Properties

Label 6084.2.a.bd.1.4
Level $6084$
Weight $2$
Character 6084.1
Self dual yes
Analytic conductor $48.581$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6084,2,Mod(1,6084)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6084, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6084.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6084 = 2^{2} \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6084.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.5809845897\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{43})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 23x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 156)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(4.14474\) of defining polynomial
Character \(\chi\) \(=\) 6084.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.14474 q^{5} -2.41269 q^{7} -3.46410 q^{11} +5.17891 q^{17} -3.46410 q^{19} -2.00000 q^{23} +12.1789 q^{25} -3.17891 q^{29} -1.05141 q^{31} -10.0000 q^{35} +7.60885 q^{37} -0.680643 q^{41} +12.1789 q^{43} +10.3923 q^{47} -1.17891 q^{49} -1.17891 q^{53} -14.3578 q^{55} -11.7536 q^{59} +5.00000 q^{61} +2.41269 q^{67} +3.46410 q^{71} +14.8469 q^{73} +8.35782 q^{77} +1.82109 q^{79} -1.36129 q^{83} +21.4653 q^{85} -6.92820 q^{89} -14.3578 q^{95} +17.6304 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{17} - 8 q^{23} + 26 q^{25} + 10 q^{29} - 40 q^{35} + 26 q^{43} + 18 q^{49} + 18 q^{53} - 12 q^{55} + 20 q^{61} - 12 q^{77} + 30 q^{79} - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.14474 1.85359 0.926793 0.375572i \(-0.122554\pi\)
0.926793 + 0.375572i \(0.122554\pi\)
\(6\) 0 0
\(7\) −2.41269 −0.911913 −0.455956 0.890002i \(-0.650703\pi\)
−0.455956 + 0.890002i \(0.650703\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.46410 −1.04447 −0.522233 0.852803i \(-0.674901\pi\)
−0.522233 + 0.852803i \(0.674901\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.17891 1.25607 0.628035 0.778185i \(-0.283860\pi\)
0.628035 + 0.778185i \(0.283860\pi\)
\(18\) 0 0
\(19\) −3.46410 −0.794719 −0.397360 0.917663i \(-0.630073\pi\)
−0.397360 + 0.917663i \(0.630073\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 0 0
\(25\) 12.1789 2.43578
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.17891 −0.590308 −0.295154 0.955450i \(-0.595371\pi\)
−0.295154 + 0.955450i \(0.595371\pi\)
\(30\) 0 0
\(31\) −1.05141 −0.188838 −0.0944192 0.995533i \(-0.530099\pi\)
−0.0944192 + 0.995533i \(0.530099\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −10.0000 −1.69031
\(36\) 0 0
\(37\) 7.60885 1.25089 0.625443 0.780270i \(-0.284918\pi\)
0.625443 + 0.780270i \(0.284918\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.680643 −0.106299 −0.0531493 0.998587i \(-0.516926\pi\)
−0.0531493 + 0.998587i \(0.516926\pi\)
\(42\) 0 0
\(43\) 12.1789 1.85727 0.928633 0.371000i \(-0.120985\pi\)
0.928633 + 0.371000i \(0.120985\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.3923 1.51587 0.757937 0.652328i \(-0.226208\pi\)
0.757937 + 0.652328i \(0.226208\pi\)
\(48\) 0 0
\(49\) −1.17891 −0.168415
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.17891 −0.161936 −0.0809678 0.996717i \(-0.525801\pi\)
−0.0809678 + 0.996717i \(0.525801\pi\)
\(54\) 0 0
\(55\) −14.3578 −1.93601
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −11.7536 −1.53019 −0.765094 0.643919i \(-0.777307\pi\)
−0.765094 + 0.643919i \(0.777307\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.41269 0.294757 0.147379 0.989080i \(-0.452916\pi\)
0.147379 + 0.989080i \(0.452916\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.46410 0.411113 0.205557 0.978645i \(-0.434100\pi\)
0.205557 + 0.978645i \(0.434100\pi\)
\(72\) 0 0
\(73\) 14.8469 1.73770 0.868851 0.495074i \(-0.164859\pi\)
0.868851 + 0.495074i \(0.164859\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.35782 0.952462
\(78\) 0 0
\(79\) 1.82109 0.204889 0.102444 0.994739i \(-0.467334\pi\)
0.102444 + 0.994739i \(0.467334\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.36129 −0.149421 −0.0747103 0.997205i \(-0.523803\pi\)
−0.0747103 + 0.997205i \(0.523803\pi\)
\(84\) 0 0
\(85\) 21.4653 2.32823
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.92820 −0.734388 −0.367194 0.930144i \(-0.619682\pi\)
−0.367194 + 0.930144i \(0.619682\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −14.3578 −1.47308
\(96\) 0 0
\(97\) 17.6304 1.79009 0.895047 0.445971i \(-0.147142\pi\)
0.895047 + 0.445971i \(0.147142\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.821092 0.0817017 0.0408508 0.999165i \(-0.486993\pi\)
0.0408508 + 0.999165i \(0.486993\pi\)
\(102\) 0 0
\(103\) 8.17891 0.805892 0.402946 0.915224i \(-0.367986\pi\)
0.402946 + 0.915224i \(0.367986\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.0000 0.966736 0.483368 0.875417i \(-0.339413\pi\)
0.483368 + 0.875417i \(0.339413\pi\)
\(108\) 0 0
\(109\) −1.05141 −0.100707 −0.0503533 0.998731i \(-0.516035\pi\)
−0.0503533 + 0.998731i \(0.516035\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.821092 −0.0772418 −0.0386209 0.999254i \(-0.512296\pi\)
−0.0386209 + 0.999254i \(0.512296\pi\)
\(114\) 0 0
\(115\) −8.28949 −0.772999
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.4951 −1.14543
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 29.7547 2.66135
\(126\) 0 0
\(127\) 14.1789 1.25817 0.629087 0.777335i \(-0.283429\pi\)
0.629087 + 0.777335i \(0.283429\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 16.3578 1.42919 0.714595 0.699539i \(-0.246611\pi\)
0.714595 + 0.699539i \(0.246611\pi\)
\(132\) 0 0
\(133\) 8.35782 0.724715
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.24756 −0.533765 −0.266883 0.963729i \(-0.585994\pi\)
−0.266883 + 0.963729i \(0.585994\pi\)
\(138\) 0 0
\(139\) 5.82109 0.493739 0.246869 0.969049i \(-0.420598\pi\)
0.246869 + 0.969049i \(0.420598\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −13.1758 −1.09419
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0.680643 0.0557605 0.0278802 0.999611i \(-0.491124\pi\)
0.0278802 + 0.999611i \(0.491124\pi\)
\(150\) 0 0
\(151\) −6.18667 −0.503464 −0.251732 0.967797i \(-0.581000\pi\)
−0.251732 + 0.967797i \(0.581000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.35782 −0.350028
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.82539 0.380294
\(162\) 0 0
\(163\) 1.05141 0.0823526 0.0411763 0.999152i \(-0.486889\pi\)
0.0411763 + 0.999152i \(0.486889\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.92820 −0.536120 −0.268060 0.963402i \(-0.586383\pi\)
−0.268060 + 0.963402i \(0.586383\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 0 0
\(175\) −29.3840 −2.22122
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 14.3578 1.07315 0.536577 0.843851i \(-0.319717\pi\)
0.536577 + 0.843851i \(0.319717\pi\)
\(180\) 0 0
\(181\) −13.5367 −1.00618 −0.503088 0.864235i \(-0.667803\pi\)
−0.503088 + 0.864235i \(0.667803\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 31.5367 2.31863
\(186\) 0 0
\(187\) −17.9403 −1.31192
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −20.3578 −1.47304 −0.736520 0.676416i \(-0.763532\pi\)
−0.736520 + 0.676416i \(0.763532\pi\)
\(192\) 0 0
\(193\) −0.370765 −0.0266882 −0.0133441 0.999911i \(-0.504248\pi\)
−0.0133441 + 0.999911i \(0.504248\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.5790 1.18120 0.590602 0.806963i \(-0.298890\pi\)
0.590602 + 0.806963i \(0.298890\pi\)
\(198\) 0 0
\(199\) −12.5367 −0.888705 −0.444352 0.895852i \(-0.646566\pi\)
−0.444352 + 0.895852i \(0.646566\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.66973 0.538310
\(204\) 0 0
\(205\) −2.82109 −0.197034
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) 18.5367 1.27612 0.638060 0.769986i \(-0.279737\pi\)
0.638060 + 0.769986i \(0.279737\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 50.4785 3.44260
\(216\) 0 0
\(217\) 2.53673 0.172204
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 2.10282 0.140815 0.0704075 0.997518i \(-0.477570\pi\)
0.0704075 + 0.997518i \(0.477570\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −22.1459 −1.46987 −0.734937 0.678135i \(-0.762788\pi\)
−0.734937 + 0.678135i \(0.762788\pi\)
\(228\) 0 0
\(229\) −16.5790 −1.09557 −0.547785 0.836619i \(-0.684529\pi\)
−0.547785 + 0.836619i \(0.684529\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −22.7156 −1.48815 −0.744075 0.668096i \(-0.767110\pi\)
−0.744075 + 0.668096i \(0.767110\pi\)
\(234\) 0 0
\(235\) 43.0735 2.80980
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −15.2177 −0.984351 −0.492175 0.870496i \(-0.663798\pi\)
−0.492175 + 0.870496i \(0.663798\pi\)
\(240\) 0 0
\(241\) 0.680643 0.0438441 0.0219220 0.999760i \(-0.493021\pi\)
0.0219220 + 0.999760i \(0.493021\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.88627 −0.312173
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 24.7156 1.56004 0.780018 0.625756i \(-0.215210\pi\)
0.780018 + 0.625756i \(0.215210\pi\)
\(252\) 0 0
\(253\) 6.92820 0.435572
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.8211 0.675001 0.337501 0.941325i \(-0.390419\pi\)
0.337501 + 0.941325i \(0.390419\pi\)
\(258\) 0 0
\(259\) −18.3578 −1.14070
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −9.64218 −0.594562 −0.297281 0.954790i \(-0.596080\pi\)
−0.297281 + 0.954790i \(0.596080\pi\)
\(264\) 0 0
\(265\) −4.88627 −0.300161
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −10.3578 −0.631527 −0.315764 0.948838i \(-0.602261\pi\)
−0.315764 + 0.948838i \(0.602261\pi\)
\(270\) 0 0
\(271\) −7.97961 −0.484727 −0.242363 0.970186i \(-0.577923\pi\)
−0.242363 + 0.970186i \(0.577923\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −42.1890 −2.54409
\(276\) 0 0
\(277\) −11.1789 −0.671676 −0.335838 0.941920i \(-0.609019\pi\)
−0.335838 + 0.941920i \(0.609019\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.0012 −1.07386 −0.536929 0.843627i \(-0.680416\pi\)
−0.536929 + 0.843627i \(0.680416\pi\)
\(282\) 0 0
\(283\) 15.8211 0.940466 0.470233 0.882542i \(-0.344170\pi\)
0.470233 + 0.882542i \(0.344170\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.64218 0.0969350
\(288\) 0 0
\(289\) 9.82109 0.577711
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.0608864 0.00355702 0.00177851 0.999998i \(-0.499434\pi\)
0.00177851 + 0.999998i \(0.499434\pi\)
\(294\) 0 0
\(295\) −48.7156 −2.83633
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −29.3840 −1.69366
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 20.7237 1.18664
\(306\) 0 0
\(307\) 4.51551 0.257714 0.128857 0.991663i \(-0.458869\pi\)
0.128857 + 0.991663i \(0.458869\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 34.3578 1.94825 0.974127 0.226003i \(-0.0725660\pi\)
0.974127 + 0.226003i \(0.0725660\pi\)
\(312\) 0 0
\(313\) −28.8945 −1.63322 −0.816608 0.577193i \(-0.804148\pi\)
−0.816608 + 0.577193i \(0.804148\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −15.8983 −0.892939 −0.446470 0.894799i \(-0.647319\pi\)
−0.446470 + 0.894799i \(0.647319\pi\)
\(318\) 0 0
\(319\) 11.0121 0.616557
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −17.9403 −0.998223
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −25.0735 −1.38234
\(330\) 0 0
\(331\) −26.6614 −1.46544 −0.732722 0.680528i \(-0.761750\pi\)
−0.732722 + 0.680528i \(0.761750\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 10.0000 0.546358
\(336\) 0 0
\(337\) 2.64218 0.143929 0.0719644 0.997407i \(-0.477073\pi\)
0.0719644 + 0.997407i \(0.477073\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.64218 0.197235
\(342\) 0 0
\(343\) 19.7332 1.06549
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.35782 0.126574 0.0632871 0.997995i \(-0.479842\pi\)
0.0632871 + 0.997995i \(0.479842\pi\)
\(348\) 0 0
\(349\) −22.4558 −1.20203 −0.601015 0.799238i \(-0.705237\pi\)
−0.601015 + 0.799238i \(0.705237\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.7955 −0.734261 −0.367131 0.930169i \(-0.619660\pi\)
−0.367131 + 0.930169i \(0.619660\pi\)
\(354\) 0 0
\(355\) 14.3578 0.762034
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.56692 0.293811 0.146905 0.989151i \(-0.453069\pi\)
0.146905 + 0.989151i \(0.453069\pi\)
\(360\) 0 0
\(361\) −7.00000 −0.368421
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 61.5367 3.22098
\(366\) 0 0
\(367\) 24.1789 1.26213 0.631064 0.775730i \(-0.282618\pi\)
0.631064 + 0.775730i \(0.282618\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.84434 0.147671
\(372\) 0 0
\(373\) 11.3578 0.588085 0.294043 0.955792i \(-0.404999\pi\)
0.294043 + 0.955792i \(0.404999\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 12.8050 0.657749 0.328874 0.944374i \(-0.393331\pi\)
0.328874 + 0.944374i \(0.393331\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −33.1580 −1.69429 −0.847146 0.531360i \(-0.821681\pi\)
−0.847146 + 0.531360i \(0.821681\pi\)
\(384\) 0 0
\(385\) 34.6410 1.76547
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 27.5367 1.39617 0.698084 0.716016i \(-0.254036\pi\)
0.698084 + 0.716016i \(0.254036\pi\)
\(390\) 0 0
\(391\) −10.3578 −0.523817
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.54796 0.379779
\(396\) 0 0
\(397\) −14.9078 −0.748202 −0.374101 0.927388i \(-0.622049\pi\)
−0.374101 + 0.927388i \(0.622049\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8.97013 0.447947 0.223974 0.974595i \(-0.428097\pi\)
0.223974 + 0.974595i \(0.428097\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −26.3578 −1.30651
\(408\) 0 0
\(409\) 25.2392 1.24800 0.624000 0.781424i \(-0.285507\pi\)
0.624000 + 0.781424i \(0.285507\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 28.3578 1.39540
\(414\) 0 0
\(415\) −5.64218 −0.276964
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −32.7156 −1.59826 −0.799132 0.601156i \(-0.794707\pi\)
−0.799132 + 0.601156i \(0.794707\pi\)
\(420\) 0 0
\(421\) 5.93768 0.289385 0.144692 0.989477i \(-0.453781\pi\)
0.144692 + 0.989477i \(0.453781\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 63.0735 3.05951
\(426\) 0 0
\(427\) −12.0635 −0.583792
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.56692 −0.268149 −0.134074 0.990971i \(-0.542806\pi\)
−0.134074 + 0.990971i \(0.542806\pi\)
\(432\) 0 0
\(433\) 25.3578 1.21862 0.609309 0.792933i \(-0.291447\pi\)
0.609309 + 0.792933i \(0.291447\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.92820 0.331421
\(438\) 0 0
\(439\) 32.8945 1.56997 0.784985 0.619514i \(-0.212670\pi\)
0.784985 + 0.619514i \(0.212670\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −8.00000 −0.380091 −0.190046 0.981775i \(-0.560864\pi\)
−0.190046 + 0.981775i \(0.560864\pi\)
\(444\) 0 0
\(445\) −28.7156 −1.36125
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 28.3326 1.33710 0.668548 0.743669i \(-0.266916\pi\)
0.668548 + 0.743669i \(0.266916\pi\)
\(450\) 0 0
\(451\) 2.35782 0.111025
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −20.4138 −0.954919 −0.477460 0.878654i \(-0.658442\pi\)
−0.477460 + 0.878654i \(0.658442\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.88627 0.227576 0.113788 0.993505i \(-0.463701\pi\)
0.113788 + 0.993505i \(0.463701\pi\)
\(462\) 0 0
\(463\) 21.0945 0.980344 0.490172 0.871626i \(-0.336934\pi\)
0.490172 + 0.871626i \(0.336934\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.00000 −0.277647 −0.138823 0.990317i \(-0.544332\pi\)
−0.138823 + 0.990317i \(0.544332\pi\)
\(468\) 0 0
\(469\) −5.82109 −0.268793
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −42.1890 −1.93985
\(474\) 0 0
\(475\) −42.1890 −1.93576
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6.92820 0.316558 0.158279 0.987394i \(-0.449406\pi\)
0.158279 + 0.987394i \(0.449406\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 73.0735 3.31809
\(486\) 0 0
\(487\) 24.2487 1.09881 0.549407 0.835555i \(-0.314854\pi\)
0.549407 + 0.835555i \(0.314854\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −26.7156 −1.20566 −0.602830 0.797870i \(-0.705960\pi\)
−0.602830 + 0.797870i \(0.705960\pi\)
\(492\) 0 0
\(493\) −16.4633 −0.741469
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −8.35782 −0.374899
\(498\) 0 0
\(499\) 11.7536 0.526163 0.263081 0.964774i \(-0.415261\pi\)
0.263081 + 0.964774i \(0.415261\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) 3.40322 0.151441
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5.50603 0.244051 0.122025 0.992527i \(-0.461061\pi\)
0.122025 + 0.992527i \(0.461061\pi\)
\(510\) 0 0
\(511\) −35.8211 −1.58463
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 33.8995 1.49379
\(516\) 0 0
\(517\) −36.0000 −1.58328
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −17.8945 −0.783974 −0.391987 0.919971i \(-0.628212\pi\)
−0.391987 + 0.919971i \(0.628212\pi\)
\(522\) 0 0
\(523\) 1.64218 0.0718077 0.0359038 0.999355i \(-0.488569\pi\)
0.0359038 + 0.999355i \(0.488569\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5.44514 −0.237194
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 41.4474 1.79193
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.08386 0.175904
\(540\) 0 0
\(541\) 10.0215 0.430860 0.215430 0.976519i \(-0.430885\pi\)
0.215430 + 0.976519i \(0.430885\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4.35782 −0.186668
\(546\) 0 0
\(547\) −20.5367 −0.878087 −0.439043 0.898466i \(-0.644683\pi\)
−0.439043 + 0.898466i \(0.644683\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11.0121 0.469130
\(552\) 0 0
\(553\) −4.39374 −0.186841
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −26.9104 −1.14023 −0.570115 0.821565i \(-0.693101\pi\)
−0.570115 + 0.821565i \(0.693101\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.35782 0.183660 0.0918300 0.995775i \(-0.470728\pi\)
0.0918300 + 0.995775i \(0.470728\pi\)
\(564\) 0 0
\(565\) −3.40322 −0.143174
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 14.7156 0.616911 0.308456 0.951239i \(-0.400188\pi\)
0.308456 + 0.951239i \(0.400188\pi\)
\(570\) 0 0
\(571\) 30.3578 1.27044 0.635218 0.772333i \(-0.280910\pi\)
0.635218 + 0.772333i \(0.280910\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −24.3578 −1.01579
\(576\) 0 0
\(577\) −10.4532 −0.435172 −0.217586 0.976041i \(-0.569818\pi\)
−0.217586 + 0.976041i \(0.569818\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.28437 0.136258
\(582\) 0 0
\(583\) 4.08386 0.169136
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.03102 −0.372750 −0.186375 0.982479i \(-0.559674\pi\)
−0.186375 + 0.982479i \(0.559674\pi\)
\(588\) 0 0
\(589\) 3.64218 0.150074
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −0.0608864 −0.00250030 −0.00125015 0.999999i \(-0.500398\pi\)
−0.00125015 + 0.999999i \(0.500398\pi\)
\(594\) 0 0
\(595\) −51.7891 −2.12315
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −32.3578 −1.32210 −0.661052 0.750340i \(-0.729890\pi\)
−0.661052 + 0.750340i \(0.729890\pi\)
\(600\) 0 0
\(601\) 11.1789 0.455997 0.227999 0.973661i \(-0.426782\pi\)
0.227999 + 0.973661i \(0.426782\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.14474 0.168508
\(606\) 0 0
\(607\) 16.0000 0.649420 0.324710 0.945814i \(-0.394733\pi\)
0.324710 + 0.945814i \(0.394733\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 28.7033 1.15932 0.579658 0.814860i \(-0.303186\pi\)
0.579658 + 0.814860i \(0.303186\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.14474 0.166861 0.0834306 0.996514i \(-0.473412\pi\)
0.0834306 + 0.996514i \(0.473412\pi\)
\(618\) 0 0
\(619\) 22.4558 0.902574 0.451287 0.892379i \(-0.350965\pi\)
0.451287 + 0.892379i \(0.350965\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 16.7156 0.669698
\(624\) 0 0
\(625\) 62.4313 2.49725
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 39.4055 1.57120
\(630\) 0 0
\(631\) −12.8050 −0.509759 −0.254879 0.966973i \(-0.582036\pi\)
−0.254879 + 0.966973i \(0.582036\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 58.7680 2.33214
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 33.5367 1.32462 0.662310 0.749229i \(-0.269576\pi\)
0.662310 + 0.749229i \(0.269576\pi\)
\(642\) 0 0
\(643\) 3.77398 0.148831 0.0744156 0.997227i \(-0.476291\pi\)
0.0744156 + 0.997227i \(0.476291\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 36.3578 1.42937 0.714687 0.699445i \(-0.246569\pi\)
0.714687 + 0.699445i \(0.246569\pi\)
\(648\) 0 0
\(649\) 40.7156 1.59823
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.3578 0.874929 0.437464 0.899236i \(-0.355877\pi\)
0.437464 + 0.899236i \(0.355877\pi\)
\(654\) 0 0
\(655\) 67.7990 2.64913
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −36.7156 −1.43024 −0.715119 0.699003i \(-0.753628\pi\)
−0.715119 + 0.699003i \(0.753628\pi\)
\(660\) 0 0
\(661\) 39.0956 1.52064 0.760322 0.649546i \(-0.225041\pi\)
0.760322 + 0.649546i \(0.225041\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 34.6410 1.34332
\(666\) 0 0
\(667\) 6.35782 0.246176
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −17.3205 −0.668651
\(672\) 0 0
\(673\) −17.3578 −0.669095 −0.334547 0.942379i \(-0.608583\pi\)
−0.334547 + 0.942379i \(0.608583\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 26.3578 1.01301 0.506507 0.862236i \(-0.330937\pi\)
0.506507 + 0.862236i \(0.330937\pi\)
\(678\) 0 0
\(679\) −42.5367 −1.63241
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21.4044 0.819015 0.409508 0.912307i \(-0.365700\pi\)
0.409508 + 0.912307i \(0.365700\pi\)
\(684\) 0 0
\(685\) −25.8945 −0.989380
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −37.6735 −1.43317 −0.716583 0.697502i \(-0.754295\pi\)
−0.716583 + 0.697502i \(0.754295\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 24.1269 0.915187
\(696\) 0 0
\(697\) −3.52499 −0.133518
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 25.6422 0.968492 0.484246 0.874932i \(-0.339094\pi\)
0.484246 + 0.874932i \(0.339094\pi\)
\(702\) 0 0
\(703\) −26.3578 −0.994104
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.98104 −0.0745048
\(708\) 0 0
\(709\) −29.4449 −1.10583 −0.552913 0.833239i \(-0.686484\pi\)
−0.552913 + 0.833239i \(0.686484\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.10282 0.0787511
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −7.64218 −0.285005 −0.142503 0.989794i \(-0.545515\pi\)
−0.142503 + 0.989794i \(0.545515\pi\)
\(720\) 0 0
\(721\) −19.7332 −0.734903
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −38.7156 −1.43786
\(726\) 0 0
\(727\) 16.5367 0.613313 0.306657 0.951820i \(-0.400790\pi\)
0.306657 + 0.951820i \(0.400790\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 63.0735 2.33286
\(732\) 0 0
\(733\) −41.8182 −1.54459 −0.772295 0.635264i \(-0.780891\pi\)
−0.772295 + 0.635264i \(0.780891\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.35782 −0.307864
\(738\) 0 0
\(739\) −2.10282 −0.0773533 −0.0386767 0.999252i \(-0.512314\pi\)
−0.0386767 + 0.999252i \(0.512314\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11.7536 0.431197 0.215599 0.976482i \(-0.430830\pi\)
0.215599 + 0.976482i \(0.430830\pi\)
\(744\) 0 0
\(745\) 2.82109 0.103357
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −24.1269 −0.881579
\(750\) 0 0
\(751\) 42.3578 1.54566 0.772829 0.634614i \(-0.218841\pi\)
0.772829 + 0.634614i \(0.218841\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −25.6422 −0.933215
\(756\) 0 0
\(757\) 6.71563 0.244084 0.122042 0.992525i \(-0.461056\pi\)
0.122042 + 0.992525i \(0.461056\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −48.4974 −1.75803 −0.879015 0.476794i \(-0.841799\pi\)
−0.879015 + 0.476794i \(0.841799\pi\)
\(762\) 0 0
\(763\) 2.53673 0.0918356
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 6.92820 0.249837 0.124919 0.992167i \(-0.460133\pi\)
0.124919 + 0.992167i \(0.460133\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −7.54796 −0.271481 −0.135741 0.990744i \(-0.543341\pi\)
−0.135741 + 0.990744i \(0.543341\pi\)
\(774\) 0 0
\(775\) −12.8050 −0.459969
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.35782 0.0844775
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 29.0132 1.03553
\(786\) 0 0
\(787\) 40.5178 1.44430 0.722152 0.691734i \(-0.243153\pi\)
0.722152 + 0.691734i \(0.243153\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.98104 0.0704378
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −51.0735 −1.80911 −0.904557 0.426352i \(-0.859798\pi\)
−0.904557 + 0.426352i \(0.859798\pi\)
\(798\) 0 0
\(799\) 53.8208 1.90404
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −51.4313 −1.81497
\(804\) 0 0
\(805\) 20.0000 0.704907
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −12.4633 −0.438185 −0.219093 0.975704i \(-0.570310\pi\)
−0.219093 + 0.975704i \(0.570310\pi\)
\(810\) 0 0
\(811\) 5.87680 0.206362 0.103181 0.994663i \(-0.467098\pi\)
0.103181 + 0.994663i \(0.467098\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.35782 0.152648
\(816\) 0 0
\(817\) −42.1890 −1.47601
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7.54796 −0.263426 −0.131713 0.991288i \(-0.542048\pi\)
−0.131713 + 0.991288i \(0.542048\pi\)
\(822\) 0 0
\(823\) 24.0000 0.836587 0.418294 0.908312i \(-0.362628\pi\)
0.418294 + 0.908312i \(0.362628\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 42.8087 1.48861 0.744303 0.667842i \(-0.232782\pi\)
0.744303 + 0.667842i \(0.232782\pi\)
\(828\) 0 0
\(829\) −0.642183 −0.0223039 −0.0111520 0.999938i \(-0.503550\pi\)
−0.0111520 + 0.999938i \(0.503550\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.10546 −0.211542
\(834\) 0 0
\(835\) −28.7156 −0.993745
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.10282 −0.0725973 −0.0362986 0.999341i \(-0.511557\pi\)
−0.0362986 + 0.999341i \(0.511557\pi\)
\(840\) 0 0
\(841\) −18.8945 −0.651536
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −2.41269 −0.0829011
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −15.2177 −0.521656
\(852\) 0 0
\(853\) −37.7344 −1.29200 −0.646000 0.763338i \(-0.723559\pi\)
−0.646000 + 0.763338i \(0.723559\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −8.82109 −0.301323 −0.150661 0.988585i \(-0.548140\pi\)
−0.150661 + 0.988585i \(0.548140\pi\)
\(858\) 0 0
\(859\) −25.2524 −0.861599 −0.430800 0.902448i \(-0.641768\pi\)
−0.430800 + 0.902448i \(0.641768\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −6.18667 −0.210597 −0.105298 0.994441i \(-0.533580\pi\)
−0.105298 + 0.994441i \(0.533580\pi\)
\(864\) 0 0
\(865\) 74.6054 2.53666
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −6.30845 −0.213999
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −71.7891 −2.42691
\(876\) 0 0
\(877\) 6.24756 0.210965 0.105483 0.994421i \(-0.466361\pi\)
0.105483 + 0.994421i \(0.466361\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −49.1789 −1.65688 −0.828440 0.560078i \(-0.810771\pi\)
−0.828440 + 0.560078i \(0.810771\pi\)
\(882\) 0 0
\(883\) −38.8945 −1.30891 −0.654453 0.756103i \(-0.727101\pi\)
−0.654453 + 0.756103i \(0.727101\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −44.3578 −1.48939 −0.744695 0.667405i \(-0.767405\pi\)
−0.744695 + 0.667405i \(0.767405\pi\)
\(888\) 0 0
\(889\) −34.2094 −1.14735
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −36.0000 −1.20469
\(894\) 0 0
\(895\) 59.5095 1.98918
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3.34233 0.111473
\(900\) 0 0
\(901\) −6.10546 −0.203402
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −56.1063 −1.86504
\(906\) 0 0
\(907\) −28.0000 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 40.7156 1.34897 0.674485 0.738289i \(-0.264366\pi\)
0.674485 + 0.738289i \(0.264366\pi\)
\(912\) 0 0
\(913\) 4.71563 0.156065
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −39.4664 −1.30330
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 92.6674 3.04689
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 11.8145 0.387620 0.193810 0.981039i \(-0.437915\pi\)
0.193810 + 0.981039i \(0.437915\pi\)
\(930\) 0 0
\(931\) 4.08386 0.133843
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −74.3578 −2.43176
\(936\) 0 0
\(937\) −7.89454 −0.257903 −0.128952 0.991651i \(-0.541161\pi\)
−0.128952 + 0.991651i \(0.541161\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −54.5623 −1.77868 −0.889340 0.457246i \(-0.848836\pi\)
−0.889340 + 0.457246i \(0.848836\pi\)
\(942\) 0 0
\(943\) 1.36129 0.0443296
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.20563 0.136665 0.0683323 0.997663i \(-0.478232\pi\)
0.0683323 + 0.997663i \(0.478232\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) −84.3780 −2.73041
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 15.0735 0.486747
\(960\) 0 0
\(961\) −29.8945 −0.964340
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.53673 −0.0494689
\(966\) 0 0
\(967\) −61.6123 −1.98132 −0.990659 0.136363i \(-0.956459\pi\)
−0.990659 + 0.136363i \(0.956459\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 40.7156 1.30663 0.653313 0.757088i \(-0.273378\pi\)
0.653313 + 0.757088i \(0.273378\pi\)
\(972\) 0 0
\(973\) −14.0445 −0.450246
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 36.6829 1.17359 0.586796 0.809735i \(-0.300389\pi\)
0.586796 + 0.809735i \(0.300389\pi\)
\(978\) 0 0
\(979\) 24.0000 0.767043
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 14.4762 0.461718 0.230859 0.972987i \(-0.425846\pi\)
0.230859 + 0.972987i \(0.425846\pi\)
\(984\) 0 0
\(985\) 68.7156 2.18946
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −24.3578 −0.774534
\(990\) 0 0
\(991\) 23.0735 0.732952 0.366476 0.930427i \(-0.380564\pi\)
0.366476 + 0.930427i \(0.380564\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −51.9615 −1.64729
\(996\) 0 0
\(997\) 12.6422 0.400382 0.200191 0.979757i \(-0.435844\pi\)
0.200191 + 0.979757i \(0.435844\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6084.2.a.bd.1.4 4
3.2 odd 2 2028.2.a.m.1.1 4
12.11 even 2 8112.2.a.cr.1.1 4
13.5 odd 4 6084.2.b.o.4393.1 4
13.6 odd 12 468.2.t.d.361.1 4
13.8 odd 4 6084.2.b.o.4393.4 4
13.11 odd 12 468.2.t.d.433.2 4
13.12 even 2 inner 6084.2.a.bd.1.1 4
39.2 even 12 2028.2.q.f.1837.2 4
39.5 even 4 2028.2.b.e.337.4 4
39.8 even 4 2028.2.b.e.337.1 4
39.11 even 12 156.2.q.b.121.1 yes 4
39.17 odd 6 2028.2.i.n.2005.4 8
39.20 even 12 2028.2.q.f.361.1 4
39.23 odd 6 2028.2.i.n.529.4 8
39.29 odd 6 2028.2.i.n.529.1 8
39.32 even 12 156.2.q.b.49.2 4
39.35 odd 6 2028.2.i.n.2005.1 8
39.38 odd 2 2028.2.a.m.1.4 4
52.11 even 12 1872.2.by.j.433.2 4
52.19 even 12 1872.2.by.j.1297.1 4
156.11 odd 12 624.2.bv.f.433.1 4
156.71 odd 12 624.2.bv.f.49.2 4
156.155 even 2 8112.2.a.cr.1.4 4
195.32 odd 12 3900.2.bw.j.49.1 8
195.89 even 12 3900.2.cd.i.901.1 4
195.128 odd 12 3900.2.bw.j.2149.1 8
195.149 even 12 3900.2.cd.i.2701.1 4
195.167 odd 12 3900.2.bw.j.2149.4 8
195.188 odd 12 3900.2.bw.j.49.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.2.q.b.49.2 4 39.32 even 12
156.2.q.b.121.1 yes 4 39.11 even 12
468.2.t.d.361.1 4 13.6 odd 12
468.2.t.d.433.2 4 13.11 odd 12
624.2.bv.f.49.2 4 156.71 odd 12
624.2.bv.f.433.1 4 156.11 odd 12
1872.2.by.j.433.2 4 52.11 even 12
1872.2.by.j.1297.1 4 52.19 even 12
2028.2.a.m.1.1 4 3.2 odd 2
2028.2.a.m.1.4 4 39.38 odd 2
2028.2.b.e.337.1 4 39.8 even 4
2028.2.b.e.337.4 4 39.5 even 4
2028.2.i.n.529.1 8 39.29 odd 6
2028.2.i.n.529.4 8 39.23 odd 6
2028.2.i.n.2005.1 8 39.35 odd 6
2028.2.i.n.2005.4 8 39.17 odd 6
2028.2.q.f.361.1 4 39.20 even 12
2028.2.q.f.1837.2 4 39.2 even 12
3900.2.bw.j.49.1 8 195.32 odd 12
3900.2.bw.j.49.4 8 195.188 odd 12
3900.2.bw.j.2149.1 8 195.128 odd 12
3900.2.bw.j.2149.4 8 195.167 odd 12
3900.2.cd.i.901.1 4 195.89 even 12
3900.2.cd.i.2701.1 4 195.149 even 12
6084.2.a.bd.1.1 4 13.12 even 2 inner
6084.2.a.bd.1.4 4 1.1 even 1 trivial
6084.2.b.o.4393.1 4 13.5 odd 4
6084.2.b.o.4393.4 4 13.8 odd 4
8112.2.a.cr.1.1 4 12.11 even 2
8112.2.a.cr.1.4 4 156.155 even 2