175159\pi\)
\(828\) 0 0
\(829\) 25851.3 1.08306 0.541528 0.840683i \(-0.317846\pi\)
0.541528 + 0.840683i \(0.317846\pi\)
\(830\) 0 0
\(831\) −1318.25 −0.0550295
\(832\) 0 0
\(833\) −63642.3 −2.64715
\(834\) 0 0
\(835\) 1794.59i 0.0743764i
\(836\) 0 0
\(837\) 4308.47i 0.177924i
\(838\) 0 0
\(839\) 182.166 0.00749590 0.00374795 0.999993i \(-0.498807\pi\)
0.00374795 + 0.999993i \(0.498807\pi\)
\(840\) 0 0
\(841\) 18083.1 0.741446
\(842\) 0 0
\(843\) −1376.17 −0.0562254
\(844\) 0 0
\(845\) 8284.92i 0.337290i
\(846\) 0 0
\(847\) 26418.7i 1.07173i
\(848\) 0 0
\(849\) 1925.43i 0.0778333i
\(850\) 0 0
\(851\) 8951.04i 0.360561i
\(852\) 0 0
\(853\) 27467.2i 1.10253i −0.834330 0.551266i \(-0.814145\pi\)
0.834330 0.551266i \(-0.185855\pi\)
\(854\) 0 0
\(855\) −25711.5 + 6474.07i −1.02844 + 0.258957i
\(856\) 0 0
\(857\) 37989.6i 1.51424i 0.653278 + 0.757118i \(0.273393\pi\)
−0.653278 + 0.757118i \(0.726607\pi\)
\(858\) 0 0
\(859\) 15744.7 0.625382 0.312691 0.949855i \(-0.398770\pi\)
0.312691 + 0.949855i \(0.398770\pi\)
\(860\) 0 0
\(861\) 3172.04i 0.125555i
\(862\) 0 0
\(863\) −18939.0 −0.747033 −0.373517 0.927624i \(-0.621848\pi\)
−0.373517 + 0.927624i \(0.621848\pi\)
\(864\) 0 0
\(865\) 13809.0i 0.542799i
\(866\) 0 0
\(867\) 1388.88i 0.0544045i
\(868\) 0 0
\(869\) −20868.4 −0.814629
\(870\) 0 0
\(871\) 10139.5i 0.394447i
\(872\) 0 0
\(873\) 10721.7i 0.415662i
\(874\) 0 0
\(875\) −40217.0 −1.55381
\(876\) 0 0
\(877\) 21287.1 0.819630 0.409815 0.912169i \(-0.365593\pi\)
0.409815 + 0.912169i \(0.365593\pi\)
\(878\) 0 0
\(879\) 697.236i 0.0267545i
\(880\) 0 0
\(881\) −32856.5 −1.25649 −0.628243 0.778017i \(-0.716226\pi\)
−0.628243 + 0.778017i \(0.716226\pi\)
\(882\) 0 0
\(883\) −7030.80 −0.267956 −0.133978 0.990984i \(-0.542775\pi\)
−0.133978 + 0.990984i \(0.542775\pi\)
\(884\) 0 0
\(885\) 1369.24i 0.0520072i
\(886\) 0 0
\(887\) −13987.6 −0.529492 −0.264746 0.964318i \(-0.585288\pi\)
−0.264746 + 0.964318i \(0.585288\pi\)
\(888\) 0 0
\(889\) 31601.0i 1.19220i
\(890\) 0 0
\(891\) 15890.4 0.597471
\(892\) 0 0
\(893\) 16817.1 4234.49i 0.630193 0.158681i
\(894\) 0 0
\(895\) 53567.5 2.00063
\(896\) 0 0
\(897\) −567.075 −0.0211082
\(898\) 0 0
\(899\) −64482.5 −2.39223
\(900\) 0 0
\(901\) −46383.4 −1.71504
\(902\) 0 0
\(903\) −764.794 −0.0281847
\(904\) 0 0
\(905\) 15462.2i 0.567934i
\(906\) 0 0
\(907\) 32555.9i 1.19184i −0.803043 0.595922i \(-0.796787\pi\)
0.803043 0.595922i \(-0.203213\pi\)
\(908\) 0 0
\(909\) 29927.4i 1.09200i
\(910\) 0 0
\(911\) 42685.1 1.55238 0.776191 0.630498i \(-0.217149\pi\)
0.776191 + 0.630498i \(0.217149\pi\)
\(912\) 0 0
\(913\) 11802.6 0.427830
\(914\) 0 0
\(915\) 1169.83i 0.0422658i
\(916\) 0 0
\(917\) 61338.1i 2.20890i
\(918\) 0 0
\(919\) 26396.2i 0.947477i −0.880666 0.473739i \(-0.842904\pi\)
0.880666 0.473739i \(-0.157096\pi\)
\(920\) 0 0
\(921\) −261.525 −0.00935672
\(922\) 0 0
\(923\) −21184.5 −0.755468
\(924\) 0 0
\(925\) −2539.97 −0.0902849
\(926\) 0 0
\(927\) 26905.0 0.953264
\(928\) 0 0
\(929\) −15313.5 −0.540818 −0.270409 0.962746i \(-0.587159\pi\)
−0.270409 + 0.962746i \(0.587159\pi\)
\(930\) 0 0
\(931\) −12648.7 50233.7i −0.445267 1.76836i
\(932\) 0 0
\(933\) 644.977 0.0226320
\(934\) 0 0
\(935\) 26553.7i 0.928768i
\(936\) 0 0
\(937\) 13341.6 0.465156 0.232578 0.972578i \(-0.425284\pi\)
0.232578 + 0.972578i \(0.425284\pi\)
\(938\) 0 0
\(939\) 2688.99i 0.0934523i
\(940\) 0 0
\(941\) −50527.3 −1.75042 −0.875209 0.483745i \(-0.839276\pi\)
−0.875209 + 0.483745i \(0.839276\pi\)
\(942\) 0 0
\(943\) 22896.3 0.790675
\(944\) 0 0
\(945\) 5093.42i 0.175332i
\(946\) 0 0
\(947\) 24534.8 0.841895 0.420947 0.907085i \(-0.361698\pi\)
0.420947 + 0.907085i \(0.361698\pi\)
\(948\) 0 0
\(949\) 17194.9 0.588168
\(950\) 0 0
\(951\) 1580.22i 0.0538825i
\(952\) 0 0
\(953\) 42716.0i 1.45195i −0.687723 0.725974i \(-0.741389\pi\)
0.687723 0.725974i \(-0.258611\pi\)
\(954\) 0 0
\(955\) 20370.5 0.690234
\(956\) 0 0
\(957\) 1155.25i 0.0390219i
\(958\) 0 0
\(959\) 23510.2i 0.791641i
\(960\) 0 0
\(961\) 68108.4 2.28621
\(962\) 0 0
\(963\) 2225.50i 0.0744712i
\(964\) 0 0
\(965\) 9948.01 0.331853
\(966\) 0 0
\(967\) 15724.2i 0.522912i −0.965215 0.261456i \(-0.915797\pi\)
0.965215 0.261456i \(-0.0842027\pi\)
\(968\) 0 0
\(969\) 2086.31 525.327i 0.0691661 0.0174158i
\(970\) 0 0
\(971\) 11018.1i 0.364148i 0.983285 + 0.182074i \(0.0582810\pi\)
−0.983285 + 0.182074i \(0.941719\pi\)
\(972\) 0 0
\(973\) 66240.3i 2.18249i
\(974\) 0 0
\(975\) 160.914i 0.00528552i
\(976\) 0 0
\(977\) 20874.0i 0.683540i 0.939784 + 0.341770i \(0.111026\pi\)
−0.939784 + 0.341770i \(0.888974\pi\)
\(978\) 0 0
\(979\) 30845.4i 1.00697i
\(980\) 0 0
\(981\) 22533.8 0.733383
\(982\) 0 0
\(983\) 19012.5 0.616891 0.308445 0.951242i \(-0.400191\pi\)
0.308445 + 0.951242i \(0.400191\pi\)
\(984\) 0 0
\(985\) 6741.90 0.218086
\(986\) 0 0
\(987\) 1663.71i 0.0536541i
\(988\) 0 0
\(989\) 5520.41i 0.177491i
\(990\) 0 0
\(991\) 35028.4 1.12282 0.561410 0.827538i \(-0.310259\pi\)
0.561410 + 0.827538i \(0.310259\pi\)
\(992\) 0 0
\(993\) −1030.18 −0.0329222
\(994\) 0 0
\(995\) 42000.2 1.33819
\(996\) 0 0
\(997\) 17746.0i 0.563711i 0.959457 + 0.281856i \(0.0909499\pi\)
−0.959457 + 0.281856i \(0.909050\pi\)
\(998\) 0 0
\(999\) 2149.17i 0.0680648i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 608.4.b.b.303.28 56
4.3 odd 2 152.4.b.b.75.6 yes 56
8.3 odd 2 inner 608.4.b.b.303.27 56
8.5 even 2 152.4.b.b.75.52 yes 56
19.18 odd 2 inner 608.4.b.b.303.30 56
76.75 even 2 152.4.b.b.75.51 yes 56
152.37 odd 2 152.4.b.b.75.5 56
152.75 even 2 inner 608.4.b.b.303.29 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.4.b.b.75.5 56 152.37 odd 2
152.4.b.b.75.6 yes 56 4.3 odd 2
152.4.b.b.75.51 yes 56 76.75 even 2
152.4.b.b.75.52 yes 56 8.5 even 2
608.4.b.b.303.27 56 8.3 odd 2 inner
608.4.b.b.303.28 56 1.1 even 1 trivial
608.4.b.b.303.29 56 152.75 even 2 inner
608.4.b.b.303.30 56 19.18 odd 2 inner