Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [6084,2,Mod(1,6084)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6084, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6084.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 6084 = 2^{2} \cdot 3^{2} \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6084.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(48.5809845897\) |
Analytic rank: | \(0\) |
Dimension: | \(3\) |
Coefficient field: | \(\Q(\zeta_{14})^+\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{3} - x^{2} - 2x + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 2028) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.2 | ||
Root | \(-1.24698\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 6084.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | −0.554958 | −0.248185 | −0.124092 | − | 0.992271i | \(-0.539602\pi\) | ||||
−0.124092 | + | 0.992271i | \(0.539602\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 1.04892 | 0.396453 | 0.198227 | − | 0.980156i | \(-0.436482\pi\) | ||||
0.198227 | + | 0.980156i | \(0.436482\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 2.91185 | 0.877957 | 0.438979 | − | 0.898498i | \(-0.355340\pi\) | ||||
0.438979 | + | 0.898498i | \(0.355340\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −2.75302 | −0.667706 | −0.333853 | − | 0.942625i | \(-0.608349\pi\) | ||||
−0.333853 | + | 0.942625i | \(0.608349\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −4.63102 | −1.06243 | −0.531215 | − | 0.847237i | \(-0.678264\pi\) | ||||
−0.531215 | + | 0.847237i | \(0.678264\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 5.76271 | 1.20161 | 0.600804 | − | 0.799396i | \(-0.294847\pi\) | ||||
0.600804 | + | 0.799396i | \(0.294847\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −4.69202 | −0.938404 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 2.80194 | 0.520307 | 0.260153 | − | 0.965567i | \(-0.416227\pi\) | ||||
0.260153 | + | 0.965567i | \(0.416227\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 4.18598 | 0.751824 | 0.375912 | − | 0.926655i | \(-0.377329\pi\) | ||||
0.375912 | + | 0.926655i | \(0.377329\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | −0.582105 | −0.0983937 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −0.466812 | −0.0767434 | −0.0383717 | − | 0.999264i | \(-0.512217\pi\) | ||||
−0.0383717 | + | 0.999264i | \(0.512217\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −3.89977 | −0.609042 | −0.304521 | − | 0.952506i | \(-0.598496\pi\) | ||||
−0.304521 | + | 0.952506i | \(0.598496\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 9.19567 | 1.40233 | 0.701163 | − | 0.713001i | \(-0.252664\pi\) | ||||
0.701163 | + | 0.713001i | \(0.252664\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 11.5211 | 1.68053 | 0.840263 | − | 0.542179i | \(-0.182401\pi\) | ||||
0.840263 | + | 0.542179i | \(0.182401\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −5.89977 | −0.842825 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −5.62565 | −0.772742 | −0.386371 | − | 0.922343i | \(-0.626272\pi\) | ||||
−0.386371 | + | 0.922343i | \(0.626272\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −1.61596 | −0.217896 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 3.10992 | 0.404877 | 0.202438 | − | 0.979295i | \(-0.435113\pi\) | ||||
0.202438 | + | 0.979295i | \(0.435113\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 10.9051 | 1.39626 | 0.698131 | − | 0.715970i | \(-0.254015\pi\) | ||||
0.698131 | + | 0.715970i | \(0.254015\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −8.04892 | −0.983332 | −0.491666 | − | 0.870784i | \(-0.663612\pi\) | ||||
−0.491666 | + | 0.870784i | \(0.663612\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 13.6920 | 1.62494 | 0.812472 | − | 0.583000i | \(-0.198121\pi\) | ||||
0.812472 | + | 0.583000i | \(0.198121\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −9.36658 | −1.09628 | −0.548138 | − | 0.836388i | \(-0.684663\pi\) | ||||
−0.548138 | + | 0.836388i | \(0.684663\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 3.05429 | 0.348069 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −3.60925 | −0.406073 | −0.203036 | − | 0.979171i | \(-0.565081\pi\) | ||||
−0.203036 | + | 0.979171i | \(0.565081\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 1.65519 | 0.181680 | 0.0908401 | − | 0.995865i | \(-0.471045\pi\) | ||||
0.0908401 | + | 0.995865i | \(0.471045\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 1.52781 | 0.165714 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 17.9705 | 1.90486 | 0.952432 | − | 0.304750i | \(-0.0985728\pi\) | ||||
0.952432 | + | 0.304750i | \(0.0985728\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 2.57002 | 0.263679 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 1.31767 | 0.133789 | 0.0668944 | − | 0.997760i | \(-0.478691\pi\) | ||||
0.0668944 | + | 0.997760i | \(0.478691\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 15.0248 | 1.49502 | 0.747509 | − | 0.664251i | \(-0.231249\pi\) | ||||
0.747509 | + | 0.664251i | \(0.231249\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −9.20775 | −0.907267 | −0.453633 | − | 0.891188i | \(-0.649872\pi\) | ||||
−0.453633 | + | 0.891188i | \(0.649872\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −7.22952 | −0.698904 | −0.349452 | − | 0.936954i | \(-0.613632\pi\) | ||||
−0.349452 | + | 0.936954i | \(0.613632\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 15.5036 | 1.48498 | 0.742490 | − | 0.669857i | \(-0.233645\pi\) | ||||
0.742490 | + | 0.669857i | \(0.233645\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −13.8267 | −1.30071 | −0.650353 | − | 0.759632i | \(-0.725379\pi\) | ||||
−0.650353 | + | 0.759632i | \(0.725379\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | −3.19806 | −0.298221 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −2.88769 | −0.264714 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −2.52111 | −0.229191 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 5.37867 | 0.481083 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 7.17629 | 0.636793 | 0.318396 | − | 0.947958i | \(-0.396856\pi\) | ||||
0.318396 | + | 0.947958i | \(0.396856\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −13.1304 | −1.14720 | −0.573602 | − | 0.819134i | \(-0.694455\pi\) | ||||
−0.573602 | + | 0.819134i | \(0.694455\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −4.85756 | −0.421204 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 21.8116 | 1.86349 | 0.931747 | − | 0.363109i | \(-0.118285\pi\) | ||||
0.931747 | + | 0.363109i | \(0.118285\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −2.96615 | −0.251585 | −0.125793 | − | 0.992057i | \(-0.540147\pi\) | ||||
−0.125793 | + | 0.992057i | \(0.540147\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −1.55496 | −0.129132 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −5.69633 | −0.466662 | −0.233331 | − | 0.972397i | \(-0.574963\pi\) | ||||
−0.233331 | + | 0.972397i | \(0.574963\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −19.1468 | −1.55814 | −0.779070 | − | 0.626937i | \(-0.784309\pi\) | ||||
−0.779070 | + | 0.626937i | \(0.784309\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −2.32304 | −0.186591 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −8.38404 | −0.669119 | −0.334560 | − | 0.942375i | \(-0.608588\pi\) | ||||
−0.334560 | + | 0.942375i | \(0.608588\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 6.04461 | 0.476382 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 1.97046 | 0.154338 | 0.0771692 | − | 0.997018i | \(-0.475412\pi\) | ||||
0.0771692 | + | 0.997018i | \(0.475412\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 24.7995 | 1.91905 | 0.959523 | − | 0.281630i | \(-0.0908749\pi\) | ||||
0.959523 | + | 0.281630i | \(0.0908749\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 0 | 0 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 2.57135 | 0.195496 | 0.0977481 | − | 0.995211i | \(-0.468836\pi\) | ||||
0.0977481 | + | 0.995211i | \(0.468836\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | −4.92154 | −0.372034 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 3.00538 | 0.224632 | 0.112316 | − | 0.993673i | \(-0.464173\pi\) | ||||
0.112316 | + | 0.993673i | \(0.464173\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −14.6843 | −1.09147 | −0.545736 | − | 0.837957i | \(-0.683750\pi\) | ||||
−0.545736 | + | 0.837957i | \(0.683750\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0.259061 | 0.0190466 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | −8.01639 | −0.586217 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 17.0804 | 1.23589 | 0.617946 | − | 0.786220i | \(-0.287965\pi\) | ||||
0.617946 | + | 0.786220i | \(0.287965\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 14.9758 | 1.07798 | 0.538992 | − | 0.842311i | \(-0.318805\pi\) | ||||
0.538992 | + | 0.842311i | \(0.318805\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 0.192685 | 0.0137283 | 0.00686414 | − | 0.999976i | \(-0.497815\pi\) | ||||
0.00686414 | + | 0.999976i | \(0.497815\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 11.8726 | 0.841628 | 0.420814 | − | 0.907147i | \(-0.361744\pi\) | ||||
0.420814 | + | 0.907147i | \(0.361744\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 2.93900 | 0.206277 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 2.16421 | 0.151155 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −13.4849 | −0.932767 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 6.03385 | 0.415387 | 0.207694 | − | 0.978194i | \(-0.433404\pi\) | ||||
0.207694 | + | 0.978194i | \(0.433404\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | −5.10321 | −0.348036 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 4.39075 | 0.298063 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −8.52648 | −0.570976 | −0.285488 | − | 0.958382i | \(-0.592156\pi\) | ||||
−0.285488 | + | 0.958382i | \(0.592156\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 11.0000 | 0.730096 | 0.365048 | − | 0.930989i | \(-0.381053\pi\) | ||||
0.365048 | + | 0.930989i | \(0.381053\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 17.9119 | 1.18365 | 0.591824 | − | 0.806067i | \(-0.298408\pi\) | ||||
0.591824 | + | 0.806067i | \(0.298408\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −22.8159 | −1.49472 | −0.747361 | − | 0.664418i | \(-0.768679\pi\) | ||||
−0.747361 | + | 0.664418i | \(0.768679\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −6.39373 | −0.417081 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 8.34481 | 0.539781 | 0.269891 | − | 0.962891i | \(-0.413012\pi\) | ||||
0.269891 | + | 0.962891i | \(0.413012\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 3.75541 | 0.241907 | 0.120954 | − | 0.992658i | \(-0.461405\pi\) | ||||
0.120954 | + | 0.992658i | \(0.461405\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 3.27413 | 0.209176 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 30.3086 | 1.91306 | 0.956530 | − | 0.291634i | \(-0.0941989\pi\) | ||||
0.956530 | + | 0.291634i | \(0.0941989\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 16.7802 | 1.05496 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 20.8412 | 1.30004 | 0.650018 | − | 0.759919i | \(-0.274761\pi\) | ||||
0.650018 | + | 0.759919i | \(0.274761\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −0.489647 | −0.0304252 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −8.58642 | −0.529461 | −0.264731 | − | 0.964322i | \(-0.585283\pi\) | ||||
−0.264731 | + | 0.964322i | \(0.585283\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 3.12200 | 0.191783 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −14.8267 | −0.903999 | −0.452000 | − | 0.892018i | \(-0.649289\pi\) | ||||
−0.452000 | + | 0.892018i | \(0.649289\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 7.23490 | 0.439489 | 0.219744 | − | 0.975557i | \(-0.429478\pi\) | ||||
0.219744 | + | 0.975557i | \(0.429478\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | −13.6625 | −0.823879 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 11.2054 | 0.673265 | 0.336632 | − | 0.941636i | \(-0.390712\pi\) | ||||
0.336632 | + | 0.941636i | \(0.390712\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −12.3002 | −0.733769 | −0.366884 | − | 0.930267i | \(-0.619576\pi\) | ||||
−0.366884 | + | 0.930267i | \(0.619576\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 24.3521 | 1.44758 | 0.723791 | − | 0.690019i | \(-0.242398\pi\) | ||||
0.723791 | + | 0.690019i | \(0.242398\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −4.09054 | −0.241457 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −9.42088 | −0.554169 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 6.20237 | 0.362347 | 0.181173 | − | 0.983451i | \(-0.442011\pi\) | ||||
0.181173 | + | 0.983451i | \(0.442011\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −1.72587 | −0.100484 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 9.64550 | 0.555957 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | −6.05190 | −0.346531 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 26.4795 | 1.51126 | 0.755632 | − | 0.654996i | \(-0.227330\pi\) | ||||
0.755632 | + | 0.654996i | \(0.227330\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −15.5308 | −0.880671 | −0.440335 | − | 0.897833i | \(-0.645140\pi\) | ||||
−0.440335 | + | 0.897833i | \(0.645140\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 16.9681 | 0.959092 | 0.479546 | − | 0.877517i | \(-0.340801\pi\) | ||||
0.479546 | + | 0.877517i | \(0.340801\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 25.5066 | 1.43260 | 0.716298 | − | 0.697795i | \(-0.245835\pi\) | ||||
0.716298 | + | 0.697795i | \(0.245835\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 8.15883 | 0.456807 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 12.7493 | 0.709390 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 12.0847 | 0.666250 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −10.6136 | −0.583374 | −0.291687 | − | 0.956514i | \(-0.594217\pi\) | ||||
−0.291687 | + | 0.956514i | \(0.594217\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 4.46681 | 0.244048 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 29.2717 | 1.59453 | 0.797266 | − | 0.603628i | \(-0.206279\pi\) | ||||
0.797266 | + | 0.603628i | \(0.206279\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 12.1890 | 0.660069 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | −13.5308 | −0.730594 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 34.8146 | 1.86895 | 0.934473 | − | 0.356034i | \(-0.115871\pi\) | ||||
0.934473 | + | 0.356034i | \(0.115871\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 30.1957 | 1.61634 | 0.808169 | − | 0.588951i | \(-0.200459\pi\) | ||||
0.808169 | + | 0.588951i | \(0.200459\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −24.9691 | −1.32897 | −0.664486 | − | 0.747300i | \(-0.731350\pi\) | ||||
−0.664486 | + | 0.747300i | \(0.731350\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | −7.59850 | −0.403286 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −14.1661 | −0.747660 | −0.373830 | − | 0.927497i | \(-0.621956\pi\) | ||||
−0.373830 | + | 0.927497i | \(0.621956\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 2.44637 | 0.128756 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 5.19806 | 0.272079 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 8.78687 | 0.458671 | 0.229335 | − | 0.973347i | \(-0.426345\pi\) | ||||
0.229335 | + | 0.973347i | \(0.426345\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −5.90084 | −0.306356 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −18.3260 | −0.948886 | −0.474443 | − | 0.880286i | \(-0.657350\pi\) | ||||
−0.474443 | + | 0.880286i | \(0.657350\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 4.77586 | 0.245319 | 0.122660 | − | 0.992449i | \(-0.460858\pi\) | ||||
0.122660 | + | 0.992449i | \(0.460858\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 6.19029 | 0.316309 | 0.158155 | − | 0.987414i | \(-0.449446\pi\) | ||||
0.158155 | + | 0.987414i | \(0.449446\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | −1.69501 | −0.0863855 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −24.8780 | −1.26136 | −0.630682 | − | 0.776041i | \(-0.717225\pi\) | ||||
−0.630682 | + | 0.776041i | \(0.717225\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −15.8649 | −0.802320 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 2.00298 | 0.100781 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 4.62027 | 0.231885 | 0.115942 | − | 0.993256i | \(-0.463011\pi\) | ||||
0.115942 | + | 0.993256i | \(0.463011\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −1.64848 | −0.0823212 | −0.0411606 | − | 0.999153i | \(-0.513106\pi\) | ||||
−0.0411606 | + | 0.999153i | \(0.513106\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −1.35929 | −0.0673774 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 34.8049 | 1.72099 | 0.860496 | − | 0.509457i | \(-0.170154\pi\) | ||||
0.860496 | + | 0.509457i | \(0.170154\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 3.26205 | 0.160515 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −0.918559 | −0.0450903 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −21.6353 | −1.05696 | −0.528478 | − | 0.848947i | \(-0.677237\pi\) | ||||
−0.528478 | + | 0.848947i | \(0.677237\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 35.1008 | 1.71071 | 0.855355 | − | 0.518043i | \(-0.173339\pi\) | ||||
0.855355 | + | 0.518043i | \(0.173339\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 12.9172 | 0.626578 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 11.4386 | 0.553553 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −20.0925 | −0.967820 | −0.483910 | − | 0.875118i | \(-0.660784\pi\) | ||||
−0.483910 | + | 0.875118i | \(0.660784\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −18.6939 | −0.898373 | −0.449187 | − | 0.893438i | \(-0.648286\pi\) | ||||
−0.449187 | + | 0.893438i | \(0.648286\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −26.6872 | −1.27662 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 1.35019 | 0.0644411 | 0.0322206 | − | 0.999481i | \(-0.489742\pi\) | ||||
0.0322206 | + | 0.999481i | \(0.489742\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 0.400436 | 0.0190253 | 0.00951265 | − | 0.999955i | \(-0.496972\pi\) | ||||
0.00951265 | + | 0.999955i | \(0.496972\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −9.97285 | −0.472759 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 35.7904 | 1.68906 | 0.844528 | − | 0.535512i | \(-0.179881\pi\) | ||||
0.844528 | + | 0.535512i | \(0.179881\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −11.3556 | −0.534713 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −5.17092 | −0.241885 | −0.120943 | − | 0.992660i | \(-0.538592\pi\) | ||||
−0.120943 | + | 0.992660i | \(0.538592\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −20.8780 | −0.972386 | −0.486193 | − | 0.873852i | \(-0.661615\pi\) | ||||
−0.486193 | + | 0.873852i | \(0.661615\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 30.7198 | 1.42767 | 0.713834 | − | 0.700315i | \(-0.246957\pi\) | ||||
0.713834 | + | 0.700315i | \(0.246957\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −15.2741 | −0.706802 | −0.353401 | − | 0.935472i | \(-0.614975\pi\) | ||||
−0.353401 | + | 0.935472i | \(0.614975\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −8.44265 | −0.389845 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 26.7764 | 1.23118 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 21.7289 | 0.996988 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 3.05861 | 0.139751 | 0.0698756 | − | 0.997556i | \(-0.477740\pi\) | ||||
0.0698756 | + | 0.997556i | \(0.477740\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | −0.731250 | −0.0332044 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −15.1521 | −0.686608 | −0.343304 | − | 0.939224i | \(-0.611546\pi\) | ||||
−0.343304 | + | 0.939224i | \(0.611546\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −23.4795 | −1.05961 | −0.529807 | − | 0.848118i | \(-0.677736\pi\) | ||||
−0.529807 | + | 0.848118i | \(0.677736\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −7.71379 | −0.347412 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 14.3618 | 0.644215 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −38.0689 | −1.70420 | −0.852099 | − | 0.523381i | \(-0.824670\pi\) | ||||
−0.852099 | + | 0.523381i | \(0.824670\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 11.1274 | 0.496145 | 0.248073 | − | 0.968741i | \(-0.420203\pi\) | ||||
0.248073 | + | 0.968741i | \(0.420203\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −8.33811 | −0.371041 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 26.7633 | 1.18626 | 0.593131 | − | 0.805106i | \(-0.297892\pi\) | ||||
0.593131 | + | 0.805106i | \(0.297892\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −9.82477 | −0.434622 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 5.10992 | 0.225170 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 33.5478 | 1.47543 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −20.5797 | −0.901614 | −0.450807 | − | 0.892622i | \(-0.648864\pi\) | ||||
−0.450807 | + | 0.892622i | \(0.648864\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −6.77479 | −0.296241 | −0.148120 | − | 0.988969i | \(-0.547322\pi\) | ||||
−0.148120 | + | 0.988969i | \(0.547322\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −11.5241 | −0.501997 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 10.2088 | 0.443862 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 4.01208 | 0.173457 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −17.1793 | −0.739964 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −1.94331 | −0.0835495 | −0.0417748 | − | 0.999127i | \(-0.513301\pi\) | ||||
−0.0417748 | + | 0.999127i | \(0.513301\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −8.60388 | −0.368550 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −39.1323 | −1.67318 | −0.836588 | − | 0.547833i | \(-0.815453\pi\) | ||||
−0.836588 | + | 0.547833i | \(0.815453\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −12.9758 | −0.552789 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −3.78581 | −0.160989 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −24.4989 | −1.03805 | −0.519025 | − | 0.854759i | \(-0.673705\pi\) | ||||
−0.519025 | + | 0.854759i | \(0.673705\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 21.8267 | 0.919885 | 0.459943 | − | 0.887949i | \(-0.347870\pi\) | ||||
0.459943 | + | 0.887949i | \(0.347870\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 7.67324 | 0.322815 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 11.5627 | 0.484735 | 0.242367 | − | 0.970185i | \(-0.422076\pi\) | ||||
0.242367 | + | 0.970185i | \(0.422076\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 24.7614 | 1.03623 | 0.518116 | − | 0.855310i | \(-0.326634\pi\) | ||||
0.518116 | + | 0.855310i | \(0.326634\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −27.0388 | −1.12759 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −13.5090 | −0.562388 | −0.281194 | − | 0.959651i | \(-0.590730\pi\) | ||||
−0.281194 | + | 0.959651i | \(0.590730\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 1.73615 | 0.0720278 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −16.3811 | −0.678434 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −6.70304 | −0.276664 | −0.138332 | − | 0.990386i | \(-0.544174\pi\) | ||||
−0.138332 | + | 0.990386i | \(0.544174\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −19.3854 | −0.798760 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −16.0194 | −0.657837 | −0.328918 | − | 0.944358i | \(-0.606684\pi\) | ||||
−0.328918 | + | 0.944358i | \(0.606684\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 1.60255 | 0.0656980 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −19.8243 | −0.809999 | −0.404999 | − | 0.914317i | \(-0.632728\pi\) | ||||
−0.404999 | + | 0.914317i | \(0.632728\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 29.1909 | 1.19072 | 0.595360 | − | 0.803459i | \(-0.297009\pi\) | ||||
0.595360 | + | 0.803459i | \(0.297009\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 1.39911 | 0.0568818 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −6.36227 | −0.258237 | −0.129118 | − | 0.991629i | \(-0.541215\pi\) | ||||
−0.129118 | + | 0.991629i | \(0.541215\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −30.7711 | −1.24283 | −0.621416 | − | 0.783481i | \(-0.713442\pi\) | ||||
−0.621416 | + | 0.783481i | \(0.713442\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 12.0242 | 0.484075 | 0.242037 | − | 0.970267i | \(-0.422184\pi\) | ||||
0.242037 | + | 0.970267i | \(0.422184\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −9.02715 | −0.362832 | −0.181416 | − | 0.983406i | \(-0.558068\pi\) | ||||
−0.181416 | + | 0.983406i | \(0.558068\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 18.8495 | 0.755190 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 20.4752 | 0.819007 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 1.28514 | 0.0512420 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −15.5526 | −0.619138 | −0.309569 | − | 0.950877i | \(-0.600185\pi\) | ||||
−0.309569 | + | 0.950877i | \(0.600185\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | −3.98254 | −0.158042 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 19.4209 | 0.767079 | 0.383539 | − | 0.923525i | \(-0.374705\pi\) | ||||
0.383539 | + | 0.923525i | \(0.374705\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 26.8267 | 1.05794 | 0.528971 | − | 0.848640i | \(-0.322578\pi\) | ||||
0.528971 | + | 0.848640i | \(0.322578\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −5.08815 | −0.200036 | −0.100018 | − | 0.994986i | \(-0.531890\pi\) | ||||
−0.100018 | + | 0.994986i | \(0.531890\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 9.05562 | 0.355464 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 19.7157 | 0.771535 | 0.385768 | − | 0.922596i | \(-0.373937\pi\) | ||||
0.385768 | + | 0.922596i | \(0.373937\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 7.28680 | 0.284719 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −9.42519 | −0.367153 | −0.183577 | − | 0.983005i | \(-0.558768\pi\) | ||||
−0.183577 | + | 0.983005i | \(0.558768\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 29.9946 | 1.16666 | 0.583328 | − | 0.812237i | \(-0.301750\pi\) | ||||
0.583328 | + | 0.812237i | \(0.301750\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 2.69574 | 0.104536 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 16.1468 | 0.625205 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 31.7542 | 1.22586 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −47.7294 | −1.83984 | −0.919918 | − | 0.392112i | \(-0.871745\pi\) | ||||
−0.919918 | + | 0.392112i | \(0.871745\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 42.9124 | 1.64926 | 0.824630 | − | 0.565673i | \(-0.191384\pi\) | ||||
0.824630 | + | 0.565673i | \(0.191384\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 1.38212 | 0.0530411 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 0.970460 | 0.0371336 | 0.0185668 | − | 0.999828i | \(-0.494090\pi\) | ||||
0.0185668 | + | 0.999828i | \(0.494090\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −12.1045 | −0.462491 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −1.16660 | −0.0443797 | −0.0221898 | − | 0.999754i | \(-0.507064\pi\) | ||||
−0.0221898 | + | 0.999754i | \(0.507064\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 1.64609 | 0.0624397 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 10.7362 | 0.406661 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 17.3274 | 0.654445 | 0.327223 | − | 0.944947i | \(-0.393887\pi\) | ||||
0.327223 | + | 0.944947i | \(0.393887\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 2.16182 | 0.0815345 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 15.7597 | 0.592705 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −16.4601 | −0.618172 | −0.309086 | − | 0.951034i | \(-0.600023\pi\) | ||||
−0.309086 | + | 0.951034i | \(0.600023\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 24.1226 | 0.903398 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −14.1715 | −0.528508 | −0.264254 | − | 0.964453i | \(-0.585126\pi\) | ||||
−0.264254 | + | 0.964453i | \(0.585126\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −9.65817 | −0.359689 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | −13.1468 | −0.488258 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −37.8810 | −1.40493 | −0.702464 | − | 0.711719i | \(-0.747917\pi\) | ||||
−0.702464 | + | 0.711719i | \(0.747917\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −25.3159 | −0.936341 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −0.377338 | −0.0139373 | −0.00696865 | − | 0.999976i | \(-0.502218\pi\) | ||||
−0.00696865 | + | 0.999976i | \(0.502218\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −23.4373 | −0.863323 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −1.12631 | −0.0414320 | −0.0207160 | − | 0.999785i | \(-0.506595\pi\) | ||||
−0.0207160 | + | 0.999785i | \(0.506595\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −22.7047 | −0.832954 | −0.416477 | − | 0.909146i | \(-0.636735\pi\) | ||||
−0.416477 | + | 0.909146i | \(0.636735\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 3.16123 | 0.115818 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −7.58317 | −0.277083 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 13.9282 | 0.508249 | 0.254124 | − | 0.967172i | \(-0.418213\pi\) | ||||
0.254124 | + | 0.967172i | \(0.418213\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 10.6256 | 0.386707 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 1.16660 | 0.0424009 | 0.0212005 | − | 0.999775i | \(-0.493251\pi\) | ||||
0.0212005 | + | 0.999775i | \(0.493251\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 0.821789 | 0.0297898 | 0.0148949 | − | 0.999889i | \(-0.495259\pi\) | ||||
0.0148949 | + | 0.999889i | \(0.495259\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 16.2620 | 0.588726 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 33.7017 | 1.21531 | 0.607657 | − | 0.794199i | \(-0.292109\pi\) | ||||
0.607657 | + | 0.794199i | \(0.292109\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −0.764037 | −0.0274805 | −0.0137403 | − | 0.999906i | \(-0.504374\pi\) | ||||
−0.0137403 | + | 0.999906i | \(0.504374\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −19.6407 | −0.705515 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 18.0599 | 0.647064 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 39.8692 | 1.42663 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 4.65279 | 0.166065 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −12.1739 | −0.433953 | −0.216976 | − | 0.976177i | \(-0.569619\pi\) | ||||
−0.216976 | + | 0.976177i | \(0.569619\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −14.5031 | −0.515669 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −38.2887 | −1.35626 | −0.678128 | − | 0.734944i | \(-0.737209\pi\) | ||||
−0.678128 | + | 0.734944i | \(0.737209\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −31.7178 | −1.12210 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −27.2741 | −0.962483 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | −3.35450 | −0.118231 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 29.9638 | 1.05347 | 0.526735 | − | 0.850030i | \(-0.323416\pi\) | ||||
0.526735 | + | 0.850030i | \(0.323416\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 46.3521 | 1.62764 | 0.813821 | − | 0.581115i | \(-0.197383\pi\) | ||||
0.813821 | + | 0.581115i | \(0.197383\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −1.09352 | −0.0383044 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −42.5854 | −1.48987 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 48.3105 | 1.68605 | 0.843024 | − | 0.537876i | \(-0.180773\pi\) | ||||
0.843024 | + | 0.537876i | \(0.180773\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −5.31229 | −0.185175 | −0.0925874 | − | 0.995705i | \(-0.529514\pi\) | ||||
−0.0925874 | + | 0.995705i | \(0.529514\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 22.0968 | 0.768380 | 0.384190 | − | 0.923254i | \(-0.374481\pi\) | ||||
0.384190 | + | 0.923254i | \(0.374481\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −1.61655 | −0.0561450 | −0.0280725 | − | 0.999606i | \(-0.508937\pi\) | ||||
−0.0280725 | + | 0.999606i | \(0.508937\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 16.2422 | 0.562759 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | −13.7627 | −0.476278 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −41.0823 | −1.41832 | −0.709159 | − | 0.705048i | \(-0.750925\pi\) | ||||
−0.709159 | + | 0.705048i | \(0.750925\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −21.1491 | −0.729281 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −2.64443 | −0.0908638 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −2.69010 | −0.0922155 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −35.0441 | −1.19989 | −0.599944 | − | 0.800042i | \(-0.704811\pi\) | ||||
−0.599944 | + | 0.800042i | \(0.704811\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 3.76079 | 0.128466 | 0.0642331 | − | 0.997935i | \(-0.479540\pi\) | ||||
0.0642331 | + | 0.997935i | \(0.479540\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 7.11662 | 0.242816 | 0.121408 | − | 0.992603i | \(-0.461259\pi\) | ||||
0.121408 | + | 0.992603i | \(0.461259\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −57.5900 | −1.96039 | −0.980193 | − | 0.198044i | \(-0.936541\pi\) | ||||
−0.980193 | + | 0.198044i | \(0.936541\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −1.42699 | −0.0485192 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −10.5096 | −0.356514 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 5.64178 | 0.190727 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −19.2150 | −0.648846 | −0.324423 | − | 0.945912i | \(-0.605170\pi\) | ||||
−0.324423 | + | 0.945912i | \(0.605170\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 11.1444 | 0.375463 | 0.187731 | − | 0.982220i | \(-0.439887\pi\) | ||||
0.187731 | + | 0.982220i | \(0.439887\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −4.28919 | −0.144343 | −0.0721714 | − | 0.997392i | \(-0.522993\pi\) | ||||
−0.0721714 | + | 0.997392i | \(0.522993\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 33.1739 | 1.11387 | 0.556935 | − | 0.830556i | \(-0.311977\pi\) | ||||
0.556935 | + | 0.830556i | \(0.311977\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 7.52734 | 0.252459 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −53.3545 | −1.78544 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −1.66786 | −0.0557504 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 11.7289 | 0.391179 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 15.4875 | 0.515964 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 8.14914 | 0.270887 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −40.6282 | −1.34904 | −0.674518 | − | 0.738259i | \(-0.735648\pi\) | ||||
−0.674518 | + | 0.738259i | \(0.735648\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −46.2731 | −1.53309 | −0.766547 | − | 0.642188i | \(-0.778027\pi\) | ||||
−0.766547 | + | 0.642188i | \(0.778027\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 4.81966 | 0.159507 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −13.7727 | −0.454813 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 50.4674 | 1.66477 | 0.832383 | − | 0.554201i | \(-0.186976\pi\) | ||||
0.832383 | + | 0.554201i | \(0.186976\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 2.19029 | 0.0720164 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 17.9250 | 0.588100 | 0.294050 | − | 0.955790i | \(-0.404997\pi\) | ||||
0.294050 | + | 0.955790i | \(0.404997\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 27.3220 | 0.895442 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 4.44876 | 0.145490 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 5.85325 | 0.191217 | 0.0956086 | − | 0.995419i | \(-0.469520\pi\) | ||||
0.0956086 | + | 0.995419i | \(0.469520\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −56.7958 | −1.85149 | −0.925745 | − | 0.378147i | \(-0.876561\pi\) | ||||
−0.925745 | + | 0.378147i | \(0.876561\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −22.4733 | −0.731830 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −6.14974 | −0.199840 | −0.0999198 | − | 0.994995i | \(-0.531859\pi\) | ||||
−0.0999198 | + | 0.994995i | \(0.531859\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −48.9778 | −1.58655 | −0.793273 | − | 0.608867i | \(-0.791624\pi\) | ||||
−0.793273 | + | 0.608867i | \(0.791624\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | −9.47889 | −0.306730 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 22.8786 | 0.738788 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −13.4776 | −0.434760 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −8.31096 | −0.267539 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −54.2616 | −1.74493 | −0.872467 | − | 0.488673i | \(-0.837481\pi\) | ||||
−0.872467 | + | 0.488673i | \(0.837481\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 36.3142 | 1.16538 | 0.582689 | − | 0.812695i | \(-0.302000\pi\) | ||||
0.582689 | + | 0.812695i | \(0.302000\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −3.11124 | −0.0997419 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 49.7375 | 1.59124 | 0.795621 | − | 0.605794i | \(-0.207144\pi\) | ||||
0.795621 | + | 0.605794i | \(0.207144\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 52.3274 | 1.67239 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −10.9981 | −0.350784 | −0.175392 | − | 0.984499i | \(-0.556119\pi\) | ||||
−0.175392 | + | 0.984499i | \(0.556119\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −0.106932 | −0.00340715 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 52.9920 | 1.68505 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 6.73078 | 0.213810 | 0.106905 | − | 0.994269i | \(-0.465906\pi\) | ||||
0.106905 | + | 0.994269i | \(0.465906\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | −6.58881 | −0.208879 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 43.3497 | 1.37290 | 0.686450 | − | 0.727177i | \(-0.259168\pi\) | ||||
0.686450 | + | 0.727177i | \(0.259168\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 6084.2.a.y.1.2 | 3 | ||
3.2 | odd | 2 | 2028.2.a.j.1.2 | yes | 3 | ||
12.11 | even | 2 | 8112.2.a.co.1.2 | 3 | |||
13.5 | odd | 4 | 6084.2.b.r.4393.4 | 6 | |||
13.8 | odd | 4 | 6084.2.b.r.4393.3 | 6 | |||
13.12 | even | 2 | 6084.2.a.bb.1.2 | 3 | |||
39.2 | even | 12 | 2028.2.q.j.1837.3 | 12 | |||
39.5 | even | 4 | 2028.2.b.f.337.3 | 6 | |||
39.8 | even | 4 | 2028.2.b.f.337.4 | 6 | |||
39.11 | even | 12 | 2028.2.q.j.1837.4 | 12 | |||
39.17 | odd | 6 | 2028.2.i.l.2005.2 | 6 | |||
39.20 | even | 12 | 2028.2.q.j.361.4 | 12 | |||
39.23 | odd | 6 | 2028.2.i.l.529.2 | 6 | |||
39.29 | odd | 6 | 2028.2.i.m.529.2 | 6 | |||
39.32 | even | 12 | 2028.2.q.j.361.3 | 12 | |||
39.35 | odd | 6 | 2028.2.i.m.2005.2 | 6 | |||
39.38 | odd | 2 | 2028.2.a.i.1.2 | ✓ | 3 | ||
156.155 | even | 2 | 8112.2.a.ch.1.2 | 3 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
2028.2.a.i.1.2 | ✓ | 3 | 39.38 | odd | 2 | ||
2028.2.a.j.1.2 | yes | 3 | 3.2 | odd | 2 | ||
2028.2.b.f.337.3 | 6 | 39.5 | even | 4 | |||
2028.2.b.f.337.4 | 6 | 39.8 | even | 4 | |||
2028.2.i.l.529.2 | 6 | 39.23 | odd | 6 | |||
2028.2.i.l.2005.2 | 6 | 39.17 | odd | 6 | |||
2028.2.i.m.529.2 | 6 | 39.29 | odd | 6 | |||
2028.2.i.m.2005.2 | 6 | 39.35 | odd | 6 | |||
2028.2.q.j.361.3 | 12 | 39.32 | even | 12 | |||
2028.2.q.j.361.4 | 12 | 39.20 | even | 12 | |||
2028.2.q.j.1837.3 | 12 | 39.2 | even | 12 | |||
2028.2.q.j.1837.4 | 12 | 39.11 | even | 12 | |||
6084.2.a.y.1.2 | 3 | 1.1 | even | 1 | trivial | ||
6084.2.a.bb.1.2 | 3 | 13.12 | even | 2 | |||
6084.2.b.r.4393.3 | 6 | 13.8 | odd | 4 | |||
6084.2.b.r.4393.4 | 6 | 13.5 | odd | 4 | |||
8112.2.a.ch.1.2 | 3 | 156.155 | even | 2 | |||
8112.2.a.co.1.2 | 3 | 12.11 | even | 2 |