Properties

Label 152.4.b.b.75.9
Level $152$
Weight $4$
Character 152.75
Analytic conductor $8.968$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [152,4,Mod(75,152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("152.75");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 152.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.96829032087\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 75.9
Character \(\chi\) \(=\) 152.75
Dual form 152.4.b.b.75.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.57123 - 1.17846i) q^{2} -5.03936i q^{3} +(5.22247 + 6.06019i) q^{4} +5.72550i q^{5} +(-5.93868 + 12.9574i) q^{6} -3.30417i q^{7} +(-6.28649 - 21.7366i) q^{8} +1.60489 q^{9} +O(q^{10})\) \(q+(-2.57123 - 1.17846i) q^{2} -5.03936i q^{3} +(5.22247 + 6.06019i) q^{4} +5.72550i q^{5} +(-5.93868 + 12.9574i) q^{6} -3.30417i q^{7} +(-6.28649 - 21.7366i) q^{8} +1.60489 q^{9} +(6.74727 - 14.7216i) q^{10} +18.7882 q^{11} +(30.5394 - 26.3179i) q^{12} +57.2347 q^{13} +(-3.89383 + 8.49579i) q^{14} +28.8528 q^{15} +(-9.45168 + 63.2982i) q^{16} +27.5535 q^{17} +(-4.12654 - 1.89129i) q^{18} +(-77.7299 - 28.5842i) q^{19} +(-34.6976 + 29.9012i) q^{20} -16.6509 q^{21} +(-48.3087 - 22.1411i) q^{22} -188.477i q^{23} +(-109.539 + 31.6799i) q^{24} +92.2187 q^{25} +(-147.164 - 67.4488i) q^{26} -144.150i q^{27} +(20.0239 - 17.2559i) q^{28} -116.587 q^{29} +(-74.1873 - 34.0019i) q^{30} -20.6754 q^{31} +(98.8969 - 151.616i) q^{32} -94.6802i q^{33} +(-70.8464 - 32.4707i) q^{34} +18.9180 q^{35} +(8.38147 + 9.72591i) q^{36} -96.9185 q^{37} +(166.176 + 165.098i) q^{38} -288.426i q^{39} +(124.453 - 35.9933i) q^{40} -186.285i q^{41} +(42.8133 + 19.6224i) q^{42} +240.906 q^{43} +(98.1205 + 113.860i) q^{44} +9.18878i q^{45} +(-222.113 + 484.619i) q^{46} -205.244i q^{47} +(318.982 + 47.6304i) q^{48} +332.082 q^{49} +(-237.116 - 108.676i) q^{50} -138.852i q^{51} +(298.906 + 346.853i) q^{52} -386.068 q^{53} +(-169.875 + 370.644i) q^{54} +107.572i q^{55} +(-71.8214 + 20.7716i) q^{56} +(-144.046 + 391.709i) q^{57} +(299.772 + 137.393i) q^{58} -23.1750i q^{59} +(150.683 + 174.853i) q^{60} -25.9773i q^{61} +(53.1612 + 24.3651i) q^{62} -5.30282i q^{63} +(-432.960 + 273.294i) q^{64} +327.697i q^{65} +(-111.577 + 243.445i) q^{66} +604.479i q^{67} +(143.897 + 166.979i) q^{68} -949.804 q^{69} +(-48.6426 - 22.2941i) q^{70} +828.153 q^{71} +(-10.0891 - 34.8848i) q^{72} +824.991 q^{73} +(249.200 + 114.215i) q^{74} -464.723i q^{75} +(-232.716 - 620.338i) q^{76} -62.0793i q^{77} +(-339.898 + 741.610i) q^{78} +678.227 q^{79} +(-362.414 - 54.1156i) q^{80} -683.092 q^{81} +(-219.530 + 478.983i) q^{82} +156.548 q^{83} +(-86.9587 - 100.907i) q^{84} +157.757i q^{85} +(-619.425 - 283.898i) q^{86} +587.522i q^{87} +(-118.112 - 408.391i) q^{88} +372.489i q^{89} +(10.8286 - 23.6265i) q^{90} -189.113i q^{91} +(1142.21 - 984.316i) q^{92} +104.191i q^{93} +(-241.872 + 527.731i) q^{94} +(163.659 - 445.043i) q^{95} +(-764.047 - 498.377i) q^{96} +1456.91i q^{97} +(-853.861 - 391.346i) q^{98} +30.1529 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 2 q^{4} - 14 q^{6} - 528 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 2 q^{4} - 14 q^{6} - 528 q^{9} - 40 q^{11} - 262 q^{16} - 184 q^{17} - 84 q^{19} - 12 q^{20} + 238 q^{24} - 1504 q^{25} + 378 q^{26} - 382 q^{28} + 512 q^{30} + 40 q^{35} + 1464 q^{36} + 958 q^{38} + 1030 q^{42} + 576 q^{43} + 316 q^{44} - 3664 q^{49} - 1314 q^{54} - 648 q^{57} - 1166 q^{58} + 928 q^{62} + 3746 q^{64} + 680 q^{66} + 2538 q^{68} - 432 q^{73} - 4020 q^{74} + 3968 q^{76} + 4608 q^{80} + 2296 q^{81} - 192 q^{82} + 5376 q^{83} - 1906 q^{92} - 1962 q^{96} - 6152 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/152\mathbb{Z}\right)^\times\).

\(n\) \(39\) \(77\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.57123 1.17846i −0.909068 0.416648i
\(3\) 5.03936i 0.969825i −0.874563 0.484912i \(-0.838852\pi\)
0.874563 0.484912i \(-0.161148\pi\)
\(4\) 5.22247 + 6.06019i 0.652808 + 0.757523i
\(5\) 5.72550i 0.512104i 0.966663 + 0.256052i \(0.0824219\pi\)
−0.966663 + 0.256052i \(0.917578\pi\)
\(6\) −5.93868 + 12.9574i −0.404076 + 0.881636i
\(7\) 3.30417i 0.178408i −0.996013 0.0892042i \(-0.971568\pi\)
0.996013 0.0892042i \(-0.0284324\pi\)
\(8\) −6.28649 21.7366i −0.277826 0.960631i
\(9\) 1.60489 0.0594402
\(10\) 6.74727 14.7216i 0.213367 0.465537i
\(11\) 18.7882 0.514986 0.257493 0.966280i \(-0.417104\pi\)
0.257493 + 0.966280i \(0.417104\pi\)
\(12\) 30.5394 26.3179i 0.734665 0.633110i
\(13\) 57.2347 1.22108 0.610540 0.791985i \(-0.290952\pi\)
0.610540 + 0.791985i \(0.290952\pi\)
\(14\) −3.89383 + 8.49579i −0.0743336 + 0.162185i
\(15\) 28.8528 0.496651
\(16\) −9.45168 + 63.2982i −0.147683 + 0.989035i
\(17\) 27.5535 0.393100 0.196550 0.980494i \(-0.437026\pi\)
0.196550 + 0.980494i \(0.437026\pi\)
\(18\) −4.12654 1.89129i −0.0540352 0.0247657i
\(19\) −77.7299 28.5842i −0.938551 0.345141i
\(20\) −34.6976 + 29.9012i −0.387931 + 0.334306i
\(21\) −16.6509 −0.173025
\(22\) −48.3087 22.1411i −0.468157 0.214568i
\(23\) 188.477i 1.70871i −0.519694 0.854353i \(-0.673954\pi\)
0.519694 0.854353i \(-0.326046\pi\)
\(24\) −109.539 + 31.6799i −0.931644 + 0.269443i
\(25\) 92.2187 0.737749
\(26\) −147.164 67.4488i −1.11005 0.508761i
\(27\) 144.150i 1.02747i
\(28\) 20.0239 17.2559i 0.135148 0.116466i
\(29\) −116.587 −0.746539 −0.373269 0.927723i \(-0.621763\pi\)
−0.373269 + 0.927723i \(0.621763\pi\)
\(30\) −74.1873 34.0019i −0.451490 0.206929i
\(31\) −20.6754 −0.119787 −0.0598937 0.998205i \(-0.519076\pi\)
−0.0598937 + 0.998205i \(0.519076\pi\)
\(32\) 98.8969 151.616i 0.546333 0.837568i
\(33\) 94.6802i 0.499446i
\(34\) −70.8464 32.4707i −0.357355 0.163784i
\(35\) 18.9180 0.0913637
\(36\) 8.38147 + 9.72591i 0.0388031 + 0.0450274i
\(37\) −96.9185 −0.430630 −0.215315 0.976545i \(-0.569078\pi\)
−0.215315 + 0.976545i \(0.569078\pi\)
\(38\) 166.176 + 165.098i 0.709404 + 0.704802i
\(39\) 288.426i 1.18423i
\(40\) 124.453 35.9933i 0.491943 0.142276i
\(41\) 186.285i 0.709582i −0.934946 0.354791i \(-0.884552\pi\)
0.934946 0.354791i \(-0.115448\pi\)
\(42\) 42.8133 + 19.6224i 0.157291 + 0.0720905i
\(43\) 240.906 0.854368 0.427184 0.904165i \(-0.359506\pi\)
0.427184 + 0.904165i \(0.359506\pi\)
\(44\) 98.1205 + 113.860i 0.336187 + 0.390114i
\(45\) 9.18878i 0.0304396i
\(46\) −222.113 + 484.619i −0.711929 + 1.55333i
\(47\) 205.244i 0.636978i −0.947927 0.318489i \(-0.896825\pi\)
0.947927 0.318489i \(-0.103175\pi\)
\(48\) 318.982 + 47.6304i 0.959190 + 0.143226i
\(49\) 332.082 0.968170
\(50\) −237.116 108.676i −0.670664 0.307382i
\(51\) 138.852i 0.381238i
\(52\) 298.906 + 346.853i 0.797132 + 0.924997i
\(53\) −386.068 −1.00057 −0.500287 0.865859i \(-0.666772\pi\)
−0.500287 + 0.865859i \(0.666772\pi\)
\(54\) −169.875 + 370.644i −0.428094 + 0.934041i
\(55\) 107.572i 0.263726i
\(56\) −71.8214 + 20.7716i −0.171385 + 0.0495665i
\(57\) −144.046 + 391.709i −0.334726 + 0.910230i
\(58\) 299.772 + 137.393i 0.678654 + 0.311044i
\(59\) 23.1750i 0.0511378i −0.999673 0.0255689i \(-0.991860\pi\)
0.999673 0.0255689i \(-0.00813972\pi\)
\(60\) 150.683 + 174.853i 0.324218 + 0.376225i
\(61\) 25.9773i 0.0545255i −0.999628 0.0272627i \(-0.991321\pi\)
0.999628 0.0272627i \(-0.00867907\pi\)
\(62\) 53.1612 + 24.3651i 0.108895 + 0.0499092i
\(63\) 5.30282i 0.0106046i
\(64\) −432.960 + 273.294i −0.845625 + 0.533777i
\(65\) 327.697i 0.625320i
\(66\) −111.577 + 243.445i −0.208093 + 0.454030i
\(67\) 604.479i 1.10222i 0.834432 + 0.551111i \(0.185796\pi\)
−0.834432 + 0.551111i \(0.814204\pi\)
\(68\) 143.897 + 166.979i 0.256619 + 0.297782i
\(69\) −949.804 −1.65714
\(70\) −48.6426 22.2941i −0.0830558 0.0380665i
\(71\) 828.153 1.38428 0.692139 0.721765i \(-0.256669\pi\)
0.692139 + 0.721765i \(0.256669\pi\)
\(72\) −10.0891 34.8848i −0.0165141 0.0571002i
\(73\) 824.991 1.32271 0.661356 0.750073i \(-0.269981\pi\)
0.661356 + 0.750073i \(0.269981\pi\)
\(74\) 249.200 + 114.215i 0.391472 + 0.179421i
\(75\) 464.723i 0.715487i
\(76\) −232.716 620.338i −0.351242 0.936285i
\(77\) 62.0793i 0.0918778i
\(78\) −339.898 + 741.610i −0.493409 + 1.07655i
\(79\) 678.227 0.965905 0.482953 0.875647i \(-0.339564\pi\)
0.482953 + 0.875647i \(0.339564\pi\)
\(80\) −362.414 54.1156i −0.506489 0.0756289i
\(81\) −683.092 −0.937027
\(82\) −219.530 + 478.983i −0.295646 + 0.645058i
\(83\) 156.548 0.207029 0.103514 0.994628i \(-0.466991\pi\)
0.103514 + 0.994628i \(0.466991\pi\)
\(84\) −86.9587 100.907i −0.112952 0.131070i
\(85\) 157.757i 0.201308i
\(86\) −619.425 283.898i −0.776678 0.355971i
\(87\) 587.522i 0.724012i
\(88\) −118.112 408.391i −0.143077 0.494711i
\(89\) 372.489i 0.443637i 0.975088 + 0.221819i \(0.0711993\pi\)
−0.975088 + 0.221819i \(0.928801\pi\)
\(90\) 10.8286 23.6265i 0.0126826 0.0276717i
\(91\) 189.113i 0.217851i
\(92\) 1142.21 984.316i 1.29438 1.11546i
\(93\) 104.191i 0.116173i
\(94\) −241.872 + 527.731i −0.265396 + 0.579056i
\(95\) 163.659 445.043i 0.176748 0.480636i
\(96\) −764.047 498.377i −0.812294 0.529847i
\(97\) 1456.91i 1.52502i 0.646974 + 0.762512i \(0.276034\pi\)
−0.646974 + 0.762512i \(0.723966\pi\)
\(98\) −853.861 391.346i −0.880133 0.403387i
\(99\) 30.1529 0.0306109
\(100\) 481.609 + 558.862i 0.481609 + 0.558862i
\(101\) 743.632i 0.732615i −0.930494 0.366308i \(-0.880622\pi\)
0.930494 0.366308i \(-0.119378\pi\)
\(102\) −163.631 + 357.020i −0.158842 + 0.346571i
\(103\) 681.912 0.652338 0.326169 0.945311i \(-0.394242\pi\)
0.326169 + 0.945311i \(0.394242\pi\)
\(104\) −359.805 1244.09i −0.339248 1.17301i
\(105\) 95.3346i 0.0886067i
\(106\) 992.669 + 454.965i 0.909590 + 0.416888i
\(107\) 1011.28i 0.913684i −0.889548 0.456842i \(-0.848980\pi\)
0.889548 0.456842i \(-0.151020\pi\)
\(108\) 873.577 752.820i 0.778333 0.670742i
\(109\) −818.210 −0.718994 −0.359497 0.933146i \(-0.617052\pi\)
−0.359497 + 0.933146i \(0.617052\pi\)
\(110\) 126.769 276.591i 0.109881 0.239745i
\(111\) 488.407i 0.417636i
\(112\) 209.148 + 31.2300i 0.176452 + 0.0263478i
\(113\) 223.680i 0.186213i −0.995656 0.0931064i \(-0.970320\pi\)
0.995656 0.0931064i \(-0.0296797\pi\)
\(114\) 831.989 837.422i 0.683534 0.687997i
\(115\) 1079.13 0.875035
\(116\) −608.871 706.538i −0.487347 0.565520i
\(117\) 91.8552 0.0725813
\(118\) −27.3108 + 59.5883i −0.0213065 + 0.0464877i
\(119\) 91.0414i 0.0701323i
\(120\) −181.383 627.163i −0.137983 0.477099i
\(121\) −978.005 −0.734790
\(122\) −30.6132 + 66.7937i −0.0227179 + 0.0495673i
\(123\) −938.758 −0.688170
\(124\) −107.977 125.297i −0.0781982 0.0907417i
\(125\) 1243.69i 0.889909i
\(126\) −6.24916 + 13.6348i −0.00441841 + 0.00964034i
\(127\) 706.530 0.493657 0.246828 0.969059i \(-0.420612\pi\)
0.246828 + 0.969059i \(0.420612\pi\)
\(128\) 1435.31 192.476i 0.991128 0.132911i
\(129\) 1214.01i 0.828587i
\(130\) 386.178 842.585i 0.260539 0.568459i
\(131\) −2375.61 −1.58441 −0.792207 0.610253i \(-0.791068\pi\)
−0.792207 + 0.610253i \(0.791068\pi\)
\(132\) 573.780 494.464i 0.378342 0.326042i
\(133\) −94.4472 + 256.833i −0.0615760 + 0.167445i
\(134\) 712.354 1554.26i 0.459239 1.00199i
\(135\) 825.332 0.526172
\(136\) −173.215 598.919i −0.109214 0.377624i
\(137\) −1067.76 −0.665878 −0.332939 0.942948i \(-0.608040\pi\)
−0.332939 + 0.942948i \(0.608040\pi\)
\(138\) 2442.17 + 1119.31i 1.50646 + 0.690446i
\(139\) −2150.99 −1.31255 −0.656276 0.754521i \(-0.727869\pi\)
−0.656276 + 0.754521i \(0.727869\pi\)
\(140\) 98.7987 + 114.647i 0.0596430 + 0.0692101i
\(141\) −1034.30 −0.617757
\(142\) −2129.37 975.945i −1.25840 0.576757i
\(143\) 1075.33 0.628839
\(144\) −15.1689 + 101.586i −0.00877829 + 0.0587885i
\(145\) 667.518i 0.382306i
\(146\) −2121.24 972.219i −1.20243 0.551105i
\(147\) 1673.48i 0.938956i
\(148\) −506.154 587.344i −0.281119 0.326212i
\(149\) 484.443i 0.266356i 0.991092 + 0.133178i \(0.0425183\pi\)
−0.991092 + 0.133178i \(0.957482\pi\)
\(150\) −547.657 + 1194.91i −0.298107 + 0.650427i
\(151\) −2021.09 −1.08923 −0.544616 0.838686i \(-0.683324\pi\)
−0.544616 + 0.838686i \(0.683324\pi\)
\(152\) −132.676 + 1869.28i −0.0707990 + 0.997491i
\(153\) 44.2202 0.0233660
\(154\) −73.1579 + 159.620i −0.0382807 + 0.0835231i
\(155\) 118.377i 0.0613436i
\(156\) 1747.92 1506.30i 0.897085 0.773078i
\(157\) 3373.68i 1.71496i 0.514516 + 0.857481i \(0.327972\pi\)
−0.514516 + 0.857481i \(0.672028\pi\)
\(158\) −1743.88 799.263i −0.878073 0.402443i
\(159\) 1945.53i 0.970382i
\(160\) 868.077 + 566.234i 0.428922 + 0.279779i
\(161\) −622.761 −0.304847
\(162\) 1756.39 + 804.997i 0.851821 + 0.390411i
\(163\) 1488.88 0.715450 0.357725 0.933827i \(-0.383553\pi\)
0.357725 + 0.933827i \(0.383553\pi\)
\(164\) 1128.92 972.869i 0.537525 0.463221i
\(165\) 542.092 0.255768
\(166\) −402.522 184.486i −0.188203 0.0862583i
\(167\) 12.3994 0.00574548 0.00287274 0.999996i \(-0.499086\pi\)
0.00287274 + 0.999996i \(0.499086\pi\)
\(168\) 104.676 + 361.934i 0.0480708 + 0.166213i
\(169\) 1078.81 0.491038
\(170\) 185.911 405.631i 0.0838747 0.183003i
\(171\) −124.748 45.8745i −0.0557877 0.0205153i
\(172\) 1258.12 + 1459.93i 0.557738 + 0.647203i
\(173\) 273.183 0.120056 0.0600280 0.998197i \(-0.480881\pi\)
0.0600280 + 0.998197i \(0.480881\pi\)
\(174\) 692.371 1510.66i 0.301658 0.658176i
\(175\) 304.706i 0.131621i
\(176\) −177.580 + 1189.26i −0.0760544 + 0.509339i
\(177\) −116.787 −0.0495947
\(178\) 438.963 957.755i 0.184841 0.403296i
\(179\) 3358.87i 1.40253i 0.712899 + 0.701267i \(0.247382\pi\)
−0.712899 + 0.701267i \(0.752618\pi\)
\(180\) −55.6857 + 47.9881i −0.0230587 + 0.0198712i
\(181\) 2753.17 1.13062 0.565308 0.824880i \(-0.308757\pi\)
0.565308 + 0.824880i \(0.308757\pi\)
\(182\) −222.862 + 486.254i −0.0907673 + 0.198041i
\(183\) −130.909 −0.0528801
\(184\) −4096.86 + 1184.86i −1.64144 + 0.474723i
\(185\) 554.907i 0.220527i
\(186\) 122.784 267.898i 0.0484032 0.105609i
\(187\) 517.679 0.202441
\(188\) 1243.82 1071.88i 0.482525 0.415824i
\(189\) −476.297 −0.183309
\(190\) −945.270 + 951.442i −0.360932 + 0.363289i
\(191\) 1742.05i 0.659950i −0.943990 0.329975i \(-0.892960\pi\)
0.943990 0.329975i \(-0.107040\pi\)
\(192\) 1377.23 + 2181.84i 0.517670 + 0.820108i
\(193\) 1861.80i 0.694379i 0.937795 + 0.347189i \(0.112864\pi\)
−0.937795 + 0.347189i \(0.887136\pi\)
\(194\) 1716.92 3746.07i 0.635399 1.38635i
\(195\) 1651.38 0.606451
\(196\) 1734.29 + 2012.48i 0.632030 + 0.733412i
\(197\) 3038.48i 1.09890i 0.835528 + 0.549448i \(0.185162\pi\)
−0.835528 + 0.549448i \(0.814838\pi\)
\(198\) −77.5300 35.5339i −0.0278274 0.0127540i
\(199\) 3019.80i 1.07572i −0.843035 0.537859i \(-0.819233\pi\)
0.843035 0.537859i \(-0.180767\pi\)
\(200\) −579.732 2004.52i −0.204966 0.708705i
\(201\) 3046.19 1.06896
\(202\) −876.340 + 1912.05i −0.305243 + 0.665997i
\(203\) 385.223i 0.133189i
\(204\) 841.468 725.149i 0.288797 0.248875i
\(205\) 1066.58 0.363380
\(206\) −1753.35 803.606i −0.593019 0.271796i
\(207\) 302.485i 0.101566i
\(208\) −540.964 + 3622.85i −0.180332 + 1.20769i
\(209\) −1460.40 537.045i −0.483340 0.177743i
\(210\) −112.348 + 245.127i −0.0369179 + 0.0805495i
\(211\) 5180.94i 1.69038i 0.534463 + 0.845192i \(0.320514\pi\)
−0.534463 + 0.845192i \(0.679486\pi\)
\(212\) −2016.22 2339.64i −0.653183 0.757958i
\(213\) 4173.36i 1.34251i
\(214\) −1191.75 + 2600.24i −0.380685 + 0.830601i
\(215\) 1379.31i 0.437525i
\(216\) −3133.34 + 906.199i −0.987021 + 0.285458i
\(217\) 68.3150i 0.0213711i
\(218\) 2103.81 + 964.228i 0.653614 + 0.299568i
\(219\) 4157.42i 1.28280i
\(220\) −651.904 + 561.789i −0.199779 + 0.172163i
\(221\) 1577.02 0.480007
\(222\) 575.568 1255.81i 0.174007 0.379659i
\(223\) −6049.57 −1.81663 −0.908317 0.418283i \(-0.862632\pi\)
−0.908317 + 0.418283i \(0.862632\pi\)
\(224\) −500.965 326.772i −0.149429 0.0974704i
\(225\) 148.001 0.0438520
\(226\) −263.598 + 575.133i −0.0775853 + 0.169280i
\(227\) 3412.80i 0.997867i 0.866640 + 0.498933i \(0.166275\pi\)
−0.866640 + 0.498933i \(0.833725\pi\)
\(228\) −3126.10 + 1172.74i −0.908032 + 0.340643i
\(229\) 5741.64i 1.65685i −0.560101 0.828424i \(-0.689238\pi\)
0.560101 0.828424i \(-0.310762\pi\)
\(230\) −2774.68 1271.71i −0.795466 0.364582i
\(231\) −312.840 −0.0891053
\(232\) 732.922 + 2534.20i 0.207408 + 0.717149i
\(233\) 2255.67 0.634223 0.317112 0.948388i \(-0.397287\pi\)
0.317112 + 0.948388i \(0.397287\pi\)
\(234\) −236.181 108.248i −0.0659814 0.0302409i
\(235\) 1175.13 0.326199
\(236\) 140.445 121.031i 0.0387381 0.0333832i
\(237\) 3417.83i 0.936759i
\(238\) −107.289 + 234.088i −0.0292205 + 0.0637551i
\(239\) 1011.60i 0.273785i 0.990586 + 0.136893i \(0.0437115\pi\)
−0.990586 + 0.136893i \(0.956288\pi\)
\(240\) −272.708 + 1826.33i −0.0733467 + 0.491205i
\(241\) 4313.46i 1.15292i 0.817125 + 0.576461i \(0.195567\pi\)
−0.817125 + 0.576461i \(0.804433\pi\)
\(242\) 2514.68 + 1152.54i 0.667974 + 0.306149i
\(243\) 449.710i 0.118720i
\(244\) 157.427 135.666i 0.0413043 0.0355947i
\(245\) 1901.34i 0.495804i
\(246\) 2413.76 + 1106.29i 0.625593 + 0.286725i
\(247\) −4448.85 1636.01i −1.14605 0.421445i
\(248\) 129.976 + 449.413i 0.0332801 + 0.115072i
\(249\) 788.903i 0.200782i
\(250\) 1465.63 3197.80i 0.370779 0.808987i
\(251\) −1821.03 −0.457938 −0.228969 0.973434i \(-0.573535\pi\)
−0.228969 + 0.973434i \(0.573535\pi\)
\(252\) 32.1361 27.6938i 0.00803326 0.00692280i
\(253\) 3541.14i 0.879959i
\(254\) −1816.65 832.617i −0.448767 0.205681i
\(255\) 794.996 0.195234
\(256\) −3917.33 1196.55i −0.956380 0.292126i
\(257\) 3365.51i 0.816867i −0.912788 0.408434i \(-0.866075\pi\)
0.912788 0.408434i \(-0.133925\pi\)
\(258\) −1430.66 + 3121.50i −0.345229 + 0.753242i
\(259\) 320.235i 0.0768280i
\(260\) −1985.91 + 1711.39i −0.473695 + 0.408214i
\(261\) −187.109 −0.0443745
\(262\) 6108.25 + 2799.56i 1.44034 + 0.660143i
\(263\) 1894.24i 0.444122i 0.975033 + 0.222061i \(0.0712784\pi\)
−0.975033 + 0.222061i \(0.928722\pi\)
\(264\) −2058.03 + 595.206i −0.479783 + 0.138759i
\(265\) 2210.43i 0.512398i
\(266\) 545.513 549.075i 0.125743 0.126564i
\(267\) 1877.10 0.430250
\(268\) −3663.26 + 3156.87i −0.834959 + 0.719540i
\(269\) 5932.53 1.34466 0.672329 0.740253i \(-0.265294\pi\)
0.672329 + 0.740253i \(0.265294\pi\)
\(270\) −2122.12 972.620i −0.478326 0.219229i
\(271\) 1212.08i 0.271693i 0.990730 + 0.135847i \(0.0433754\pi\)
−0.990730 + 0.135847i \(0.956625\pi\)
\(272\) −260.427 + 1744.09i −0.0580540 + 0.388790i
\(273\) −953.009 −0.211277
\(274\) 2745.47 + 1258.32i 0.605328 + 0.277437i
\(275\) 1732.62 0.379930
\(276\) −4960.32 5755.99i −1.08180 1.25533i
\(277\) 1324.62i 0.287325i 0.989627 + 0.143662i \(0.0458879\pi\)
−0.989627 + 0.143662i \(0.954112\pi\)
\(278\) 5530.70 + 2534.86i 1.19320 + 0.546873i
\(279\) −33.1817 −0.00712019
\(280\) −118.928 411.214i −0.0253832 0.0877668i
\(281\) 2675.75i 0.568050i −0.958817 0.284025i \(-0.908330\pi\)
0.958817 0.284025i \(-0.0916699\pi\)
\(282\) 2659.42 + 1218.88i 0.561583 + 0.257387i
\(283\) 2733.04 0.574073 0.287036 0.957920i \(-0.407330\pi\)
0.287036 + 0.957920i \(0.407330\pi\)
\(284\) 4325.00 + 5018.76i 0.903668 + 1.04862i
\(285\) −2242.73 824.736i −0.466132 0.171415i
\(286\) −2764.93 1267.24i −0.571657 0.262005i
\(287\) −615.518 −0.126595
\(288\) 158.718 243.326i 0.0324742 0.0497852i
\(289\) −4153.81 −0.845472
\(290\) −786.642 + 1716.34i −0.159287 + 0.347542i
\(291\) 7341.91 1.47901
\(292\) 4308.49 + 4999.60i 0.863477 + 1.00198i
\(293\) −2897.56 −0.577737 −0.288869 0.957369i \(-0.593279\pi\)
−0.288869 + 0.957369i \(0.593279\pi\)
\(294\) −1972.13 + 4302.91i −0.391214 + 0.853574i
\(295\) 132.689 0.0261879
\(296\) 609.278 + 2106.68i 0.119640 + 0.413677i
\(297\) 2708.32i 0.529133i
\(298\) 570.896 1245.61i 0.110977 0.242136i
\(299\) 10787.4i 2.08647i
\(300\) 2816.31 2427.00i 0.541998 0.467076i
\(301\) 795.994i 0.152426i
\(302\) 5196.69 + 2381.77i 0.990185 + 0.453826i
\(303\) −3747.43 −0.710508
\(304\) 2544.01 4650.00i 0.479964 0.877288i
\(305\) 148.733 0.0279227
\(306\) −113.700 52.1117i −0.0212412 0.00973539i
\(307\) 578.868i 0.107615i −0.998551 0.0538074i \(-0.982864\pi\)
0.998551 0.0538074i \(-0.0171357\pi\)
\(308\) 376.212 324.207i 0.0695995 0.0599786i
\(309\) 3436.40i 0.632653i
\(310\) −139.502 + 304.375i −0.0255587 + 0.0557655i
\(311\) 8292.12i 1.51191i 0.654625 + 0.755954i \(0.272826\pi\)
−0.654625 + 0.755954i \(0.727174\pi\)
\(312\) −6269.40 + 1813.19i −1.13761 + 0.329011i
\(313\) 8713.54 1.57354 0.786771 0.617245i \(-0.211751\pi\)
0.786771 + 0.617245i \(0.211751\pi\)
\(314\) 3975.75 8674.52i 0.714536 1.55902i
\(315\) 30.3613 0.00543068
\(316\) 3542.02 + 4110.18i 0.630551 + 0.731696i
\(317\) 4416.74 0.782551 0.391275 0.920274i \(-0.372034\pi\)
0.391275 + 0.920274i \(0.372034\pi\)
\(318\) 2292.73 5002.41i 0.404308 0.882143i
\(319\) −2190.45 −0.384457
\(320\) −1564.74 2478.91i −0.273350 0.433048i
\(321\) −5096.21 −0.886113
\(322\) 1601.26 + 733.898i 0.277127 + 0.127014i
\(323\) −2141.73 787.595i −0.368944 0.135675i
\(324\) −3567.43 4139.67i −0.611699 0.709819i
\(325\) 5278.11 0.900851
\(326\) −3828.26 1754.59i −0.650393 0.298091i
\(327\) 4123.25i 0.697298i
\(328\) −4049.21 + 1171.08i −0.681647 + 0.197141i
\(329\) −678.162 −0.113642
\(330\) −1393.84 638.833i −0.232511 0.106565i
\(331\) 4318.95i 0.717194i 0.933493 + 0.358597i \(0.116745\pi\)
−0.933493 + 0.358597i \(0.883255\pi\)
\(332\) 817.568 + 948.712i 0.135150 + 0.156829i
\(333\) −155.543 −0.0255968
\(334\) −31.8817 14.6122i −0.00522303 0.00239384i
\(335\) −3460.95 −0.564453
\(336\) 157.379 1053.97i 0.0255528 0.171128i
\(337\) 9523.11i 1.53934i −0.638443 0.769669i \(-0.720421\pi\)
0.638443 0.769669i \(-0.279579\pi\)
\(338\) −2773.87 1271.33i −0.446387 0.204590i
\(339\) −1127.20 −0.180594
\(340\) −956.039 + 823.883i −0.152496 + 0.131416i
\(341\) −388.453 −0.0616888
\(342\) 266.694 + 264.964i 0.0421672 + 0.0418936i
\(343\) 2230.59i 0.351138i
\(344\) −1514.45 5236.48i −0.237366 0.820732i
\(345\) 5438.10i 0.848631i
\(346\) −702.416 321.935i −0.109139 0.0500211i
\(347\) −8490.08 −1.31346 −0.656731 0.754125i \(-0.728061\pi\)
−0.656731 + 0.754125i \(0.728061\pi\)
\(348\) −3560.49 + 3068.32i −0.548456 + 0.472641i
\(349\) 11160.9i 1.71184i −0.517110 0.855919i \(-0.672992\pi\)
0.517110 0.855919i \(-0.327008\pi\)
\(350\) −359.084 + 783.470i −0.0548395 + 0.119652i
\(351\) 8250.39i 1.25463i
\(352\) 1858.09 2848.59i 0.281354 0.431336i
\(353\) −6494.13 −0.979172 −0.489586 0.871955i \(-0.662852\pi\)
−0.489586 + 0.871955i \(0.662852\pi\)
\(354\) 300.287 + 137.629i 0.0450849 + 0.0206636i
\(355\) 4741.59i 0.708894i
\(356\) −2257.35 + 1945.31i −0.336066 + 0.289610i
\(357\) −458.790 −0.0680161
\(358\) 3958.29 8636.42i 0.584363 1.27500i
\(359\) 2262.40i 0.332604i −0.986075 0.166302i \(-0.946817\pi\)
0.986075 0.166302i \(-0.0531827\pi\)
\(360\) 199.733 57.7652i 0.0292412 0.00845692i
\(361\) 5224.88 + 4443.70i 0.761756 + 0.647864i
\(362\) −7079.04 3244.50i −1.02781 0.471069i
\(363\) 4928.52i 0.712617i
\(364\) 1146.06 987.637i 0.165027 0.142215i
\(365\) 4723.49i 0.677366i
\(366\) 336.597 + 154.271i 0.0480716 + 0.0220324i
\(367\) 2224.41i 0.316385i 0.987408 + 0.158192i \(0.0505666\pi\)
−0.987408 + 0.158192i \(0.949433\pi\)
\(368\) 11930.3 + 1781.43i 1.68997 + 0.252346i
\(369\) 298.967i 0.0421777i
\(370\) −653.935 + 1426.79i −0.0918824 + 0.200474i
\(371\) 1275.63i 0.178511i
\(372\) −631.415 + 544.132i −0.0880036 + 0.0758386i
\(373\) 63.6398 0.00883417 0.00441708 0.999990i \(-0.498594\pi\)
0.00441708 + 0.999990i \(0.498594\pi\)
\(374\) −1331.07 610.064i −0.184033 0.0843467i
\(375\) 6267.37 0.863055
\(376\) −4461.31 + 1290.27i −0.611901 + 0.176969i
\(377\) −6672.81 −0.911584
\(378\) 1224.67 + 561.296i 0.166641 + 0.0763756i
\(379\) 3252.80i 0.440858i −0.975403 0.220429i \(-0.929254\pi\)
0.975403 0.220429i \(-0.0707458\pi\)
\(380\) 3551.74 1332.42i 0.479475 0.179872i
\(381\) 3560.46i 0.478760i
\(382\) −2052.94 + 4479.22i −0.274967 + 0.599939i
\(383\) 4404.95 0.587682 0.293841 0.955854i \(-0.405066\pi\)
0.293841 + 0.955854i \(0.405066\pi\)
\(384\) −969.956 7233.02i −0.128901 0.961220i
\(385\) 355.435 0.0470510
\(386\) 2194.05 4787.11i 0.289312 0.631237i
\(387\) 386.627 0.0507838
\(388\) −8829.17 + 7608.69i −1.15524 + 0.995548i
\(389\) 10114.5i 1.31831i 0.752006 + 0.659156i \(0.229086\pi\)
−0.752006 + 0.659156i \(0.770914\pi\)
\(390\) −4246.09 1946.09i −0.551305 0.252677i
\(391\) 5193.20i 0.671692i
\(392\) −2087.63 7218.35i −0.268983 0.930055i
\(393\) 11971.6i 1.53660i
\(394\) 3580.72 7812.63i 0.457853 0.998971i
\(395\) 3883.19i 0.494644i
\(396\) 157.472 + 182.732i 0.0199830 + 0.0231884i
\(397\) 15279.7i 1.93165i 0.259186 + 0.965827i \(0.416546\pi\)
−0.259186 + 0.965827i \(0.583454\pi\)
\(398\) −3558.71 + 7764.60i −0.448196 + 0.977900i
\(399\) 1294.27 + 475.953i 0.162393 + 0.0597179i
\(400\) −871.622 + 5837.28i −0.108953 + 0.729660i
\(401\) 14208.1i 1.76937i 0.466190 + 0.884684i \(0.345626\pi\)
−0.466190 + 0.884684i \(0.654374\pi\)
\(402\) −7832.45 3589.81i −0.971759 0.445381i
\(403\) −1183.35 −0.146270
\(404\) 4506.55 3883.59i 0.554973 0.478257i
\(405\) 3911.04i 0.479855i
\(406\) 453.969 990.497i 0.0554929 0.121078i
\(407\) −1820.92 −0.221768
\(408\) −3018.17 + 872.891i −0.366229 + 0.105918i
\(409\) 11209.6i 1.35520i −0.735430 0.677601i \(-0.763020\pi\)
0.735430 0.677601i \(-0.236980\pi\)
\(410\) −2742.41 1256.92i −0.330337 0.151402i
\(411\) 5380.85i 0.645785i
\(412\) 3561.26 + 4132.51i 0.425852 + 0.494161i
\(413\) −76.5742 −0.00912341
\(414\) −356.466 + 777.758i −0.0423172 + 0.0923302i
\(415\) 896.317i 0.106020i
\(416\) 5660.33 8677.70i 0.667117 1.02274i
\(417\) 10839.6i 1.27295i
\(418\) 3122.15 + 3101.89i 0.365333 + 0.362963i
\(419\) −4914.82 −0.573042 −0.286521 0.958074i \(-0.592499\pi\)
−0.286521 + 0.958074i \(0.592499\pi\)
\(420\) 577.746 497.882i 0.0671217 0.0578432i
\(421\) 6104.34 0.706668 0.353334 0.935497i \(-0.385048\pi\)
0.353334 + 0.935497i \(0.385048\pi\)
\(422\) 6105.53 13321.4i 0.704295 1.53667i
\(423\) 329.394i 0.0378621i
\(424\) 2427.01 + 8391.80i 0.277986 + 0.961183i
\(425\) 2540.95 0.290009
\(426\) −4918.13 + 10730.7i −0.559353 + 1.22043i
\(427\) −85.8334 −0.00972780
\(428\) 6128.55 5281.38i 0.692137 0.596461i
\(429\) 5418.99i 0.609864i
\(430\) 1625.46 3546.52i 0.182294 0.397740i
\(431\) 11052.2 1.23519 0.617595 0.786497i \(-0.288107\pi\)
0.617595 + 0.786497i \(0.288107\pi\)
\(432\) 9124.45 + 1362.46i 1.01620 + 0.151740i
\(433\) 4407.06i 0.489122i −0.969634 0.244561i \(-0.921356\pi\)
0.969634 0.244561i \(-0.0786438\pi\)
\(434\) 80.5065 175.654i 0.00890423 0.0194278i
\(435\) −3363.86 −0.370769
\(436\) −4273.08 4958.51i −0.469365 0.544655i
\(437\) −5387.48 + 14650.3i −0.589744 + 1.60371i
\(438\) −4899.36 + 10689.7i −0.534476 + 1.16615i
\(439\) −14788.9 −1.60782 −0.803911 0.594750i \(-0.797251\pi\)
−0.803911 + 0.594750i \(0.797251\pi\)
\(440\) 2338.24 676.248i 0.253344 0.0732701i
\(441\) 532.955 0.0575483
\(442\) −4054.87 1858.45i −0.436359 0.199994i
\(443\) 13668.3 1.46592 0.732958 0.680274i \(-0.238139\pi\)
0.732958 + 0.680274i \(0.238139\pi\)
\(444\) −2959.84 + 2550.69i −0.316369 + 0.272636i
\(445\) −2132.68 −0.227189
\(446\) 15554.9 + 7129.18i 1.65144 + 0.756897i
\(447\) 2441.28 0.258319
\(448\) 903.010 + 1430.57i 0.0952303 + 0.150867i
\(449\) 4433.66i 0.466007i 0.972476 + 0.233003i \(0.0748554\pi\)
−0.972476 + 0.233003i \(0.925145\pi\)
\(450\) −380.544 174.413i −0.0398644 0.0182709i
\(451\) 3499.96i 0.365425i
\(452\) 1355.54 1168.16i 0.141061 0.121561i
\(453\) 10185.0i 1.05636i
\(454\) 4021.85 8775.11i 0.415760 0.907129i
\(455\) 1082.77 0.111562
\(456\) 9419.96 + 668.602i 0.967391 + 0.0686626i
\(457\) 8045.08 0.823486 0.411743 0.911300i \(-0.364920\pi\)
0.411743 + 0.911300i \(0.364920\pi\)
\(458\) −6766.29 + 14763.1i −0.690323 + 1.50619i
\(459\) 3971.84i 0.403899i
\(460\) 5635.70 + 6539.70i 0.571230 + 0.662859i
\(461\) 11671.8i 1.17919i 0.807698 + 0.589596i \(0.200713\pi\)
−0.807698 + 0.589596i \(0.799287\pi\)
\(462\) 804.383 + 368.669i 0.0810028 + 0.0371256i
\(463\) 6795.37i 0.682090i 0.940047 + 0.341045i \(0.110781\pi\)
−0.940047 + 0.341045i \(0.889219\pi\)
\(464\) 1101.94 7379.74i 0.110251 0.738353i
\(465\) −596.544 −0.0594926
\(466\) −5799.86 2658.22i −0.576552 0.264248i
\(467\) −7486.56 −0.741834 −0.370917 0.928666i \(-0.620957\pi\)
−0.370917 + 0.928666i \(0.620957\pi\)
\(468\) 479.711 + 556.660i 0.0473817 + 0.0549820i
\(469\) 1997.30 0.196646
\(470\) −3021.52 1384.84i −0.296537 0.135910i
\(471\) 17001.2 1.66321
\(472\) −503.746 + 145.690i −0.0491246 + 0.0142074i
\(473\) 4526.18 0.439987
\(474\) −4027.77 + 8788.03i −0.390299 + 0.851577i
\(475\) −7168.15 2636.00i −0.692415 0.254627i
\(476\) 551.728 475.461i 0.0531269 0.0457830i
\(477\) −619.595 −0.0594744
\(478\) 1192.12 2601.05i 0.114072 0.248889i
\(479\) 15766.9i 1.50398i 0.659175 + 0.751990i \(0.270906\pi\)
−0.659175 + 0.751990i \(0.729094\pi\)
\(480\) 2853.45 4374.55i 0.271337 0.415979i
\(481\) −5547.10 −0.525834
\(482\) 5083.24 11090.9i 0.480363 1.04808i
\(483\) 3138.31i 0.295648i
\(484\) −5107.60 5926.89i −0.479677 0.556620i
\(485\) −8341.56 −0.780971
\(486\) −529.965 + 1156.31i −0.0494644 + 0.107924i
\(487\) −5904.44 −0.549396 −0.274698 0.961531i \(-0.588578\pi\)
−0.274698 + 0.961531i \(0.588578\pi\)
\(488\) −564.659 + 163.306i −0.0523789 + 0.0151486i
\(489\) 7503.01i 0.693861i
\(490\) 2240.65 4888.78i 0.206576 0.450720i
\(491\) −15452.6 −1.42029 −0.710147 0.704053i \(-0.751372\pi\)
−0.710147 + 0.704053i \(0.751372\pi\)
\(492\) −4902.63 5689.05i −0.449243 0.521305i
\(493\) −3212.37 −0.293464
\(494\) 9511.05 + 9449.35i 0.866240 + 0.860620i
\(495\) 172.640i 0.0156760i
\(496\) 195.417 1308.72i 0.0176905 0.118474i
\(497\) 2736.36i 0.246967i
\(498\) −929.690 + 2028.45i −0.0836554 + 0.182524i
\(499\) 600.472 0.0538694 0.0269347 0.999637i \(-0.491425\pi\)
0.0269347 + 0.999637i \(0.491425\pi\)
\(500\) −7536.96 + 6495.10i −0.674126 + 0.580940i
\(501\) 62.4850i 0.00557210i
\(502\) 4682.29 + 2146.01i 0.416297 + 0.190799i
\(503\) 11018.5i 0.976725i −0.872641 0.488362i \(-0.837594\pi\)
0.872641 0.488362i \(-0.162406\pi\)
\(504\) −115.265 + 33.3361i −0.0101871 + 0.00294625i
\(505\) 4257.66 0.375175
\(506\) −4173.09 + 9105.09i −0.366633 + 0.799942i
\(507\) 5436.51i 0.476221i
\(508\) 3689.83 + 4281.70i 0.322263 + 0.373956i
\(509\) −19114.7 −1.66452 −0.832262 0.554382i \(-0.812955\pi\)
−0.832262 + 0.554382i \(0.812955\pi\)
\(510\) −2044.12 936.870i −0.177481 0.0813438i
\(511\) 2725.91i 0.235983i
\(512\) 8662.28 + 7693.02i 0.747700 + 0.664037i
\(513\) −4120.42 + 11204.8i −0.354622 + 0.964334i
\(514\) −3966.12 + 8653.51i −0.340346 + 0.742588i
\(515\) 3904.29i 0.334065i
\(516\) 7357.13 6340.13i 0.627674 0.540908i
\(517\) 3856.16i 0.328034i
\(518\) 377.384 823.399i 0.0320103 0.0698419i
\(519\) 1376.66i 0.116433i
\(520\) 7123.02 2060.07i 0.600702 0.173730i
\(521\) 19202.9i 1.61477i 0.590028 + 0.807383i \(0.299117\pi\)
−0.590028 + 0.807383i \(0.700883\pi\)
\(522\) 481.100 + 220.500i 0.0403394 + 0.0184885i
\(523\) 6024.44i 0.503691i −0.967767 0.251846i \(-0.918962\pi\)
0.967767 0.251846i \(-0.0810375\pi\)
\(524\) −12406.6 14396.6i −1.03432 1.20023i
\(525\) −1535.52 −0.127649
\(526\) 2232.29 4870.54i 0.185043 0.403737i
\(527\) −569.679 −0.0470884
\(528\) 5993.09 + 894.888i 0.493969 + 0.0737594i
\(529\) −23356.7 −1.91967
\(530\) −2604.90 + 5683.53i −0.213490 + 0.465805i
\(531\) 37.1933i 0.00303964i
\(532\) −2049.70 + 768.934i −0.167041 + 0.0626645i
\(533\) 10662.0i 0.866457i
\(534\) −4826.47 2212.09i −0.391127 0.179263i
\(535\) 5790.09 0.467902
\(536\) 13139.3 3800.05i 1.05883 0.306226i
\(537\) 16926.5 1.36021
\(538\) −15253.9 6991.25i −1.22238 0.560249i
\(539\) 6239.22 0.498594
\(540\) 4310.27 + 5001.66i 0.343490 + 0.398588i
\(541\) 1031.76i 0.0819938i −0.999159 0.0409969i \(-0.986947\pi\)
0.999159 0.0409969i \(-0.0130534\pi\)
\(542\) 1428.39 3116.55i 0.113201 0.246987i
\(543\) 13874.2i 1.09650i
\(544\) 2724.95 4177.55i 0.214764 0.329248i
\(545\) 4684.66i 0.368200i
\(546\) 2450.41 + 1123.08i 0.192065 + 0.0880283i
\(547\) 15015.5i 1.17371i −0.809693 0.586853i \(-0.800367\pi\)
0.809693 0.586853i \(-0.199633\pi\)
\(548\) −5576.37 6470.85i −0.434691 0.504418i
\(549\) 41.6906i 0.00324101i
\(550\) −4454.97 2041.82i −0.345382 0.158297i
\(551\) 9062.28 + 3332.55i 0.700665 + 0.257661i
\(552\) 5970.93 + 20645.5i 0.460398 + 1.59190i
\(553\) 2240.98i 0.172326i
\(554\) 1561.02 3405.91i 0.119713 0.261198i
\(555\) −2796.37 −0.213873
\(556\) −11233.5 13035.4i −0.856845 0.994289i
\(557\) 12817.8i 0.975062i −0.873106 0.487531i \(-0.837898\pi\)
0.873106 0.487531i \(-0.162102\pi\)
\(558\) 85.3177 + 39.1032i 0.00647274 + 0.00296662i
\(559\) 13788.2 1.04325
\(560\) −178.807 + 1197.48i −0.0134928 + 0.0903619i
\(561\) 2608.77i 0.196332i
\(562\) −3153.27 + 6879.98i −0.236677 + 0.516396i
\(563\) 8471.22i 0.634137i −0.948403 0.317069i \(-0.897301\pi\)
0.948403 0.317069i \(-0.102699\pi\)
\(564\) −5401.59 6268.04i −0.403277 0.467965i
\(565\) 1280.68 0.0953604
\(566\) −7027.29 3220.78i −0.521871 0.239186i
\(567\) 2257.05i 0.167173i
\(568\) −5206.18 18001.2i −0.384588 1.32978i
\(569\) 6730.08i 0.495852i −0.968779 0.247926i \(-0.920251\pi\)
0.968779 0.247926i \(-0.0797489\pi\)
\(570\) 4794.66 + 4763.55i 0.352326 + 0.350041i
\(571\) 20384.8 1.49400 0.747001 0.664822i \(-0.231493\pi\)
0.747001 + 0.664822i \(0.231493\pi\)
\(572\) 5615.90 + 6516.73i 0.410511 + 0.476360i
\(573\) −8778.82 −0.640036
\(574\) 1582.64 + 725.363i 0.115084 + 0.0527458i
\(575\) 17381.1i 1.26060i
\(576\) −694.852 + 438.606i −0.0502642 + 0.0317278i
\(577\) −8621.00 −0.622005 −0.311002 0.950409i \(-0.600665\pi\)
−0.311002 + 0.950409i \(0.600665\pi\)
\(578\) 10680.4 + 4895.09i 0.768592 + 0.352265i
\(579\) 9382.26 0.673425
\(580\) 4045.28 3486.09i 0.289605 0.249572i
\(581\) 517.262i 0.0369357i
\(582\) −18877.8 8652.15i −1.34452 0.616225i
\(583\) −7253.50 −0.515282
\(584\) −5186.30 17932.5i −0.367484 1.27064i
\(585\) 525.917i 0.0371692i
\(586\) 7450.29 + 3414.65i 0.525203 + 0.240713i
\(587\) −9852.46 −0.692768 −0.346384 0.938093i \(-0.612591\pi\)
−0.346384 + 0.938093i \(0.612591\pi\)
\(588\) 10141.6 8739.70i 0.711281 0.612958i
\(589\) 1607.10 + 590.990i 0.112427 + 0.0413435i
\(590\) −341.173 156.368i −0.0238066 0.0109111i
\(591\) 15312.0 1.06574
\(592\) 916.044 6134.77i 0.0635966 0.425908i
\(593\) −15120.2 −1.04707 −0.523536 0.852004i \(-0.675387\pi\)
−0.523536 + 0.852004i \(0.675387\pi\)
\(594\) −3191.64 + 6963.71i −0.220462 + 0.481018i
\(595\) 521.257 0.0359151
\(596\) −2935.81 + 2529.99i −0.201771 + 0.173880i
\(597\) −15217.8 −1.04326
\(598\) −12712.6 + 27737.0i −0.869323 + 1.89674i
\(599\) 22742.6 1.55131 0.775657 0.631155i \(-0.217419\pi\)
0.775657 + 0.631155i \(0.217419\pi\)
\(600\) −10101.5 + 2921.47i −0.687320 + 0.198781i
\(601\) 24084.6i 1.63466i −0.576169 0.817331i \(-0.695453\pi\)
0.576169 0.817331i \(-0.304547\pi\)
\(602\) −938.047 + 2046.69i −0.0635082 + 0.138566i
\(603\) 970.121i 0.0655164i
\(604\) −10555.1 12248.2i −0.711059 0.825118i
\(605\) 5599.57i 0.376289i
\(606\) 9635.50 + 4416.19i 0.645900 + 0.296032i
\(607\) −12023.0 −0.803954 −0.401977 0.915650i \(-0.631677\pi\)
−0.401977 + 0.915650i \(0.631677\pi\)
\(608\) −12021.1 + 8958.21i −0.801840 + 0.597538i
\(609\) 1941.27 0.129170
\(610\) −382.427 175.276i −0.0253836 0.0116340i
\(611\) 11747.1i 0.777801i
\(612\) 230.939 + 267.983i 0.0152535 + 0.0177003i
\(613\) 10246.4i 0.675117i −0.941304 0.337559i \(-0.890399\pi\)
0.941304 0.337559i \(-0.109601\pi\)
\(614\) −682.173 + 1488.40i −0.0448375 + 0.0978292i
\(615\) 5374.86i 0.352415i
\(616\) −1349.39 + 390.261i −0.0882607 + 0.0255261i
\(617\) 21866.3 1.42675 0.713374 0.700783i \(-0.247166\pi\)
0.713374 + 0.700783i \(0.247166\pi\)
\(618\) −4049.66 + 8835.78i −0.263594 + 0.575125i
\(619\) 12728.3 0.826482 0.413241 0.910622i \(-0.364397\pi\)
0.413241 + 0.910622i \(0.364397\pi\)
\(620\) 717.386 618.220i 0.0464692 0.0400456i
\(621\) −27169.0 −1.75565
\(622\) 9771.93 21321.0i 0.629934 1.37443i
\(623\) 1230.77 0.0791486
\(624\) 18256.9 + 2726.11i 1.17125 + 0.174891i
\(625\) 4406.62 0.282023
\(626\) −22404.5 10268.6i −1.43046 0.655613i
\(627\) −2706.36 + 7359.49i −0.172379 + 0.468755i
\(628\) −20445.1 + 17618.9i −1.29912 + 1.11954i
\(629\) −2670.44 −0.169281
\(630\) −78.0659 35.7795i −0.00493686 0.00226268i
\(631\) 30417.2i 1.91900i 0.281704 + 0.959501i \(0.409100\pi\)
−0.281704 + 0.959501i \(0.590900\pi\)
\(632\) −4263.67 14742.4i −0.268354 0.927879i
\(633\) 26108.6 1.63938
\(634\) −11356.5 5204.94i −0.711392 0.326048i
\(635\) 4045.24i 0.252804i
\(636\) −11790.3 + 10160.5i −0.735087 + 0.633473i
\(637\) 19006.6 1.18221
\(638\) 5632.16 + 2581.36i 0.349497 + 0.160183i
\(639\) 1329.09 0.0822818
\(640\) 1102.02 + 8217.85i 0.0680644 + 0.507561i
\(641\) 21789.6i 1.34265i 0.741165 + 0.671323i \(0.234273\pi\)
−0.741165 + 0.671323i \(0.765727\pi\)
\(642\) 13103.5 + 6005.67i 0.805537 + 0.369198i
\(643\) 5470.19 0.335495 0.167747 0.985830i \(-0.446351\pi\)
0.167747 + 0.985830i \(0.446351\pi\)
\(644\) −3252.35 3774.05i −0.199007 0.230929i
\(645\) 6950.82 0.424323
\(646\) 4578.73 + 4549.03i 0.278867 + 0.277058i
\(647\) 3431.69i 0.208522i 0.994550 + 0.104261i \(0.0332477\pi\)
−0.994550 + 0.104261i \(0.966752\pi\)
\(648\) 4294.25 + 14848.1i 0.260331 + 0.900137i
\(649\) 435.416i 0.0263352i
\(650\) −13571.2 6220.04i −0.818935 0.375338i
\(651\) 344.264 0.0207262
\(652\) 7775.64 + 9022.91i 0.467052 + 0.541970i
\(653\) 24252.9i 1.45343i −0.686939 0.726715i \(-0.741046\pi\)
0.686939 0.726715i \(-0.258954\pi\)
\(654\) 4859.09 10601.8i 0.290528 0.633891i
\(655\) 13601.6i 0.811385i
\(656\) 11791.5 + 1760.71i 0.701802 + 0.104793i
\(657\) 1324.02 0.0786223
\(658\) 1743.71 + 799.186i 0.103308 + 0.0473488i
\(659\) 21052.9i 1.24447i −0.782832 0.622233i \(-0.786225\pi\)
0.782832 0.622233i \(-0.213775\pi\)
\(660\) 2831.05 + 3285.17i 0.166968 + 0.193750i
\(661\) 9819.28 0.577800 0.288900 0.957359i \(-0.406710\pi\)
0.288900 + 0.957359i \(0.406710\pi\)
\(662\) 5089.71 11105.0i 0.298818 0.651978i
\(663\) 7947.14i 0.465522i
\(664\) −984.139 3402.83i −0.0575181 0.198879i
\(665\) −1470.50 540.757i −0.0857495 0.0315333i
\(666\) 399.938 + 183.301i 0.0232692 + 0.0106648i
\(667\) 21974.0i 1.27561i
\(668\) 64.7554 + 75.1427i 0.00375069 + 0.00435233i
\(669\) 30485.9i 1.76182i
\(670\) 8898.89 + 4078.58i 0.513126 + 0.235178i
\(671\) 488.066i 0.0280798i
\(672\) −1646.72 + 2524.54i −0.0945292 + 0.144920i
\(673\) 1913.83i 0.109618i 0.998497 + 0.0548088i \(0.0174549\pi\)
−0.998497 + 0.0548088i \(0.982545\pi\)
\(674\) −11222.6 + 24486.1i −0.641363 + 1.39936i
\(675\) 13293.3i 0.758016i
\(676\) 5634.05 + 6537.79i 0.320554 + 0.371973i
\(677\) 11272.2 0.639918 0.319959 0.947431i \(-0.396331\pi\)
0.319959 + 0.947431i \(0.396331\pi\)
\(678\) 2898.30 + 1328.36i 0.164172 + 0.0752441i
\(679\) 4813.89 0.272077
\(680\) 3429.11 991.740i 0.193383 0.0559287i
\(681\) 17198.3 0.967756
\(682\) 998.802 + 457.776i 0.0560793 + 0.0257025i
\(683\) 30566.3i 1.71243i 0.516622 + 0.856214i \(0.327189\pi\)
−0.516622 + 0.856214i \(0.672811\pi\)
\(684\) −373.483 995.572i −0.0208779 0.0556530i
\(685\) 6113.49i 0.340999i
\(686\) −2628.66 + 5735.36i −0.146301 + 0.319208i
\(687\) −28934.2 −1.60685
\(688\) −2276.97 + 15248.9i −0.126175 + 0.845000i
\(689\) −22096.5 −1.22178
\(690\) −6408.58 + 13982.6i −0.353581 + 0.771463i
\(691\) −3125.68 −0.172079 −0.0860393 0.996292i \(-0.527421\pi\)
−0.0860393 + 0.996292i \(0.527421\pi\)
\(692\) 1426.69 + 1655.54i 0.0783736 + 0.0909452i
\(693\) 99.6302i 0.00546124i
\(694\) 21830.0 + 10005.2i 1.19403 + 0.547252i
\(695\) 12315.5i 0.672163i
\(696\) 12770.7 3693.45i 0.695508 0.201149i
\(697\) 5132.81i 0.278937i
\(698\) −13152.7 + 28697.4i −0.713234 + 1.55618i
\(699\) 11367.1i 0.615085i
\(700\) 1846.58 1591.32i 0.0997057 0.0859231i
\(701\) 23361.6i 1.25871i 0.777117 + 0.629356i \(0.216681\pi\)
−0.777117 + 0.629356i \(0.783319\pi\)
\(702\) −9722.75 + 21213.7i −0.522738 + 1.14054i
\(703\) 7533.47 + 2770.34i 0.404168 + 0.148628i
\(704\) −8134.52 + 5134.69i −0.435485 + 0.274888i
\(705\) 5921.88i 0.316356i
\(706\) 16697.9 + 7653.07i 0.890134 + 0.407970i
\(707\) −2457.09 −0.130705
\(708\) −609.917 707.752i −0.0323758 0.0375691i
\(709\) 34656.4i 1.83575i −0.396866 0.917877i \(-0.629902\pi\)
0.396866 0.917877i \(-0.370098\pi\)
\(710\) 5587.77 12191.7i 0.295360 0.644433i
\(711\) 1088.48 0.0574136
\(712\) 8096.64 2341.65i 0.426172 0.123254i
\(713\) 3896.84i 0.204681i
\(714\) 1179.66 + 540.665i 0.0618312 + 0.0283388i
\(715\) 6156.83i 0.322031i
\(716\) −20355.3 + 17541.6i −1.06245 + 0.915585i
\(717\) 5097.79 0.265524
\(718\) −2666.15 + 5817.16i −0.138579 + 0.302360i
\(719\) 21824.0i 1.13198i 0.824411 + 0.565992i \(0.191507\pi\)
−0.824411 + 0.565992i \(0.808493\pi\)
\(720\) −581.633 86.8494i −0.0301058 0.00449540i
\(721\) 2253.15i 0.116383i
\(722\) −8197.66 17583.1i −0.422556 0.906337i
\(723\) 21737.1 1.11813
\(724\) 14378.3 + 16684.7i 0.738075 + 0.856468i
\(725\) −10751.5 −0.550759
\(726\) 5808.06 12672.4i 0.296911 0.647817i
\(727\) 32538.0i 1.65993i −0.557817 0.829964i \(-0.688361\pi\)
0.557817 0.829964i \(-0.311639\pi\)
\(728\) −4110.68 + 1188.86i −0.209275 + 0.0605247i
\(729\) −20709.7 −1.05216
\(730\) 5566.44 12145.2i 0.282223 0.615771i
\(731\) 6637.80 0.335852
\(732\) −683.667 793.332i −0.0345206 0.0400579i
\(733\) 14353.4i 0.723267i −0.932320 0.361633i \(-0.882219\pi\)
0.932320 0.361633i \(-0.117781\pi\)
\(734\) 2621.38 5719.47i 0.131821 0.287615i
\(735\) 9581.52 0.480843
\(736\) −28576.2 18639.8i −1.43116 0.933522i
\(737\) 11357.1i 0.567629i
\(738\) −352.320 + 768.713i −0.0175733 + 0.0383424i
\(739\) −20256.9 −1.00834 −0.504169 0.863605i \(-0.668201\pi\)
−0.504169 + 0.863605i \(0.668201\pi\)
\(740\) 3362.84 2897.98i 0.167055 0.143962i
\(741\) −8244.44 + 22419.3i −0.408727 + 1.11146i
\(742\) 1503.28 3279.95i 0.0743763 0.162278i
\(743\) −34092.1 −1.68334 −0.841668 0.539995i \(-0.818426\pi\)
−0.841668 + 0.539995i \(0.818426\pi\)
\(744\) 2264.75 654.994i 0.111599 0.0322758i
\(745\) −2773.68 −0.136402
\(746\) −163.633 74.9969i −0.00803086 0.00368074i
\(747\) 251.242 0.0123059
\(748\) 2703.56 + 3137.23i 0.132155 + 0.153354i
\(749\) −3341.44 −0.163009
\(750\) −16114.9 7385.84i −0.784576 0.359591i
\(751\) −37961.1 −1.84450 −0.922250 0.386595i \(-0.873651\pi\)
−0.922250 + 0.386595i \(0.873651\pi\)
\(752\) 12991.6 + 1939.90i 0.629993 + 0.0940705i
\(753\) 9176.82i 0.444119i
\(754\) 17157.3 + 7863.64i 0.828692 + 0.379810i
\(755\) 11571.7i 0.557800i
\(756\) −2487.44 2886.45i −0.119666 0.138861i
\(757\) 27811.9i 1.33532i 0.744464 + 0.667662i \(0.232705\pi\)
−0.744464 + 0.667662i \(0.767295\pi\)
\(758\) −3833.30 + 8363.71i −0.183683 + 0.400770i
\(759\) −17845.1 −0.853406
\(760\) −10702.6 759.636i −0.510819 0.0362565i
\(761\) 14158.7 0.674447 0.337223 0.941425i \(-0.390512\pi\)
0.337223 + 0.941425i \(0.390512\pi\)
\(762\) −4195.85 + 9154.76i −0.199475 + 0.435226i
\(763\) 2703.51i 0.128275i
\(764\) 10557.2 9097.81i 0.499927 0.430821i
\(765\) 253.183i 0.0119658i
\(766\) −11326.1 5191.05i −0.534243 0.244857i
\(767\) 1326.42i 0.0624434i
\(768\) −6029.84 + 19740.8i −0.283311 + 0.927521i
\(769\) 13553.8 0.635584 0.317792 0.948160i \(-0.397059\pi\)
0.317792 + 0.948160i \(0.397059\pi\)
\(770\) −913.905 418.865i −0.0427725 0.0196037i
\(771\) −16960.0 −0.792218
\(772\) −11282.8 + 9723.17i −0.526008 + 0.453296i
\(773\) −23092.4 −1.07448 −0.537241 0.843429i \(-0.680533\pi\)
−0.537241 + 0.843429i \(0.680533\pi\)
\(774\) −994.107 455.624i −0.0461659 0.0211590i
\(775\) −1906.66 −0.0883731
\(776\) 31668.4 9158.88i 1.46499 0.423692i
\(777\) 1613.78 0.0745097
\(778\) 11919.5 26006.6i 0.549273 1.19844i
\(779\) −5324.82 + 14479.9i −0.244906 + 0.665979i
\(780\) 8624.29 + 10007.7i 0.395896 + 0.459401i
\(781\) 15559.5 0.712883
\(782\) −6119.98 + 13352.9i −0.279859 + 0.610614i
\(783\) 16806.0i 0.767047i
\(784\) −3138.74 + 21020.2i −0.142982 + 0.957554i
\(785\) −19316.0 −0.878239
\(786\) 14108.0 30781.6i 0.640223 1.39688i
\(787\) 5587.77i 0.253091i −0.991961 0.126545i \(-0.959611\pi\)
0.991961 0.126545i \(-0.0403889\pi\)
\(788\) −18413.7 + 15868.3i −0.832439 + 0.717369i
\(789\) 9545.77 0.430721
\(790\) 4576.18 9984.58i 0.206093 0.449665i
\(791\) −739.077 −0.0332219
\(792\) −189.556 655.421i −0.00850451 0.0294058i
\(793\) 1486.80i 0.0665800i
\(794\) 18006.5 39287.7i 0.804821 1.75600i
\(795\) −11139.1 −0.496937
\(796\) 18300.5 15770.8i 0.814881 0.702237i
\(797\) 37059.9 1.64709 0.823543 0.567254i \(-0.191994\pi\)
0.823543 + 0.567254i \(0.191994\pi\)
\(798\) −2766.98 2749.03i −0.122745 0.121948i
\(799\) 5655.19i 0.250396i
\(800\) 9120.14 13981.8i 0.403057 0.617915i
\(801\) 597.802i 0.0263699i
\(802\) 16743.6 36532.2i 0.737205 1.60848i
\(803\) 15500.1 0.681177
\(804\) 15908.6 + 18460.5i 0.697828 + 0.809764i
\(805\) 3565.62i 0.156114i
\(806\) 3042.67 + 1394.53i 0.132969 + 0.0609432i
\(807\) 29896.1i 1.30408i
\(808\) −16164.0 + 4674.83i −0.703773 + 0.203540i
\(809\) 44631.5 1.93963 0.969816 0.243840i \(-0.0784071\pi\)
0.969816 + 0.243840i \(0.0784071\pi\)
\(810\) −4609.01 + 10056.2i −0.199931 + 0.436221i
\(811\) 15500.9i 0.671158i 0.942012 + 0.335579i \(0.108932\pi\)
−0.942012 + 0.335579i \(0.891068\pi\)
\(812\) −2334.52 + 2011.81i −0.100894 + 0.0869468i
\(813\) 6108.12 0.263495
\(814\) 4682.01 + 2145.88i 0.201602 + 0.0923994i
\(815\) 8524.60i 0.366385i
\(816\) 8789.07 + 1312.38i 0.377058 + 0.0563022i
\(817\) −18725.6 6886.11i −0.801868 0.294877i
\(818\) −13210.0 + 28822.4i −0.564642 + 1.23197i
\(819\) 303.505i 0.0129491i
\(820\) 5570.16 + 6463.65i 0.237218 + 0.275269i
\(821\) 1010.46i 0.0429541i −0.999769 0.0214770i \(-0.993163\pi\)
0.999769 0.0214770i \(-0.00683688\pi\)
\(822\) 6341.11 13835.4i 0.269065 0.587062i
\(823\) 23113.5i 0.978962i 0.872014 + 0.489481i \(0.162814\pi\)
−0.872014 + 0.489481i \(0.837186\pi\)
\(824\) −4286.84 14822.5i −0.181237 0.626656i
\(825\) 8731.28i 0.368466i
\(826\) 196.890 + 90.2396i 0.00829380 + 0.00380126i
\(827\) 8617.64i 0.362352i 0.983451 + 0.181176i \(0.0579903\pi\)
−0.983451 + 0.181176i \(0.942010\pi\)
\(828\) 1833.11 1579.72i 0.0769385 0.0663030i
\(829\) 35920.9 1.50493 0.752463 0.658634i \(-0.228865\pi\)
0.752463 + 0.658634i \(0.228865\pi\)
\(830\) 1056.27 2304.64i 0.0441732 0.0963797i
\(831\) 6675.25 0.278654
\(832\) −24780.3 + 15641.9i −1.03258 + 0.651785i
\(833\) 9150.03 0.380588
\(834\) 12774.0 27871.2i 0.530371 1.15719i
\(835\) 70.9927i 0.00294228i
\(836\) −4372.31 11655.0i −0.180884 0.482173i
\(837\) 2980.36i 0.123078i
\(838\) 12637.1 + 5791.91i 0.520934 + 0.238757i
\(839\) −5510.57 −0.226753 −0.113377 0.993552i \(-0.536167\pi\)
−0.113377 + 0.993552i \(0.536167\pi\)
\(840\) −2072.25 + 599.320i −0.0851184 + 0.0246173i
\(841\) −10796.5 −0.442680
\(842\) −15695.7 7193.71i −0.642409 0.294432i
\(843\) −13484.1 −0.550909
\(844\) −31397.5 + 27057.3i −1.28050 + 1.10350i
\(845\) 6176.73i 0.251463i
\(846\) −388.177 + 846.948i −0.0157752 + 0.0344192i
\(847\) 3231.49i 0.131093i
\(848\) 3648.99 24437.4i 0.147767 0.989603i
\(849\) 13772.8i 0.556750i
\(850\) −6533.36 2994.40i −0.263638 0.120832i
\(851\) 18266.9i 0.735820i
\(852\) 25291.3 21795.2i 1.01698 0.876399i
\(853\) 13875.8i 0.556975i −0.960440 0.278488i \(-0.910167\pi\)
0.960440 0.278488i \(-0.0898331\pi\)
\(854\) 220.698 + 101.151i 0.00884323 + 0.00405307i
\(855\) 262.654 714.243i 0.0105059 0.0285691i
\(856\) −21981.8 + 6357.41i −0.877714 + 0.253845i
\(857\) 29552.2i 1.17793i −0.808160 0.588964i \(-0.799536\pi\)
0.808160 0.588964i \(-0.200464\pi\)
\(858\) −6386.07 + 13933.5i −0.254099 + 0.554407i
\(859\) 5040.17 0.200196 0.100098 0.994978i \(-0.468084\pi\)
0.100098 + 0.994978i \(0.468084\pi\)
\(860\) −8358.85 + 7203.38i −0.331436 + 0.285620i
\(861\) 3101.82i 0.122775i
\(862\) −28417.8 13024.6i −1.12287 0.514640i
\(863\) 22745.6 0.897185 0.448593 0.893736i \(-0.351925\pi\)
0.448593 + 0.893736i \(0.351925\pi\)
\(864\) −21855.5 14256.0i −0.860577 0.561342i
\(865\) 1564.11i 0.0614812i
\(866\) −5193.54 + 11331.6i −0.203792 + 0.444645i
\(867\) 20932.5i 0.819960i
\(868\) −414.002 + 356.773i −0.0161891 + 0.0139512i
\(869\) 12742.6 0.497427
\(870\) 8649.26 + 3964.17i 0.337055 + 0.154480i
\(871\) 34597.2i 1.34590i
\(872\) 5143.67 + 17785.1i 0.199755 + 0.690688i
\(873\) 2338.18i 0.0906478i
\(874\) 31117.3 31320.4i 1.20430 1.21216i
\(875\) 4109.35 0.158767
\(876\) 25194.8 21712.0i 0.971749 0.837421i
\(877\) 44944.1 1.73051 0.865253 0.501336i \(-0.167158\pi\)
0.865253 + 0.501336i \(0.167158\pi\)
\(878\) 38025.6 + 17428.1i 1.46162 + 0.669896i
\(879\) 14601.8i 0.560304i
\(880\) −6809.09 1016.73i −0.260835 0.0389478i
\(881\) −37214.5 −1.42314 −0.711570 0.702615i \(-0.752016\pi\)
−0.711570 + 0.702615i \(0.752016\pi\)
\(882\) −1370.35 628.066i −0.0523153 0.0239774i
\(883\) −15692.1 −0.598053 −0.299027 0.954245i \(-0.596662\pi\)
−0.299027 + 0.954245i \(0.596662\pi\)
\(884\) 8235.91 + 9557.00i 0.313352 + 0.363616i
\(885\) 668.665i 0.0253977i
\(886\) −35144.4 16107.5i −1.33262 0.610771i
\(887\) −7657.20 −0.289858 −0.144929 0.989442i \(-0.546295\pi\)
−0.144929 + 0.989442i \(0.546295\pi\)
\(888\) 10616.3 3070.37i 0.401194 0.116030i
\(889\) 2334.49i 0.0880725i
\(890\) 5483.62 + 2513.28i 0.206530 + 0.0946577i
\(891\) −12834.0 −0.482555
\(892\) −31593.7 36661.5i −1.18591 1.37614i
\(893\) −5866.75 + 15953.6i −0.219847 + 0.597836i
\(894\) −6277.10 2876.95i −0.234829 0.107628i
\(895\) −19231.2 −0.718243
\(896\) −635.974 4742.50i −0.0237125 0.176826i
\(897\) −54361.7 −2.02351
\(898\) 5224.88 11400.0i 0.194161 0.423632i
\(899\) 2410.48 0.0894260
\(900\) 772.928 + 896.910i 0.0286270 + 0.0332189i
\(901\) −10637.5 −0.393326
\(902\) −4124.56 + 8999.20i −0.152254 + 0.332196i
\(903\) −4011.30 −0.147827
\(904\) −4862.05 + 1406.16i −0.178882 + 0.0517348i
\(905\) 15763.3i 0.578993i
\(906\) 12002.6 26188.0i 0.440132 0.960306i
\(907\) 34016.8i 1.24533i 0.782490 + 0.622663i \(0.213949\pi\)
−0.782490 + 0.622663i \(0.786051\pi\)
\(908\) −20682.2 + 17823.3i −0.755907 + 0.651416i
\(909\) 1193.44i 0.0435468i
\(910\) −2784.05 1276.00i −0.101418 0.0464823i
\(911\) 20171.8 0.733612 0.366806 0.930297i \(-0.380451\pi\)
0.366806 + 0.930297i \(0.380451\pi\)
\(912\) −23433.0 12820.2i −0.850816 0.465481i
\(913\) 2941.25 0.106617
\(914\) −20685.8 9480.80i −0.748604 0.343104i
\(915\) 749.519i 0.0270801i
\(916\) 34795.4 29985.5i 1.25510 1.08160i
\(917\) 7849.43i 0.282673i
\(918\) −4680.65 + 10212.5i −0.168284 + 0.367172i
\(919\) 52191.5i 1.87338i 0.350158 + 0.936691i \(0.386128\pi\)
−0.350158 + 0.936691i \(0.613872\pi\)
\(920\) −6783.92 23456.5i −0.243108 0.840586i
\(921\) −2917.12 −0.104367
\(922\) 13754.7 30010.8i 0.491309 1.07197i
\(923\) 47399.1 1.69031
\(924\) −1633.79 1895.87i −0.0581687 0.0674993i
\(925\) −8937.70 −0.317697
\(926\) 8008.07 17472.5i 0.284192 0.620066i
\(927\) 1094.39 0.0387751
\(928\) −11530.1 + 17676.4i −0.407859 + 0.625277i
\(929\) −15362.2 −0.542538 −0.271269 0.962504i \(-0.587443\pi\)
−0.271269 + 0.962504i \(0.587443\pi\)
\(930\) 1533.85 + 703.002i 0.0540828 + 0.0247875i
\(931\) −25812.7 9492.33i −0.908677 0.334155i
\(932\) 11780.2 + 13669.8i 0.414026 + 0.480439i
\(933\) 41787.0 1.46628
\(934\) 19249.7 + 8822.61i 0.674378 + 0.309084i
\(935\) 2963.97i 0.103671i
\(936\) −577.447 1996.62i −0.0201650 0.0697239i
\(937\) 17961.4 0.626227 0.313113 0.949716i \(-0.398628\pi\)
0.313113 + 0.949716i \(0.398628\pi\)
\(938\) −5135.53 2353.74i −0.178764 0.0819321i
\(939\) 43910.6i 1.52606i
\(940\) 6137.05 + 7121.48i 0.212945 + 0.247103i
\(941\) −34823.8 −1.20640 −0.603201 0.797589i \(-0.706108\pi\)
−0.603201 + 0.797589i \(0.706108\pi\)
\(942\) −43714.0 20035.2i −1.51197 0.692975i
\(943\) −35110.5 −1.21247
\(944\) 1466.94 + 219.043i 0.0505771 + 0.00755216i
\(945\) 2727.04i 0.0938736i
\(946\) −11637.9 5333.92i −0.399978 0.183320i
\(947\) −17274.2 −0.592751 −0.296375 0.955072i \(-0.595778\pi\)
−0.296375 + 0.955072i \(0.595778\pi\)
\(948\) 20712.7 17849.5i 0.709616 0.611524i
\(949\) 47218.1 1.61514
\(950\) 15324.6 + 15225.1i 0.523362 + 0.519967i
\(951\) 22257.5i 0.758937i
\(952\) −1978.93 + 572.331i −0.0673713 + 0.0194846i
\(953\) 50134.8i 1.70412i −0.523444 0.852060i \(-0.675353\pi\)
0.523444 0.852060i \(-0.324647\pi\)
\(954\) 1593.12 + 730.167i 0.0540663 + 0.0247799i
\(955\) 9974.11 0.337963
\(956\) −6130.46 + 5283.03i −0.207399 + 0.178729i
\(957\) 11038.5i 0.372856i
\(958\) 18580.6 40540.2i 0.626630 1.36722i
\(959\) 3528.08i 0.118798i
\(960\) −12492.1 + 7885.30i −0.419981 + 0.265101i
\(961\) −29363.5 −0.985651
\(962\) 14262.9 + 6537.04i 0.478019 + 0.219088i
\(963\) 1622.99i 0.0543096i
\(964\) −26140.4 + 22526.9i −0.873365 + 0.752637i
\(965\) −10659.7 −0.355594
\(966\) 3698.38 8069.33i 0.123181 0.268764i
\(967\) 12466.9i 0.414590i 0.978278 + 0.207295i \(0.0664660\pi\)
−0.978278 + 0.207295i \(0.933534\pi\)
\(968\) 6148.22 + 21258.5i 0.204144 + 0.705862i
\(969\) −3968.97 + 10792.9i −0.131581 + 0.357811i
\(970\) 21448.1 + 9830.20i 0.709956 + 0.325390i
\(971\) 35033.1i 1.15784i −0.815383 0.578922i \(-0.803474\pi\)
0.815383 0.578922i \(-0.196526\pi\)
\(972\) 2725.32 2348.59i 0.0899330 0.0775012i
\(973\) 7107.24i 0.234170i
\(974\) 15181.7 + 6958.15i 0.499438 + 0.228905i
\(975\) 26598.3i 0.873668i
\(976\) 1644.32 + 245.529i 0.0539276 + 0.00805246i
\(977\) 21109.5i 0.691250i 0.938373 + 0.345625i \(0.112333\pi\)
−0.938373 + 0.345625i \(0.887667\pi\)
\(978\) −8842.00 + 19292.0i −0.289096 + 0.630767i
\(979\) 6998.38i 0.228467i
\(980\) −11522.5 + 9929.67i −0.375583 + 0.323665i
\(981\) −1313.13 −0.0427372
\(982\) 39732.1 + 18210.2i 1.29114 + 0.591763i
\(983\) 55306.0 1.79449 0.897247 0.441530i \(-0.145564\pi\)
0.897247 + 0.441530i \(0.145564\pi\)
\(984\) 5901.49 + 20405.4i 0.191192 + 0.661078i
\(985\) −17396.8 −0.562749
\(986\) 8259.75 + 3785.65i 0.266779 + 0.122271i
\(987\) 3417.50i 0.110213i
\(988\) −13319.4 35504.9i −0.428894 1.14328i
\(989\) 45405.3i 1.45986i
\(990\) 203.449 443.898i 0.00653136 0.0142505i
\(991\) −29330.3 −0.940170 −0.470085 0.882621i \(-0.655777\pi\)
−0.470085 + 0.882621i \(0.655777\pi\)
\(992\) −2044.73 + 3134.72i −0.0654438 + 0.100330i
\(993\) 21764.7 0.695552
\(994\) −3224.69 + 7035.81i −0.102898 + 0.224509i
\(995\) 17289.8 0.550879
\(996\) 4780.90 4120.02i 0.152097 0.131072i
\(997\) 42823.7i 1.36032i −0.733063 0.680161i \(-0.761910\pi\)
0.733063 0.680161i \(-0.238090\pi\)
\(998\) −1543.95 707.632i −0.0489709 0.0224446i
\(999\) 13970.8i 0.442460i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.4.b.b.75.9 56
4.3 odd 2 608.4.b.b.303.42 56
8.3 odd 2 inner 152.4.b.b.75.47 yes 56
8.5 even 2 608.4.b.b.303.41 56
19.18 odd 2 inner 152.4.b.b.75.48 yes 56
76.75 even 2 608.4.b.b.303.16 56
152.37 odd 2 608.4.b.b.303.15 56
152.75 even 2 inner 152.4.b.b.75.10 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.4.b.b.75.9 56 1.1 even 1 trivial
152.4.b.b.75.10 yes 56 152.75 even 2 inner
152.4.b.b.75.47 yes 56 8.3 odd 2 inner
152.4.b.b.75.48 yes 56 19.18 odd 2 inner
608.4.b.b.303.15 56 152.37 odd 2
608.4.b.b.303.16 56 76.75 even 2
608.4.b.b.303.41 56 8.5 even 2
608.4.b.b.303.42 56 4.3 odd 2