Properties

Label 152.4.b.b.75.5
Level $152$
Weight $4$
Character 152.75
Analytic conductor $8.968$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [152,4,Mod(75,152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("152.75");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 152.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.96829032087\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 75.5
Character \(\chi\) \(=\) 152.75
Dual form 152.4.b.b.75.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.66988 - 0.933662i) q^{2} -0.255308i q^{3} +(6.25655 + 4.98554i) q^{4} -11.8859i q^{5} +(-0.238371 + 0.681642i) q^{6} +31.1204i q^{7} +(-12.0494 - 19.1523i) q^{8} +26.9348 q^{9} +(-11.0974 + 31.7339i) q^{10} -21.9564 q^{11} +(1.27285 - 1.59735i) q^{12} -38.7293 q^{13} +(29.0559 - 83.0878i) q^{14} -3.03456 q^{15} +(14.2888 + 62.3845i) q^{16} +101.750 q^{17} +(-71.9128 - 25.1480i) q^{18} +(-20.2224 + 80.3122i) q^{19} +(59.2574 - 74.3645i) q^{20} +7.94528 q^{21} +(58.6209 + 20.4998i) q^{22} +57.3504i q^{23} +(-4.88973 + 3.07632i) q^{24} -16.2739 q^{25} +(103.403 + 36.1601i) q^{26} -13.7700i q^{27} +(-155.152 + 194.706i) q^{28} +206.088 q^{29} +(8.10191 + 2.83325i) q^{30} +312.889 q^{31} +(20.0965 - 179.900i) q^{32} +5.60563i q^{33} +(-271.660 - 94.9998i) q^{34} +369.893 q^{35} +(168.519 + 134.285i) q^{36} +156.076 q^{37} +(128.976 - 195.543i) q^{38} +9.88790i q^{39} +(-227.642 + 143.218i) q^{40} +399.236i q^{41} +(-21.2130 - 7.41821i) q^{42} +96.2576 q^{43} +(-137.371 - 109.464i) q^{44} -320.144i q^{45} +(53.5459 - 153.119i) q^{46} -209.396i q^{47} +(15.9273 - 3.64805i) q^{48} -625.479 q^{49} +(43.4493 + 15.1943i) q^{50} -25.9775i q^{51} +(-242.312 - 193.086i) q^{52} -455.858 q^{53} +(-12.8565 + 36.7642i) q^{54} +260.970i q^{55} +(596.027 - 374.984i) q^{56} +(20.5043 + 5.16293i) q^{57} +(-550.230 - 192.416i) q^{58} +451.215i q^{59} +(-18.9858 - 15.1289i) q^{60} -385.501i q^{61} +(-835.377 - 292.132i) q^{62} +838.222i q^{63} +(-221.622 + 461.549i) q^{64} +460.332i q^{65} +(5.23377 - 14.9664i) q^{66} +261.804i q^{67} +(636.602 + 507.277i) q^{68} +14.6420 q^{69} +(-987.571 - 345.355i) q^{70} -546.989 q^{71} +(-324.550 - 515.864i) q^{72} -443.977 q^{73} +(-416.706 - 145.723i) q^{74} +4.15485i q^{75} +(-526.922 + 401.658i) q^{76} -683.291i q^{77} +(9.23196 - 26.3995i) q^{78} +950.449 q^{79} +(741.494 - 169.835i) q^{80} +723.724 q^{81} +(372.751 - 1065.91i) q^{82} -537.548 q^{83} +(49.7101 + 39.6115i) q^{84} -1209.38i q^{85} +(-256.997 - 89.8721i) q^{86} -52.6158i q^{87} +(264.562 + 420.515i) q^{88} -1404.85i q^{89} +(-298.906 + 854.746i) q^{90} -1205.27i q^{91} +(-285.922 + 358.815i) q^{92} -79.8830i q^{93} +(-195.505 + 559.063i) q^{94} +(954.581 + 240.361i) q^{95} +(-45.9300 - 5.13081i) q^{96} +398.059i q^{97} +(1669.96 + 583.987i) q^{98} -591.391 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 2 q^{4} - 14 q^{6} - 528 q^{9} - 40 q^{11} - 262 q^{16} - 184 q^{17} - 84 q^{19} - 12 q^{20} + 238 q^{24} - 1504 q^{25} + 378 q^{26} - 382 q^{28} + 512 q^{30} + 40 q^{35} + 1464 q^{36} + 958 q^{38}+ \cdots - 6152 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/152\mathbb{Z}\right)^\times\).

\(n\) \(39\) \(77\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.66988 0.933662i −0.943946 0.330099i
\(3\) 0.255308i 0.0491340i −0.999698 0.0245670i \(-0.992179\pi\)
0.999698 0.0245670i \(-0.00782071\pi\)
\(4\) 6.25655 + 4.98554i 0.782069 + 0.623192i
\(5\) 11.8859i 1.06310i −0.847026 0.531552i \(-0.821609\pi\)
0.847026 0.531552i \(-0.178391\pi\)
\(6\) −0.238371 + 0.681642i −0.0162191 + 0.0463799i
\(7\) 31.1204i 1.68034i 0.542320 + 0.840172i \(0.317546\pi\)
−0.542320 + 0.840172i \(0.682454\pi\)
\(8\) −12.0494 19.1523i −0.532515 0.846420i
\(9\) 26.9348 0.997586
\(10\) −11.0974 + 31.7339i −0.350930 + 1.00351i
\(11\) −21.9564 −0.601827 −0.300913 0.953652i \(-0.597291\pi\)
−0.300913 + 0.953652i \(0.597291\pi\)
\(12\) 1.27285 1.59735i 0.0306199 0.0384262i
\(13\) −38.7293 −0.826276 −0.413138 0.910669i \(-0.635567\pi\)
−0.413138 + 0.910669i \(0.635567\pi\)
\(14\) 29.0559 83.0878i 0.554681 1.58615i
\(15\) −3.03456 −0.0522346
\(16\) 14.2888 + 62.3845i 0.223263 + 0.974758i
\(17\) 101.750 1.45164 0.725821 0.687883i \(-0.241460\pi\)
0.725821 + 0.687883i \(0.241460\pi\)
\(18\) −71.9128 25.1480i −0.941667 0.329303i
\(19\) −20.2224 + 80.3122i −0.244175 + 0.969731i
\(20\) 59.2574 74.3645i 0.662518 0.831421i
\(21\) 7.94528 0.0825620
\(22\) 58.6209 + 20.4998i 0.568092 + 0.198663i
\(23\) 57.3504i 0.519929i 0.965618 + 0.259965i \(0.0837109\pi\)
−0.965618 + 0.259965i \(0.916289\pi\)
\(24\) −4.88973 + 3.07632i −0.0415880 + 0.0261646i
\(25\) −16.2739 −0.130191
\(26\) 103.403 + 36.1601i 0.779960 + 0.272753i
\(27\) 13.7700i 0.0981494i
\(28\) −155.152 + 194.706i −1.04718 + 1.31414i
\(29\) 206.088 1.31964 0.659819 0.751424i \(-0.270633\pi\)
0.659819 + 0.751424i \(0.270633\pi\)
\(30\) 8.10191 + 2.83325i 0.0493066 + 0.0172426i
\(31\) 312.889 1.81279 0.906395 0.422431i \(-0.138823\pi\)
0.906395 + 0.422431i \(0.138823\pi\)
\(32\) 20.0965 179.900i 0.111019 0.993818i
\(33\) 5.60563i 0.0295702i
\(34\) −271.660 94.9998i −1.37027 0.479186i
\(35\) 369.893 1.78638
\(36\) 168.519 + 134.285i 0.780181 + 0.621688i
\(37\) 156.076 0.693481 0.346741 0.937961i \(-0.387288\pi\)
0.346741 + 0.937961i \(0.387288\pi\)
\(38\) 128.976 195.543i 0.550596 0.834772i
\(39\) 9.88790i 0.0405982i
\(40\) −227.642 + 143.218i −0.899833 + 0.566120i
\(41\) 399.236i 1.52074i 0.649493 + 0.760368i \(0.274981\pi\)
−0.649493 + 0.760368i \(0.725019\pi\)
\(42\) −21.2130 7.41821i −0.0779341 0.0272537i
\(43\) 96.2576 0.341375 0.170688 0.985325i \(-0.445401\pi\)
0.170688 + 0.985325i \(0.445401\pi\)
\(44\) −137.371 109.464i −0.470670 0.375054i
\(45\) 320.144i 1.06054i
\(46\) 53.5459 153.119i 0.171628 0.490785i
\(47\) 209.396i 0.649863i −0.945737 0.324932i \(-0.894659\pi\)
0.945737 0.324932i \(-0.105341\pi\)
\(48\) 15.9273 3.64805i 0.0478938 0.0109698i
\(49\) −625.479 −1.82356
\(50\) 43.4493 + 15.1943i 0.122893 + 0.0429759i
\(51\) 25.9775i 0.0713250i
\(52\) −242.312 193.086i −0.646204 0.514928i
\(53\) −455.858 −1.18145 −0.590725 0.806873i \(-0.701158\pi\)
−0.590725 + 0.806873i \(0.701158\pi\)
\(54\) −12.8565 + 36.7642i −0.0323991 + 0.0926478i
\(55\) 260.970i 0.639804i
\(56\) 596.027 374.984i 1.42228 0.894809i
\(57\) 20.5043 + 5.16293i 0.0476468 + 0.0119973i
\(58\) −550.230 192.416i −1.24567 0.435612i
\(59\) 451.215i 0.995647i 0.867279 + 0.497823i \(0.165867\pi\)
−0.867279 + 0.497823i \(0.834133\pi\)
\(60\) −18.9858 15.1289i −0.0408510 0.0325522i
\(61\) 385.501i 0.809154i −0.914504 0.404577i \(-0.867419\pi\)
0.914504 0.404577i \(-0.132581\pi\)
\(62\) −835.377 292.132i −1.71118 0.598401i
\(63\) 838.222i 1.67629i
\(64\) −221.622 + 461.549i −0.432855 + 0.901464i
\(65\) 460.332i 0.878417i
\(66\) 5.23377 14.9664i 0.00976109 0.0279126i
\(67\) 261.804i 0.477380i 0.971096 + 0.238690i \(0.0767179\pi\)
−0.971096 + 0.238690i \(0.923282\pi\)
\(68\) 636.602 + 507.277i 1.13528 + 0.904652i
\(69\) 14.6420 0.0255462
\(70\) −987.571 345.355i −1.68625 0.589683i
\(71\) −546.989 −0.914306 −0.457153 0.889388i \(-0.651131\pi\)
−0.457153 + 0.889388i \(0.651131\pi\)
\(72\) −324.550 515.864i −0.531230 0.844377i
\(73\) −443.977 −0.711830 −0.355915 0.934518i \(-0.615831\pi\)
−0.355915 + 0.934518i \(0.615831\pi\)
\(74\) −416.706 145.723i −0.654609 0.228918i
\(75\) 4.15485i 0.00639680i
\(76\) −526.922 + 401.658i −0.795291 + 0.606228i
\(77\) 683.291i 1.01128i
\(78\) 9.23196 26.3995i 0.0134015 0.0383226i
\(79\) 950.449 1.35359 0.676797 0.736170i \(-0.263368\pi\)
0.676797 + 0.736170i \(0.263368\pi\)
\(80\) 741.494 169.835i 1.03627 0.237352i
\(81\) 723.724 0.992763
\(82\) 372.751 1065.91i 0.501994 1.43549i
\(83\) −537.548 −0.710886 −0.355443 0.934698i \(-0.615670\pi\)
−0.355443 + 0.934698i \(0.615670\pi\)
\(84\) 49.7101 + 39.6115i 0.0645692 + 0.0514520i
\(85\) 1209.38i 1.54325i
\(86\) −256.997 89.8721i −0.322240 0.112688i
\(87\) 52.6158i 0.0648391i
\(88\) 264.562 + 420.515i 0.320482 + 0.509398i
\(89\) 1404.85i 1.67319i −0.547822 0.836595i \(-0.684543\pi\)
0.547822 0.836595i \(-0.315457\pi\)
\(90\) −298.906 + 854.746i −0.350083 + 1.00109i
\(91\) 1205.27i 1.38843i
\(92\) −285.922 + 358.815i −0.324016 + 0.406621i
\(93\) 79.8830i 0.0890697i
\(94\) −195.505 + 559.063i −0.214520 + 0.613436i
\(95\) 954.581 + 240.361i 1.03093 + 0.259584i
\(96\) −45.9300 5.13081i −0.0488303 0.00545480i
\(97\) 398.059i 0.416668i 0.978058 + 0.208334i \(0.0668041\pi\)
−0.978058 + 0.208334i \(0.933196\pi\)
\(98\) 1669.96 + 583.987i 1.72134 + 0.601955i
\(99\) −591.391 −0.600374
\(100\) −101.818 81.1340i −0.101818 0.0811340i
\(101\) 1111.11i 1.09464i 0.836922 + 0.547322i \(0.184353\pi\)
−0.836922 + 0.547322i \(0.815647\pi\)
\(102\) −24.2542 + 69.3569i −0.0235444 + 0.0673270i
\(103\) −998.893 −0.955571 −0.477786 0.878477i \(-0.658560\pi\)
−0.477786 + 0.878477i \(0.658560\pi\)
\(104\) 466.667 + 741.756i 0.440004 + 0.699376i
\(105\) 94.4366i 0.0877721i
\(106\) 1217.09 + 425.617i 1.11523 + 0.389996i
\(107\) 82.6255i 0.0746515i 0.999303 + 0.0373257i \(0.0118839\pi\)
−0.999303 + 0.0373257i \(0.988116\pi\)
\(108\) 68.6508 86.1526i 0.0611659 0.0767596i
\(109\) 836.605 0.735158 0.367579 0.929992i \(-0.380187\pi\)
0.367579 + 0.929992i \(0.380187\pi\)
\(110\) 243.658 696.761i 0.211199 0.603941i
\(111\) 39.8475i 0.0340735i
\(112\) −1941.43 + 444.674i −1.63793 + 0.375159i
\(113\) 580.927i 0.483620i 0.970324 + 0.241810i \(0.0777411\pi\)
−0.970324 + 0.241810i \(0.922259\pi\)
\(114\) −49.9238 32.9286i −0.0410157 0.0270530i
\(115\) 681.659 0.552739
\(116\) 1289.40 + 1027.46i 1.03205 + 0.822388i
\(117\) −1043.17 −0.824281
\(118\) 421.282 1204.69i 0.328662 0.939837i
\(119\) 3166.49i 2.43926i
\(120\) 36.5647 + 58.1187i 0.0278157 + 0.0442124i
\(121\) −848.918 −0.637805
\(122\) −359.928 + 1029.24i −0.267101 + 0.763798i
\(123\) 101.928 0.0747199
\(124\) 1957.60 + 1559.92i 1.41773 + 1.12972i
\(125\) 1292.30i 0.924698i
\(126\) 782.617 2237.96i 0.553341 1.58232i
\(127\) −1015.44 −0.709496 −0.354748 0.934962i \(-0.615433\pi\)
−0.354748 + 0.934962i \(0.615433\pi\)
\(128\) 1022.63 1025.36i 0.706164 0.708048i
\(129\) 24.5753i 0.0167732i
\(130\) 429.794 1229.03i 0.289965 0.829178i
\(131\) 1970.99 1.31455 0.657276 0.753650i \(-0.271708\pi\)
0.657276 + 0.753650i \(0.271708\pi\)
\(132\) −27.9471 + 35.0719i −0.0184279 + 0.0231259i
\(133\) −2499.35 629.329i −1.62948 0.410299i
\(134\) 244.436 698.986i 0.157583 0.450621i
\(135\) −163.668 −0.104343
\(136\) −1226.03 1948.74i −0.773022 1.22870i
\(137\) −755.460 −0.471119 −0.235559 0.971860i \(-0.575692\pi\)
−0.235559 + 0.971860i \(0.575692\pi\)
\(138\) −39.0924 13.6707i −0.0241143 0.00843279i
\(139\) 2128.52 1.29884 0.649419 0.760431i \(-0.275012\pi\)
0.649419 + 0.760431i \(0.275012\pi\)
\(140\) 2314.25 + 1844.12i 1.39707 + 1.11326i
\(141\) −53.4605 −0.0319304
\(142\) 1460.40 + 510.703i 0.863055 + 0.301812i
\(143\) 850.355 0.497275
\(144\) 384.867 + 1680.32i 0.222724 + 0.972405i
\(145\) 2449.53i 1.40291i
\(146\) 1185.37 + 414.525i 0.671929 + 0.234975i
\(147\) 159.690i 0.0895986i
\(148\) 976.500 + 778.125i 0.542350 + 0.432172i
\(149\) 1029.90i 0.566258i −0.959082 0.283129i \(-0.908628\pi\)
0.959082 0.283129i \(-0.0913724\pi\)
\(150\) 3.87922 11.0930i 0.00211158 0.00603824i
\(151\) −1189.40 −0.641005 −0.320502 0.947248i \(-0.603852\pi\)
−0.320502 + 0.947248i \(0.603852\pi\)
\(152\) 1781.83 580.413i 0.950827 0.309722i
\(153\) 2740.61 1.44814
\(154\) −637.963 + 1824.31i −0.333821 + 0.954590i
\(155\) 3718.96i 1.92719i
\(156\) −49.2965 + 61.8641i −0.0253005 + 0.0317506i
\(157\) 3448.86i 1.75318i 0.481241 + 0.876588i \(0.340186\pi\)
−0.481241 + 0.876588i \(0.659814\pi\)
\(158\) −2537.59 887.398i −1.27772 0.446820i
\(159\) 116.384i 0.0580494i
\(160\) −2138.27 238.865i −1.05653 0.118025i
\(161\) −1784.77 −0.873660
\(162\) −1932.26 675.714i −0.937115 0.327711i
\(163\) −2774.87 −1.33340 −0.666701 0.745325i \(-0.732294\pi\)
−0.666701 + 0.745325i \(0.732294\pi\)
\(164\) −1990.41 + 2497.84i −0.947711 + 1.18932i
\(165\) 66.6278 0.0314362
\(166\) 1435.19 + 501.888i 0.671039 + 0.234663i
\(167\) −150.985 −0.0699615 −0.0349807 0.999388i \(-0.511137\pi\)
−0.0349807 + 0.999388i \(0.511137\pi\)
\(168\) −95.7363 152.170i −0.0439656 0.0698822i
\(169\) −697.039 −0.317269
\(170\) −1129.16 + 3228.91i −0.509425 + 1.45674i
\(171\) −544.686 + 2163.20i −0.243586 + 0.967390i
\(172\) 602.240 + 479.896i 0.266979 + 0.212743i
\(173\) 1161.80 0.510579 0.255289 0.966865i \(-0.417829\pi\)
0.255289 + 0.966865i \(0.417829\pi\)
\(174\) −49.1254 + 140.478i −0.0214034 + 0.0612047i
\(175\) 506.449i 0.218766i
\(176\) −313.731 1369.74i −0.134366 0.586635i
\(177\) 115.199 0.0489201
\(178\) −1311.66 + 3750.79i −0.552319 + 1.57940i
\(179\) 4506.82i 1.88188i −0.338580 0.940938i \(-0.609947\pi\)
0.338580 0.940938i \(-0.390053\pi\)
\(180\) 1596.09 2003.00i 0.660919 0.829414i
\(181\) −1300.89 −0.534222 −0.267111 0.963666i \(-0.586069\pi\)
−0.267111 + 0.963666i \(0.586069\pi\)
\(182\) −1125.32 + 3217.94i −0.458319 + 1.31060i
\(183\) −98.4215 −0.0397570
\(184\) 1098.39 691.040i 0.440079 0.276870i
\(185\) 1855.10i 0.737243i
\(186\) −74.5837 + 213.278i −0.0294018 + 0.0840770i
\(187\) −2234.05 −0.873637
\(188\) 1043.95 1310.10i 0.404990 0.508238i
\(189\) 428.527 0.164925
\(190\) −2324.20 1532.99i −0.887450 0.585341i
\(191\) 1713.84i 0.649263i −0.945841 0.324631i \(-0.894760\pi\)
0.945841 0.324631i \(-0.105240\pi\)
\(192\) 117.837 + 56.5817i 0.0442925 + 0.0212679i
\(193\) 836.962i 0.312154i 0.987745 + 0.156077i \(0.0498849\pi\)
−0.987745 + 0.156077i \(0.950115\pi\)
\(194\) 371.653 1062.77i 0.137542 0.393312i
\(195\) 117.526 0.0431602
\(196\) −3913.34 3118.35i −1.42615 1.13643i
\(197\) 567.220i 0.205141i 0.994726 + 0.102570i \(0.0327067\pi\)
−0.994726 + 0.102570i \(0.967293\pi\)
\(198\) 1578.94 + 552.159i 0.566720 + 0.198183i
\(199\) 3533.62i 1.25875i −0.777101 0.629376i \(-0.783310\pi\)
0.777101 0.629376i \(-0.216690\pi\)
\(200\) 196.091 + 311.682i 0.0693287 + 0.110196i
\(201\) 66.8406 0.0234556
\(202\) 1037.40 2966.52i 0.361342 1.03329i
\(203\) 6413.53i 2.21745i
\(204\) 129.512 162.530i 0.0444492 0.0557811i
\(205\) 4745.27 1.61670
\(206\) 2666.93 + 932.628i 0.902008 + 0.315433i
\(207\) 1544.72i 0.518674i
\(208\) −553.397 2416.11i −0.184477 0.805419i
\(209\) 444.010 1763.36i 0.146951 0.583610i
\(210\) −88.1719 + 252.135i −0.0289735 + 0.0828521i
\(211\) 3990.60i 1.30201i 0.759073 + 0.651006i \(0.225653\pi\)
−0.759073 + 0.651006i \(0.774347\pi\)
\(212\) −2852.10 2272.69i −0.923975 0.736270i
\(213\) 139.651i 0.0449235i
\(214\) 77.1443 220.600i 0.0246424 0.0704670i
\(215\) 1144.11i 0.362918i
\(216\) −263.727 + 165.921i −0.0830757 + 0.0522661i
\(217\) 9737.23i 3.04611i
\(218\) −2233.64 781.106i −0.693949 0.242675i
\(219\) 113.351i 0.0349751i
\(220\) −1301.08 + 1632.77i −0.398721 + 0.500371i
\(221\) −3940.70 −1.19946
\(222\) −37.2041 + 106.388i −0.0112476 + 0.0321636i
\(223\) 1073.95 0.322498 0.161249 0.986914i \(-0.448448\pi\)
0.161249 + 0.986914i \(0.448448\pi\)
\(224\) 5598.57 + 625.413i 1.66996 + 0.186550i
\(225\) −438.334 −0.129877
\(226\) 542.390 1551.01i 0.159643 0.456511i
\(227\) 3165.76i 0.925633i −0.886454 0.462816i \(-0.846839\pi\)
0.886454 0.462816i \(-0.153161\pi\)
\(228\) 102.546 + 134.527i 0.0297864 + 0.0390758i
\(229\) 2500.47i 0.721553i −0.932652 0.360776i \(-0.882512\pi\)
0.932652 0.360776i \(-0.117488\pi\)
\(230\) −1819.95 636.439i −0.521756 0.182459i
\(231\) −174.450 −0.0496880
\(232\) −2483.24 3947.05i −0.702728 1.11697i
\(233\) 1034.30 0.290812 0.145406 0.989372i \(-0.453551\pi\)
0.145406 + 0.989372i \(0.453551\pi\)
\(234\) 2785.13 + 973.966i 0.778077 + 0.272095i
\(235\) −2488.86 −0.690873
\(236\) −2249.55 + 2823.05i −0.620479 + 0.778664i
\(237\) 242.657i 0.0665075i
\(238\) 2956.43 8454.16i 0.805198 2.30253i
\(239\) 1446.06i 0.391370i −0.980667 0.195685i \(-0.937307\pi\)
0.980667 0.195685i \(-0.0626931\pi\)
\(240\) −43.3603 189.309i −0.0116621 0.0509161i
\(241\) 3098.89i 0.828288i −0.910211 0.414144i \(-0.864081\pi\)
0.910211 0.414144i \(-0.135919\pi\)
\(242\) 2266.51 + 792.603i 0.602053 + 0.210539i
\(243\) 556.562i 0.146928i
\(244\) 1921.93 2411.91i 0.504258 0.632814i
\(245\) 7434.37i 1.93863i
\(246\) −272.136 95.1664i −0.0705315 0.0246650i
\(247\) 783.199 3110.44i 0.201756 0.801265i
\(248\) −3770.14 5992.54i −0.965339 1.53438i
\(249\) 137.240i 0.0349287i
\(250\) −1206.58 + 3450.30i −0.305242 + 0.872865i
\(251\) 3586.47 0.901897 0.450948 0.892550i \(-0.351086\pi\)
0.450948 + 0.892550i \(0.351086\pi\)
\(252\) −4178.99 + 5244.38i −1.04465 + 1.31097i
\(253\) 1259.21i 0.312907i
\(254\) 2711.11 + 948.081i 0.669726 + 0.234204i
\(255\) −308.765 −0.0758260
\(256\) −3687.66 + 1782.80i −0.900307 + 0.435255i
\(257\) 6739.57i 1.63581i −0.575355 0.817904i \(-0.695136\pi\)
0.575355 0.817904i \(-0.304864\pi\)
\(258\) −22.9450 + 65.6132i −0.00553681 + 0.0158330i
\(259\) 4857.16i 1.16529i
\(260\) −2295.00 + 2880.09i −0.547423 + 0.686983i
\(261\) 5550.93 1.31645
\(262\) −5262.32 1840.24i −1.24087 0.433933i
\(263\) 2998.75i 0.703083i −0.936172 0.351541i \(-0.885658\pi\)
0.936172 0.351541i \(-0.114342\pi\)
\(264\) 107.361 67.5448i 0.0250288 0.0157466i
\(265\) 5418.26i 1.25600i
\(266\) 6085.39 + 4013.78i 1.40270 + 0.925191i
\(267\) −358.669 −0.0822105
\(268\) −1305.23 + 1637.99i −0.297499 + 0.373344i
\(269\) 3587.92 0.813231 0.406615 0.913599i \(-0.366709\pi\)
0.406615 + 0.913599i \(0.366709\pi\)
\(270\) 436.975 + 152.811i 0.0984943 + 0.0344436i
\(271\) 2610.23i 0.585092i −0.956251 0.292546i \(-0.905498\pi\)
0.956251 0.292546i \(-0.0945025\pi\)
\(272\) 1453.88 + 6347.61i 0.324098 + 1.41500i
\(273\) −307.715 −0.0682190
\(274\) 2016.99 + 705.344i 0.444711 + 0.155516i
\(275\) 357.315 0.0783524
\(276\) 91.6084 + 72.9982i 0.0199789 + 0.0159202i
\(277\) 5163.37i 1.11999i 0.828497 + 0.559994i \(0.189197\pi\)
−0.828497 + 0.559994i \(0.810803\pi\)
\(278\) −5682.89 1987.32i −1.22603 0.428745i
\(279\) 8427.60 1.80841
\(280\) −4457.01 7084.30i −0.951275 1.51203i
\(281\) 5390.26i 1.14433i 0.820140 + 0.572163i \(0.193896\pi\)
−0.820140 + 0.572163i \(0.806104\pi\)
\(282\) 142.733 + 49.9140i 0.0301406 + 0.0105402i
\(283\) −7541.59 −1.58410 −0.792051 0.610455i \(-0.790987\pi\)
−0.792051 + 0.610455i \(0.790987\pi\)
\(284\) −3422.27 2727.04i −0.715050 0.569788i
\(285\) 61.3659 243.712i 0.0127544 0.0506535i
\(286\) −2270.35 793.944i −0.469400 0.164150i
\(287\) −12424.4 −2.55536
\(288\) 541.297 4845.58i 0.110751 0.991419i
\(289\) 5440.00 1.10727
\(290\) −2287.03 + 6539.96i −0.463101 + 1.32427i
\(291\) 101.628 0.0204726
\(292\) −2777.77 2213.46i −0.556700 0.443607i
\(293\) 2730.96 0.544520 0.272260 0.962224i \(-0.412229\pi\)
0.272260 + 0.962224i \(0.412229\pi\)
\(294\) 149.096 426.353i 0.0295764 0.0845763i
\(295\) 5363.08 1.05848
\(296\) −1880.63 2989.22i −0.369289 0.586976i
\(297\) 302.339i 0.0590689i
\(298\) −961.575 + 2749.70i −0.186921 + 0.534517i
\(299\) 2221.14i 0.429605i
\(300\) −20.7141 + 25.9950i −0.00398644 + 0.00500274i
\(301\) 2995.58i 0.573628i
\(302\) 3175.55 + 1110.49i 0.605074 + 0.211595i
\(303\) 283.674 0.0537843
\(304\) −5299.20 113.995i −0.999769 0.0215069i
\(305\) −4582.02 −0.860215
\(306\) −7317.11 2558.80i −1.36696 0.478030i
\(307\) 1024.35i 0.190433i −0.995457 0.0952163i \(-0.969646\pi\)
0.995457 0.0952163i \(-0.0303543\pi\)
\(308\) 3406.57 4275.04i 0.630219 0.790887i
\(309\) 255.025i 0.0469510i
\(310\) −3472.25 + 9929.18i −0.636163 + 1.81916i
\(311\) 2526.27i 0.460617i 0.973118 + 0.230308i \(0.0739735\pi\)
−0.973118 + 0.230308i \(0.926027\pi\)
\(312\) 189.376 119.144i 0.0343632 0.0216192i
\(313\) 10532.3 1.90199 0.950994 0.309209i \(-0.100064\pi\)
0.950994 + 0.309209i \(0.100064\pi\)
\(314\) 3220.07 9208.04i 0.578723 1.65490i
\(315\) 9963.00 1.78207
\(316\) 5946.53 + 4738.50i 1.05860 + 0.843549i
\(317\) −6189.48 −1.09664 −0.548322 0.836267i \(-0.684733\pi\)
−0.548322 + 0.836267i \(0.684733\pi\)
\(318\) 108.663 310.732i 0.0191621 0.0547955i
\(319\) −4524.94 −0.794194
\(320\) 5485.92 + 2634.16i 0.958350 + 0.460170i
\(321\) 21.0949 0.00366793
\(322\) 4765.12 + 1666.37i 0.824688 + 0.288395i
\(323\) −2057.62 + 8171.75i −0.354455 + 1.40770i
\(324\) 4528.02 + 3608.16i 0.776409 + 0.618682i
\(325\) 630.276 0.107574
\(326\) 7408.58 + 2590.79i 1.25866 + 0.440156i
\(327\) 213.592i 0.0361213i
\(328\) 7646.29 4810.57i 1.28718 0.809815i
\(329\) 6516.50 1.09199
\(330\) −177.888 62.2079i −0.0296740 0.0103771i
\(331\) 4035.04i 0.670048i −0.942210 0.335024i \(-0.891255\pi\)
0.942210 0.335024i \(-0.108745\pi\)
\(332\) −3363.20 2679.97i −0.555962 0.443019i
\(333\) 4203.89 0.691807
\(334\) 403.112 + 140.969i 0.0660399 + 0.0230942i
\(335\) 3111.77 0.507504
\(336\) 113.529 + 495.663i 0.0184331 + 0.0804780i
\(337\) 9651.06i 1.56002i −0.625767 0.780010i \(-0.715214\pi\)
0.625767 0.780010i \(-0.284786\pi\)
\(338\) 1861.01 + 650.799i 0.299485 + 0.104730i
\(339\) 148.315 0.0237622
\(340\) 6029.43 7566.57i 0.961740 1.20693i
\(341\) −6869.90 −1.09099
\(342\) 3473.94 5266.93i 0.549267 0.832757i
\(343\) 8790.88i 1.38386i
\(344\) −1159.85 1843.55i −0.181788 0.288947i
\(345\) 174.033i 0.0271583i
\(346\) −3101.87 1084.73i −0.481959 0.168542i
\(347\) −1311.88 −0.202955 −0.101478 0.994838i \(-0.532357\pi\)
−0.101478 + 0.994838i \(0.532357\pi\)
\(348\) 262.318 329.193i 0.0404072 0.0507087i
\(349\) 7143.37i 1.09563i 0.836599 + 0.547816i \(0.184541\pi\)
−0.836599 + 0.547816i \(0.815459\pi\)
\(350\) −472.853 + 1352.16i −0.0722144 + 0.206503i
\(351\) 533.302i 0.0810985i
\(352\) −441.247 + 3949.96i −0.0668141 + 0.598106i
\(353\) 3355.30 0.505905 0.252952 0.967479i \(-0.418598\pi\)
0.252952 + 0.967479i \(0.418598\pi\)
\(354\) −307.567 107.557i −0.0461780 0.0161485i
\(355\) 6501.44i 0.972002i
\(356\) 7003.93 8789.52i 1.04272 1.30855i
\(357\) 808.430 0.119851
\(358\) −4207.85 + 12032.7i −0.621206 + 1.77639i
\(359\) 5647.41i 0.830247i 0.909765 + 0.415124i \(0.136262\pi\)
−0.909765 + 0.415124i \(0.863738\pi\)
\(360\) −6131.49 + 3857.56i −0.897661 + 0.564753i
\(361\) −6041.11 3248.21i −0.880757 0.473569i
\(362\) 3473.22 + 1214.59i 0.504277 + 0.176346i
\(363\) 216.735i 0.0313379i
\(364\) 6008.93 7540.85i 0.865257 1.08585i
\(365\) 5277.05i 0.756750i
\(366\) 262.774 + 91.8925i 0.0375285 + 0.0131238i
\(367\) 6607.22i 0.939766i −0.882729 0.469883i \(-0.844296\pi\)
0.882729 0.469883i \(-0.155704\pi\)
\(368\) −3577.78 + 819.470i −0.506806 + 0.116081i
\(369\) 10753.3i 1.51706i
\(370\) −1732.04 + 4952.91i −0.243363 + 0.695917i
\(371\) 14186.5i 1.98524i
\(372\) 398.260 499.792i 0.0555075 0.0696586i
\(373\) 9677.75 1.34342 0.671709 0.740815i \(-0.265561\pi\)
0.671709 + 0.740815i \(0.265561\pi\)
\(374\) 5964.66 + 2085.85i 0.824667 + 0.288387i
\(375\) −329.935 −0.0454341
\(376\) −4010.42 + 2523.11i −0.550058 + 0.346062i
\(377\) −7981.64 −1.09039
\(378\) −1144.12 400.100i −0.155680 0.0544416i
\(379\) 7594.94i 1.02936i 0.857384 + 0.514678i \(0.172089\pi\)
−0.857384 + 0.514678i \(0.827911\pi\)
\(380\) 4774.06 + 6262.93i 0.644484 + 0.845477i
\(381\) 259.251i 0.0348604i
\(382\) −1600.15 + 4575.75i −0.214321 + 0.612869i
\(383\) −689.095 −0.0919350 −0.0459675 0.998943i \(-0.514637\pi\)
−0.0459675 + 0.998943i \(0.514637\pi\)
\(384\) −261.783 261.087i −0.0347893 0.0346967i
\(385\) −8121.51 −1.07509
\(386\) 781.439 2234.59i 0.103042 0.294657i
\(387\) 2592.68 0.340551
\(388\) −1984.54 + 2490.48i −0.259664 + 0.325863i
\(389\) 918.749i 0.119749i −0.998206 0.0598746i \(-0.980930\pi\)
0.998206 0.0598746i \(-0.0190701\pi\)
\(390\) −313.781 109.730i −0.0407409 0.0142471i
\(391\) 5835.38i 0.754752i
\(392\) 7536.68 + 11979.4i 0.971071 + 1.54349i
\(393\) 503.210i 0.0645893i
\(394\) 529.591 1514.41i 0.0677168 0.193642i
\(395\) 11296.9i 1.43901i
\(396\) −3700.07 2948.40i −0.469534 0.374148i
\(397\) 6718.99i 0.849411i −0.905332 0.424706i \(-0.860378\pi\)
0.905332 0.424706i \(-0.139622\pi\)
\(398\) −3299.21 + 9434.36i −0.415514 + 1.18819i
\(399\) −160.673 + 638.103i −0.0201596 + 0.0800630i
\(400\) −232.535 1015.24i −0.0290668 0.126905i
\(401\) 2657.88i 0.330993i −0.986210 0.165496i \(-0.947077\pi\)
0.986210 0.165496i \(-0.0529226\pi\)
\(402\) −178.457 62.4065i −0.0221408 0.00774267i
\(403\) −12118.0 −1.49786
\(404\) −5539.46 + 6951.69i −0.682174 + 0.856088i
\(405\) 8602.09i 1.05541i
\(406\) 5988.07 17123.4i 0.731978 2.09315i
\(407\) −3426.87 −0.417355
\(408\) −497.529 + 313.015i −0.0603710 + 0.0379817i
\(409\) 865.521i 0.104639i −0.998630 0.0523194i \(-0.983339\pi\)
0.998630 0.0523194i \(-0.0166614\pi\)
\(410\) −12669.3 4430.47i −1.52608 0.533672i
\(411\) 192.875i 0.0231480i
\(412\) −6249.62 4980.02i −0.747322 0.595504i
\(413\) −14042.0 −1.67303
\(414\) 1442.25 4124.23i 0.171214 0.489601i
\(415\) 6389.23i 0.755747i
\(416\) −778.326 + 6967.42i −0.0917321 + 0.821168i
\(417\) 543.427i 0.0638171i
\(418\) −2831.84 + 4293.42i −0.331363 + 0.502388i
\(419\) 10425.9 1.21561 0.607804 0.794087i \(-0.292051\pi\)
0.607804 + 0.794087i \(0.292051\pi\)
\(420\) 470.817 590.847i 0.0546989 0.0686438i
\(421\) 8091.59 0.936722 0.468361 0.883537i \(-0.344845\pi\)
0.468361 + 0.883537i \(0.344845\pi\)
\(422\) 3725.87 10654.4i 0.429793 1.22903i
\(423\) 5640.05i 0.648295i
\(424\) 5492.83 + 8730.72i 0.629140 + 1.00000i
\(425\) −1655.86 −0.188991
\(426\) 130.387 372.851i 0.0148292 0.0424054i
\(427\) 11997.0 1.35966
\(428\) −411.932 + 516.950i −0.0465222 + 0.0583826i
\(429\) 217.102i 0.0244331i
\(430\) −1068.21 + 3054.63i −0.119799 + 0.342575i
\(431\) −4972.36 −0.555708 −0.277854 0.960623i \(-0.589623\pi\)
−0.277854 + 0.960623i \(0.589623\pi\)
\(432\) 859.034 196.757i 0.0956720 0.0219131i
\(433\) 4916.49i 0.545661i −0.962062 0.272831i \(-0.912040\pi\)
0.962062 0.272831i \(-0.0879599\pi\)
\(434\) 9091.28 25997.3i 1.00552 2.87536i
\(435\) −625.384 −0.0689308
\(436\) 5234.26 + 4170.92i 0.574944 + 0.458145i
\(437\) −4605.94 1159.76i −0.504192 0.126954i
\(438\) 105.831 302.634i 0.0115453 0.0330146i
\(439\) 9969.73 1.08389 0.541947 0.840413i \(-0.317687\pi\)
0.541947 + 0.840413i \(0.317687\pi\)
\(440\) 4998.19 3144.55i 0.541543 0.340706i
\(441\) −16847.2 −1.81915
\(442\) 10521.2 + 3679.28i 1.13222 + 0.395940i
\(443\) −12954.5 −1.38936 −0.694678 0.719321i \(-0.744453\pi\)
−0.694678 + 0.719321i \(0.744453\pi\)
\(444\) 198.661 249.308i 0.0212343 0.0266478i
\(445\) −16697.9 −1.77878
\(446\) −2867.32 1002.71i −0.304421 0.106456i
\(447\) −262.941 −0.0278225
\(448\) −14363.6 6896.95i −1.51477 0.727345i
\(449\) 1992.49i 0.209424i −0.994503 0.104712i \(-0.966608\pi\)
0.994503 0.104712i \(-0.0333922\pi\)
\(450\) 1170.30 + 409.256i 0.122597 + 0.0428722i
\(451\) 8765.77i 0.915219i
\(452\) −2896.24 + 3634.60i −0.301388 + 0.378224i
\(453\) 303.662i 0.0314951i
\(454\) −2955.75 + 8452.20i −0.305551 + 0.873748i
\(455\) −14325.7 −1.47604
\(456\) −148.184 454.916i −0.0152179 0.0467180i
\(457\) 12912.0 1.32166 0.660831 0.750535i \(-0.270204\pi\)
0.660831 + 0.750535i \(0.270204\pi\)
\(458\) −2334.59 + 6675.96i −0.238184 + 0.681107i
\(459\) 1401.09i 0.142478i
\(460\) 4264.83 + 3398.44i 0.432280 + 0.344463i
\(461\) 14539.6i 1.46893i −0.678646 0.734466i \(-0.737433\pi\)
0.678646 0.734466i \(-0.262567\pi\)
\(462\) 465.760 + 162.877i 0.0469028 + 0.0164020i
\(463\) 5767.23i 0.578889i 0.957195 + 0.289445i \(0.0934706\pi\)
−0.957195 + 0.289445i \(0.906529\pi\)
\(464\) 2944.75 + 12856.7i 0.294627 + 1.28633i
\(465\) −949.479 −0.0946904
\(466\) −2761.45 965.685i −0.274510 0.0959967i
\(467\) −3777.72 −0.374330 −0.187165 0.982329i \(-0.559930\pi\)
−0.187165 + 0.982329i \(0.559930\pi\)
\(468\) −6526.63 5200.75i −0.644644 0.513685i
\(469\) −8147.44 −0.802162
\(470\) 6644.95 + 2323.75i 0.652147 + 0.228057i
\(471\) 880.520 0.0861406
\(472\) 8641.80 5436.89i 0.842735 0.530197i
\(473\) −2113.47 −0.205449
\(474\) −226.560 + 647.866i −0.0219541 + 0.0627795i
\(475\) 329.096 1306.99i 0.0317894 0.126250i
\(476\) −15786.7 + 19811.3i −1.52013 + 1.90767i
\(477\) −12278.4 −1.17860
\(478\) −1350.13 + 3860.80i −0.129191 + 0.369433i
\(479\) 16308.7i 1.55566i 0.628474 + 0.777830i \(0.283680\pi\)
−0.628474 + 0.777830i \(0.716320\pi\)
\(480\) −60.9841 + 545.918i −0.00579902 + 0.0519117i
\(481\) −6044.73 −0.573006
\(482\) −2893.32 + 8273.69i −0.273417 + 0.781859i
\(483\) 455.665i 0.0429264i
\(484\) −5311.30 4232.31i −0.498807 0.397475i
\(485\) 4731.28 0.442962
\(486\) −519.641 + 1485.96i −0.0485008 + 0.138692i
\(487\) −7770.87 −0.723063 −0.361532 0.932360i \(-0.617746\pi\)
−0.361532 + 0.932360i \(0.617746\pi\)
\(488\) −7383.24 + 4645.08i −0.684884 + 0.430887i
\(489\) 708.446i 0.0655154i
\(490\) 6941.19 19848.9i 0.639941 1.82996i
\(491\) −16888.6 −1.55228 −0.776141 0.630559i \(-0.782826\pi\)
−0.776141 + 0.630559i \(0.782826\pi\)
\(492\) 637.718 + 508.166i 0.0584361 + 0.0465648i
\(493\) 20969.4 1.91564
\(494\) −4995.15 + 7573.26i −0.454944 + 0.689751i
\(495\) 7029.19i 0.638260i
\(496\) 4470.82 + 19519.4i 0.404729 + 1.76703i
\(497\) 17022.5i 1.53635i
\(498\) 128.136 366.415i 0.0115299 0.0329708i
\(499\) 961.553 0.0862626 0.0431313 0.999069i \(-0.486267\pi\)
0.0431313 + 0.999069i \(0.486267\pi\)
\(500\) 6442.83 8085.37i 0.576264 0.723177i
\(501\) 38.5477i 0.00343749i
\(502\) −9575.46 3348.55i −0.851342 0.297716i
\(503\) 5526.02i 0.489847i 0.969542 + 0.244924i \(0.0787629\pi\)
−0.969542 + 0.244924i \(0.921237\pi\)
\(504\) 16053.9 10100.1i 1.41884 0.892649i
\(505\) 13206.5 1.16372
\(506\) −1175.67 + 3361.93i −0.103291 + 0.295368i
\(507\) 177.960i 0.0155887i
\(508\) −6353.17 5062.53i −0.554875 0.442152i
\(509\) −2723.71 −0.237184 −0.118592 0.992943i \(-0.537838\pi\)
−0.118592 + 0.992943i \(0.537838\pi\)
\(510\) 824.367 + 288.282i 0.0715756 + 0.0250301i
\(511\) 13816.7i 1.19612i
\(512\) 11510.2 1316.85i 0.993519 0.113666i
\(513\) 1105.90 + 278.462i 0.0951785 + 0.0239657i
\(514\) −6292.48 + 17993.9i −0.539979 + 1.54411i
\(515\) 11872.7i 1.01587i
\(516\) 122.521 153.757i 0.0104529 0.0131178i
\(517\) 4597.58i 0.391105i
\(518\) 4534.95 12968.0i 0.384660 1.09997i
\(519\) 296.617i 0.0250868i
\(520\) 8816.41 5546.74i 0.743510 0.467771i
\(521\) 5935.63i 0.499126i 0.968359 + 0.249563i \(0.0802869\pi\)
−0.968359 + 0.249563i \(0.919713\pi\)
\(522\) −14820.3 5182.70i −1.24266 0.434560i
\(523\) 1446.58i 0.120945i −0.998170 0.0604726i \(-0.980739\pi\)
0.998170 0.0604726i \(-0.0192608\pi\)
\(524\) 12331.6 + 9826.46i 1.02807 + 0.819219i
\(525\) −129.300 −0.0107488
\(526\) −2799.82 + 8006.31i −0.232087 + 0.663672i
\(527\) 31836.3 2.63152
\(528\) −349.705 + 80.0980i −0.0288238 + 0.00660192i
\(529\) 8877.94 0.729673
\(530\) 5058.83 14466.1i 0.414606 1.18560i
\(531\) 12153.4i 0.993243i
\(532\) −12499.8 16398.0i −1.01867 1.33636i
\(533\) 15462.1i 1.25655i
\(534\) 957.605 + 334.876i 0.0776023 + 0.0271376i
\(535\) 982.075 0.0793623
\(536\) 5014.15 3154.59i 0.404064 0.254212i
\(537\) −1150.63 −0.0924641
\(538\) −9579.32 3349.90i −0.767646 0.268447i
\(539\) 13733.3 1.09746
\(540\) −1024.00 815.974i −0.0816035 0.0650258i
\(541\) 2569.96i 0.204235i −0.994772 0.102118i \(-0.967438\pi\)
0.994772 0.102118i \(-0.0325618\pi\)
\(542\) −2437.07 + 6969.00i −0.193139 + 0.552296i
\(543\) 332.127i 0.0262485i
\(544\) 2044.82 18304.8i 0.161160 1.44267i
\(545\) 9943.78i 0.781550i
\(546\) 821.564 + 287.302i 0.0643951 + 0.0225191i
\(547\) 7507.83i 0.586858i −0.955981 0.293429i \(-0.905204\pi\)
0.955981 0.293429i \(-0.0947965\pi\)
\(548\) −4726.57 3766.37i −0.368447 0.293597i
\(549\) 10383.4i 0.807201i
\(550\) −953.989 333.611i −0.0739604 0.0258641i
\(551\) −4167.58 + 16551.4i −0.322223 + 1.27969i
\(552\) −176.428 280.428i −0.0136038 0.0216228i
\(553\) 29578.4i 2.27450i
\(554\) 4820.84 13785.6i 0.369707 1.05721i
\(555\) −473.622 −0.0362237
\(556\) 13317.2 + 10611.8i 1.01578 + 0.809425i
\(557\) 12498.0i 0.950728i −0.879789 0.475364i \(-0.842316\pi\)
0.879789 0.475364i \(-0.157684\pi\)
\(558\) −22500.7 7868.53i −1.70705 0.596956i
\(559\) −3727.99 −0.282070
\(560\) 5285.34 + 23075.6i 0.398833 + 1.74129i
\(561\) 570.371i 0.0429253i
\(562\) 5032.68 14391.4i 0.377741 1.08018i
\(563\) 14437.3i 1.08075i −0.841425 0.540374i \(-0.818283\pi\)
0.841425 0.540374i \(-0.181717\pi\)
\(564\) −334.478 266.529i −0.0249718 0.0198988i
\(565\) 6904.83 0.514138
\(566\) 20135.2 + 7041.29i 1.49531 + 0.522911i
\(567\) 22522.6i 1.66818i
\(568\) 6590.92 + 10476.1i 0.486882 + 0.773887i
\(569\) 3732.90i 0.275029i −0.990500 0.137514i \(-0.956089\pi\)
0.990500 0.137514i \(-0.0439113\pi\)
\(570\) −391.384 + 593.387i −0.0287602 + 0.0436040i
\(571\) 7948.75 0.582566 0.291283 0.956637i \(-0.405918\pi\)
0.291283 + 0.956637i \(0.405918\pi\)
\(572\) 5320.29 + 4239.48i 0.388903 + 0.309898i
\(573\) −437.557 −0.0319009
\(574\) 33171.6 + 11600.2i 2.41212 + 0.843523i
\(575\) 933.312i 0.0676901i
\(576\) −5969.34 + 12431.8i −0.431810 + 0.899287i
\(577\) −1091.83 −0.0787758 −0.0393879 0.999224i \(-0.512541\pi\)
−0.0393879 + 0.999224i \(0.512541\pi\)
\(578\) −14524.2 5079.12i −1.04520 0.365508i
\(579\) 213.683 0.0153374
\(580\) 12212.2 15325.6i 0.874285 1.09717i
\(581\) 16728.7i 1.19453i
\(582\) −271.334 94.8859i −0.0193250 0.00675799i
\(583\) 10009.0 0.711028
\(584\) 5349.68 + 8503.19i 0.379061 + 0.602507i
\(585\) 12398.9i 0.876296i
\(586\) −7291.35 2549.79i −0.513998 0.179746i
\(587\) 3678.42 0.258645 0.129322 0.991603i \(-0.458720\pi\)
0.129322 + 0.991603i \(0.458720\pi\)
\(588\) −796.140 + 999.107i −0.0558371 + 0.0700723i
\(589\) −6327.36 + 25128.8i −0.442639 + 1.75792i
\(590\) −14318.8 5007.30i −0.999145 0.349402i
\(591\) 144.816 0.0100794
\(592\) 2230.15 + 9736.75i 0.154829 + 0.675976i
\(593\) −17520.6 −1.21330 −0.606648 0.794970i \(-0.707486\pi\)
−0.606648 + 0.794970i \(0.707486\pi\)
\(594\) 282.282 807.209i 0.0194986 0.0557579i
\(595\) 37636.5 2.59319
\(596\) 5134.59 6443.60i 0.352887 0.442852i
\(597\) −902.161 −0.0618476
\(598\) −2073.80 + 5930.19i −0.141812 + 0.405524i
\(599\) −14805.7 −1.00992 −0.504960 0.863143i \(-0.668493\pi\)
−0.504960 + 0.863143i \(0.668493\pi\)
\(600\) 79.5749 50.0636i 0.00541438 0.00340640i
\(601\) 9476.86i 0.643210i 0.946874 + 0.321605i \(0.104222\pi\)
−0.946874 + 0.321605i \(0.895778\pi\)
\(602\) 2796.86 7997.84i 0.189354 0.541474i
\(603\) 7051.64i 0.476227i
\(604\) −7441.52 5929.78i −0.501310 0.399469i
\(605\) 10090.1i 0.678053i
\(606\) −757.376 264.856i −0.0507695 0.0177542i
\(607\) −1962.54 −0.131231 −0.0656155 0.997845i \(-0.520901\pi\)
−0.0656155 + 0.997845i \(0.520901\pi\)
\(608\) 14041.8 + 5252.01i 0.936628 + 0.350324i
\(609\) 1637.42 0.108952
\(610\) 12233.5 + 4278.06i 0.811997 + 0.283957i
\(611\) 8109.77i 0.536966i
\(612\) 17146.8 + 13663.4i 1.13254 + 0.902468i
\(613\) 9072.88i 0.597798i 0.954285 + 0.298899i \(0.0966194\pi\)
−0.954285 + 0.298899i \(0.903381\pi\)
\(614\) −956.398 + 2734.90i −0.0628617 + 0.179758i
\(615\) 1211.50i 0.0794350i
\(616\) −13086.6 + 8233.28i −0.855964 + 0.538520i
\(617\) 9669.18 0.630902 0.315451 0.948942i \(-0.397844\pi\)
0.315451 + 0.948942i \(0.397844\pi\)
\(618\) 238.107 680.887i 0.0154985 0.0443193i
\(619\) 4803.50 0.311905 0.155952 0.987765i \(-0.450155\pi\)
0.155952 + 0.987765i \(0.450155\pi\)
\(620\) 18541.0 23267.8i 1.20101 1.50719i
\(621\) 789.714 0.0510308
\(622\) 2358.69 6744.85i 0.152049 0.434797i
\(623\) 43719.5 2.81153
\(624\) −616.852 + 141.287i −0.0395735 + 0.00906409i
\(625\) −17394.4 −1.11324
\(626\) −28120.1 9833.63i −1.79537 0.627845i
\(627\) −450.201 113.359i −0.0286751 0.00722031i
\(628\) −17194.4 + 21577.9i −1.09257 + 1.37110i
\(629\) 15880.7 1.00669
\(630\) −26600.0 9302.08i −1.68218 0.588260i
\(631\) 1994.73i 0.125846i 0.998018 + 0.0629232i \(0.0200423\pi\)
−0.998018 + 0.0629232i \(0.979958\pi\)
\(632\) −11452.4 18203.3i −0.720809 1.14571i
\(633\) 1018.83 0.0639731
\(634\) 16525.2 + 5778.89i 1.03517 + 0.362001i
\(635\) 12069.4i 0.754268i
\(636\) −580.237 + 728.162i −0.0361759 + 0.0453986i
\(637\) 24224.4 1.50676
\(638\) 12081.0 + 4224.76i 0.749676 + 0.262163i
\(639\) −14733.1 −0.912098
\(640\) −12187.3 12154.9i −0.752729 0.750726i
\(641\) 12599.6i 0.776374i −0.921581 0.388187i \(-0.873101\pi\)
0.921581 0.388187i \(-0.126899\pi\)
\(642\) −56.3210 19.6955i −0.00346232 0.00121078i
\(643\) 13231.7 0.811517 0.405759 0.913980i \(-0.367007\pi\)
0.405759 + 0.913980i \(0.367007\pi\)
\(644\) −11166.5 8898.02i −0.683262 0.544458i
\(645\) −292.099 −0.0178316
\(646\) 13123.3 19896.5i 0.799269 1.21179i
\(647\) 345.667i 0.0210040i 0.999945 + 0.0105020i \(0.00334295\pi\)
−0.999945 + 0.0105020i \(0.996657\pi\)
\(648\) −8720.48 13861.0i −0.528662 0.840295i
\(649\) 9907.03i 0.599207i
\(650\) −1682.76 588.465i −0.101544 0.0355100i
\(651\) 2485.99 0.149668
\(652\) −17361.1 13834.2i −1.04281 0.830966i
\(653\) 28907.1i 1.73234i −0.499745 0.866172i \(-0.666573\pi\)
0.499745 0.866172i \(-0.333427\pi\)
\(654\) −199.423 + 570.265i −0.0119236 + 0.0340965i
\(655\) 23427.0i 1.39751i
\(656\) −24906.1 + 5704.62i −1.48235 + 0.339524i
\(657\) −11958.4 −0.710112
\(658\) −17398.3 6084.20i −1.03078 0.360467i
\(659\) 17748.5i 1.04914i −0.851368 0.524569i \(-0.824227\pi\)
0.851368 0.524569i \(-0.175773\pi\)
\(660\) 416.860 + 332.175i 0.0245852 + 0.0195908i
\(661\) −29973.2 −1.76373 −0.881864 0.471504i \(-0.843711\pi\)
−0.881864 + 0.471504i \(0.843711\pi\)
\(662\) −3767.37 + 10773.1i −0.221183 + 0.632490i
\(663\) 1006.09i 0.0589341i
\(664\) 6477.16 + 10295.3i 0.378558 + 0.601709i
\(665\) −7480.12 + 29706.9i −0.436190 + 1.73231i
\(666\) −11223.9 3925.01i −0.653028 0.228365i
\(667\) 11819.2i 0.686119i
\(668\) −944.645 752.741i −0.0547147 0.0435995i
\(669\) 274.188i 0.0158456i
\(670\) −8308.05 2905.34i −0.479057 0.167527i
\(671\) 8464.21i 0.486970i
\(672\) 159.673 1429.36i 0.00916594 0.0820517i
\(673\) 26244.4i 1.50319i −0.659624 0.751595i \(-0.729285\pi\)
0.659624 0.751595i \(-0.270715\pi\)
\(674\) −9010.83 + 25767.2i −0.514961 + 1.47257i
\(675\) 224.091i 0.0127782i
\(676\) −4361.06 3475.12i −0.248126 0.197719i
\(677\) 12259.6 0.695972 0.347986 0.937500i \(-0.386866\pi\)
0.347986 + 0.937500i \(0.386866\pi\)
\(678\) −395.985 138.476i −0.0224302 0.00784389i
\(679\) −12387.8 −0.700146
\(680\) −23162.5 + 14572.4i −1.30624 + 0.821803i
\(681\) −808.243 −0.0454801
\(682\) 18341.8 + 6414.17i 1.02983 + 0.360134i
\(683\) 9968.98i 0.558495i 0.960219 + 0.279248i \(0.0900850\pi\)
−0.960219 + 0.279248i \(0.909915\pi\)
\(684\) −14192.5 + 10818.6i −0.793371 + 0.604765i
\(685\) 8979.29i 0.500848i
\(686\) −8207.71 + 23470.6i −0.456810 + 1.30629i
\(687\) −638.389 −0.0354528
\(688\) 1375.41 + 6004.98i 0.0762165 + 0.332759i
\(689\) 17655.1 0.976203
\(690\) −162.488 + 464.647i −0.00896494 + 0.0256360i
\(691\) −24599.5 −1.35428 −0.677142 0.735852i \(-0.736782\pi\)
−0.677142 + 0.735852i \(0.736782\pi\)
\(692\) 7268.87 + 5792.20i 0.399308 + 0.318189i
\(693\) 18404.3i 1.00883i
\(694\) 3502.57 + 1224.85i 0.191579 + 0.0669954i
\(695\) 25299.3i 1.38080i
\(696\) −1007.71 + 633.991i −0.0548812 + 0.0345278i
\(697\) 40622.1i 2.20757i
\(698\) 6669.49 19072.0i 0.361668 1.03422i
\(699\) 264.064i 0.0142887i
\(700\) 2524.92 3168.63i 0.136333 0.171090i
\(701\) 14471.8i 0.779734i 0.920871 + 0.389867i \(0.127479\pi\)
−0.920871 + 0.389867i \(0.872521\pi\)
\(702\) 497.924 1423.85i 0.0267706 0.0765526i
\(703\) −3156.24 + 12534.8i −0.169331 + 0.672490i
\(704\) 4866.00 10133.9i 0.260503 0.542525i
\(705\) 635.424i 0.0339453i
\(706\) −8958.25 3132.71i −0.477547 0.166999i
\(707\) −34578.1 −1.83938
\(708\) 720.746 + 574.327i 0.0382589 + 0.0304866i
\(709\) 18759.1i 0.993671i 0.867845 + 0.496836i \(0.165505\pi\)
−0.867845 + 0.496836i \(0.834495\pi\)
\(710\) 6070.15 17358.1i 0.320857 0.917518i
\(711\) 25600.2 1.35033
\(712\) −26906.1 + 16927.7i −1.41622 + 0.890999i
\(713\) 17944.3i 0.942523i
\(714\) −2158.41 754.801i −0.113133 0.0395626i
\(715\) 10107.2i 0.528655i
\(716\) 22468.9 28197.2i 1.17277 1.47176i
\(717\) −369.189 −0.0192296
\(718\) 5272.77 15077.9i 0.274064 0.783709i
\(719\) 4210.87i 0.218413i 0.994019 + 0.109206i \(0.0348310\pi\)
−0.994019 + 0.109206i \(0.965169\pi\)
\(720\) 19972.0 4574.48i 1.03377 0.236779i
\(721\) 31085.9i 1.60569i
\(722\) 13096.3 + 14312.7i 0.675062 + 0.737761i
\(723\) −791.172 −0.0406971
\(724\) −8139.06 6485.62i −0.417798 0.332923i
\(725\) −3353.84 −0.171805
\(726\) 202.358 578.658i 0.0103446 0.0295813i
\(727\) 8248.16i 0.420780i −0.977618 0.210390i \(-0.932527\pi\)
0.977618 0.210390i \(-0.0674734\pi\)
\(728\) −23083.7 + 14522.9i −1.17519 + 0.739359i
\(729\) 19398.5 0.985544
\(730\) 4926.99 14089.1i 0.249803 0.714331i
\(731\) 9794.18 0.495555
\(732\) −615.779 490.684i −0.0310927 0.0247762i
\(733\) 6704.17i 0.337823i −0.985631 0.168911i \(-0.945975\pi\)
0.985631 0.168911i \(-0.0540252\pi\)
\(734\) −6168.91 + 17640.5i −0.310216 + 0.887089i
\(735\) 1898.05 0.0952527
\(736\) 10317.3 + 1152.54i 0.516715 + 0.0577219i
\(737\) 5748.26i 0.287300i
\(738\) 10040.0 28710.2i 0.500782 1.43203i
\(739\) −21399.5 −1.06521 −0.532606 0.846363i \(-0.678787\pi\)
−0.532606 + 0.846363i \(0.678787\pi\)
\(740\) 9248.69 11606.5i 0.459444 0.576574i
\(741\) −794.119 199.957i −0.0393694 0.00991309i
\(742\) −13245.4 + 37876.2i −0.655327 + 1.87396i
\(743\) −27163.2 −1.34121 −0.670606 0.741814i \(-0.733966\pi\)
−0.670606 + 0.741814i \(0.733966\pi\)
\(744\) −1529.94 + 962.546i −0.0753904 + 0.0474310i
\(745\) −12241.2 −0.601991
\(746\) −25838.5 9035.75i −1.26811 0.443462i
\(747\) −14478.8 −0.709170
\(748\) −13977.5 11138.0i −0.683244 0.544444i
\(749\) −2571.34 −0.125440
\(750\) 880.889 + 308.048i 0.0428874 + 0.0149978i
\(751\) 2808.18 0.136448 0.0682238 0.997670i \(-0.478267\pi\)
0.0682238 + 0.997670i \(0.478267\pi\)
\(752\) 13063.1 2992.03i 0.633460 0.145091i
\(753\) 915.654i 0.0443138i
\(754\) 21310.0 + 7452.15i 1.02926 + 0.359935i
\(755\) 14137.0i 0.681455i
\(756\) 2681.10 + 2136.44i 0.128983 + 0.102780i
\(757\) 26808.1i 1.28713i 0.765392 + 0.643565i \(0.222545\pi\)
−0.765392 + 0.643565i \(0.777455\pi\)
\(758\) 7091.11 20277.6i 0.339790 0.971657i
\(759\) −321.485 −0.0153744
\(760\) −6898.71 21178.6i −0.329267 1.01083i
\(761\) 28180.4 1.34236 0.671182 0.741293i \(-0.265787\pi\)
0.671182 + 0.741293i \(0.265787\pi\)
\(762\) 242.052 692.169i 0.0115074 0.0329063i
\(763\) 26035.5i 1.23532i
\(764\) 8544.42 10722.7i 0.404615 0.507768i
\(765\) 32574.5i 1.53952i
\(766\) 1839.80 + 643.382i 0.0867817 + 0.0303477i
\(767\) 17475.2i 0.822678i
\(768\) 455.164 + 941.488i 0.0213858 + 0.0442357i
\(769\) 9132.92 0.428272 0.214136 0.976804i \(-0.431306\pi\)
0.214136 + 0.976804i \(0.431306\pi\)
\(770\) 21683.5 + 7582.74i 1.01483 + 0.354887i
\(771\) −1720.66 −0.0803738
\(772\) −4172.70 + 5236.49i −0.194532 + 0.244126i
\(773\) −12663.5 −0.589231 −0.294616 0.955616i \(-0.595192\pi\)
−0.294616 + 0.955616i \(0.595192\pi\)
\(774\) −6922.15 2420.69i −0.321462 0.112416i
\(775\) −5091.91 −0.236009
\(776\) 7623.75 4796.40i 0.352676 0.221882i
\(777\) 1240.07 0.0572552
\(778\) −857.801 + 2452.95i −0.0395291 + 0.113037i
\(779\) −32063.5 8073.50i −1.47470 0.371326i
\(780\) 735.309 + 585.932i 0.0337542 + 0.0268971i
\(781\) 12009.9 0.550253
\(782\) 5448.28 15579.8i 0.249143 0.712445i
\(783\) 2837.82i 0.129522i
\(784\) −8937.37 39020.2i −0.407133 1.77753i
\(785\) 40992.7 1.86381
\(786\) −469.828 + 1343.51i −0.0213209 + 0.0609688i
\(787\) 37712.8i 1.70815i 0.520148 + 0.854076i \(0.325877\pi\)
−0.520148 + 0.854076i \(0.674123\pi\)
\(788\) −2827.89 + 3548.84i −0.127842 + 0.160434i
\(789\) −765.604 −0.0345453
\(790\) −10547.5 + 30161.4i −0.475017 + 1.35835i
\(791\) −18078.7 −0.812648
\(792\) 7125.93 + 11326.5i 0.319708 + 0.508168i
\(793\) 14930.2i 0.668584i
\(794\) −6273.26 + 17938.9i −0.280390 + 0.801798i
\(795\) 1383.33 0.0617126
\(796\) 17617.0 22108.3i 0.784445 0.984431i
\(797\) −4970.27 −0.220898 −0.110449 0.993882i \(-0.535229\pi\)
−0.110449 + 0.993882i \(0.535229\pi\)
\(798\) 1024.75 1553.65i 0.0454583 0.0689205i
\(799\) 21306.0i 0.943369i
\(800\) −327.049 + 2927.67i −0.0144536 + 0.129386i
\(801\) 37839.4i 1.66915i
\(802\) −2481.56 + 7096.22i −0.109260 + 0.312439i
\(803\) 9748.12 0.428398
\(804\) 418.191 + 333.236i 0.0183439 + 0.0146173i
\(805\) 21213.5i 0.928792i
\(806\) 32353.6 + 11314.1i 1.41390 + 0.494444i
\(807\) 916.023i 0.0399573i
\(808\) 21280.2 13388.2i 0.926530 0.582915i
\(809\) −20762.7 −0.902321 −0.451160 0.892443i \(-0.648990\pi\)
−0.451160 + 0.892443i \(0.648990\pi\)
\(810\) −8031.45 + 22966.6i −0.348391 + 0.996251i
\(811\) 36963.0i 1.60043i −0.599715 0.800214i \(-0.704719\pi\)
0.599715 0.800214i \(-0.295281\pi\)
\(812\) −31974.9 + 40126.6i −1.38190 + 1.73420i
\(813\) −666.411 −0.0287479
\(814\) 9149.34 + 3199.54i 0.393961 + 0.137769i
\(815\) 32981.8i 1.41755i
\(816\) 1620.59 371.188i 0.0695247 0.0159242i
\(817\) −1946.56 + 7730.66i −0.0833555 + 0.331042i
\(818\) −808.105 + 2310.84i −0.0345412 + 0.0987734i
\(819\) 32463.8i 1.38508i
\(820\) 29689.0 + 23657.7i 1.26437 + 1.00752i
\(821\) 10288.3i 0.437351i 0.975798 + 0.218675i \(0.0701736\pi\)
−0.975798 + 0.218675i \(0.929826\pi\)
\(822\) 180.080 514.953i 0.00764113 0.0218504i
\(823\) 28596.2i 1.21118i −0.795777 0.605590i \(-0.792937\pi\)
0.795777 0.605590i \(-0.207063\pi\)
\(824\) 12036.1 + 19131.1i 0.508856 + 0.808815i
\(825\) 91.2253i 0.00384977i
\(826\) 37490.4 + 13110.5i 1.57925 + 0.552266i
\(827\) 24872.9i 1.04585i −0.852379 0.522924i \(-0.824841\pi\)
0.852379 0.522924i \(-0.175159\pi\)
\(828\) −7701.27 + 9664.63i −0.323234 + 0.405639i
\(829\) 25851.3 1.08306 0.541528 0.840683i \(-0.317846\pi\)
0.541528 + 0.840683i \(0.317846\pi\)
\(830\) 5965.38 17058.5i 0.249471 0.713384i
\(831\) 1318.25 0.0550295
\(832\) 8583.25 17875.5i 0.357657 0.744857i
\(833\) −63642.3 −2.64715
\(834\) −507.377 + 1450.89i −0.0210660 + 0.0602399i
\(835\) 1794.59i 0.0743764i
\(836\) 11569.3 8818.95i 0.478627 0.364844i
\(837\) 4308.47i 0.177924i
\(838\) −27836.0 9734.28i −1.14747 0.401271i
\(839\) −182.166 −0.00749590 −0.00374795 0.999993i \(-0.501193\pi\)
−0.00374795 + 0.999993i \(0.501193\pi\)
\(840\) −1808.68 + 1137.91i −0.0742921 + 0.0467400i
\(841\) 18083.1 0.741446
\(842\) −21603.6 7554.81i −0.884215 0.309211i
\(843\) 1376.17 0.0562254
\(844\) −19895.3 + 24967.4i −0.811403 + 1.01826i
\(845\) 8284.92i 0.337290i
\(846\) −5265.90 + 15058.3i −0.214002 + 0.611955i
\(847\) 26418.7i 1.07173i
\(848\) −6513.67 28438.5i −0.263774 1.15163i
\(849\) 1925.43i 0.0778333i
\(850\) 4420.96 + 1546.01i 0.178397 + 0.0623857i
\(851\) 8951.04i 0.360561i
\(852\) −696.234 + 873.731i −0.0279960 + 0.0351333i
\(853\) 27467.2i 1.10253i 0.834330 + 0.551266i \(0.185855\pi\)
−0.834330 + 0.551266i \(0.814145\pi\)
\(854\) −32030.5 11201.1i −1.28344 0.448822i
\(855\) 25711.5 + 6474.07i 1.02844 + 0.258957i
\(856\) 1582.47 995.591i 0.0631865 0.0397531i
\(857\) 37989.6i 1.51424i −0.653278 0.757118i \(-0.726607\pi\)
0.653278 0.757118i \(-0.273393\pi\)
\(858\) −202.700 + 579.638i −0.00806535 + 0.0230635i
\(859\) −15744.7 −0.625382 −0.312691 0.949855i \(-0.601230\pi\)
−0.312691 + 0.949855i \(0.601230\pi\)
\(860\) 5703.98 7158.15i 0.226168 0.283827i
\(861\) 3172.04i 0.125555i
\(862\) 13275.6 + 4642.50i 0.524558 + 0.183439i
\(863\) 18939.0 0.747033 0.373517 0.927624i \(-0.378152\pi\)
0.373517 + 0.927624i \(0.378152\pi\)
\(864\) −2477.22 276.729i −0.0975427 0.0108964i
\(865\) 13809.0i 0.542799i
\(866\) −4590.34 + 13126.5i −0.180123 + 0.515075i
\(867\) 1388.88i 0.0544045i
\(868\) −48545.3 + 60921.4i −1.89831 + 2.38227i
\(869\) −20868.4 −0.814629
\(870\) 1669.70 + 583.898i 0.0650669 + 0.0227540i
\(871\) 10139.5i 0.394447i
\(872\) −10080.6 16022.9i −0.391483 0.622253i
\(873\) 10721.7i 0.415662i
\(874\) 11214.5 + 7396.81i 0.434022 + 0.286271i
\(875\) 40217.0 1.55381
\(876\) −565.115 + 709.185i −0.0217962 + 0.0273529i
\(877\) 21287.1 0.819630 0.409815 0.912169i \(-0.365593\pi\)
0.409815 + 0.912169i \(0.365593\pi\)
\(878\) −26618.0 9308.36i −1.02314 0.357793i
\(879\) 697.236i 0.0267545i
\(880\) −16280.5 + 3728.96i −0.623655 + 0.142845i
\(881\) −32856.5 −1.25649 −0.628243 0.778017i \(-0.716226\pi\)
−0.628243 + 0.778017i \(0.716226\pi\)
\(882\) 44980.0 + 15729.6i 1.71718 + 0.600501i
\(883\) 7030.80 0.267956 0.133978 0.990984i \(-0.457225\pi\)
0.133978 + 0.990984i \(0.457225\pi\)
\(884\) −24655.2 19646.5i −0.938058 0.747492i
\(885\) 1369.24i 0.0520072i
\(886\) 34586.9 + 12095.1i 1.31148 + 0.458626i
\(887\) 13987.6 0.529492 0.264746 0.964318i \(-0.414712\pi\)
0.264746 + 0.964318i \(0.414712\pi\)
\(888\) −763.172 + 480.141i −0.0288405 + 0.0181447i
\(889\) 31601.0i 1.19220i
\(890\) 44581.4 + 15590.2i 1.67907 + 0.587173i
\(891\) −15890.4 −0.597471
\(892\) 6719.22 + 5354.22i 0.252216 + 0.200978i
\(893\) 16817.1 + 4234.49i 0.630193 + 0.158681i
\(894\) 702.021 + 245.498i 0.0262630 + 0.00918420i
\(895\) −53567.5 −2.00063
\(896\) 31909.7 + 31824.8i 1.18976 + 1.18660i
\(897\) −567.075 −0.0211082
\(898\) −1860.32 + 5319.72i −0.0691309 + 0.197685i
\(899\) 64482.5 2.39223
\(900\) −2742.46 2185.33i −0.101572 0.0809381i
\(901\) −46383.4 −1.71504
\(902\) −8184.27 + 23403.6i −0.302113 + 0.863918i
\(903\) 764.794 0.0281847
\(904\) 11126.1 6999.86i 0.409346 0.257535i
\(905\) 15462.2i 0.567934i
\(906\) 283.518 810.743i 0.0103965 0.0297297i
\(907\) 32555.9i 1.19184i −0.803043 0.595922i \(-0.796787\pi\)
0.803043 0.595922i \(-0.203213\pi\)
\(908\) 15783.0 19806.7i 0.576847 0.723909i
\(909\) 29927.4i 1.09200i
\(910\) 38248.0 + 13375.4i 1.39330 + 0.487241i
\(911\) −42685.1 −1.55238 −0.776191 0.630498i \(-0.782851\pi\)
−0.776191 + 0.630498i \(0.782851\pi\)
\(912\) −29.1039 + 1352.93i −0.00105672 + 0.0491227i
\(913\) 11802.6 0.427830
\(914\) −34473.6 12055.5i −1.24758 0.436280i
\(915\) 1169.83i 0.0422658i
\(916\) 12466.2 15644.3i 0.449666 0.564304i
\(917\) 61338.1i 2.20890i
\(918\) −1308.15 + 3740.75i −0.0470319 + 0.134491i
\(919\) 26396.2i 0.947477i −0.880666 0.473739i \(-0.842904\pi\)
0.880666 0.473739i \(-0.157096\pi\)
\(920\) −8213.61 13055.3i −0.294342 0.467850i
\(921\) −261.525 −0.00935672
\(922\) −13575.1 + 38819.1i −0.484893 + 1.38659i
\(923\) 21184.5 0.755468
\(924\) −1091.45 869.725i −0.0388595 0.0309652i
\(925\) −2539.97 −0.0902849
\(926\) 5384.64 15397.8i 0.191091 0.546440i
\(927\) −26905.0 −0.953264
\(928\) 4141.65 37075.2i 0.146505 1.31148i
\(929\) −15313.5 −0.540818 −0.270409 0.962746i \(-0.587159\pi\)
−0.270409 + 0.962746i \(0.587159\pi\)
\(930\) 2535.00 + 886.492i 0.0893826 + 0.0312572i
\(931\) 12648.7 50233.7i 0.445267 1.76836i
\(932\) 6471.14 + 5156.53i 0.227435 + 0.181232i
\(933\) 644.977 0.0226320
\(934\) 10086.1 + 3527.11i 0.353347 + 0.123566i
\(935\) 26553.7i 0.928768i
\(936\) 12569.6 + 19979.1i 0.438942 + 0.697688i
\(937\) 13341.6 0.465156 0.232578 0.972578i \(-0.425284\pi\)
0.232578 + 0.972578i \(0.425284\pi\)
\(938\) 21752.7 + 7606.96i 0.757198 + 0.264793i
\(939\) 2688.99i 0.0934523i
\(940\) −15571.7 12408.3i −0.540310 0.430546i
\(941\) −50527.3 −1.75042 −0.875209 0.483745i \(-0.839276\pi\)
−0.875209 + 0.483745i \(0.839276\pi\)
\(942\) −2350.89 822.108i −0.0813121 0.0284350i
\(943\) −22896.3 −0.790675
\(944\) −28148.8 + 6447.33i −0.970515 + 0.222291i
\(945\) 5093.42i 0.175332i
\(946\) 5642.71 + 1973.26i 0.193933 + 0.0678185i
\(947\) −24534.8 −0.841895 −0.420947 0.907085i \(-0.638302\pi\)
−0.420947 + 0.907085i \(0.638302\pi\)
\(948\) 1209.78 1518.20i 0.0414469 0.0520134i
\(949\) 17194.9 0.588168
\(950\) −2098.94 + 3182.25i −0.0716826 + 0.108680i
\(951\) 1580.22i 0.0538825i
\(952\) 60645.6 38154.5i 2.06464 1.29894i
\(953\) 42716.0i 1.45195i 0.687723 + 0.725974i \(0.258611\pi\)
−0.687723 + 0.725974i \(0.741389\pi\)
\(954\) 32782.0 + 11463.9i 1.11253 + 0.389054i
\(955\) −20370.5 −0.690234
\(956\) 7209.36 9047.32i 0.243899 0.306079i
\(957\) 1155.25i 0.0390219i
\(958\) 15226.8 43542.2i 0.513523 1.46846i
\(959\) 23510.2i 0.791641i
\(960\) 672.523 1400.60i 0.0226100 0.0470876i
\(961\) 68108.4 2.28621
\(962\) 16138.7 + 5643.74i 0.540887 + 0.189149i
\(963\) 2225.50i 0.0744712i
\(964\) 15449.7 19388.4i 0.516182 0.647778i
\(965\) 9948.01 0.331853
\(966\) 425.437 1216.57i 0.0141700 0.0405202i
\(967\) 15724.2i 0.522912i −0.965215 0.261456i \(-0.915797\pi\)
0.965215 0.261456i \(-0.0842027\pi\)
\(968\) 10229.0 + 16258.7i 0.339641 + 0.539851i
\(969\) 2086.31 + 525.327i 0.0691661 + 0.0174158i
\(970\) −12632.0 4417.42i −0.418132 0.146221i
\(971\) 11018.1i 0.364148i 0.983285 + 0.182074i \(0.0582810\pi\)
−0.983285 + 0.182074i \(0.941719\pi\)
\(972\) 2774.76 3482.16i 0.0915643 0.114908i
\(973\) 66240.3i 2.18249i
\(974\) 20747.3 + 7255.37i 0.682533 + 0.238683i
\(975\) 160.914i 0.00528552i
\(976\) 24049.3 5508.37i 0.788730 0.180654i
\(977\) 20874.0i 0.683540i −0.939784 0.341770i \(-0.888974\pi\)
0.939784 0.341770i \(-0.111026\pi\)
\(978\) 661.450 1891.47i 0.0216266 0.0618431i
\(979\) 30845.4i 1.00697i
\(980\) −37064.3 + 46513.5i −1.20814 + 1.51614i
\(981\) 22533.8 0.733383
\(982\) 45090.5 + 15768.2i 1.46527 + 0.512407i
\(983\) −19012.5 −0.616891 −0.308445 0.951242i \(-0.599809\pi\)
−0.308445 + 0.951242i \(0.599809\pi\)
\(984\) −1228.18 1952.16i −0.0397895 0.0632444i
\(985\) 6741.90 0.218086
\(986\) −55985.7 19578.3i −1.80826 0.632353i
\(987\) 1663.71i 0.0536541i
\(988\) 20407.3 15555.9i 0.657129 0.500912i
\(989\) 5520.41i 0.177491i
\(990\) 6562.89 18767.1i 0.210689 0.602483i
\(991\) −35028.4 −1.12282 −0.561410 0.827538i \(-0.689741\pi\)
−0.561410 + 0.827538i \(0.689741\pi\)
\(992\) 6287.99 56288.8i 0.201254 1.80158i
\(993\) −1030.18 −0.0329222
\(994\) −15893.3 + 45448.2i −0.507147 + 1.45023i
\(995\) −42000.2 −1.33819
\(996\) −684.216 + 858.651i −0.0217673 + 0.0273167i
\(997\) 17746.0i 0.563711i −0.959457 0.281856i \(-0.909050\pi\)
0.959457 0.281856i \(-0.0909499\pi\)
\(998\) −2567.23 897.766i −0.0814273 0.0284752i
\(999\) 2149.17i 0.0680648i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.4.b.b.75.5 56
4.3 odd 2 608.4.b.b.303.29 56
8.3 odd 2 inner 152.4.b.b.75.51 yes 56
8.5 even 2 608.4.b.b.303.30 56
19.18 odd 2 inner 152.4.b.b.75.52 yes 56
76.75 even 2 608.4.b.b.303.27 56
152.37 odd 2 608.4.b.b.303.28 56
152.75 even 2 inner 152.4.b.b.75.6 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.4.b.b.75.5 56 1.1 even 1 trivial
152.4.b.b.75.6 yes 56 152.75 even 2 inner
152.4.b.b.75.51 yes 56 8.3 odd 2 inner
152.4.b.b.75.52 yes 56 19.18 odd 2 inner
608.4.b.b.303.27 56 76.75 even 2
608.4.b.b.303.28 56 152.37 odd 2
608.4.b.b.303.29 56 4.3 odd 2
608.4.b.b.303.30 56 8.5 even 2