Properties

Label 2028.2.i.n.529.4
Level $2028$
Weight $2$
Character 2028.529
Analytic conductor $16.194$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2028,2,Mod(529,2028)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2028, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2028.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2028.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.1936615299\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.70892257536.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 21x^{6} + 320x^{4} + 2541x^{2} + 14641 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 156)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 529.4
Root \(-1.20635 - 3.08945i\) of defining polynomial
Character \(\chi\) \(=\) 2028.529
Dual form 2028.2.i.n.2005.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +4.14474 q^{5} +(-1.20635 - 2.08945i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(1.73205 - 3.00000i) q^{11} +(-2.07237 + 3.58945i) q^{15} +(2.58945 + 4.48507i) q^{17} +(-1.73205 - 3.00000i) q^{19} +2.41269 q^{21} +(-1.00000 + 1.73205i) q^{23} +12.1789 q^{25} +1.00000 q^{27} +(-1.58945 + 2.75302i) q^{29} +1.05141 q^{31} +(1.73205 + 3.00000i) q^{33} +(-5.00000 - 8.66025i) q^{35} +(3.80442 - 6.58945i) q^{37} +(0.340322 - 0.589454i) q^{41} +(-6.08945 - 10.5472i) q^{43} +(-2.07237 - 3.58945i) q^{45} +10.3923 q^{47} +(0.589454 - 1.02096i) q^{49} -5.17891 q^{51} +1.17891 q^{53} +(7.17891 - 12.4342i) q^{55} +3.46410 q^{57} +(5.87680 + 10.1789i) q^{59} +(-2.50000 - 4.33013i) q^{61} +(-1.20635 + 2.08945i) q^{63} +(1.20635 - 2.08945i) q^{67} +(-1.00000 - 1.73205i) q^{69} +(-1.73205 - 3.00000i) q^{71} -14.8469 q^{73} +(-6.08945 + 10.5472i) q^{75} -8.35782 q^{77} +1.82109 q^{79} +(-0.500000 + 0.866025i) q^{81} -1.36129 q^{83} +(10.7326 + 18.5895i) q^{85} +(-1.58945 - 2.75302i) q^{87} +(3.46410 - 6.00000i) q^{89} +(-0.525704 + 0.910546i) q^{93} +(-7.17891 - 12.4342i) q^{95} +(8.81519 + 15.2684i) q^{97} -3.46410 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - 4 q^{9} - 2 q^{17} - 8 q^{23} + 52 q^{25} + 8 q^{27} + 10 q^{29} - 40 q^{35} - 26 q^{43} - 18 q^{49} + 4 q^{51} - 36 q^{53} + 12 q^{55} - 20 q^{61} - 8 q^{69} - 26 q^{75} + 24 q^{77} + 60 q^{79}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2028\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1861\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) 4.14474 1.85359 0.926793 0.375572i \(-0.122554\pi\)
0.926793 + 0.375572i \(0.122554\pi\)
\(6\) 0 0
\(7\) −1.20635 2.08945i −0.455956 0.789739i 0.542786 0.839871i \(-0.317369\pi\)
−0.998743 + 0.0501314i \(0.984036\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 1.73205 3.00000i 0.522233 0.904534i −0.477432 0.878668i \(-0.658432\pi\)
0.999665 0.0258656i \(-0.00823419\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −2.07237 + 3.58945i −0.535084 + 0.926793i
\(16\) 0 0
\(17\) 2.58945 + 4.48507i 0.628035 + 1.08779i 0.987946 + 0.154802i \(0.0494738\pi\)
−0.359911 + 0.932987i \(0.617193\pi\)
\(18\) 0 0
\(19\) −1.73205 3.00000i −0.397360 0.688247i 0.596040 0.802955i \(-0.296740\pi\)
−0.993399 + 0.114708i \(0.963407\pi\)
\(20\) 0 0
\(21\) 2.41269 0.526493
\(22\) 0 0
\(23\) −1.00000 + 1.73205i −0.208514 + 0.361158i −0.951247 0.308431i \(-0.900196\pi\)
0.742732 + 0.669588i \(0.233529\pi\)
\(24\) 0 0
\(25\) 12.1789 2.43578
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −1.58945 + 2.75302i −0.295154 + 0.511222i −0.975021 0.222114i \(-0.928704\pi\)
0.679867 + 0.733336i \(0.262038\pi\)
\(30\) 0 0
\(31\) 1.05141 0.188838 0.0944192 0.995533i \(-0.469901\pi\)
0.0944192 + 0.995533i \(0.469901\pi\)
\(32\) 0 0
\(33\) 1.73205 + 3.00000i 0.301511 + 0.522233i
\(34\) 0 0
\(35\) −5.00000 8.66025i −0.845154 1.46385i
\(36\) 0 0
\(37\) 3.80442 6.58945i 0.625443 1.08330i −0.363012 0.931785i \(-0.618251\pi\)
0.988455 0.151515i \(-0.0484152\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.340322 0.589454i 0.0531493 0.0920573i −0.838227 0.545322i \(-0.816407\pi\)
0.891376 + 0.453265i \(0.149741\pi\)
\(42\) 0 0
\(43\) −6.08945 10.5472i −0.928633 1.60844i −0.785612 0.618720i \(-0.787652\pi\)
−0.143022 0.989720i \(-0.545682\pi\)
\(44\) 0 0
\(45\) −2.07237 3.58945i −0.308931 0.535084i
\(46\) 0 0
\(47\) 10.3923 1.51587 0.757937 0.652328i \(-0.226208\pi\)
0.757937 + 0.652328i \(0.226208\pi\)
\(48\) 0 0
\(49\) 0.589454 1.02096i 0.0842077 0.145852i
\(50\) 0 0
\(51\) −5.17891 −0.725192
\(52\) 0 0
\(53\) 1.17891 0.161936 0.0809678 0.996717i \(-0.474199\pi\)
0.0809678 + 0.996717i \(0.474199\pi\)
\(54\) 0 0
\(55\) 7.17891 12.4342i 0.968004 1.67663i
\(56\) 0 0
\(57\) 3.46410 0.458831
\(58\) 0 0
\(59\) 5.87680 + 10.1789i 0.765094 + 1.32518i 0.940197 + 0.340631i \(0.110641\pi\)
−0.175103 + 0.984550i \(0.556026\pi\)
\(60\) 0 0
\(61\) −2.50000 4.33013i −0.320092 0.554416i 0.660415 0.750901i \(-0.270381\pi\)
−0.980507 + 0.196485i \(0.937047\pi\)
\(62\) 0 0
\(63\) −1.20635 + 2.08945i −0.151985 + 0.263246i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.20635 2.08945i 0.147379 0.255267i −0.782879 0.622174i \(-0.786250\pi\)
0.930258 + 0.366906i \(0.119583\pi\)
\(68\) 0 0
\(69\) −1.00000 1.73205i −0.120386 0.208514i
\(70\) 0 0
\(71\) −1.73205 3.00000i −0.205557 0.356034i 0.744753 0.667340i \(-0.232567\pi\)
−0.950310 + 0.311305i \(0.899234\pi\)
\(72\) 0 0
\(73\) −14.8469 −1.73770 −0.868851 0.495074i \(-0.835141\pi\)
−0.868851 + 0.495074i \(0.835141\pi\)
\(74\) 0 0
\(75\) −6.08945 + 10.5472i −0.703150 + 1.21789i
\(76\) 0 0
\(77\) −8.35782 −0.952462
\(78\) 0 0
\(79\) 1.82109 0.204889 0.102444 0.994739i \(-0.467334\pi\)
0.102444 + 0.994739i \(0.467334\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −1.36129 −0.149421 −0.0747103 0.997205i \(-0.523803\pi\)
−0.0747103 + 0.997205i \(0.523803\pi\)
\(84\) 0 0
\(85\) 10.7326 + 18.5895i 1.16412 + 2.01631i
\(86\) 0 0
\(87\) −1.58945 2.75302i −0.170407 0.295154i
\(88\) 0 0
\(89\) 3.46410 6.00000i 0.367194 0.635999i −0.621932 0.783072i \(-0.713652\pi\)
0.989126 + 0.147073i \(0.0469852\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.525704 + 0.910546i −0.0545130 + 0.0944192i
\(94\) 0 0
\(95\) −7.17891 12.4342i −0.736540 1.27573i
\(96\) 0 0
\(97\) 8.81519 + 15.2684i 0.895047 + 1.55027i 0.833746 + 0.552148i \(0.186192\pi\)
0.0613012 + 0.998119i \(0.480475\pi\)
\(98\) 0 0
\(99\) −3.46410 −0.348155
\(100\) 0 0
\(101\) 0.410546 0.711086i 0.0408508 0.0707557i −0.844877 0.534960i \(-0.820326\pi\)
0.885728 + 0.464205i \(0.153660\pi\)
\(102\) 0 0
\(103\) 8.17891 0.805892 0.402946 0.915224i \(-0.367986\pi\)
0.402946 + 0.915224i \(0.367986\pi\)
\(104\) 0 0
\(105\) 10.0000 0.975900
\(106\) 0 0
\(107\) 5.00000 8.66025i 0.483368 0.837218i −0.516449 0.856318i \(-0.672747\pi\)
0.999818 + 0.0190994i \(0.00607989\pi\)
\(108\) 0 0
\(109\) 1.05141 0.100707 0.0503533 0.998731i \(-0.483965\pi\)
0.0503533 + 0.998731i \(0.483965\pi\)
\(110\) 0 0
\(111\) 3.80442 + 6.58945i 0.361100 + 0.625443i
\(112\) 0 0
\(113\) −0.410546 0.711086i −0.0386209 0.0668934i 0.846069 0.533074i \(-0.178963\pi\)
−0.884690 + 0.466180i \(0.845630\pi\)
\(114\) 0 0
\(115\) −4.14474 + 7.17891i −0.386499 + 0.669437i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.24756 10.8211i 0.572713 0.991968i
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 0 0
\(123\) 0.340322 + 0.589454i 0.0306858 + 0.0531493i
\(124\) 0 0
\(125\) 29.7547 2.66135
\(126\) 0 0
\(127\) −7.08945 + 12.2793i −0.629087 + 1.08961i 0.358648 + 0.933473i \(0.383238\pi\)
−0.987735 + 0.156138i \(0.950095\pi\)
\(128\) 0 0
\(129\) 12.1789 1.07229
\(130\) 0 0
\(131\) −16.3578 −1.42919 −0.714595 0.699539i \(-0.753389\pi\)
−0.714595 + 0.699539i \(0.753389\pi\)
\(132\) 0 0
\(133\) −4.17891 + 7.23808i −0.362357 + 0.627621i
\(134\) 0 0
\(135\) 4.14474 0.356723
\(136\) 0 0
\(137\) 3.12378 + 5.41055i 0.266883 + 0.462254i 0.968055 0.250737i \(-0.0806731\pi\)
−0.701173 + 0.712992i \(0.747340\pi\)
\(138\) 0 0
\(139\) −2.91055 5.04121i −0.246869 0.427590i 0.715786 0.698319i \(-0.246068\pi\)
−0.962656 + 0.270729i \(0.912735\pi\)
\(140\) 0 0
\(141\) −5.19615 + 9.00000i −0.437595 + 0.757937i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −6.58788 + 11.4105i −0.547094 + 0.947594i
\(146\) 0 0
\(147\) 0.589454 + 1.02096i 0.0486174 + 0.0842077i
\(148\) 0 0
\(149\) −0.340322 0.589454i −0.0278802 0.0482900i 0.851749 0.523951i \(-0.175542\pi\)
−0.879629 + 0.475661i \(0.842209\pi\)
\(150\) 0 0
\(151\) 6.18667 0.503464 0.251732 0.967797i \(-0.419000\pi\)
0.251732 + 0.967797i \(0.419000\pi\)
\(152\) 0 0
\(153\) 2.58945 4.48507i 0.209345 0.362596i
\(154\) 0 0
\(155\) 4.35782 0.350028
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 0 0
\(159\) −0.589454 + 1.02096i −0.0467468 + 0.0809678i
\(160\) 0 0
\(161\) 4.82539 0.380294
\(162\) 0 0
\(163\) 0.525704 + 0.910546i 0.0411763 + 0.0713195i 0.885879 0.463916i \(-0.153556\pi\)
−0.844703 + 0.535236i \(0.820223\pi\)
\(164\) 0 0
\(165\) 7.17891 + 12.4342i 0.558877 + 0.968004i
\(166\) 0 0
\(167\) 3.46410 6.00000i 0.268060 0.464294i −0.700301 0.713848i \(-0.746951\pi\)
0.968361 + 0.249554i \(0.0802840\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −1.73205 + 3.00000i −0.132453 + 0.229416i
\(172\) 0 0
\(173\) 9.00000 + 15.5885i 0.684257 + 1.18517i 0.973670 + 0.227964i \(0.0732068\pi\)
−0.289412 + 0.957205i \(0.593460\pi\)
\(174\) 0 0
\(175\) −14.6920 25.4473i −1.11061 1.92363i
\(176\) 0 0
\(177\) −11.7536 −0.883454
\(178\) 0 0
\(179\) 7.17891 12.4342i 0.536577 0.929378i −0.462508 0.886615i \(-0.653051\pi\)
0.999085 0.0427634i \(-0.0136162\pi\)
\(180\) 0 0
\(181\) −13.5367 −1.00618 −0.503088 0.864235i \(-0.667803\pi\)
−0.503088 + 0.864235i \(0.667803\pi\)
\(182\) 0 0
\(183\) 5.00000 0.369611
\(184\) 0 0
\(185\) 15.7684 27.3116i 1.15931 2.00799i
\(186\) 0 0
\(187\) 17.9403 1.31192
\(188\) 0 0
\(189\) −1.20635 2.08945i −0.0877488 0.151985i
\(190\) 0 0
\(191\) −10.1789 17.6304i −0.736520 1.27569i −0.954053 0.299637i \(-0.903134\pi\)
0.217533 0.976053i \(-0.430199\pi\)
\(192\) 0 0
\(193\) −0.185382 + 0.321092i −0.0133441 + 0.0231127i −0.872620 0.488399i \(-0.837581\pi\)
0.859276 + 0.511512i \(0.170914\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.28949 + 14.3578i −0.590602 + 1.02295i 0.403550 + 0.914958i \(0.367776\pi\)
−0.994152 + 0.107994i \(0.965557\pi\)
\(198\) 0 0
\(199\) 6.26836 + 10.8571i 0.444352 + 0.769641i 0.998007 0.0631055i \(-0.0201005\pi\)
−0.553654 + 0.832747i \(0.686767\pi\)
\(200\) 0 0
\(201\) 1.20635 + 2.08945i 0.0850892 + 0.147379i
\(202\) 0 0
\(203\) 7.66973 0.538310
\(204\) 0 0
\(205\) 1.41055 2.44314i 0.0985168 0.170636i
\(206\) 0 0
\(207\) 2.00000 0.139010
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) −9.26836 + 16.0533i −0.638060 + 1.10515i 0.347798 + 0.937570i \(0.386930\pi\)
−0.985858 + 0.167583i \(0.946404\pi\)
\(212\) 0 0
\(213\) 3.46410 0.237356
\(214\) 0 0
\(215\) −25.2392 43.7156i −1.72130 2.98138i
\(216\) 0 0
\(217\) −1.26836 2.19687i −0.0861021 0.149133i
\(218\) 0 0
\(219\) 7.42346 12.8578i 0.501631 0.868851i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 1.05141 1.82109i 0.0704075 0.121949i −0.828672 0.559734i \(-0.810903\pi\)
0.899080 + 0.437784i \(0.144237\pi\)
\(224\) 0 0
\(225\) −6.08945 10.5472i −0.405964 0.703150i
\(226\) 0 0
\(227\) 11.0729 + 19.1789i 0.734937 + 1.27295i 0.954751 + 0.297407i \(0.0961218\pi\)
−0.219813 + 0.975542i \(0.570545\pi\)
\(228\) 0 0
\(229\) 16.5790 1.09557 0.547785 0.836619i \(-0.315471\pi\)
0.547785 + 0.836619i \(0.315471\pi\)
\(230\) 0 0
\(231\) 4.17891 7.23808i 0.274952 0.476231i
\(232\) 0 0
\(233\) 22.7156 1.48815 0.744075 0.668096i \(-0.232890\pi\)
0.744075 + 0.668096i \(0.232890\pi\)
\(234\) 0 0
\(235\) 43.0735 2.80980
\(236\) 0 0
\(237\) −0.910546 + 1.57711i −0.0591463 + 0.102444i
\(238\) 0 0
\(239\) −15.2177 −0.984351 −0.492175 0.870496i \(-0.663798\pi\)
−0.492175 + 0.870496i \(0.663798\pi\)
\(240\) 0 0
\(241\) 0.340322 + 0.589454i 0.0219220 + 0.0379701i 0.876778 0.480895i \(-0.159688\pi\)
−0.854856 + 0.518865i \(0.826355\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) 2.44314 4.23164i 0.156086 0.270349i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0.680643 1.17891i 0.0431340 0.0747103i
\(250\) 0 0
\(251\) 12.3578 + 21.4044i 0.780018 + 1.35103i 0.931930 + 0.362638i \(0.118124\pi\)
−0.151912 + 0.988394i \(0.548543\pi\)
\(252\) 0 0
\(253\) 3.46410 + 6.00000i 0.217786 + 0.377217i
\(254\) 0 0
\(255\) −21.4653 −1.34421
\(256\) 0 0
\(257\) 5.41055 9.37134i 0.337501 0.584568i −0.646461 0.762947i \(-0.723752\pi\)
0.983962 + 0.178379i \(0.0570852\pi\)
\(258\) 0 0
\(259\) −18.3578 −1.14070
\(260\) 0 0
\(261\) 3.17891 0.196769
\(262\) 0 0
\(263\) −4.82109 + 8.35038i −0.297281 + 0.514906i −0.975513 0.219942i \(-0.929413\pi\)
0.678232 + 0.734848i \(0.262747\pi\)
\(264\) 0 0
\(265\) 4.88627 0.300161
\(266\) 0 0
\(267\) 3.46410 + 6.00000i 0.212000 + 0.367194i
\(268\) 0 0
\(269\) −5.17891 8.97013i −0.315764 0.546919i 0.663836 0.747878i \(-0.268927\pi\)
−0.979600 + 0.200960i \(0.935594\pi\)
\(270\) 0 0
\(271\) −3.98981 + 6.91055i −0.242363 + 0.419786i −0.961387 0.275200i \(-0.911256\pi\)
0.719024 + 0.694986i \(0.244589\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 21.0945 36.5367i 1.27205 2.20325i
\(276\) 0 0
\(277\) 5.58945 + 9.68122i 0.335838 + 0.581688i 0.983645 0.180116i \(-0.0576473\pi\)
−0.647808 + 0.761804i \(0.724314\pi\)
\(278\) 0 0
\(279\) −0.525704 0.910546i −0.0314731 0.0545130i
\(280\) 0 0
\(281\) −18.0012 −1.07386 −0.536929 0.843627i \(-0.680416\pi\)
−0.536929 + 0.843627i \(0.680416\pi\)
\(282\) 0 0
\(283\) −7.91055 + 13.7015i −0.470233 + 0.814468i −0.999421 0.0340373i \(-0.989164\pi\)
0.529187 + 0.848505i \(0.322497\pi\)
\(284\) 0 0
\(285\) 14.3578 0.850484
\(286\) 0 0
\(287\) −1.64218 −0.0969350
\(288\) 0 0
\(289\) −4.91055 + 8.50531i −0.288856 + 0.500313i
\(290\) 0 0
\(291\) −17.6304 −1.03351
\(292\) 0 0
\(293\) −0.0304432 0.0527291i −0.00177851 0.00308047i 0.865135 0.501539i \(-0.167233\pi\)
−0.866913 + 0.498459i \(0.833899\pi\)
\(294\) 0 0
\(295\) 24.3578 + 42.1890i 1.41817 + 2.45634i
\(296\) 0 0
\(297\) 1.73205 3.00000i 0.100504 0.174078i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −14.6920 + 25.4473i −0.846832 + 1.46676i
\(302\) 0 0
\(303\) 0.410546 + 0.711086i 0.0235852 + 0.0408508i
\(304\) 0 0
\(305\) −10.3619 17.9473i −0.593318 1.02766i
\(306\) 0 0
\(307\) −4.51551 −0.257714 −0.128857 0.991663i \(-0.541131\pi\)
−0.128857 + 0.991663i \(0.541131\pi\)
\(308\) 0 0
\(309\) −4.08945 + 7.08314i −0.232641 + 0.402946i
\(310\) 0 0
\(311\) −34.3578 −1.94825 −0.974127 0.226003i \(-0.927434\pi\)
−0.974127 + 0.226003i \(0.927434\pi\)
\(312\) 0 0
\(313\) −28.8945 −1.63322 −0.816608 0.577193i \(-0.804148\pi\)
−0.816608 + 0.577193i \(0.804148\pi\)
\(314\) 0 0
\(315\) −5.00000 + 8.66025i −0.281718 + 0.487950i
\(316\) 0 0
\(317\) −15.8983 −0.892939 −0.446470 0.894799i \(-0.647319\pi\)
−0.446470 + 0.894799i \(0.647319\pi\)
\(318\) 0 0
\(319\) 5.50603 + 9.53673i 0.308279 + 0.533954i
\(320\) 0 0
\(321\) 5.00000 + 8.66025i 0.279073 + 0.483368i
\(322\) 0 0
\(323\) 8.97013 15.5367i 0.499112 0.864487i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −0.525704 + 0.910546i −0.0290715 + 0.0503533i
\(328\) 0 0
\(329\) −12.5367 21.7142i −0.691172 1.19715i
\(330\) 0 0
\(331\) −13.3307 23.0895i −0.732722 1.26911i −0.955716 0.294291i \(-0.904916\pi\)
0.222994 0.974820i \(-0.428417\pi\)
\(332\) 0 0
\(333\) −7.60885 −0.416962
\(334\) 0 0
\(335\) 5.00000 8.66025i 0.273179 0.473160i
\(336\) 0 0
\(337\) 2.64218 0.143929 0.0719644 0.997407i \(-0.477073\pi\)
0.0719644 + 0.997407i \(0.477073\pi\)
\(338\) 0 0
\(339\) 0.821092 0.0445956
\(340\) 0 0
\(341\) 1.82109 3.15422i 0.0986176 0.170811i
\(342\) 0 0
\(343\) −19.7332 −1.06549
\(344\) 0 0
\(345\) −4.14474 7.17891i −0.223146 0.386499i
\(346\) 0 0
\(347\) 1.17891 + 2.04193i 0.0632871 + 0.109617i 0.895933 0.444189i \(-0.146508\pi\)
−0.832646 + 0.553806i \(0.813175\pi\)
\(348\) 0 0
\(349\) −11.2279 + 19.4473i −0.601015 + 1.04099i 0.391653 + 0.920113i \(0.371903\pi\)
−0.992668 + 0.120875i \(0.961430\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.89776 11.9473i 0.367131 0.635889i −0.621985 0.783029i \(-0.713673\pi\)
0.989116 + 0.147140i \(0.0470068\pi\)
\(354\) 0 0
\(355\) −7.17891 12.4342i −0.381017 0.659941i
\(356\) 0 0
\(357\) 6.24756 + 10.8211i 0.330656 + 0.572713i
\(358\) 0 0
\(359\) 5.56692 0.293811 0.146905 0.989151i \(-0.453069\pi\)
0.146905 + 0.989151i \(0.453069\pi\)
\(360\) 0 0
\(361\) 3.50000 6.06218i 0.184211 0.319062i
\(362\) 0 0
\(363\) 1.00000 0.0524864
\(364\) 0 0
\(365\) −61.5367 −3.22098
\(366\) 0 0
\(367\) −12.0895 + 20.9395i −0.631064 + 1.09304i 0.356270 + 0.934383i \(0.384048\pi\)
−0.987334 + 0.158653i \(0.949285\pi\)
\(368\) 0 0
\(369\) −0.680643 −0.0354329
\(370\) 0 0
\(371\) −1.42217 2.46327i −0.0738355 0.127887i
\(372\) 0 0
\(373\) −5.67891 9.83616i −0.294043 0.509297i 0.680719 0.732545i \(-0.261667\pi\)
−0.974762 + 0.223248i \(0.928334\pi\)
\(374\) 0 0
\(375\) −14.8774 + 25.7684i −0.768264 + 1.33067i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 6.40250 11.0895i 0.328874 0.569627i −0.653414 0.757000i \(-0.726664\pi\)
0.982289 + 0.187373i \(0.0599974\pi\)
\(380\) 0 0
\(381\) −7.08945 12.2793i −0.363204 0.629087i
\(382\) 0 0
\(383\) 16.5790 + 28.7156i 0.847146 + 1.46730i 0.883744 + 0.467970i \(0.155015\pi\)
−0.0365980 + 0.999330i \(0.511652\pi\)
\(384\) 0 0
\(385\) −34.6410 −1.76547
\(386\) 0 0
\(387\) −6.08945 + 10.5472i −0.309544 + 0.536147i
\(388\) 0 0
\(389\) −27.5367 −1.39617 −0.698084 0.716016i \(-0.745964\pi\)
−0.698084 + 0.716016i \(0.745964\pi\)
\(390\) 0 0
\(391\) −10.3578 −0.523817
\(392\) 0 0
\(393\) 8.17891 14.1663i 0.412571 0.714595i
\(394\) 0 0
\(395\) 7.54796 0.379779
\(396\) 0 0
\(397\) −7.45391 12.9105i −0.374101 0.647962i 0.616091 0.787675i \(-0.288715\pi\)
−0.990192 + 0.139713i \(0.955382\pi\)
\(398\) 0 0
\(399\) −4.17891 7.23808i −0.209207 0.362357i
\(400\) 0 0
\(401\) −4.48507 + 7.76836i −0.223974 + 0.387934i −0.956011 0.293331i \(-0.905236\pi\)
0.732037 + 0.681264i \(0.238570\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −2.07237 + 3.58945i −0.102977 + 0.178361i
\(406\) 0 0
\(407\) −13.1789 22.8265i −0.653254 1.13147i
\(408\) 0 0
\(409\) 12.6196 + 21.8578i 0.624000 + 1.08080i 0.988733 + 0.149688i \(0.0478268\pi\)
−0.364733 + 0.931112i \(0.618840\pi\)
\(410\) 0 0
\(411\) −6.24756 −0.308169
\(412\) 0 0
\(413\) 14.1789 24.5586i 0.697698 1.20845i
\(414\) 0 0
\(415\) −5.64218 −0.276964
\(416\) 0 0
\(417\) 5.82109 0.285060
\(418\) 0 0
\(419\) −16.3578 + 28.3326i −0.799132 + 1.38414i 0.121051 + 0.992646i \(0.461374\pi\)
−0.920182 + 0.391490i \(0.871960\pi\)
\(420\) 0 0
\(421\) −5.93768 −0.289385 −0.144692 0.989477i \(-0.546219\pi\)
−0.144692 + 0.989477i \(0.546219\pi\)
\(422\) 0 0
\(423\) −5.19615 9.00000i −0.252646 0.437595i
\(424\) 0 0
\(425\) 31.5367 + 54.6232i 1.52976 + 2.64961i
\(426\) 0 0
\(427\) −6.03173 + 10.4473i −0.291896 + 0.505579i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.78346 4.82109i 0.134074 0.232224i −0.791169 0.611598i \(-0.790527\pi\)
0.925244 + 0.379374i \(0.123861\pi\)
\(432\) 0 0
\(433\) −12.6789 21.9605i −0.609309 1.05535i −0.991354 0.131211i \(-0.958113\pi\)
0.382045 0.924144i \(-0.375220\pi\)
\(434\) 0 0
\(435\) −6.58788 11.4105i −0.315865 0.547094i
\(436\) 0 0
\(437\) 6.92820 0.331421
\(438\) 0 0
\(439\) −16.4473 + 28.4875i −0.784985 + 1.35963i 0.144022 + 0.989574i \(0.453996\pi\)
−0.929008 + 0.370060i \(0.879337\pi\)
\(440\) 0 0
\(441\) −1.17891 −0.0561385
\(442\) 0 0
\(443\) 8.00000 0.380091 0.190046 0.981775i \(-0.439136\pi\)
0.190046 + 0.981775i \(0.439136\pi\)
\(444\) 0 0
\(445\) 14.3578 24.8685i 0.680626 1.17888i
\(446\) 0 0
\(447\) 0.680643 0.0321933
\(448\) 0 0
\(449\) −14.1663 24.5367i −0.668548 1.15796i −0.978310 0.207145i \(-0.933583\pi\)
0.309762 0.950814i \(-0.399751\pi\)
\(450\) 0 0
\(451\) −1.17891 2.04193i −0.0555126 0.0961507i
\(452\) 0 0
\(453\) −3.09334 + 5.35782i −0.145338 + 0.251732i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −10.2069 + 17.6789i −0.477460 + 0.826984i −0.999666 0.0258346i \(-0.991776\pi\)
0.522207 + 0.852819i \(0.325109\pi\)
\(458\) 0 0
\(459\) 2.58945 + 4.48507i 0.120865 + 0.209345i
\(460\) 0 0
\(461\) −2.44314 4.23164i −0.113788 0.197087i 0.803506 0.595296i \(-0.202965\pi\)
−0.917295 + 0.398209i \(0.869632\pi\)
\(462\) 0 0
\(463\) −21.0945 −0.980344 −0.490172 0.871626i \(-0.663066\pi\)
−0.490172 + 0.871626i \(0.663066\pi\)
\(464\) 0 0
\(465\) −2.17891 + 3.77398i −0.101044 + 0.175014i
\(466\) 0 0
\(467\) 6.00000 0.277647 0.138823 0.990317i \(-0.455668\pi\)
0.138823 + 0.990317i \(0.455668\pi\)
\(468\) 0 0
\(469\) −5.82109 −0.268793
\(470\) 0 0
\(471\) −3.50000 + 6.06218i −0.161271 + 0.279330i
\(472\) 0 0
\(473\) −42.1890 −1.93985
\(474\) 0 0
\(475\) −21.0945 36.5367i −0.967881 1.67642i
\(476\) 0 0
\(477\) −0.589454 1.02096i −0.0269893 0.0467468i
\(478\) 0 0
\(479\) −3.46410 + 6.00000i −0.158279 + 0.274147i −0.934248 0.356624i \(-0.883928\pi\)
0.775969 + 0.630771i \(0.217261\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −2.41269 + 4.17891i −0.109781 + 0.190147i
\(484\) 0 0
\(485\) 36.5367 + 63.2835i 1.65905 + 2.87355i
\(486\) 0 0
\(487\) 12.1244 + 21.0000i 0.549407 + 0.951601i 0.998315 + 0.0580230i \(0.0184797\pi\)
−0.448908 + 0.893578i \(0.648187\pi\)
\(488\) 0 0
\(489\) −1.05141 −0.0475463
\(490\) 0 0
\(491\) −13.3578 + 23.1364i −0.602830 + 1.04413i 0.389561 + 0.921001i \(0.372627\pi\)
−0.992390 + 0.123131i \(0.960706\pi\)
\(492\) 0 0
\(493\) −16.4633 −0.741469
\(494\) 0 0
\(495\) −14.3578 −0.645336
\(496\) 0 0
\(497\) −4.17891 + 7.23808i −0.187450 + 0.324672i
\(498\) 0 0
\(499\) −11.7536 −0.526163 −0.263081 0.964774i \(-0.584739\pi\)
−0.263081 + 0.964774i \(0.584739\pi\)
\(500\) 0 0
\(501\) 3.46410 + 6.00000i 0.154765 + 0.268060i
\(502\) 0 0
\(503\) −3.00000 5.19615i −0.133763 0.231685i 0.791361 0.611349i \(-0.209373\pi\)
−0.925124 + 0.379664i \(0.876040\pi\)
\(504\) 0 0
\(505\) 1.70161 2.94727i 0.0757205 0.131152i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.75302 + 4.76836i −0.122025 + 0.211354i −0.920566 0.390587i \(-0.872272\pi\)
0.798541 + 0.601940i \(0.205606\pi\)
\(510\) 0 0
\(511\) 17.9105 + 31.0220i 0.792316 + 1.37233i
\(512\) 0 0
\(513\) −1.73205 3.00000i −0.0764719 0.132453i
\(514\) 0 0
\(515\) 33.8995 1.49379
\(516\) 0 0
\(517\) 18.0000 31.1769i 0.791639 1.37116i
\(518\) 0 0
\(519\) −18.0000 −0.790112
\(520\) 0 0
\(521\) 17.8945 0.783974 0.391987 0.919971i \(-0.371788\pi\)
0.391987 + 0.919971i \(0.371788\pi\)
\(522\) 0 0
\(523\) −0.821092 + 1.42217i −0.0359038 + 0.0621873i −0.883419 0.468584i \(-0.844764\pi\)
0.847515 + 0.530771i \(0.178098\pi\)
\(524\) 0 0
\(525\) 29.3840 1.28242
\(526\) 0 0
\(527\) 2.72257 + 4.71563i 0.118597 + 0.205416i
\(528\) 0 0
\(529\) 9.50000 + 16.4545i 0.413043 + 0.715412i
\(530\) 0 0
\(531\) 5.87680 10.1789i 0.255031 0.441727i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 20.7237 35.8945i 0.895965 1.55186i
\(536\) 0 0
\(537\) 7.17891 + 12.4342i 0.309793 + 0.536577i
\(538\) 0 0
\(539\) −2.04193 3.53673i −0.0879521 0.152338i
\(540\) 0 0
\(541\) −10.0215 −0.430860 −0.215430 0.976519i \(-0.569115\pi\)
−0.215430 + 0.976519i \(0.569115\pi\)
\(542\) 0 0
\(543\) 6.76836 11.7231i 0.290458 0.503088i
\(544\) 0 0
\(545\) 4.35782 0.186668
\(546\) 0 0
\(547\) −20.5367 −0.878087 −0.439043 0.898466i \(-0.644683\pi\)
−0.439043 + 0.898466i \(0.644683\pi\)
\(548\) 0 0
\(549\) −2.50000 + 4.33013i −0.106697 + 0.184805i
\(550\) 0 0
\(551\) 11.0121 0.469130
\(552\) 0 0
\(553\) −2.19687 3.80509i −0.0934203 0.161809i
\(554\) 0 0
\(555\) 15.7684 + 27.3116i 0.669330 + 1.15931i
\(556\) 0 0
\(557\) 13.4552 23.3051i 0.570115 0.987468i −0.426439 0.904517i \(-0.640232\pi\)
0.996554 0.0829517i \(-0.0264347\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −8.97013 + 15.5367i −0.378719 + 0.655961i
\(562\) 0 0
\(563\) 2.17891 + 3.77398i 0.0918300 + 0.159054i 0.908281 0.418360i \(-0.137395\pi\)
−0.816451 + 0.577414i \(0.804062\pi\)
\(564\) 0 0
\(565\) −1.70161 2.94727i −0.0715872 0.123993i
\(566\) 0 0
\(567\) 2.41269 0.101324
\(568\) 0 0
\(569\) 7.35782 12.7441i 0.308456 0.534261i −0.669569 0.742750i \(-0.733521\pi\)
0.978025 + 0.208489i \(0.0668545\pi\)
\(570\) 0 0
\(571\) 30.3578 1.27044 0.635218 0.772333i \(-0.280910\pi\)
0.635218 + 0.772333i \(0.280910\pi\)
\(572\) 0 0
\(573\) 20.3578 0.850460
\(574\) 0 0
\(575\) −12.1789 + 21.0945i −0.507896 + 0.879701i
\(576\) 0 0
\(577\) 10.4532 0.435172 0.217586 0.976041i \(-0.430182\pi\)
0.217586 + 0.976041i \(0.430182\pi\)
\(578\) 0 0
\(579\) −0.185382 0.321092i −0.00770423 0.0133441i
\(580\) 0 0
\(581\) 1.64218 + 2.84434i 0.0681292 + 0.118003i
\(582\) 0 0
\(583\) 2.04193 3.53673i 0.0845681 0.146476i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.51551 7.82109i 0.186375 0.322811i −0.757664 0.652645i \(-0.773659\pi\)
0.944039 + 0.329834i \(0.106993\pi\)
\(588\) 0 0
\(589\) −1.82109 3.15422i −0.0750368 0.129968i
\(590\) 0 0
\(591\) −8.28949 14.3578i −0.340984 0.590602i
\(592\) 0 0
\(593\) −0.0608864 −0.00250030 −0.00125015 0.999999i \(-0.500398\pi\)
−0.00125015 + 0.999999i \(0.500398\pi\)
\(594\) 0 0
\(595\) 25.8945 44.8507i 1.06157 1.83870i
\(596\) 0 0
\(597\) −12.5367 −0.513094
\(598\) 0 0
\(599\) 32.3578 1.32210 0.661052 0.750340i \(-0.270110\pi\)
0.661052 + 0.750340i \(0.270110\pi\)
\(600\) 0 0
\(601\) −5.58945 + 9.68122i −0.227999 + 0.394905i −0.957215 0.289378i \(-0.906551\pi\)
0.729216 + 0.684283i \(0.239885\pi\)
\(602\) 0 0
\(603\) −2.41269 −0.0982525
\(604\) 0 0
\(605\) −2.07237 3.58945i −0.0842539 0.145932i
\(606\) 0 0
\(607\) −8.00000 13.8564i −0.324710 0.562414i 0.656744 0.754114i \(-0.271933\pi\)
−0.981454 + 0.191700i \(0.938600\pi\)
\(608\) 0 0
\(609\) −3.83487 + 6.64218i −0.155397 + 0.269155i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 14.3517 24.8578i 0.579658 1.00400i −0.415860 0.909429i \(-0.636519\pi\)
0.995518 0.0945691i \(-0.0301473\pi\)
\(614\) 0 0
\(615\) 1.41055 + 2.44314i 0.0568787 + 0.0985168i
\(616\) 0 0
\(617\) −2.07237 3.58945i −0.0834306 0.144506i 0.821291 0.570510i \(-0.193254\pi\)
−0.904721 + 0.426004i \(0.859921\pi\)
\(618\) 0 0
\(619\) −22.4558 −0.902574 −0.451287 0.892379i \(-0.649035\pi\)
−0.451287 + 0.892379i \(0.649035\pi\)
\(620\) 0 0
\(621\) −1.00000 + 1.73205i −0.0401286 + 0.0695048i
\(622\) 0 0
\(623\) −16.7156 −0.669698
\(624\) 0 0
\(625\) 62.4313 2.49725
\(626\) 0 0
\(627\) 6.00000 10.3923i 0.239617 0.415029i
\(628\) 0 0
\(629\) 39.4055 1.57120
\(630\) 0 0
\(631\) −6.40250 11.0895i −0.254879 0.441464i 0.709983 0.704219i \(-0.248702\pi\)
−0.964863 + 0.262754i \(0.915369\pi\)
\(632\) 0 0
\(633\) −9.26836 16.0533i −0.368384 0.638060i
\(634\) 0 0
\(635\) −29.3840 + 50.8945i −1.16607 + 2.01969i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.73205 + 3.00000i −0.0685189 + 0.118678i
\(640\) 0 0
\(641\) 16.7684 + 29.0437i 0.662310 + 1.14716i 0.980007 + 0.198963i \(0.0637574\pi\)
−0.317697 + 0.948192i \(0.602909\pi\)
\(642\) 0 0
\(643\) 1.88699 + 3.26836i 0.0744156 + 0.128892i 0.900832 0.434168i \(-0.142958\pi\)
−0.826416 + 0.563059i \(0.809624\pi\)
\(644\) 0 0
\(645\) 50.4785 1.98759
\(646\) 0 0
\(647\) 18.1789 31.4868i 0.714687 1.23787i −0.248394 0.968659i \(-0.579903\pi\)
0.963080 0.269214i \(-0.0867640\pi\)
\(648\) 0 0
\(649\) 40.7156 1.59823
\(650\) 0 0
\(651\) 2.53673 0.0994221
\(652\) 0 0
\(653\) 11.1789 19.3624i 0.437464 0.757711i −0.560029 0.828473i \(-0.689210\pi\)
0.997493 + 0.0707625i \(0.0225432\pi\)
\(654\) 0 0
\(655\) −67.7990 −2.64913
\(656\) 0 0
\(657\) 7.42346 + 12.8578i 0.289617 + 0.501631i
\(658\) 0 0
\(659\) −18.3578 31.7967i −0.715119 1.23862i −0.962914 0.269810i \(-0.913039\pi\)
0.247795 0.968813i \(-0.420294\pi\)
\(660\) 0 0
\(661\) 19.5478 33.8578i 0.760322 1.31692i −0.182363 0.983231i \(-0.558374\pi\)
0.942685 0.333685i \(-0.108292\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −17.3205 + 30.0000i −0.671660 + 1.16335i
\(666\) 0 0
\(667\) −3.17891 5.50603i −0.123088 0.213194i
\(668\) 0 0
\(669\) 1.05141 + 1.82109i 0.0406498 + 0.0704075i
\(670\) 0 0
\(671\) −17.3205 −0.668651
\(672\) 0 0
\(673\) 8.67891 15.0323i 0.334547 0.579453i −0.648850 0.760916i \(-0.724750\pi\)
0.983398 + 0.181463i \(0.0580833\pi\)
\(674\) 0 0
\(675\) 12.1789 0.468766
\(676\) 0 0
\(677\) −26.3578 −1.01301 −0.506507 0.862236i \(-0.669063\pi\)
−0.506507 + 0.862236i \(0.669063\pi\)
\(678\) 0 0
\(679\) 21.2684 36.8379i 0.816205 1.41371i
\(680\) 0 0
\(681\) −22.1459 −0.848633
\(682\) 0 0
\(683\) −10.7022 18.5367i −0.409508 0.709288i 0.585327 0.810797i \(-0.300966\pi\)
−0.994835 + 0.101509i \(0.967633\pi\)
\(684\) 0 0
\(685\) 12.9473 + 22.4253i 0.494690 + 0.856828i
\(686\) 0 0
\(687\) −8.28949 + 14.3578i −0.316264 + 0.547785i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −18.8367 + 32.6262i −0.716583 + 1.24116i 0.245763 + 0.969330i \(0.420962\pi\)
−0.962346 + 0.271828i \(0.912372\pi\)
\(692\) 0 0
\(693\) 4.17891 + 7.23808i 0.158744 + 0.274952i
\(694\) 0 0
\(695\) −12.0635 20.8945i −0.457593 0.792575i
\(696\) 0 0
\(697\) 3.52499 0.133518
\(698\) 0 0
\(699\) −11.3578 + 19.6723i −0.429592 + 0.744075i
\(700\) 0 0
\(701\) −25.6422 −0.968492 −0.484246 0.874932i \(-0.660906\pi\)
−0.484246 + 0.874932i \(0.660906\pi\)
\(702\) 0 0
\(703\) −26.3578 −0.994104
\(704\) 0 0
\(705\) −21.5367 + 37.3027i −0.811120 + 1.40490i
\(706\) 0 0
\(707\) −1.98104 −0.0745048
\(708\) 0 0
\(709\) −14.7224 25.5000i −0.552913 0.957673i −0.998063 0.0622167i \(-0.980183\pi\)
0.445150 0.895456i \(-0.353150\pi\)
\(710\) 0 0
\(711\) −0.910546 1.57711i −0.0341481 0.0591463i
\(712\) 0 0
\(713\) −1.05141 + 1.82109i −0.0393755 + 0.0682004i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 7.60885 13.1789i 0.284158 0.492175i
\(718\) 0 0
\(719\) −3.82109 6.61832i −0.142503 0.246822i 0.785936 0.618308i \(-0.212182\pi\)
−0.928438 + 0.371486i \(0.878848\pi\)
\(720\) 0 0
\(721\) −9.86660 17.0895i −0.367451 0.636445i
\(722\) 0 0
\(723\) −0.680643 −0.0253134
\(724\) 0 0
\(725\) −19.3578 + 33.5287i −0.718931 + 1.24523i
\(726\) 0 0
\(727\) 16.5367 0.613313 0.306657 0.951820i \(-0.400790\pi\)
0.306657 + 0.951820i \(0.400790\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 31.5367 54.6232i 1.16643 2.02031i
\(732\) 0 0
\(733\) 41.8182 1.54459 0.772295 0.635264i \(-0.219109\pi\)
0.772295 + 0.635264i \(0.219109\pi\)
\(734\) 0 0
\(735\) 2.44314 + 4.23164i 0.0901165 + 0.156086i
\(736\) 0 0
\(737\) −4.17891 7.23808i −0.153932 0.266618i
\(738\) 0 0
\(739\) −1.05141 + 1.82109i −0.0386767 + 0.0669899i −0.884716 0.466131i \(-0.845648\pi\)
0.846039 + 0.533121i \(0.178981\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −5.87680 + 10.1789i −0.215599 + 0.373428i −0.953458 0.301527i \(-0.902504\pi\)
0.737859 + 0.674955i \(0.235837\pi\)
\(744\) 0 0
\(745\) −1.41055 2.44314i −0.0516784 0.0895096i
\(746\) 0 0
\(747\) 0.680643 + 1.17891i 0.0249034 + 0.0431340i
\(748\) 0 0
\(749\) −24.1269 −0.881579
\(750\) 0 0
\(751\) −21.1789 + 36.6829i −0.772829 + 1.33858i 0.163177 + 0.986597i \(0.447826\pi\)
−0.936006 + 0.351983i \(0.885508\pi\)
\(752\) 0 0
\(753\) −24.7156 −0.900688
\(754\) 0 0
\(755\) 25.6422 0.933215
\(756\) 0 0
\(757\) −3.35782 + 5.81591i −0.122042 + 0.211383i −0.920573 0.390571i \(-0.872278\pi\)
0.798531 + 0.601954i \(0.205611\pi\)
\(758\) 0 0
\(759\) −6.92820 −0.251478
\(760\) 0 0
\(761\) 24.2487 + 42.0000i 0.879015 + 1.52250i 0.852423 + 0.522852i \(0.175132\pi\)
0.0265919 + 0.999646i \(0.491535\pi\)
\(762\) 0 0
\(763\) −1.26836 2.19687i −0.0459178 0.0795320i
\(764\) 0 0
\(765\) 10.7326 18.5895i 0.388039 0.672103i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 3.46410 6.00000i 0.124919 0.216366i −0.796782 0.604266i \(-0.793466\pi\)
0.921701 + 0.387901i \(0.126800\pi\)
\(770\) 0 0
\(771\) 5.41055 + 9.37134i 0.194856 + 0.337501i
\(772\) 0 0
\(773\) 3.77398 + 6.53673i 0.135741 + 0.235110i 0.925880 0.377817i \(-0.123325\pi\)
−0.790140 + 0.612927i \(0.789992\pi\)
\(774\) 0 0
\(775\) 12.8050 0.459969
\(776\) 0 0
\(777\) 9.17891 15.8983i 0.329292 0.570350i
\(778\) 0 0
\(779\) −2.35782 −0.0844775
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) −1.58945 + 2.75302i −0.0568025 + 0.0983847i
\(784\) 0 0
\(785\) 29.0132 1.03553
\(786\) 0 0
\(787\) 20.2589 + 35.0895i 0.722152 + 1.25080i 0.960136 + 0.279535i \(0.0901802\pi\)
−0.237984 + 0.971269i \(0.576486\pi\)
\(788\) 0 0
\(789\) −4.82109 8.35038i −0.171635 0.297281i
\(790\) 0 0
\(791\) −0.990521 + 1.71563i −0.0352189 + 0.0610009i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −2.44314 + 4.23164i −0.0866491 + 0.150081i
\(796\) 0 0
\(797\) −25.5367 44.2309i −0.904557 1.56674i −0.821510 0.570193i \(-0.806868\pi\)
−0.0830467 0.996546i \(-0.526465\pi\)
\(798\) 0 0
\(799\) 26.9104 + 46.6102i 0.952021 + 1.64895i
\(800\) 0 0
\(801\) −6.92820 −0.244796
\(802\) 0 0
\(803\) −25.7156 + 44.5408i −0.907485 + 1.57181i
\(804\) 0 0
\(805\) 20.0000 0.704907
\(806\) 0 0
\(807\) 10.3578 0.364612
\(808\) 0 0
\(809\) −6.23164 + 10.7935i −0.219093 + 0.379480i −0.954531 0.298112i \(-0.903643\pi\)
0.735438 + 0.677592i \(0.236976\pi\)
\(810\) 0 0
\(811\) −5.87680 −0.206362 −0.103181 0.994663i \(-0.532902\pi\)
−0.103181 + 0.994663i \(0.532902\pi\)
\(812\) 0 0
\(813\) −3.98981 6.91055i −0.139929 0.242363i
\(814\) 0 0
\(815\) 2.17891 + 3.77398i 0.0763238 + 0.132197i
\(816\) 0 0
\(817\) −21.0945 + 36.5367i −0.738003 + 1.27826i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.77398 6.53673i 0.131713 0.228133i −0.792624 0.609711i \(-0.791286\pi\)
0.924337 + 0.381577i \(0.124619\pi\)
\(822\) 0 0
\(823\) −12.0000 20.7846i −0.418294 0.724506i 0.577474 0.816409i \(-0.304038\pi\)
−0.995768 + 0.0919029i \(0.970705\pi\)
\(824\) 0 0
\(825\) 21.0945 + 36.5367i 0.734416 + 1.27205i
\(826\) 0 0
\(827\) 42.8087 1.48861 0.744303 0.667842i \(-0.232782\pi\)
0.744303 + 0.667842i \(0.232782\pi\)
\(828\) 0 0
\(829\) 0.321092 0.556147i 0.0111520 0.0193158i −0.860396 0.509627i \(-0.829783\pi\)
0.871548 + 0.490311i \(0.163117\pi\)
\(830\) 0 0
\(831\) −11.1789 −0.387792
\(832\) 0 0
\(833\) 6.10546 0.211542
\(834\) 0 0
\(835\) 14.3578 24.8685i 0.496873 0.860609i
\(836\) 0 0
\(837\) 1.05141 0.0363420
\(838\) 0 0
\(839\) 1.05141 + 1.82109i 0.0362986 + 0.0628711i 0.883604 0.468235i \(-0.155110\pi\)
−0.847305 + 0.531106i \(0.821777\pi\)
\(840\) 0 0
\(841\) 9.44727 + 16.3632i 0.325768 + 0.564247i
\(842\) 0 0
\(843\) 9.00058 15.5895i 0.309996 0.536929i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −1.20635 + 2.08945i −0.0414506 + 0.0717945i
\(848\) 0 0
\(849\) −7.91055 13.7015i −0.271489 0.470233i
\(850\) 0 0
\(851\) 7.60885 + 13.1789i 0.260828 + 0.451767i
\(852\) 0 0
\(853\) 37.7344 1.29200 0.646000 0.763338i \(-0.276441\pi\)
0.646000 + 0.763338i \(0.276441\pi\)
\(854\) 0 0
\(855\) −7.17891 + 12.4342i −0.245513 + 0.425242i
\(856\) 0 0
\(857\) 8.82109 0.301323 0.150661 0.988585i \(-0.451860\pi\)
0.150661 + 0.988585i \(0.451860\pi\)
\(858\) 0 0
\(859\) −25.2524 −0.861599 −0.430800 0.902448i \(-0.641768\pi\)
−0.430800 + 0.902448i \(0.641768\pi\)
\(860\) 0 0
\(861\) 0.821092 1.42217i 0.0279827 0.0484675i
\(862\) 0 0
\(863\) −6.18667 −0.210597 −0.105298 0.994441i \(-0.533580\pi\)
−0.105298 + 0.994441i \(0.533580\pi\)
\(864\) 0 0
\(865\) 37.3027 + 64.6102i 1.26833 + 2.19681i
\(866\) 0 0
\(867\) −4.91055 8.50531i −0.166771 0.288856i
\(868\) 0 0
\(869\) 3.15422 5.46327i 0.107000 0.185329i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 8.81519 15.2684i 0.298349 0.516756i
\(874\) 0 0
\(875\) −35.8945 62.1712i −1.21346 2.10177i
\(876\) 0 0
\(877\) 3.12378 + 5.41055i 0.105483 + 0.182701i 0.913935 0.405860i \(-0.133028\pi\)
−0.808453 + 0.588561i \(0.799695\pi\)
\(878\) 0 0
\(879\) 0.0608864 0.00205365
\(880\) 0 0
\(881\) −24.5895 + 42.5902i −0.828440 + 1.43490i 0.0708220 + 0.997489i \(0.477438\pi\)
−0.899262 + 0.437411i \(0.855896\pi\)
\(882\) 0 0
\(883\) −38.8945 −1.30891 −0.654453 0.756103i \(-0.727101\pi\)
−0.654453 + 0.756103i \(0.727101\pi\)
\(884\) 0 0
\(885\) −48.7156 −1.63756
\(886\) 0 0
\(887\) −22.1789 + 38.4150i −0.744695 + 1.28985i 0.205642 + 0.978627i \(0.434072\pi\)
−0.950337 + 0.311222i \(0.899262\pi\)
\(888\) 0 0
\(889\) 34.2094 1.14735
\(890\) 0 0
\(891\) 1.73205 + 3.00000i 0.0580259 + 0.100504i
\(892\) 0 0
\(893\) −18.0000 31.1769i −0.602347 1.04330i
\(894\) 0 0
\(895\) 29.7547 51.5367i 0.994591 1.72268i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.67116 + 2.89454i −0.0557365 + 0.0965384i
\(900\) 0 0
\(901\) 3.05273 + 5.28748i 0.101701 + 0.176152i
\(902\) 0 0
\(903\) −14.6920 25.4473i −0.488919 0.846832i
\(904\) 0 0
\(905\) −56.1063 −1.86504
\(906\) 0 0
\(907\) 14.0000 24.2487i 0.464862 0.805165i −0.534333 0.845274i \(-0.679437\pi\)
0.999195 + 0.0401089i \(0.0127705\pi\)
\(908\) 0 0
\(909\) −0.821092 −0.0272339
\(910\) 0 0
\(911\) −40.7156 −1.34897 −0.674485 0.738289i \(-0.735634\pi\)
−0.674485 + 0.738289i \(0.735634\pi\)
\(912\) 0 0
\(913\) −2.35782 + 4.08386i −0.0780323 + 0.135156i
\(914\) 0 0
\(915\) 20.7237 0.685105
\(916\) 0 0
\(917\) 19.7332 + 34.1789i 0.651648 + 1.12869i
\(918\) 0 0
\(919\) −12.0000 20.7846i −0.395843 0.685621i 0.597365 0.801970i \(-0.296214\pi\)
−0.993208 + 0.116348i \(0.962881\pi\)
\(920\) 0 0
\(921\) 2.25775 3.91055i 0.0743955 0.128857i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 46.3337 80.2524i 1.52344 2.63868i
\(926\) 0 0
\(927\) −4.08945 7.08314i −0.134315 0.232641i
\(928\) 0 0
\(929\) −5.90724 10.2316i −0.193810 0.335689i 0.752700 0.658364i \(-0.228751\pi\)
−0.946510 + 0.322675i \(0.895418\pi\)
\(930\) 0 0
\(931\) −4.08386 −0.133843
\(932\) 0 0
\(933\) 17.1789 29.7547i 0.562412 0.974127i
\(934\) 0 0
\(935\) 74.3578 2.43176
\(936\) 0 0
\(937\) −7.89454 −0.257903 −0.128952 0.991651i \(-0.541161\pi\)
−0.128952 + 0.991651i \(0.541161\pi\)
\(938\) 0 0
\(939\) 14.4473 25.0234i 0.471469 0.816608i
\(940\) 0 0
\(941\) −54.5623 −1.77868 −0.889340 0.457246i \(-0.848836\pi\)
−0.889340 + 0.457246i \(0.848836\pi\)
\(942\) 0 0
\(943\) 0.680643 + 1.17891i 0.0221648 + 0.0383905i
\(944\) 0 0
\(945\) −5.00000 8.66025i −0.162650 0.281718i
\(946\) 0 0
\(947\) −2.10282 + 3.64218i −0.0683323 + 0.118355i −0.898167 0.439654i \(-0.855101\pi\)
0.829835 + 0.558009i \(0.188434\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 7.94917 13.7684i 0.257769 0.446470i
\(952\) 0 0
\(953\) 3.00000 + 5.19615i 0.0971795 + 0.168320i 0.910516 0.413473i \(-0.135685\pi\)
−0.813337 + 0.581793i \(0.802351\pi\)
\(954\) 0 0
\(955\) −42.1890 73.0735i −1.36520 2.36460i
\(956\) 0 0
\(957\) −11.0121 −0.355969
\(958\) 0 0
\(959\) 7.53673 13.0540i 0.243374 0.421535i
\(960\) 0 0
\(961\) −29.8945 −0.964340
\(962\) 0 0
\(963\) −10.0000 −0.322245
\(964\) 0 0
\(965\) −0.768363 + 1.33084i −0.0247345 + 0.0428413i
\(966\) 0 0
\(967\) 61.6123 1.98132 0.990659 0.136363i \(-0.0435412\pi\)
0.990659 + 0.136363i \(0.0435412\pi\)
\(968\) 0 0
\(969\) 8.97013 + 15.5367i 0.288162 + 0.499112i
\(970\) 0 0
\(971\) 20.3578 + 35.2608i 0.653313 + 1.13157i 0.982314 + 0.187242i \(0.0599549\pi\)
−0.329000 + 0.944330i \(0.606712\pi\)
\(972\) 0 0
\(973\) −7.02226 + 12.1629i −0.225123 + 0.389925i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −18.3415 + 31.7684i −0.586796 + 1.01636i 0.407853 + 0.913047i \(0.366277\pi\)
−0.994649 + 0.103312i \(0.967056\pi\)
\(978\) 0 0
\(979\) −12.0000 20.7846i −0.383522 0.664279i
\(980\) 0 0
\(981\) −0.525704 0.910546i −0.0167844 0.0290715i
\(982\) 0 0
\(983\) 14.4762 0.461718 0.230859 0.972987i \(-0.425846\pi\)
0.230859 + 0.972987i \(0.425846\pi\)
\(984\) 0 0
\(985\) −34.3578 + 59.5095i −1.09473 + 1.89613i
\(986\) 0 0
\(987\) 25.0735 0.798097
\(988\) 0 0
\(989\) 24.3578 0.774534
\(990\) 0 0
\(991\) −11.5367 + 19.9822i −0.366476 + 0.634755i −0.989012 0.147836i \(-0.952769\pi\)
0.622536 + 0.782591i \(0.286103\pi\)
\(992\) 0 0
\(993\) 26.6614 0.846074
\(994\) 0 0
\(995\) 25.9808 + 45.0000i 0.823646 + 1.42660i
\(996\) 0 0
\(997\) −6.32109 10.9485i −0.200191 0.346741i 0.748399 0.663249i \(-0.230823\pi\)
−0.948590 + 0.316508i \(0.897490\pi\)
\(998\) 0 0
\(999\) 3.80442 6.58945i 0.120367 0.208481i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2028.2.i.n.529.4 8
13.2 odd 12 2028.2.q.f.361.1 4
13.3 even 3 inner 2028.2.i.n.2005.4 8
13.4 even 6 2028.2.a.m.1.1 4
13.5 odd 4 156.2.q.b.121.1 yes 4
13.6 odd 12 2028.2.b.e.337.1 4
13.7 odd 12 2028.2.b.e.337.4 4
13.8 odd 4 2028.2.q.f.1837.2 4
13.9 even 3 2028.2.a.m.1.4 4
13.10 even 6 inner 2028.2.i.n.2005.1 8
13.11 odd 12 156.2.q.b.49.2 4
13.12 even 2 inner 2028.2.i.n.529.1 8
39.5 even 4 468.2.t.d.433.2 4
39.11 even 12 468.2.t.d.361.1 4
39.17 odd 6 6084.2.a.bd.1.4 4
39.20 even 12 6084.2.b.o.4393.1 4
39.32 even 12 6084.2.b.o.4393.4 4
39.35 odd 6 6084.2.a.bd.1.1 4
52.11 even 12 624.2.bv.f.49.2 4
52.31 even 4 624.2.bv.f.433.1 4
52.35 odd 6 8112.2.a.cr.1.4 4
52.43 odd 6 8112.2.a.cr.1.1 4
65.18 even 4 3900.2.bw.j.2149.1 8
65.24 odd 12 3900.2.cd.i.2701.1 4
65.37 even 12 3900.2.bw.j.49.1 8
65.44 odd 4 3900.2.cd.i.901.1 4
65.57 even 4 3900.2.bw.j.2149.4 8
65.63 even 12 3900.2.bw.j.49.4 8
156.11 odd 12 1872.2.by.j.1297.1 4
156.83 odd 4 1872.2.by.j.433.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.2.q.b.49.2 4 13.11 odd 12
156.2.q.b.121.1 yes 4 13.5 odd 4
468.2.t.d.361.1 4 39.11 even 12
468.2.t.d.433.2 4 39.5 even 4
624.2.bv.f.49.2 4 52.11 even 12
624.2.bv.f.433.1 4 52.31 even 4
1872.2.by.j.433.2 4 156.83 odd 4
1872.2.by.j.1297.1 4 156.11 odd 12
2028.2.a.m.1.1 4 13.4 even 6
2028.2.a.m.1.4 4 13.9 even 3
2028.2.b.e.337.1 4 13.6 odd 12
2028.2.b.e.337.4 4 13.7 odd 12
2028.2.i.n.529.1 8 13.12 even 2 inner
2028.2.i.n.529.4 8 1.1 even 1 trivial
2028.2.i.n.2005.1 8 13.10 even 6 inner
2028.2.i.n.2005.4 8 13.3 even 3 inner
2028.2.q.f.361.1 4 13.2 odd 12
2028.2.q.f.1837.2 4 13.8 odd 4
3900.2.bw.j.49.1 8 65.37 even 12
3900.2.bw.j.49.4 8 65.63 even 12
3900.2.bw.j.2149.1 8 65.18 even 4
3900.2.bw.j.2149.4 8 65.57 even 4
3900.2.cd.i.901.1 4 65.44 odd 4
3900.2.cd.i.2701.1 4 65.24 odd 12
6084.2.a.bd.1.1 4 39.35 odd 6
6084.2.a.bd.1.4 4 39.17 odd 6
6084.2.b.o.4393.1 4 39.20 even 12
6084.2.b.o.4393.4 4 39.32 even 12
8112.2.a.cr.1.1 4 52.43 odd 6
8112.2.a.cr.1.4 4 52.35 odd 6