Properties

Label 608.4.b.b.303.41
Level $608$
Weight $4$
Character 608.303
Analytic conductor $35.873$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [608,4,Mod(303,608)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(608, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("608.303");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 608.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(35.8731612835\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: no (minimal twist has level 152)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 303.41
Character \(\chi\) \(=\) 608.303
Dual form 608.4.b.b.303.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.03936i q^{3} -5.72550i q^{5} -3.30417i q^{7} +1.60489 q^{9} +O(q^{10})\) \(q+5.03936i q^{3} -5.72550i q^{5} -3.30417i q^{7} +1.60489 q^{9} -18.7882 q^{11} -57.2347 q^{13} +28.8528 q^{15} +27.5535 q^{17} +(77.7299 + 28.5842i) q^{19} +16.6509 q^{21} -188.477i q^{23} +92.2187 q^{25} +144.150i q^{27} +116.587 q^{29} -20.6754 q^{31} -94.6802i q^{33} -18.9180 q^{35} +96.9185 q^{37} -288.426i q^{39} -186.285i q^{41} -240.906 q^{43} -9.18878i q^{45} -205.244i q^{47} +332.082 q^{49} +138.852i q^{51} +386.068 q^{53} +107.572i q^{55} +(-144.046 + 391.709i) q^{57} +23.1750i q^{59} +25.9773i q^{61} -5.30282i q^{63} +327.697i q^{65} -604.479i q^{67} +949.804 q^{69} +828.153 q^{71} +824.991 q^{73} +464.723i q^{75} +62.0793i q^{77} +678.227 q^{79} -683.092 q^{81} -156.548 q^{83} -157.757i q^{85} +587.522i q^{87} +372.489i q^{89} +189.113i q^{91} -104.191i q^{93} +(163.659 - 445.043i) q^{95} +1456.91i q^{97} -30.1529 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 528 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q - 528 q^{9} + 40 q^{11} - 184 q^{17} + 84 q^{19} - 1504 q^{25} - 40 q^{35} - 576 q^{43} - 3664 q^{49} - 648 q^{57} - 432 q^{73} + 2296 q^{81} - 5376 q^{83} + 6152 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/608\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.03936i 0.969825i 0.874563 + 0.484912i \(0.161148\pi\)
−0.874563 + 0.484912i \(0.838852\pi\)
\(4\) 0 0
\(5\) 5.72550i 0.512104i −0.966663 0.256052i \(-0.917578\pi\)
0.966663 0.256052i \(-0.0824219\pi\)
\(6\) 0 0
\(7\) 3.30417i 0.178408i −0.996013 0.0892042i \(-0.971568\pi\)
0.996013 0.0892042i \(-0.0284324\pi\)
\(8\) 0 0
\(9\) 1.60489 0.0594402
\(10\) 0 0
\(11\) −18.7882 −0.514986 −0.257493 0.966280i \(-0.582896\pi\)
−0.257493 + 0.966280i \(0.582896\pi\)
\(12\) 0 0
\(13\) −57.2347 −1.22108 −0.610540 0.791985i \(-0.709048\pi\)
−0.610540 + 0.791985i \(0.709048\pi\)
\(14\) 0 0
\(15\) 28.8528 0.496651
\(16\) 0 0
\(17\) 27.5535 0.393100 0.196550 0.980494i \(-0.437026\pi\)
0.196550 + 0.980494i \(0.437026\pi\)
\(18\) 0 0
\(19\) 77.7299 + 28.5842i 0.938551 + 0.345141i
\(20\) 0 0
\(21\) 16.6509 0.173025
\(22\) 0 0
\(23\) 188.477i 1.70871i −0.519694 0.854353i \(-0.673954\pi\)
0.519694 0.854353i \(-0.326046\pi\)
\(24\) 0 0
\(25\) 92.2187 0.737749
\(26\) 0 0
\(27\) 144.150i 1.02747i
\(28\) 0 0
\(29\) 116.587 0.746539 0.373269 0.927723i \(-0.378237\pi\)
0.373269 + 0.927723i \(0.378237\pi\)
\(30\) 0 0
\(31\) −20.6754 −0.119787 −0.0598937 0.998205i \(-0.519076\pi\)
−0.0598937 + 0.998205i \(0.519076\pi\)
\(32\) 0 0
\(33\) 94.6802i 0.499446i
\(34\) 0 0
\(35\) −18.9180 −0.0913637
\(36\) 0 0
\(37\) 96.9185 0.430630 0.215315 0.976545i \(-0.430922\pi\)
0.215315 + 0.976545i \(0.430922\pi\)
\(38\) 0 0
\(39\) 288.426i 1.18423i
\(40\) 0 0
\(41\) 186.285i 0.709582i −0.934946 0.354791i \(-0.884552\pi\)
0.934946 0.354791i \(-0.115448\pi\)
\(42\) 0 0
\(43\) −240.906 −0.854368 −0.427184 0.904165i \(-0.640494\pi\)
−0.427184 + 0.904165i \(0.640494\pi\)
\(44\) 0 0
\(45\) 9.18878i 0.0304396i
\(46\) 0 0
\(47\) 205.244i 0.636978i −0.947927 0.318489i \(-0.896825\pi\)
0.947927 0.318489i \(-0.103175\pi\)
\(48\) 0 0
\(49\) 332.082 0.968170
\(50\) 0 0
\(51\) 138.852i 0.381238i
\(52\) 0 0
\(53\) 386.068 1.00057 0.500287 0.865859i \(-0.333228\pi\)
0.500287 + 0.865859i \(0.333228\pi\)
\(54\) 0 0
\(55\) 107.572i 0.263726i
\(56\) 0 0
\(57\) −144.046 + 391.709i −0.334726 + 0.910230i
\(58\) 0 0
\(59\) 23.1750i 0.0511378i 0.999673 + 0.0255689i \(0.00813972\pi\)
−0.999673 + 0.0255689i \(0.991860\pi\)
\(60\) 0 0
\(61\) 25.9773i 0.0545255i 0.999628 + 0.0272627i \(0.00867907\pi\)
−0.999628 + 0.0272627i \(0.991321\pi\)
\(62\) 0 0
\(63\) 5.30282i 0.0106046i
\(64\) 0 0
\(65\) 327.697i 0.625320i
\(66\) 0 0
\(67\) 604.479i 1.10222i −0.834432 0.551111i \(-0.814204\pi\)
0.834432 0.551111i \(-0.185796\pi\)
\(68\) 0 0
\(69\) 949.804 1.65714
\(70\) 0 0
\(71\) 828.153 1.38428 0.692139 0.721765i \(-0.256669\pi\)
0.692139 + 0.721765i \(0.256669\pi\)
\(72\) 0 0
\(73\) 824.991 1.32271 0.661356 0.750073i \(-0.269981\pi\)
0.661356 + 0.750073i \(0.269981\pi\)
\(74\) 0 0
\(75\) 464.723i 0.715487i
\(76\) 0 0
\(77\) 62.0793i 0.0918778i
\(78\) 0 0
\(79\) 678.227 0.965905 0.482953 0.875647i \(-0.339564\pi\)
0.482953 + 0.875647i \(0.339564\pi\)
\(80\) 0 0
\(81\) −683.092 −0.937027
\(82\) 0 0
\(83\) −156.548 −0.207029 −0.103514 0.994628i \(-0.533009\pi\)
−0.103514 + 0.994628i \(0.533009\pi\)
\(84\) 0 0
\(85\) 157.757i 0.201308i
\(86\) 0 0
\(87\) 587.522i 0.724012i
\(88\) 0 0
\(89\) 372.489i 0.443637i 0.975088 + 0.221819i \(0.0711993\pi\)
−0.975088 + 0.221819i \(0.928801\pi\)
\(90\) 0 0
\(91\) 189.113i 0.217851i
\(92\) 0 0
\(93\) 104.191i 0.116173i
\(94\) 0 0
\(95\) 163.659 445.043i 0.176748 0.480636i
\(96\) 0 0
\(97\) 1456.91i 1.52502i 0.646974 + 0.762512i \(0.276034\pi\)
−0.646974 + 0.762512i \(0.723966\pi\)
\(98\) 0 0
\(99\) −30.1529 −0.0306109
\(100\) 0 0
\(101\) 743.632i 0.732615i 0.930494 + 0.366308i \(0.119378\pi\)
−0.930494 + 0.366308i \(0.880622\pi\)
\(102\) 0 0
\(103\) 681.912 0.652338 0.326169 0.945311i \(-0.394242\pi\)
0.326169 + 0.945311i \(0.394242\pi\)
\(104\) 0 0
\(105\) 95.3346i 0.0886067i
\(106\) 0 0
\(107\) 1011.28i 0.913684i 0.889548 + 0.456842i \(0.151020\pi\)
−0.889548 + 0.456842i \(0.848980\pi\)
\(108\) 0 0
\(109\) 818.210 0.718994 0.359497 0.933146i \(-0.382948\pi\)
0.359497 + 0.933146i \(0.382948\pi\)
\(110\) 0 0
\(111\) 488.407i 0.417636i
\(112\) 0 0
\(113\) 223.680i 0.186213i −0.995656 0.0931064i \(-0.970320\pi\)
0.995656 0.0931064i \(-0.0296797\pi\)
\(114\) 0 0
\(115\) −1079.13 −0.875035
\(116\) 0 0
\(117\) −91.8552 −0.0725813
\(118\) 0 0
\(119\) 91.0414i 0.0701323i
\(120\) 0 0
\(121\) −978.005 −0.734790
\(122\) 0 0
\(123\) 938.758 0.688170
\(124\) 0 0
\(125\) 1243.69i 0.889909i
\(126\) 0 0
\(127\) 706.530 0.493657 0.246828 0.969059i \(-0.420612\pi\)
0.246828 + 0.969059i \(0.420612\pi\)
\(128\) 0 0
\(129\) 1214.01i 0.828587i
\(130\) 0 0
\(131\) 2375.61 1.58441 0.792207 0.610253i \(-0.208932\pi\)
0.792207 + 0.610253i \(0.208932\pi\)
\(132\) 0 0
\(133\) 94.4472 256.833i 0.0615760 0.167445i
\(134\) 0 0
\(135\) 825.332 0.526172
\(136\) 0 0
\(137\) −1067.76 −0.665878 −0.332939 0.942948i \(-0.608040\pi\)
−0.332939 + 0.942948i \(0.608040\pi\)
\(138\) 0 0
\(139\) 2150.99 1.31255 0.656276 0.754521i \(-0.272131\pi\)
0.656276 + 0.754521i \(0.272131\pi\)
\(140\) 0 0
\(141\) 1034.30 0.617757
\(142\) 0 0
\(143\) 1075.33 0.628839
\(144\) 0 0
\(145\) 667.518i 0.382306i
\(146\) 0 0
\(147\) 1673.48i 0.938956i
\(148\) 0 0
\(149\) 484.443i 0.266356i −0.991092 0.133178i \(-0.957482\pi\)
0.991092 0.133178i \(-0.0425183\pi\)
\(150\) 0 0
\(151\) −2021.09 −1.08923 −0.544616 0.838686i \(-0.683324\pi\)
−0.544616 + 0.838686i \(0.683324\pi\)
\(152\) 0 0
\(153\) 44.2202 0.0233660
\(154\) 0 0
\(155\) 118.377i 0.0613436i
\(156\) 0 0
\(157\) 3373.68i 1.71496i −0.514516 0.857481i \(-0.672028\pi\)
0.514516 0.857481i \(-0.327972\pi\)
\(158\) 0 0
\(159\) 1945.53i 0.970382i
\(160\) 0 0
\(161\) −622.761 −0.304847
\(162\) 0 0
\(163\) −1488.88 −0.715450 −0.357725 0.933827i \(-0.616447\pi\)
−0.357725 + 0.933827i \(0.616447\pi\)
\(164\) 0 0
\(165\) −542.092 −0.255768
\(166\) 0 0
\(167\) 12.3994 0.00574548 0.00287274 0.999996i \(-0.499086\pi\)
0.00287274 + 0.999996i \(0.499086\pi\)
\(168\) 0 0
\(169\) 1078.81 0.491038
\(170\) 0 0
\(171\) 124.748 + 45.8745i 0.0557877 + 0.0205153i
\(172\) 0 0
\(173\) −273.183 −0.120056 −0.0600280 0.998197i \(-0.519119\pi\)
−0.0600280 + 0.998197i \(0.519119\pi\)
\(174\) 0 0
\(175\) 304.706i 0.131621i
\(176\) 0 0
\(177\) −116.787 −0.0495947
\(178\) 0 0
\(179\) 3358.87i 1.40253i −0.712899 0.701267i \(-0.752618\pi\)
0.712899 0.701267i \(-0.247382\pi\)
\(180\) 0 0
\(181\) −2753.17 −1.13062 −0.565308 0.824880i \(-0.691243\pi\)
−0.565308 + 0.824880i \(0.691243\pi\)
\(182\) 0 0
\(183\) −130.909 −0.0528801
\(184\) 0 0
\(185\) 554.907i 0.220527i
\(186\) 0 0
\(187\) −517.679 −0.202441
\(188\) 0 0
\(189\) 476.297 0.183309
\(190\) 0 0
\(191\) 1742.05i 0.659950i −0.943990 0.329975i \(-0.892960\pi\)
0.943990 0.329975i \(-0.107040\pi\)
\(192\) 0 0
\(193\) 1861.80i 0.694379i 0.937795 + 0.347189i \(0.112864\pi\)
−0.937795 + 0.347189i \(0.887136\pi\)
\(194\) 0 0
\(195\) −1651.38 −0.606451
\(196\) 0 0
\(197\) 3038.48i 1.09890i −0.835528 0.549448i \(-0.814838\pi\)
0.835528 0.549448i \(-0.185162\pi\)
\(198\) 0 0
\(199\) 3019.80i 1.07572i −0.843035 0.537859i \(-0.819233\pi\)
0.843035 0.537859i \(-0.180767\pi\)
\(200\) 0 0
\(201\) 3046.19 1.06896
\(202\) 0 0
\(203\) 385.223i 0.133189i
\(204\) 0 0
\(205\) −1066.58 −0.363380
\(206\) 0 0
\(207\) 302.485i 0.101566i
\(208\) 0 0
\(209\) −1460.40 537.045i −0.483340 0.177743i
\(210\) 0 0
\(211\) 5180.94i 1.69038i −0.534463 0.845192i \(-0.679486\pi\)
0.534463 0.845192i \(-0.320514\pi\)
\(212\) 0 0
\(213\) 4173.36i 1.34251i
\(214\) 0 0
\(215\) 1379.31i 0.437525i
\(216\) 0 0
\(217\) 68.3150i 0.0213711i
\(218\) 0 0
\(219\) 4157.42i 1.28280i
\(220\) 0 0
\(221\) −1577.02 −0.480007
\(222\) 0 0
\(223\) −6049.57 −1.81663 −0.908317 0.418283i \(-0.862632\pi\)
−0.908317 + 0.418283i \(0.862632\pi\)
\(224\) 0 0
\(225\) 148.001 0.0438520
\(226\) 0 0
\(227\) 3412.80i 0.997867i −0.866640 0.498933i \(-0.833725\pi\)
0.866640 0.498933i \(-0.166275\pi\)
\(228\) 0 0
\(229\) 5741.64i 1.65685i 0.560101 + 0.828424i \(0.310762\pi\)
−0.560101 + 0.828424i \(0.689238\pi\)
\(230\) 0 0
\(231\) −312.840 −0.0891053
\(232\) 0 0
\(233\) 2255.67 0.634223 0.317112 0.948388i \(-0.397287\pi\)
0.317112 + 0.948388i \(0.397287\pi\)
\(234\) 0 0
\(235\) −1175.13 −0.326199
\(236\) 0 0
\(237\) 3417.83i 0.936759i
\(238\) 0 0
\(239\) 1011.60i 0.273785i 0.990586 + 0.136893i \(0.0437115\pi\)
−0.990586 + 0.136893i \(0.956288\pi\)
\(240\) 0 0
\(241\) 4313.46i 1.15292i 0.817125 + 0.576461i \(0.195567\pi\)
−0.817125 + 0.576461i \(0.804433\pi\)
\(242\) 0 0
\(243\) 449.710i 0.118720i
\(244\) 0 0
\(245\) 1901.34i 0.495804i
\(246\) 0 0
\(247\) −4448.85 1636.01i −1.14605 0.421445i
\(248\) 0 0
\(249\) 788.903i 0.200782i
\(250\) 0 0
\(251\) 1821.03 0.457938 0.228969 0.973434i \(-0.426465\pi\)
0.228969 + 0.973434i \(0.426465\pi\)
\(252\) 0 0
\(253\) 3541.14i 0.879959i
\(254\) 0 0
\(255\) 794.996 0.195234
\(256\) 0 0
\(257\) 3365.51i 0.816867i −0.912788 0.408434i \(-0.866075\pi\)
0.912788 0.408434i \(-0.133925\pi\)
\(258\) 0 0
\(259\) 320.235i 0.0768280i
\(260\) 0 0
\(261\) 187.109 0.0443745
\(262\) 0 0
\(263\) 1894.24i 0.444122i 0.975033 + 0.222061i \(0.0712784\pi\)
−0.975033 + 0.222061i \(0.928722\pi\)
\(264\) 0 0
\(265\) 2210.43i 0.512398i
\(266\) 0 0
\(267\) −1877.10 −0.430250
\(268\) 0 0
\(269\) −5932.53 −1.34466 −0.672329 0.740253i \(-0.734706\pi\)
−0.672329 + 0.740253i \(0.734706\pi\)
\(270\) 0 0
\(271\) 1212.08i 0.271693i 0.990730 + 0.135847i \(0.0433754\pi\)
−0.990730 + 0.135847i \(0.956625\pi\)
\(272\) 0 0
\(273\) −953.009 −0.211277
\(274\) 0 0
\(275\) −1732.62 −0.379930
\(276\) 0 0
\(277\) 1324.62i 0.287325i −0.989627 0.143662i \(-0.954112\pi\)
0.989627 0.143662i \(-0.0458879\pi\)
\(278\) 0 0
\(279\) −33.1817 −0.00712019
\(280\) 0 0
\(281\) 2675.75i 0.568050i −0.958817 0.284025i \(-0.908330\pi\)
0.958817 0.284025i \(-0.0916699\pi\)
\(282\) 0 0
\(283\) −2733.04 −0.574073 −0.287036 0.957920i \(-0.592670\pi\)
−0.287036 + 0.957920i \(0.592670\pi\)
\(284\) 0 0
\(285\) 2242.73 + 824.736i 0.466132 + 0.171415i
\(286\) 0 0
\(287\) −615.518 −0.126595
\(288\) 0 0
\(289\) −4153.81 −0.845472
\(290\) 0 0
\(291\) −7341.91 −1.47901
\(292\) 0 0
\(293\) 2897.56 0.577737 0.288869 0.957369i \(-0.406721\pi\)
0.288869 + 0.957369i \(0.406721\pi\)
\(294\) 0 0
\(295\) 132.689 0.0261879
\(296\) 0 0
\(297\) 2708.32i 0.529133i
\(298\) 0 0
\(299\) 10787.4i 2.08647i
\(300\) 0 0
\(301\) 795.994i 0.152426i
\(302\) 0 0
\(303\) −3747.43 −0.710508
\(304\) 0 0
\(305\) 148.733 0.0279227
\(306\) 0 0
\(307\) 578.868i 0.107615i 0.998551 + 0.0538074i \(0.0171357\pi\)
−0.998551 + 0.0538074i \(0.982864\pi\)
\(308\) 0 0
\(309\) 3436.40i 0.632653i
\(310\) 0 0
\(311\) 8292.12i 1.51191i 0.654625 + 0.755954i \(0.272826\pi\)
−0.654625 + 0.755954i \(0.727174\pi\)
\(312\) 0 0
\(313\) 8713.54 1.57354 0.786771 0.617245i \(-0.211751\pi\)
0.786771 + 0.617245i \(0.211751\pi\)
\(314\) 0 0
\(315\) −30.3613 −0.00543068
\(316\) 0 0
\(317\) −4416.74 −0.782551 −0.391275 0.920274i \(-0.627966\pi\)
−0.391275 + 0.920274i \(0.627966\pi\)
\(318\) 0 0
\(319\) −2190.45 −0.384457
\(320\) 0 0
\(321\) −5096.21 −0.886113
\(322\) 0 0
\(323\) 2141.73 + 787.595i 0.368944 + 0.135675i
\(324\) 0 0
\(325\) −5278.11 −0.900851
\(326\) 0 0
\(327\) 4123.25i 0.697298i
\(328\) 0 0
\(329\) −678.162 −0.113642
\(330\) 0 0
\(331\) 4318.95i 0.717194i −0.933493 0.358597i \(-0.883255\pi\)
0.933493 0.358597i \(-0.116745\pi\)
\(332\) 0 0
\(333\) 155.543 0.0255968
\(334\) 0 0
\(335\) −3460.95 −0.564453
\(336\) 0 0
\(337\) 9523.11i 1.53934i −0.638443 0.769669i \(-0.720421\pi\)
0.638443 0.769669i \(-0.279579\pi\)
\(338\) 0 0
\(339\) 1127.20 0.180594
\(340\) 0 0
\(341\) 388.453 0.0616888
\(342\) 0 0
\(343\) 2230.59i 0.351138i
\(344\) 0 0
\(345\) 5438.10i 0.848631i
\(346\) 0 0
\(347\) 8490.08 1.31346 0.656731 0.754125i \(-0.271939\pi\)
0.656731 + 0.754125i \(0.271939\pi\)
\(348\) 0 0
\(349\) 11160.9i 1.71184i 0.517110 + 0.855919i \(0.327008\pi\)
−0.517110 + 0.855919i \(0.672992\pi\)
\(350\) 0 0
\(351\) 8250.39i 1.25463i
\(352\) 0 0
\(353\) −6494.13 −0.979172 −0.489586 0.871955i \(-0.662852\pi\)
−0.489586 + 0.871955i \(0.662852\pi\)
\(354\) 0 0
\(355\) 4741.59i 0.708894i
\(356\) 0 0
\(357\) 458.790 0.0680161
\(358\) 0 0
\(359\) 2262.40i 0.332604i −0.986075 0.166302i \(-0.946817\pi\)
0.986075 0.166302i \(-0.0531827\pi\)
\(360\) 0 0
\(361\) 5224.88 + 4443.70i 0.761756 + 0.647864i
\(362\) 0 0
\(363\) 4928.52i 0.712617i
\(364\) 0 0
\(365\) 4723.49i 0.677366i
\(366\) 0 0
\(367\) 2224.41i 0.316385i 0.987408 + 0.158192i \(0.0505666\pi\)
−0.987408 + 0.158192i \(0.949433\pi\)
\(368\) 0 0
\(369\) 298.967i 0.0421777i
\(370\) 0 0
\(371\) 1275.63i 0.178511i
\(372\) 0 0
\(373\) −63.6398 −0.00883417 −0.00441708 0.999990i \(-0.501406\pi\)
−0.00441708 + 0.999990i \(0.501406\pi\)
\(374\) 0 0
\(375\) 6267.37 0.863055
\(376\) 0 0
\(377\) −6672.81 −0.911584
\(378\) 0 0
\(379\) 3252.80i 0.440858i 0.975403 + 0.220429i \(0.0707458\pi\)
−0.975403 + 0.220429i \(0.929254\pi\)
\(380\) 0 0
\(381\) 3560.46i 0.478760i
\(382\) 0 0
\(383\) 4404.95 0.587682 0.293841 0.955854i \(-0.405066\pi\)
0.293841 + 0.955854i \(0.405066\pi\)
\(384\) 0 0
\(385\) 355.435 0.0470510
\(386\) 0 0
\(387\) −386.627 −0.0507838
\(388\) 0 0
\(389\) 10114.5i 1.31831i −0.752006 0.659156i \(-0.770914\pi\)
0.752006 0.659156i \(-0.229086\pi\)
\(390\) 0 0
\(391\) 5193.20i 0.671692i
\(392\) 0 0
\(393\) 11971.6i 1.53660i
\(394\) 0 0
\(395\) 3883.19i 0.494644i
\(396\) 0 0
\(397\) 15279.7i 1.93165i −0.259186 0.965827i \(-0.583454\pi\)
0.259186 0.965827i \(-0.416546\pi\)
\(398\) 0 0
\(399\) 1294.27 + 475.953i 0.162393 + 0.0597179i
\(400\) 0 0
\(401\) 14208.1i 1.76937i 0.466190 + 0.884684i \(0.345626\pi\)
−0.466190 + 0.884684i \(0.654374\pi\)
\(402\) 0 0
\(403\) 1183.35 0.146270
\(404\) 0 0
\(405\) 3911.04i 0.479855i
\(406\) 0 0
\(407\) −1820.92 −0.221768
\(408\) 0 0
\(409\) 11209.6i 1.35520i −0.735430 0.677601i \(-0.763020\pi\)
0.735430 0.677601i \(-0.236980\pi\)
\(410\) 0 0
\(411\) 5380.85i 0.645785i
\(412\) 0 0
\(413\) 76.5742 0.00912341
\(414\) 0 0
\(415\) 896.317i 0.106020i
\(416\) 0 0
\(417\) 10839.6i 1.27295i
\(418\) 0 0
\(419\) 4914.82 0.573042 0.286521 0.958074i \(-0.407501\pi\)
0.286521 + 0.958074i \(0.407501\pi\)
\(420\) 0 0
\(421\) −6104.34 −0.706668 −0.353334 0.935497i \(-0.614952\pi\)
−0.353334 + 0.935497i \(0.614952\pi\)
\(422\) 0 0
\(423\) 329.394i 0.0378621i
\(424\) 0 0
\(425\) 2540.95 0.290009
\(426\) 0 0
\(427\) 85.8334 0.00972780
\(428\) 0 0
\(429\) 5418.99i 0.609864i
\(430\) 0 0
\(431\) 11052.2 1.23519 0.617595 0.786497i \(-0.288107\pi\)
0.617595 + 0.786497i \(0.288107\pi\)
\(432\) 0 0
\(433\) 4407.06i 0.489122i −0.969634 0.244561i \(-0.921356\pi\)
0.969634 0.244561i \(-0.0786438\pi\)
\(434\) 0 0
\(435\) 3363.86 0.370769
\(436\) 0 0
\(437\) 5387.48 14650.3i 0.589744 1.60371i
\(438\) 0 0
\(439\) −14788.9 −1.60782 −0.803911 0.594750i \(-0.797251\pi\)
−0.803911 + 0.594750i \(0.797251\pi\)
\(440\) 0 0
\(441\) 532.955 0.0575483
\(442\) 0 0
\(443\) −13668.3 −1.46592 −0.732958 0.680274i \(-0.761861\pi\)
−0.732958 + 0.680274i \(0.761861\pi\)
\(444\) 0 0
\(445\) 2132.68 0.227189
\(446\) 0 0
\(447\) 2441.28 0.258319
\(448\) 0 0
\(449\) 4433.66i 0.466007i 0.972476 + 0.233003i \(0.0748554\pi\)
−0.972476 + 0.233003i \(0.925145\pi\)
\(450\) 0 0
\(451\) 3499.96i 0.365425i
\(452\) 0 0
\(453\) 10185.0i 1.05636i
\(454\) 0 0
\(455\) 1082.77 0.111562
\(456\) 0 0
\(457\) 8045.08 0.823486 0.411743 0.911300i \(-0.364920\pi\)
0.411743 + 0.911300i \(0.364920\pi\)
\(458\) 0 0
\(459\) 3971.84i 0.403899i
\(460\) 0 0
\(461\) 11671.8i 1.17919i −0.807698 0.589596i \(-0.799287\pi\)
0.807698 0.589596i \(-0.200713\pi\)
\(462\) 0 0
\(463\) 6795.37i 0.682090i 0.940047 + 0.341045i \(0.110781\pi\)
−0.940047 + 0.341045i \(0.889219\pi\)
\(464\) 0 0
\(465\) −596.544 −0.0594926
\(466\) 0 0
\(467\) 7486.56 0.741834 0.370917 0.928666i \(-0.379043\pi\)
0.370917 + 0.928666i \(0.379043\pi\)
\(468\) 0 0
\(469\) −1997.30 −0.196646
\(470\) 0 0
\(471\) 17001.2 1.66321
\(472\) 0 0
\(473\) 4526.18 0.439987
\(474\) 0 0
\(475\) 7168.15 + 2636.00i 0.692415 + 0.254627i
\(476\) 0 0
\(477\) 619.595 0.0594744
\(478\) 0 0
\(479\) 15766.9i 1.50398i 0.659175 + 0.751990i \(0.270906\pi\)
−0.659175 + 0.751990i \(0.729094\pi\)
\(480\) 0 0
\(481\) −5547.10 −0.525834
\(482\) 0 0
\(483\) 3138.31i 0.295648i
\(484\) 0 0
\(485\) 8341.56 0.780971
\(486\) 0 0
\(487\) −5904.44 −0.549396 −0.274698 0.961531i \(-0.588578\pi\)
−0.274698 + 0.961531i \(0.588578\pi\)
\(488\) 0 0
\(489\) 7503.01i 0.693861i
\(490\) 0 0
\(491\) 15452.6 1.42029 0.710147 0.704053i \(-0.248628\pi\)
0.710147 + 0.704053i \(0.248628\pi\)
\(492\) 0 0
\(493\) 3212.37 0.293464
\(494\) 0 0
\(495\) 172.640i 0.0156760i
\(496\) 0 0
\(497\) 2736.36i 0.246967i
\(498\) 0 0
\(499\) −600.472 −0.0538694 −0.0269347 0.999637i \(-0.508575\pi\)
−0.0269347 + 0.999637i \(0.508575\pi\)
\(500\) 0 0
\(501\) 62.4850i 0.00557210i
\(502\) 0 0
\(503\) 11018.5i 0.976725i −0.872641 0.488362i \(-0.837594\pi\)
0.872641 0.488362i \(-0.162406\pi\)
\(504\) 0 0
\(505\) 4257.66 0.375175
\(506\) 0 0
\(507\) 5436.51i 0.476221i
\(508\) 0 0
\(509\) 19114.7 1.66452 0.832262 0.554382i \(-0.187045\pi\)
0.832262 + 0.554382i \(0.187045\pi\)
\(510\) 0 0
\(511\) 2725.91i 0.235983i
\(512\) 0 0
\(513\) −4120.42 + 11204.8i −0.354622 + 0.964334i
\(514\) 0 0
\(515\) 3904.29i 0.334065i
\(516\) 0 0
\(517\) 3856.16i 0.328034i
\(518\) 0 0
\(519\) 1376.66i 0.116433i
\(520\) 0 0
\(521\) 19202.9i 1.61477i 0.590028 + 0.807383i \(0.299117\pi\)
−0.590028 + 0.807383i \(0.700883\pi\)
\(522\) 0 0
\(523\) 6024.44i 0.503691i 0.967767 + 0.251846i \(0.0810375\pi\)
−0.967767 + 0.251846i \(0.918962\pi\)
\(524\) 0 0
\(525\) 1535.52 0.127649
\(526\) 0 0
\(527\) −569.679 −0.0470884
\(528\) 0 0
\(529\) −23356.7 −1.91967
\(530\) 0 0
\(531\) 37.1933i 0.00303964i
\(532\) 0 0
\(533\) 10662.0i 0.866457i
\(534\) 0 0
\(535\) 5790.09 0.467902
\(536\) 0 0
\(537\) 16926.5 1.36021
\(538\) 0 0
\(539\) −6239.22 −0.498594
\(540\) 0 0
\(541\) 1031.76i 0.0819938i 0.999159 + 0.0409969i \(0.0130534\pi\)
−0.999159 + 0.0409969i \(0.986947\pi\)
\(542\) 0 0
\(543\) 13874.2i 1.09650i
\(544\) 0 0
\(545\) 4684.66i 0.368200i
\(546\) 0 0
\(547\) 15015.5i 1.17371i 0.809693 + 0.586853i \(0.199633\pi\)
−0.809693 + 0.586853i \(0.800367\pi\)
\(548\) 0 0
\(549\) 41.6906i 0.00324101i
\(550\) 0 0
\(551\) 9062.28 + 3332.55i 0.700665 + 0.257661i
\(552\) 0 0
\(553\) 2240.98i 0.172326i
\(554\) 0 0
\(555\) 2796.37 0.213873
\(556\) 0 0
\(557\) 12817.8i 0.975062i 0.873106 + 0.487531i \(0.162102\pi\)
−0.873106 + 0.487531i \(0.837898\pi\)
\(558\) 0 0
\(559\) 13788.2 1.04325
\(560\) 0 0
\(561\) 2608.77i 0.196332i
\(562\) 0 0
\(563\) 8471.22i 0.634137i 0.948403 + 0.317069i \(0.102699\pi\)
−0.948403 + 0.317069i \(0.897301\pi\)
\(564\) 0 0
\(565\) −1280.68 −0.0953604
\(566\) 0 0
\(567\) 2257.05i 0.167173i
\(568\) 0 0
\(569\) 6730.08i 0.495852i −0.968779 0.247926i \(-0.920251\pi\)
0.968779 0.247926i \(-0.0797489\pi\)
\(570\) 0 0
\(571\) −20384.8 −1.49400 −0.747001 0.664822i \(-0.768507\pi\)
−0.747001 + 0.664822i \(0.768507\pi\)
\(572\) 0 0
\(573\) 8778.82 0.640036
\(574\) 0 0
\(575\) 17381.1i 1.26060i
\(576\) 0 0
\(577\) −8621.00 −0.622005 −0.311002 0.950409i \(-0.600665\pi\)
−0.311002 + 0.950409i \(0.600665\pi\)
\(578\) 0 0
\(579\) −9382.26 −0.673425
\(580\) 0 0
\(581\) 517.262i 0.0369357i
\(582\) 0 0
\(583\) −7253.50 −0.515282
\(584\) 0 0
\(585\) 525.917i 0.0371692i
\(586\) 0 0
\(587\) 9852.46 0.692768 0.346384 0.938093i \(-0.387409\pi\)
0.346384 + 0.938093i \(0.387409\pi\)
\(588\) 0 0
\(589\) −1607.10 590.990i −0.112427 0.0413435i
\(590\) 0 0
\(591\) 15312.0 1.06574
\(592\) 0 0
\(593\) −15120.2 −1.04707 −0.523536 0.852004i \(-0.675387\pi\)
−0.523536 + 0.852004i \(0.675387\pi\)
\(594\) 0 0
\(595\) −521.257 −0.0359151
\(596\) 0 0
\(597\) 15217.8 1.04326
\(598\) 0 0
\(599\) 22742.6 1.55131 0.775657 0.631155i \(-0.217419\pi\)
0.775657 + 0.631155i \(0.217419\pi\)
\(600\) 0 0
\(601\) 24084.6i 1.63466i −0.576169 0.817331i \(-0.695453\pi\)
0.576169 0.817331i \(-0.304547\pi\)
\(602\) 0 0
\(603\) 970.121i 0.0655164i
\(604\) 0 0
\(605\) 5599.57i 0.376289i
\(606\) 0 0
\(607\) −12023.0 −0.803954 −0.401977 0.915650i \(-0.631677\pi\)
−0.401977 + 0.915650i \(0.631677\pi\)
\(608\) 0 0
\(609\) 1941.27 0.129170
\(610\) 0 0
\(611\) 11747.1i 0.777801i
\(612\) 0 0
\(613\) 10246.4i 0.675117i 0.941304 + 0.337559i \(0.109601\pi\)
−0.941304 + 0.337559i \(0.890399\pi\)
\(614\) 0 0
\(615\) 5374.86i 0.352415i
\(616\) 0 0
\(617\) 21866.3 1.42675 0.713374 0.700783i \(-0.247166\pi\)
0.713374 + 0.700783i \(0.247166\pi\)
\(618\) 0 0
\(619\) −12728.3 −0.826482 −0.413241 0.910622i \(-0.635603\pi\)
−0.413241 + 0.910622i \(0.635603\pi\)
\(620\) 0 0
\(621\) 27169.0 1.75565
\(622\) 0 0
\(623\) 1230.77 0.0791486
\(624\) 0 0
\(625\) 4406.62 0.282023
\(626\) 0 0
\(627\) 2706.36 7359.49i 0.172379 0.468755i
\(628\) 0 0
\(629\) 2670.44 0.169281
\(630\) 0 0
\(631\) 30417.2i 1.91900i 0.281704 + 0.959501i \(0.409100\pi\)
−0.281704 + 0.959501i \(0.590900\pi\)
\(632\) 0 0
\(633\) 26108.6 1.63938
\(634\) 0 0
\(635\) 4045.24i 0.252804i
\(636\) 0 0
\(637\) −19006.6 −1.18221
\(638\) 0 0
\(639\) 1329.09 0.0822818
\(640\) 0 0
\(641\) 21789.6i 1.34265i 0.741165 + 0.671323i \(0.234273\pi\)
−0.741165 + 0.671323i \(0.765727\pi\)
\(642\) 0 0
\(643\) −5470.19 −0.335495 −0.167747 0.985830i \(-0.553649\pi\)
−0.167747 + 0.985830i \(0.553649\pi\)
\(644\) 0 0
\(645\) −6950.82 −0.424323
\(646\) 0 0
\(647\) 3431.69i 0.208522i 0.994550 + 0.104261i \(0.0332477\pi\)
−0.994550 + 0.104261i \(0.966752\pi\)
\(648\) 0 0
\(649\) 435.416i 0.0263352i
\(650\) 0 0
\(651\) −344.264 −0.0207262
\(652\) 0 0
\(653\) 24252.9i 1.45343i 0.686939 + 0.726715i \(0.258954\pi\)
−0.686939 + 0.726715i \(0.741046\pi\)
\(654\) 0 0
\(655\) 13601.6i 0.811385i
\(656\) 0 0
\(657\) 1324.02 0.0786223
\(658\) 0 0
\(659\) 21052.9i 1.24447i 0.782832 + 0.622233i \(0.213775\pi\)
−0.782832 + 0.622233i \(0.786225\pi\)
\(660\) 0 0
\(661\) −9819.28 −0.577800 −0.288900 0.957359i \(-0.593290\pi\)
−0.288900 + 0.957359i \(0.593290\pi\)
\(662\) 0 0
\(663\) 7947.14i 0.465522i
\(664\) 0 0
\(665\) −1470.50 540.757i −0.0857495 0.0315333i
\(666\) 0 0
\(667\) 21974.0i 1.27561i
\(668\) 0 0
\(669\) 30485.9i 1.76182i
\(670\) 0 0
\(671\) 488.066i 0.0280798i
\(672\) 0 0
\(673\) 1913.83i 0.109618i 0.998497 + 0.0548088i \(0.0174549\pi\)
−0.998497 + 0.0548088i \(0.982545\pi\)
\(674\) 0 0
\(675\) 13293.3i 0.758016i
\(676\) 0 0
\(677\) −11272.2 −0.639918 −0.319959 0.947431i \(-0.603669\pi\)
−0.319959 + 0.947431i \(0.603669\pi\)
\(678\) 0 0
\(679\) 4813.89 0.272077
\(680\) 0 0
\(681\) 17198.3 0.967756
\(682\) 0 0
\(683\) 30566.3i 1.71243i −0.516622 0.856214i \(-0.672811\pi\)
0.516622 0.856214i \(-0.327189\pi\)
\(684\) 0 0
\(685\) 6113.49i 0.340999i
\(686\) 0 0
\(687\) −28934.2 −1.60685
\(688\) 0 0
\(689\) −22096.5 −1.22178
\(690\) 0 0
\(691\) 3125.68 0.172079 0.0860393 0.996292i \(-0.472579\pi\)
0.0860393 + 0.996292i \(0.472579\pi\)
\(692\) 0 0
\(693\) 99.6302i 0.00546124i
\(694\) 0 0
\(695\) 12315.5i 0.672163i
\(696\) 0 0
\(697\) 5132.81i 0.278937i
\(698\) 0 0
\(699\) 11367.1i 0.615085i
\(700\) 0 0
\(701\) 23361.6i 1.25871i −0.777117 0.629356i \(-0.783319\pi\)
0.777117 0.629356i \(-0.216681\pi\)
\(702\) 0 0
\(703\) 7533.47 + 2770.34i 0.404168 + 0.148628i
\(704\) 0 0
\(705\) 5921.88i 0.316356i
\(706\) 0 0
\(707\) 2457.09 0.130705
\(708\) 0 0
\(709\) 34656.4i 1.83575i 0.396866 + 0.917877i \(0.370098\pi\)
−0.396866 + 0.917877i \(0.629902\pi\)
\(710\) 0 0
\(711\) 1088.48 0.0574136
\(712\) 0 0
\(713\) 3896.84i 0.204681i
\(714\) 0 0
\(715\) 6156.83i 0.322031i
\(716\) 0 0
\(717\) −5097.79 −0.265524
\(718\) 0 0
\(719\) 21824.0i 1.13198i 0.824411 + 0.565992i \(0.191507\pi\)
−0.824411 + 0.565992i \(0.808493\pi\)
\(720\) 0 0
\(721\) 2253.15i 0.116383i
\(722\) 0 0
\(723\) −21737.1 −1.11813
\(724\) 0 0
\(725\) 10751.5 0.550759
\(726\) 0 0
\(727\) 32538.0i 1.65993i −0.557817 0.829964i \(-0.688361\pi\)
0.557817 0.829964i \(-0.311639\pi\)
\(728\) 0 0
\(729\) −20709.7 −1.05216
\(730\) 0 0
\(731\) −6637.80 −0.335852
\(732\) 0 0
\(733\) 14353.4i 0.723267i 0.932320 + 0.361633i \(0.117781\pi\)
−0.932320 + 0.361633i \(0.882219\pi\)
\(734\) 0 0
\(735\) 9581.52 0.480843
\(736\) 0 0
\(737\) 11357.1i 0.567629i
\(738\) 0 0
\(739\) 20256.9 1.00834 0.504169 0.863605i \(-0.331799\pi\)
0.504169 + 0.863605i \(0.331799\pi\)
\(740\) 0 0
\(741\) 8244.44 22419.3i 0.408727 1.11146i
\(742\) 0 0
\(743\) −34092.1 −1.68334 −0.841668 0.539995i \(-0.818426\pi\)
−0.841668 + 0.539995i \(0.818426\pi\)
\(744\) 0 0
\(745\) −2773.68 −0.136402
\(746\) 0 0
\(747\) −251.242 −0.0123059
\(748\) 0 0
\(749\) 3341.44 0.163009
\(750\) 0 0
\(751\) −37961.1 −1.84450 −0.922250 0.386595i \(-0.873651\pi\)
−0.922250 + 0.386595i \(0.873651\pi\)
\(752\) 0 0
\(753\) 9176.82i 0.444119i
\(754\) 0 0
\(755\) 11571.7i 0.557800i
\(756\) 0 0
\(757\) 27811.9i 1.33532i −0.744464 0.667662i \(-0.767295\pi\)
0.744464 0.667662i \(-0.232705\pi\)
\(758\) 0 0
\(759\) −17845.1 −0.853406
\(760\) 0 0
\(761\) 14158.7 0.674447 0.337223 0.941425i \(-0.390512\pi\)
0.337223 + 0.941425i \(0.390512\pi\)
\(762\) 0 0
\(763\) 2703.51i 0.128275i
\(764\) 0 0
\(765\) 253.183i 0.0119658i
\(766\) 0 0
\(767\) 1326.42i 0.0624434i
\(768\) 0 0
\(769\) 13553.8 0.635584 0.317792 0.948160i \(-0.397059\pi\)
0.317792 + 0.948160i \(0.397059\pi\)
\(770\) 0 0
\(771\) 16960.0 0.792218
\(772\) 0 0
\(773\) 23092.4 1.07448 0.537241 0.843429i \(-0.319467\pi\)
0.537241 + 0.843429i \(0.319467\pi\)
\(774\) 0 0
\(775\) −1906.66 −0.0883731
\(776\) 0 0
\(777\) 1613.78 0.0745097
\(778\) 0 0
\(779\) 5324.82 14479.9i 0.244906 0.665979i
\(780\) 0 0
\(781\) −15559.5 −0.712883
\(782\) 0 0
\(783\) 16806.0i 0.767047i
\(784\) 0 0
\(785\) −19316.0 −0.878239
\(786\) 0 0
\(787\) 5587.77i 0.253091i 0.991961 + 0.126545i \(0.0403889\pi\)
−0.991961 + 0.126545i \(0.959611\pi\)
\(788\) 0 0
\(789\) −9545.77 −0.430721
\(790\) 0 0
\(791\) −739.077 −0.0332219
\(792\) 0 0
\(793\) 1486.80i 0.0665800i
\(794\) 0 0
\(795\) 11139.1 0.496937
\(796\) 0 0
\(797\) −37059.9 −1.64709 −0.823543 0.567254i \(-0.808006\pi\)
−0.823543 + 0.567254i \(0.808006\pi\)
\(798\) 0 0
\(799\) 5655.19i 0.250396i
\(800\) 0 0
\(801\) 597.802i 0.0263699i
\(802\) 0 0
\(803\) −15500.1 −0.681177
\(804\) 0 0
\(805\) 3565.62i 0.156114i
\(806\) 0 0
\(807\) 29896.1i 1.30408i
\(808\) 0 0
\(809\) 44631.5 1.93963 0.969816 0.243840i \(-0.0784071\pi\)
0.969816 + 0.243840i \(0.0784071\pi\)
\(810\) 0 0
\(811\) 15500.9i 0.671158i −0.942012 0.335579i \(-0.891068\pi\)
0.942012 0.335579i \(-0.108932\pi\)
\(812\) 0 0
\(813\) −6108.12 −0.263495
\(814\) 0 0
\(815\) 8524.60i 0.366385i
\(816\) 0 0
\(817\) −18725.6 6886.11i −0.801868 0.294877i
\(818\) 0 0
\(819\) 303.505i 0.0129491i
\(820\) 0 0
\(821\) 1010.46i 0.0429541i 0.999769 + 0.0214770i \(0.00683688\pi\)
−0.999769 + 0.0214770i \(0.993163\pi\)
\(822\) 0 0
\(823\) 23113.5i 0.978962i 0.872014 + 0.489481i \(0.162814\pi\)
−0.872014 + 0.489481i \(0.837186\pi\)
\(824\) 0 0
\(825\) 8731.28i 0.368466i
\(826\) 0 0
\(827\) 8617.64i 0.362352i −0.983451 0.181176i \(-0.942010\pi\)
0.983451 0.181176i \(-0.0579903\pi\)
\(828\) 0 0
\(829\) −35920.9 −1.50493 −0.752463 0.658634i \(-0.771135\pi\)
−0.752463 + 0.658634i \(0.771135\pi\)
\(830\) 0 0
\(831\) 6675.25 0.278654
\(832\) 0 0
\(833\) 9150.03 0.380588
\(834\) 0 0
\(835\) 70.9927i 0.00294228i
\(836\) 0 0
\(837\) 2980.36i 0.123078i
\(838\) 0 0
\(839\) −5510.57 −0.226753 −0.113377 0.993552i \(-0.536167\pi\)
−0.113377 + 0.993552i \(0.536167\pi\)
\(840\) 0 0
\(841\) −10796.5 −0.442680
\(842\) 0 0
\(843\) 13484.1 0.550909
\(844\) 0 0
\(845\) 6176.73i 0.251463i
\(846\) 0 0
\(847\) 3231.49i 0.131093i
\(848\) 0 0
\(849\) 13772.8i 0.556750i
\(850\) 0 0
\(851\) 18266.9i 0.735820i
\(852\) 0 0
\(853\) 13875.8i 0.556975i 0.960440 + 0.278488i \(0.0898331\pi\)
−0.960440 + 0.278488i \(0.910167\pi\)
\(854\) 0 0
\(855\) 262.654 714.243i 0.0105059 0.0285691i
\(856\) 0 0
\(857\) 29552.2i 1.17793i −0.808160 0.588964i \(-0.799536\pi\)
0.808160 0.588964i \(-0.200464\pi\)
\(858\) 0 0
\(859\) −5040.17 −0.200196 −0.100098 0.994978i \(-0.531916\pi\)
−0.100098 + 0.994978i \(0.531916\pi\)
\(860\) 0 0
\(861\) 3101.82i 0.122775i
\(862\) 0 0
\(863\) 22745.6 0.897185 0.448593 0.893736i \(-0.351925\pi\)
0.448593 + 0.893736i \(0.351925\pi\)
\(864\) 0 0
\(865\) 1564.11i 0.0614812i
\(866\) 0 0
\(867\) 20932.5i 0.819960i
\(868\) 0 0
\(869\) −12742.6 −0.497427
\(870\) 0 0
\(871\) 34597.2i 1.34590i
\(872\) 0 0
\(873\) 2338.18i 0.0906478i
\(874\) 0 0
\(875\) −4109.35 −0.158767
\(876\) 0 0
\(877\) −44944.1 −1.73051 −0.865253 0.501336i \(-0.832842\pi\)
−0.865253 + 0.501336i \(0.832842\pi\)
\(878\) 0 0
\(879\) 14601.8i 0.560304i
\(880\) 0 0
\(881\) −37214.5 −1.42314 −0.711570 0.702615i \(-0.752016\pi\)
−0.711570 + 0.702615i \(0.752016\pi\)
\(882\) 0 0
\(883\) 15692.1 0.598053 0.299027 0.954245i \(-0.403338\pi\)
0.299027 + 0.954245i \(0.403338\pi\)
\(884\) 0 0
\(885\) 668.665i 0.0253977i
\(886\) 0 0
\(887\) −7657.20 −0.289858 −0.144929 0.989442i \(-0.546295\pi\)
−0.144929 + 0.989442i \(0.546295\pi\)
\(888\) 0 0
\(889\) 2334.49i 0.0880725i
\(890\) 0 0
\(891\) 12834.0 0.482555
\(892\) 0 0
\(893\) 5866.75 15953.6i 0.219847 0.597836i
\(894\) 0 0
\(895\) −19231.2 −0.718243
\(896\) 0 0
\(897\) −54361.7 −2.02351
\(898\) 0 0
\(899\) −2410.48 −0.0894260
\(900\) 0 0
\(901\) 10637.5 0.393326
\(902\) 0 0
\(903\) −4011.30 −0.147827
\(904\) 0 0
\(905\) 15763.3i 0.578993i
\(906\) 0 0
\(907\) 34016.8i 1.24533i −0.782490 0.622663i \(-0.786051\pi\)
0.782490 0.622663i \(-0.213949\pi\)
\(908\) 0 0
\(909\) 1193.44i 0.0435468i
\(910\) 0 0
\(911\) 20171.8 0.733612 0.366806 0.930297i \(-0.380451\pi\)
0.366806 + 0.930297i \(0.380451\pi\)
\(912\) 0 0
\(913\) 2941.25 0.106617
\(914\) 0 0
\(915\) 749.519i 0.0270801i
\(916\) 0 0
\(917\) 7849.43i 0.282673i
\(918\) 0 0
\(919\) 52191.5i 1.87338i 0.350158 + 0.936691i \(0.386128\pi\)
−0.350158 + 0.936691i \(0.613872\pi\)
\(920\) 0 0
\(921\) −2917.12 −0.104367
\(922\) 0 0
\(923\) −47399.1 −1.69031
\(924\) 0 0
\(925\) 8937.70 0.317697
\(926\) 0 0
\(927\) 1094.39 0.0387751
\(928\) 0 0
\(929\) −15362.2 −0.542538 −0.271269 0.962504i \(-0.587443\pi\)
−0.271269 + 0.962504i \(0.587443\pi\)
\(930\) 0 0
\(931\) 25812.7 + 9492.33i 0.908677 + 0.334155i
\(932\) 0 0
\(933\) −41787.0 −1.46628
\(934\) 0 0
\(935\) 2963.97i 0.103671i
\(936\) 0 0
\(937\) 17961.4 0.626227 0.313113 0.949716i \(-0.398628\pi\)
0.313113 + 0.949716i \(0.398628\pi\)
\(938\) 0 0
\(939\) 43910.6i 1.52606i
\(940\) 0 0
\(941\) 34823.8 1.20640 0.603201 0.797589i \(-0.293892\pi\)
0.603201 + 0.797589i \(0.293892\pi\)
\(942\) 0 0
\(943\) −35110.5 −1.21247
\(944\) 0 0
\(945\) 2727.04i 0.0938736i
\(946\) 0 0
\(947\) 17274.2 0.592751 0.296375 0.955072i \(-0.404222\pi\)
0.296375 + 0.955072i \(0.404222\pi\)
\(948\) 0 0
\(949\) −47218.1 −1.61514
\(950\) 0 0
\(951\) 22257.5i 0.758937i
\(952\) 0 0
\(953\) 50134.8i 1.70412i −0.523444 0.852060i \(-0.675353\pi\)
0.523444 0.852060i \(-0.324647\pi\)
\(954\) 0 0
\(955\) −9974.11 −0.337963
\(956\) 0 0
\(957\) 11038.5i 0.372856i
\(958\) 0 0
\(959\) 3528.08i 0.118798i
\(960\) 0 0
\(961\) −29363.5 −0.985651
\(962\) 0 0
\(963\) 1622.99i 0.0543096i
\(964\) 0 0
\(965\) 10659.7 0.355594
\(966\) 0 0
\(967\) 12466.9i 0.414590i 0.978278 + 0.207295i \(0.0664660\pi\)
−0.978278 + 0.207295i \(0.933534\pi\)
\(968\) 0 0
\(969\) −3968.97 + 10792.9i −0.131581 + 0.357811i
\(970\) 0 0
\(971\) 35033.1i 1.15784i 0.815383 + 0.578922i \(0.196526\pi\)
−0.815383 + 0.578922i \(0.803474\pi\)
\(972\) 0 0
\(973\) 7107.24i 0.234170i
\(974\) 0 0
\(975\) 26598.3i 0.873668i
\(976\) 0 0
\(977\) 21109.5i 0.691250i 0.938373 + 0.345625i \(0.112333\pi\)
−0.938373 + 0.345625i \(0.887667\pi\)
\(978\) 0 0
\(979\) 6998.38i 0.228467i
\(980\) 0 0
\(981\) 1313.13 0.0427372
\(982\) 0 0
\(983\) 55306.0 1.79449 0.897247 0.441530i \(-0.145564\pi\)
0.897247 + 0.441530i \(0.145564\pi\)
\(984\) 0 0
\(985\) −17396.8 −0.562749
\(986\) 0 0
\(987\) 3417.50i 0.110213i
\(988\) 0 0
\(989\) 45405.3i 1.45986i
\(990\) 0 0
\(991\) −29330.3 −0.940170 −0.470085 0.882621i \(-0.655777\pi\)
−0.470085 + 0.882621i \(0.655777\pi\)
\(992\) 0 0
\(993\) 21764.7 0.695552
\(994\) 0 0
\(995\) −17289.8 −0.550879
\(996\) 0 0
\(997\) 42823.7i 1.36032i 0.733063 + 0.680161i \(0.238090\pi\)
−0.733063 + 0.680161i \(0.761910\pi\)
\(998\) 0 0
\(999\) 13970.8i 0.442460i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 608.4.b.b.303.41 56
4.3 odd 2 152.4.b.b.75.47 yes 56
8.3 odd 2 inner 608.4.b.b.303.42 56
8.5 even 2 152.4.b.b.75.9 56
19.18 odd 2 inner 608.4.b.b.303.15 56
76.75 even 2 152.4.b.b.75.10 yes 56
152.37 odd 2 152.4.b.b.75.48 yes 56
152.75 even 2 inner 608.4.b.b.303.16 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.4.b.b.75.9 56 8.5 even 2
152.4.b.b.75.10 yes 56 76.75 even 2
152.4.b.b.75.47 yes 56 4.3 odd 2
152.4.b.b.75.48 yes 56 152.37 odd 2
608.4.b.b.303.15 56 19.18 odd 2 inner
608.4.b.b.303.16 56 152.75 even 2 inner
608.4.b.b.303.41 56 1.1 even 1 trivial
608.4.b.b.303.42 56 8.3 odd 2 inner