Properties

Label 2028.2.i.l.529.2
Level $2028$
Weight $2$
Character 2028.529
Analytic conductor $16.194$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2028,2,Mod(529,2028)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2028, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2028.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2028.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.1936615299\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.64827.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 529.2
Root \(0.222521 + 0.385418i\) of defining polynomial
Character \(\chi\) \(=\) 2028.529
Dual form 2028.2.i.l.2005.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{3} -0.554958 q^{5} +(0.524459 + 0.908389i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(-1.45593 + 2.52174i) q^{11} +(-0.277479 + 0.480608i) q^{15} +(-1.37651 - 2.38419i) q^{17} +(-2.31551 - 4.01058i) q^{19} +1.04892 q^{21} +(2.88135 - 4.99065i) q^{23} -4.69202 q^{25} -1.00000 q^{27} +(1.40097 - 2.42655i) q^{29} -4.18598 q^{31} +(1.45593 + 2.52174i) q^{33} +(-0.291053 - 0.504118i) q^{35} +(-0.233406 + 0.404271i) q^{37} +(1.94989 - 3.37730i) q^{41} +(-4.59783 - 7.96368i) q^{43} +(0.277479 + 0.480608i) q^{45} +11.5211 q^{47} +(2.94989 - 5.10935i) q^{49} -2.75302 q^{51} +5.62565 q^{53} +(0.807979 - 1.39946i) q^{55} -4.63102 q^{57} +(-1.55496 - 2.69327i) q^{59} +(-5.45257 - 9.44414i) q^{61} +(0.524459 - 0.908389i) q^{63} +(-4.02446 + 6.97057i) q^{67} +(-2.88135 - 4.99065i) q^{69} +(-6.84601 - 11.8576i) q^{71} +9.36658 q^{73} +(-2.34601 + 4.06341i) q^{75} -3.05429 q^{77} -3.60925 q^{79} +(-0.500000 + 0.866025i) q^{81} +1.65519 q^{83} +(0.763906 + 1.32312i) q^{85} +(-1.40097 - 2.42655i) q^{87} +(-8.98523 + 15.5629i) q^{89} +(-2.09299 + 3.62517i) q^{93} +(1.28501 + 2.22571i) q^{95} +(0.658834 + 1.14113i) q^{97} +2.91185 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} - 4 q^{5} - 6 q^{7} - 3 q^{9} - 5 q^{11} - 2 q^{15} - 13 q^{17} + q^{19} - 12 q^{21} - 18 q^{25} - 6 q^{27} + 4 q^{29} + 4 q^{31} + 5 q^{33} + 4 q^{35} + 2 q^{37} - 11 q^{41} + 9 q^{43} + 2 q^{45}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2028\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1861\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 0 0
\(5\) −0.554958 −0.248185 −0.124092 0.992271i \(-0.539602\pi\)
−0.124092 + 0.992271i \(0.539602\pi\)
\(6\) 0 0
\(7\) 0.524459 + 0.908389i 0.198227 + 0.343339i 0.947954 0.318409i \(-0.103148\pi\)
−0.749727 + 0.661747i \(0.769815\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −1.45593 + 2.52174i −0.438979 + 0.760333i −0.997611 0.0690822i \(-0.977993\pi\)
0.558632 + 0.829415i \(0.311326\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −0.277479 + 0.480608i −0.0716448 + 0.124092i
\(16\) 0 0
\(17\) −1.37651 2.38419i −0.333853 0.578250i 0.649411 0.760438i \(-0.275016\pi\)
−0.983264 + 0.182188i \(0.941682\pi\)
\(18\) 0 0
\(19\) −2.31551 4.01058i −0.531215 0.920091i −0.999336 0.0364268i \(-0.988402\pi\)
0.468122 0.883664i \(-0.344931\pi\)
\(20\) 0 0
\(21\) 1.04892 0.228893
\(22\) 0 0
\(23\) 2.88135 4.99065i 0.600804 1.04062i −0.391896 0.920010i \(-0.628181\pi\)
0.992700 0.120613i \(-0.0384861\pi\)
\(24\) 0 0
\(25\) −4.69202 −0.938404
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 1.40097 2.42655i 0.260153 0.450599i −0.706129 0.708083i \(-0.749560\pi\)
0.966283 + 0.257484i \(0.0828935\pi\)
\(30\) 0 0
\(31\) −4.18598 −0.751824 −0.375912 0.926655i \(-0.622671\pi\)
−0.375912 + 0.926655i \(0.622671\pi\)
\(32\) 0 0
\(33\) 1.45593 + 2.52174i 0.253444 + 0.438979i
\(34\) 0 0
\(35\) −0.291053 0.504118i −0.0491969 0.0852115i
\(36\) 0 0
\(37\) −0.233406 + 0.404271i −0.0383717 + 0.0664618i −0.884573 0.466401i \(-0.845550\pi\)
0.846202 + 0.532863i \(0.178884\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.94989 3.37730i 0.304521 0.527446i −0.672634 0.739976i \(-0.734837\pi\)
0.977155 + 0.212530i \(0.0681703\pi\)
\(42\) 0 0
\(43\) −4.59783 7.96368i −0.701163 1.21445i −0.968058 0.250725i \(-0.919331\pi\)
0.266895 0.963726i \(-0.414002\pi\)
\(44\) 0 0
\(45\) 0.277479 + 0.480608i 0.0413641 + 0.0716448i
\(46\) 0 0
\(47\) 11.5211 1.68053 0.840263 0.542179i \(-0.182401\pi\)
0.840263 + 0.542179i \(0.182401\pi\)
\(48\) 0 0
\(49\) 2.94989 5.10935i 0.421412 0.729908i
\(50\) 0 0
\(51\) −2.75302 −0.385500
\(52\) 0 0
\(53\) 5.62565 0.772742 0.386371 0.922343i \(-0.373728\pi\)
0.386371 + 0.922343i \(0.373728\pi\)
\(54\) 0 0
\(55\) 0.807979 1.39946i 0.108948 0.188703i
\(56\) 0 0
\(57\) −4.63102 −0.613394
\(58\) 0 0
\(59\) −1.55496 2.69327i −0.202438 0.350633i 0.746875 0.664964i \(-0.231553\pi\)
−0.949314 + 0.314331i \(0.898220\pi\)
\(60\) 0 0
\(61\) −5.45257 9.44414i −0.698131 1.20920i −0.969114 0.246614i \(-0.920682\pi\)
0.270983 0.962584i \(-0.412651\pi\)
\(62\) 0 0
\(63\) 0.524459 0.908389i 0.0660756 0.114446i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.02446 + 6.97057i −0.491666 + 0.851590i −0.999954 0.00959683i \(-0.996945\pi\)
0.508288 + 0.861187i \(0.330279\pi\)
\(68\) 0 0
\(69\) −2.88135 4.99065i −0.346874 0.600804i
\(70\) 0 0
\(71\) −6.84601 11.8576i −0.812472 1.40724i −0.911129 0.412121i \(-0.864788\pi\)
0.0986570 0.995121i \(-0.468545\pi\)
\(72\) 0 0
\(73\) 9.36658 1.09628 0.548138 0.836388i \(-0.315337\pi\)
0.548138 + 0.836388i \(0.315337\pi\)
\(74\) 0 0
\(75\) −2.34601 + 4.06341i −0.270894 + 0.469202i
\(76\) 0 0
\(77\) −3.05429 −0.348069
\(78\) 0 0
\(79\) −3.60925 −0.406073 −0.203036 0.979171i \(-0.565081\pi\)
−0.203036 + 0.979171i \(0.565081\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 1.65519 0.181680 0.0908401 0.995865i \(-0.471045\pi\)
0.0908401 + 0.995865i \(0.471045\pi\)
\(84\) 0 0
\(85\) 0.763906 + 1.32312i 0.0828572 + 0.143513i
\(86\) 0 0
\(87\) −1.40097 2.42655i −0.150200 0.260153i
\(88\) 0 0
\(89\) −8.98523 + 15.5629i −0.952432 + 1.64966i −0.212295 + 0.977206i \(0.568094\pi\)
−0.740137 + 0.672456i \(0.765239\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −2.09299 + 3.62517i −0.217033 + 0.375912i
\(94\) 0 0
\(95\) 1.28501 + 2.22571i 0.131839 + 0.228353i
\(96\) 0 0
\(97\) 0.658834 + 1.14113i 0.0668944 + 0.115865i 0.897533 0.440948i \(-0.145358\pi\)
−0.830638 + 0.556812i \(0.812024\pi\)
\(98\) 0 0
\(99\) 2.91185 0.292652
\(100\) 0 0
\(101\) 7.51238 13.0118i 0.747509 1.29472i −0.201504 0.979488i \(-0.564583\pi\)
0.949013 0.315237i \(-0.102084\pi\)
\(102\) 0 0
\(103\) −9.20775 −0.907267 −0.453633 0.891188i \(-0.649872\pi\)
−0.453633 + 0.891188i \(0.649872\pi\)
\(104\) 0 0
\(105\) −0.582105 −0.0568077
\(106\) 0 0
\(107\) −3.61476 + 6.26095i −0.349452 + 0.605269i −0.986152 0.165843i \(-0.946966\pi\)
0.636700 + 0.771112i \(0.280299\pi\)
\(108\) 0 0
\(109\) −15.5036 −1.48498 −0.742490 0.669857i \(-0.766355\pi\)
−0.742490 + 0.669857i \(0.766355\pi\)
\(110\) 0 0
\(111\) 0.233406 + 0.404271i 0.0221539 + 0.0383717i
\(112\) 0 0
\(113\) −6.91335 11.9743i −0.650353 1.12644i −0.983037 0.183406i \(-0.941288\pi\)
0.332684 0.943038i \(-0.392046\pi\)
\(114\) 0 0
\(115\) −1.59903 + 2.76960i −0.149110 + 0.258267i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.44385 2.50081i 0.132357 0.229249i
\(120\) 0 0
\(121\) 1.26055 + 2.18334i 0.114596 + 0.198486i
\(122\) 0 0
\(123\) −1.94989 3.37730i −0.175815 0.304521i
\(124\) 0 0
\(125\) 5.37867 0.481083
\(126\) 0 0
\(127\) −3.58815 + 6.21485i −0.318396 + 0.551479i −0.980154 0.198239i \(-0.936478\pi\)
0.661757 + 0.749718i \(0.269811\pi\)
\(128\) 0 0
\(129\) −9.19567 −0.809634
\(130\) 0 0
\(131\) 13.1304 1.14720 0.573602 0.819134i \(-0.305545\pi\)
0.573602 + 0.819134i \(0.305545\pi\)
\(132\) 0 0
\(133\) 2.42878 4.20677i 0.210602 0.364773i
\(134\) 0 0
\(135\) 0.554958 0.0477632
\(136\) 0 0
\(137\) −10.9058 18.8894i −0.931747 1.61383i −0.780335 0.625361i \(-0.784952\pi\)
−0.151411 0.988471i \(-0.548382\pi\)
\(138\) 0 0
\(139\) 1.48307 + 2.56876i 0.125793 + 0.217879i 0.922043 0.387089i \(-0.126519\pi\)
−0.796250 + 0.604968i \(0.793186\pi\)
\(140\) 0 0
\(141\) 5.76055 9.97757i 0.485126 0.840263i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −0.777479 + 1.34663i −0.0645661 + 0.111832i
\(146\) 0 0
\(147\) −2.94989 5.10935i −0.243303 0.421412i
\(148\) 0 0
\(149\) 2.84817 + 4.93317i 0.233331 + 0.404141i 0.958786 0.284128i \(-0.0917041\pi\)
−0.725455 + 0.688269i \(0.758371\pi\)
\(150\) 0 0
\(151\) 19.1468 1.55814 0.779070 0.626937i \(-0.215691\pi\)
0.779070 + 0.626937i \(0.215691\pi\)
\(152\) 0 0
\(153\) −1.37651 + 2.38419i −0.111284 + 0.192750i
\(154\) 0 0
\(155\) 2.32304 0.186591
\(156\) 0 0
\(157\) −8.38404 −0.669119 −0.334560 0.942375i \(-0.608588\pi\)
−0.334560 + 0.942375i \(0.608588\pi\)
\(158\) 0 0
\(159\) 2.81282 4.87195i 0.223071 0.386371i
\(160\) 0 0
\(161\) 6.04461 0.476382
\(162\) 0 0
\(163\) 0.985230 + 1.70647i 0.0771692 + 0.133661i 0.902028 0.431679i \(-0.142079\pi\)
−0.824858 + 0.565339i \(0.808745\pi\)
\(164\) 0 0
\(165\) −0.807979 1.39946i −0.0629010 0.108948i
\(166\) 0 0
\(167\) −12.3998 + 21.4770i −0.959523 + 1.66194i −0.235863 + 0.971786i \(0.575792\pi\)
−0.723660 + 0.690157i \(0.757542\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −2.31551 + 4.01058i −0.177072 + 0.306697i
\(172\) 0 0
\(173\) 1.28568 + 2.22686i 0.0977481 + 0.169305i 0.910752 0.412953i \(-0.135503\pi\)
−0.813004 + 0.582258i \(0.802169\pi\)
\(174\) 0 0
\(175\) −2.46077 4.26218i −0.186017 0.322191i
\(176\) 0 0
\(177\) −3.10992 −0.233756
\(178\) 0 0
\(179\) 1.50269 2.60273i 0.112316 0.194537i −0.804388 0.594105i \(-0.797506\pi\)
0.916704 + 0.399568i \(0.130840\pi\)
\(180\) 0 0
\(181\) −14.6843 −1.09147 −0.545736 0.837957i \(-0.683750\pi\)
−0.545736 + 0.837957i \(0.683750\pi\)
\(182\) 0 0
\(183\) −10.9051 −0.806132
\(184\) 0 0
\(185\) 0.129531 0.224354i 0.00952328 0.0164948i
\(186\) 0 0
\(187\) 8.01639 0.586217
\(188\) 0 0
\(189\) −0.524459 0.908389i −0.0381488 0.0660756i
\(190\) 0 0
\(191\) 8.54019 + 14.7920i 0.617946 + 1.07031i 0.989860 + 0.142047i \(0.0453684\pi\)
−0.371914 + 0.928267i \(0.621298\pi\)
\(192\) 0 0
\(193\) 7.48792 12.9695i 0.538992 0.933562i −0.459966 0.887936i \(-0.652139\pi\)
0.998959 0.0456255i \(-0.0145281\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −0.0963427 + 0.166870i −0.00686414 + 0.0118890i −0.869437 0.494044i \(-0.835518\pi\)
0.862573 + 0.505933i \(0.168852\pi\)
\(198\) 0 0
\(199\) −5.93631 10.2820i −0.420814 0.728871i 0.575205 0.818009i \(-0.304922\pi\)
−0.996019 + 0.0891378i \(0.971589\pi\)
\(200\) 0 0
\(201\) 4.02446 + 6.97057i 0.283863 + 0.491666i
\(202\) 0 0
\(203\) 2.93900 0.206277
\(204\) 0 0
\(205\) −1.08211 + 1.87426i −0.0755775 + 0.130904i
\(206\) 0 0
\(207\) −5.76271 −0.400536
\(208\) 0 0
\(209\) 13.4849 0.932767
\(210\) 0 0
\(211\) −3.01693 + 5.22547i −0.207694 + 0.359736i −0.950988 0.309229i \(-0.899929\pi\)
0.743294 + 0.668965i \(0.233262\pi\)
\(212\) 0 0
\(213\) −13.6920 −0.938162
\(214\) 0 0
\(215\) 2.55161 + 4.41951i 0.174018 + 0.301408i
\(216\) 0 0
\(217\) −2.19537 3.80250i −0.149032 0.258130i
\(218\) 0 0
\(219\) 4.68329 8.11170i 0.316468 0.548138i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −4.26324 + 7.38415i −0.285488 + 0.494479i −0.972727 0.231952i \(-0.925489\pi\)
0.687240 + 0.726431i \(0.258822\pi\)
\(224\) 0 0
\(225\) 2.34601 + 4.06341i 0.156401 + 0.270894i
\(226\) 0 0
\(227\) −5.50000 9.52628i −0.365048 0.632281i 0.623736 0.781635i \(-0.285614\pi\)
−0.988784 + 0.149354i \(0.952281\pi\)
\(228\) 0 0
\(229\) −17.9119 −1.18365 −0.591824 0.806067i \(-0.701592\pi\)
−0.591824 + 0.806067i \(0.701592\pi\)
\(230\) 0 0
\(231\) −1.52715 + 2.64510i −0.100479 + 0.174035i
\(232\) 0 0
\(233\) 22.8159 1.49472 0.747361 0.664418i \(-0.231321\pi\)
0.747361 + 0.664418i \(0.231321\pi\)
\(234\) 0 0
\(235\) −6.39373 −0.417081
\(236\) 0 0
\(237\) −1.80463 + 3.12570i −0.117223 + 0.203036i
\(238\) 0 0
\(239\) 8.34481 0.539781 0.269891 0.962891i \(-0.413012\pi\)
0.269891 + 0.962891i \(0.413012\pi\)
\(240\) 0 0
\(241\) 1.87771 + 3.25228i 0.120954 + 0.209498i 0.920144 0.391580i \(-0.128071\pi\)
−0.799190 + 0.601078i \(0.794738\pi\)
\(242\) 0 0
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) −1.63706 + 2.83548i −0.104588 + 0.181152i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0.827593 1.43343i 0.0524466 0.0908401i
\(250\) 0 0
\(251\) 15.1543 + 26.2480i 0.956530 + 1.65676i 0.730827 + 0.682562i \(0.239134\pi\)
0.225703 + 0.974196i \(0.427532\pi\)
\(252\) 0 0
\(253\) 8.39008 + 14.5321i 0.527480 + 0.913622i
\(254\) 0 0
\(255\) 1.52781 0.0956752
\(256\) 0 0
\(257\) 10.4206 18.0490i 0.650018 1.12586i −0.333100 0.942892i \(-0.608095\pi\)
0.983118 0.182973i \(-0.0585720\pi\)
\(258\) 0 0
\(259\) −0.489647 −0.0304252
\(260\) 0 0
\(261\) −2.80194 −0.173436
\(262\) 0 0
\(263\) −4.29321 + 7.43606i −0.264731 + 0.458527i −0.967493 0.252898i \(-0.918616\pi\)
0.702762 + 0.711425i \(0.251950\pi\)
\(264\) 0 0
\(265\) −3.12200 −0.191783
\(266\) 0 0
\(267\) 8.98523 + 15.5629i 0.549887 + 0.952432i
\(268\) 0 0
\(269\) −7.41335 12.8403i −0.452000 0.782886i 0.546510 0.837452i \(-0.315956\pi\)
−0.998510 + 0.0545658i \(0.982623\pi\)
\(270\) 0 0
\(271\) 3.61745 6.26561i 0.219744 0.380608i −0.734985 0.678083i \(-0.762811\pi\)
0.954730 + 0.297475i \(0.0961443\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.83124 11.8321i 0.411939 0.713500i
\(276\) 0 0
\(277\) −5.60268 9.70412i −0.336632 0.583064i 0.647165 0.762350i \(-0.275955\pi\)
−0.983797 + 0.179286i \(0.942621\pi\)
\(278\) 0 0
\(279\) 2.09299 + 3.62517i 0.125304 + 0.217033i
\(280\) 0 0
\(281\) −12.3002 −0.733769 −0.366884 0.930267i \(-0.619576\pi\)
−0.366884 + 0.930267i \(0.619576\pi\)
\(282\) 0 0
\(283\) −12.1761 + 21.0895i −0.723791 + 1.25364i 0.235678 + 0.971831i \(0.424269\pi\)
−0.959470 + 0.281812i \(0.909064\pi\)
\(284\) 0 0
\(285\) 2.57002 0.152235
\(286\) 0 0
\(287\) 4.09054 0.241457
\(288\) 0 0
\(289\) 4.71044 8.15872i 0.277085 0.479925i
\(290\) 0 0
\(291\) 1.31767 0.0772430
\(292\) 0 0
\(293\) −3.10119 5.37141i −0.181173 0.313801i 0.761107 0.648626i \(-0.224656\pi\)
−0.942280 + 0.334825i \(0.891323\pi\)
\(294\) 0 0
\(295\) 0.862937 + 1.49465i 0.0502421 + 0.0870219i
\(296\) 0 0
\(297\) 1.45593 2.52174i 0.0844815 0.146326i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 4.82275 8.35325i 0.277979 0.481473i
\(302\) 0 0
\(303\) −7.51238 13.0118i −0.431575 0.747509i
\(304\) 0 0
\(305\) 3.02595 + 5.24110i 0.173265 + 0.300105i
\(306\) 0 0
\(307\) −26.4795 −1.51126 −0.755632 0.654996i \(-0.772670\pi\)
−0.755632 + 0.654996i \(0.772670\pi\)
\(308\) 0 0
\(309\) −4.60388 + 7.97415i −0.261905 + 0.453633i
\(310\) 0 0
\(311\) 15.5308 0.880671 0.440335 0.897833i \(-0.354860\pi\)
0.440335 + 0.897833i \(0.354860\pi\)
\(312\) 0 0
\(313\) 16.9681 0.959092 0.479546 0.877517i \(-0.340801\pi\)
0.479546 + 0.877517i \(0.340801\pi\)
\(314\) 0 0
\(315\) −0.291053 + 0.504118i −0.0163990 + 0.0284038i
\(316\) 0 0
\(317\) 25.5066 1.43260 0.716298 0.697795i \(-0.245835\pi\)
0.716298 + 0.697795i \(0.245835\pi\)
\(318\) 0 0
\(319\) 4.07942 + 7.06576i 0.228403 + 0.395606i
\(320\) 0 0
\(321\) 3.61476 + 6.26095i 0.201756 + 0.349452i
\(322\) 0 0
\(323\) −6.37465 + 11.0412i −0.354695 + 0.614350i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −7.75182 + 13.4266i −0.428677 + 0.742490i
\(328\) 0 0
\(329\) 6.04234 + 10.4656i 0.333125 + 0.576990i
\(330\) 0 0
\(331\) −5.30678 9.19162i −0.291687 0.505217i 0.682522 0.730865i \(-0.260883\pi\)
−0.974209 + 0.225648i \(0.927550\pi\)
\(332\) 0 0
\(333\) 0.466812 0.0255811
\(334\) 0 0
\(335\) 2.23341 3.86837i 0.122024 0.211352i
\(336\) 0 0
\(337\) 29.2717 1.59453 0.797266 0.603628i \(-0.206279\pi\)
0.797266 + 0.603628i \(0.206279\pi\)
\(338\) 0 0
\(339\) −13.8267 −0.750963
\(340\) 0 0
\(341\) 6.09448 10.5560i 0.330035 0.571637i
\(342\) 0 0
\(343\) 13.5308 0.730594
\(344\) 0 0
\(345\) 1.59903 + 2.76960i 0.0860889 + 0.149110i
\(346\) 0 0
\(347\) 17.4073 + 30.1503i 0.934473 + 1.61855i 0.775571 + 0.631261i \(0.217462\pi\)
0.158902 + 0.987294i \(0.449205\pi\)
\(348\) 0 0
\(349\) 15.0978 26.1502i 0.808169 1.39979i −0.105962 0.994370i \(-0.533792\pi\)
0.914131 0.405419i \(-0.132874\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.4846 21.6239i 0.664486 1.15092i −0.314938 0.949112i \(-0.601984\pi\)
0.979424 0.201812i \(-0.0646830\pi\)
\(354\) 0 0
\(355\) 3.79925 + 6.58049i 0.201643 + 0.349256i
\(356\) 0 0
\(357\) −1.44385 2.50081i −0.0764164 0.132357i
\(358\) 0 0
\(359\) −14.1661 −0.747660 −0.373830 0.927497i \(-0.621956\pi\)
−0.373830 + 0.927497i \(0.621956\pi\)
\(360\) 0 0
\(361\) −1.22318 + 2.11862i −0.0643782 + 0.111506i
\(362\) 0 0
\(363\) 2.52111 0.132324
\(364\) 0 0
\(365\) −5.19806 −0.272079
\(366\) 0 0
\(367\) −4.39344 + 7.60965i −0.229335 + 0.397221i −0.957611 0.288063i \(-0.906989\pi\)
0.728276 + 0.685284i \(0.240322\pi\)
\(368\) 0 0
\(369\) −3.89977 −0.203014
\(370\) 0 0
\(371\) 2.95042 + 5.11028i 0.153178 + 0.265312i
\(372\) 0 0
\(373\) 9.16301 + 15.8708i 0.474443 + 0.821759i 0.999572 0.0292636i \(-0.00931621\pi\)
−0.525129 + 0.851023i \(0.675983\pi\)
\(374\) 0 0
\(375\) 2.68933 4.65806i 0.138877 0.240541i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 2.38793 4.13601i 0.122660 0.212453i −0.798156 0.602451i \(-0.794191\pi\)
0.920816 + 0.389998i \(0.127524\pi\)
\(380\) 0 0
\(381\) 3.58815 + 6.21485i 0.183826 + 0.318396i
\(382\) 0 0
\(383\) −3.09515 5.36095i −0.158155 0.273932i 0.776049 0.630673i \(-0.217221\pi\)
−0.934203 + 0.356741i \(0.883888\pi\)
\(384\) 0 0
\(385\) 1.69501 0.0863855
\(386\) 0 0
\(387\) −4.59783 + 7.96368i −0.233721 + 0.404817i
\(388\) 0 0
\(389\) 24.8780 1.26136 0.630682 0.776041i \(-0.282775\pi\)
0.630682 + 0.776041i \(0.282775\pi\)
\(390\) 0 0
\(391\) −15.8649 −0.802320
\(392\) 0 0
\(393\) 6.56518 11.3712i 0.331169 0.573602i
\(394\) 0 0
\(395\) 2.00298 0.100781
\(396\) 0 0
\(397\) 2.31013 + 4.00127i 0.115942 + 0.200818i 0.918156 0.396219i \(-0.129678\pi\)
−0.802214 + 0.597037i \(0.796345\pi\)
\(398\) 0 0
\(399\) −2.42878 4.20677i −0.121591 0.210602i
\(400\) 0 0
\(401\) 0.824240 1.42763i 0.0411606 0.0712923i −0.844711 0.535222i \(-0.820228\pi\)
0.885872 + 0.463930i \(0.153561\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.277479 0.480608i 0.0137880 0.0238816i
\(406\) 0 0
\(407\) −0.679644 1.17718i −0.0336887 0.0583506i
\(408\) 0 0
\(409\) 17.4025 + 30.1419i 0.860496 + 1.49042i 0.871451 + 0.490483i \(0.163180\pi\)
−0.0109543 + 0.999940i \(0.503487\pi\)
\(410\) 0 0
\(411\) −21.8116 −1.07589
\(412\) 0 0
\(413\) 1.63102 2.82501i 0.0802574 0.139010i
\(414\) 0 0
\(415\) −0.918559 −0.0450903
\(416\) 0 0
\(417\) 2.96615 0.145253
\(418\) 0 0
\(419\) −10.8177 + 18.7367i −0.528478 + 0.915350i 0.470971 + 0.882149i \(0.343904\pi\)
−0.999449 + 0.0332014i \(0.989430\pi\)
\(420\) 0 0
\(421\) −35.1008 −1.71071 −0.855355 0.518043i \(-0.826661\pi\)
−0.855355 + 0.518043i \(0.826661\pi\)
\(422\) 0 0
\(423\) −5.76055 9.97757i −0.280088 0.485126i
\(424\) 0 0
\(425\) 6.45862 + 11.1867i 0.313289 + 0.542632i
\(426\) 0 0
\(427\) 5.71930 9.90612i 0.276776 0.479391i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.0462 17.4006i 0.483910 0.838156i −0.515919 0.856637i \(-0.672550\pi\)
0.999829 + 0.0184807i \(0.00588294\pi\)
\(432\) 0 0
\(433\) 9.34697 + 16.1894i 0.449187 + 0.778014i 0.998333 0.0577118i \(-0.0183805\pi\)
−0.549147 + 0.835726i \(0.685047\pi\)
\(434\) 0 0
\(435\) 0.777479 + 1.34663i 0.0372773 + 0.0645661i
\(436\) 0 0
\(437\) −26.6872 −1.27662
\(438\) 0 0
\(439\) −0.675096 + 1.16930i −0.0322206 + 0.0558076i −0.881686 0.471837i \(-0.843591\pi\)
0.849465 + 0.527644i \(0.176925\pi\)
\(440\) 0 0
\(441\) −5.89977 −0.280942
\(442\) 0 0
\(443\) −0.400436 −0.0190253 −0.00951265 0.999955i \(-0.503028\pi\)
−0.00951265 + 0.999955i \(0.503028\pi\)
\(444\) 0 0
\(445\) 4.98643 8.63674i 0.236379 0.409421i
\(446\) 0 0
\(447\) 5.69633 0.269427
\(448\) 0 0
\(449\) −17.8952 30.9954i −0.844528 1.46277i −0.886031 0.463627i \(-0.846548\pi\)
0.0415028 0.999138i \(-0.486785\pi\)
\(450\) 0 0
\(451\) 5.67778 + 9.83421i 0.267356 + 0.463075i
\(452\) 0 0
\(453\) 9.57338 16.5816i 0.449796 0.779070i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2.58546 + 4.47814i −0.120943 + 0.209479i −0.920140 0.391590i \(-0.871925\pi\)
0.799197 + 0.601069i \(0.205258\pi\)
\(458\) 0 0
\(459\) 1.37651 + 2.38419i 0.0642500 + 0.111284i
\(460\) 0 0
\(461\) 10.4390 + 18.0809i 0.486193 + 0.842111i 0.999874 0.0158705i \(-0.00505196\pi\)
−0.513681 + 0.857981i \(0.671719\pi\)
\(462\) 0 0
\(463\) −30.7198 −1.42767 −0.713834 0.700315i \(-0.753043\pi\)
−0.713834 + 0.700315i \(0.753043\pi\)
\(464\) 0 0
\(465\) 1.16152 2.01182i 0.0538643 0.0932957i
\(466\) 0 0
\(467\) 15.2741 0.706802 0.353401 0.935472i \(-0.385025\pi\)
0.353401 + 0.935472i \(0.385025\pi\)
\(468\) 0 0
\(469\) −8.44265 −0.389845
\(470\) 0 0
\(471\) −4.19202 + 7.26079i −0.193158 + 0.334560i
\(472\) 0 0
\(473\) 26.7764 1.23118
\(474\) 0 0
\(475\) 10.8644 + 18.8177i 0.498494 + 0.863417i
\(476\) 0 0
\(477\) −2.81282 4.87195i −0.128790 0.223071i
\(478\) 0 0
\(479\) −1.52930 + 2.64883i −0.0698756 + 0.121028i −0.898846 0.438264i \(-0.855594\pi\)
0.828971 + 0.559292i \(0.188927\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 3.02230 5.23478i 0.137520 0.238191i
\(484\) 0 0
\(485\) −0.365625 0.633281i −0.0166022 0.0287558i
\(486\) 0 0
\(487\) −7.57606 13.1221i −0.343304 0.594620i 0.641740 0.766922i \(-0.278213\pi\)
−0.985044 + 0.172302i \(0.944880\pi\)
\(488\) 0 0
\(489\) 1.97046 0.0891073
\(490\) 0 0
\(491\) −11.7397 + 20.3338i −0.529807 + 0.917653i 0.469588 + 0.882886i \(0.344402\pi\)
−0.999395 + 0.0347674i \(0.988931\pi\)
\(492\) 0 0
\(493\) −7.71379 −0.347412
\(494\) 0 0
\(495\) −1.61596 −0.0726319
\(496\) 0 0
\(497\) 7.18090 12.4377i 0.322107 0.557906i
\(498\) 0 0
\(499\) 38.0689 1.70420 0.852099 0.523381i \(-0.175330\pi\)
0.852099 + 0.523381i \(0.175330\pi\)
\(500\) 0 0
\(501\) 12.3998 + 21.4770i 0.553981 + 0.959523i
\(502\) 0 0
\(503\) 5.56369 + 9.63659i 0.248073 + 0.429674i 0.962991 0.269534i \(-0.0868695\pi\)
−0.714918 + 0.699208i \(0.753536\pi\)
\(504\) 0 0
\(505\) −4.16905 + 7.22101i −0.185521 + 0.321331i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −13.3817 + 23.1777i −0.593131 + 1.02733i 0.400676 + 0.916220i \(0.368775\pi\)
−0.993808 + 0.111114i \(0.964558\pi\)
\(510\) 0 0
\(511\) 4.91239 + 8.50850i 0.217311 + 0.376394i
\(512\) 0 0
\(513\) 2.31551 + 4.01058i 0.102232 + 0.177072i
\(514\) 0 0
\(515\) 5.10992 0.225170
\(516\) 0 0
\(517\) −16.7739 + 29.0532i −0.737715 + 1.27776i
\(518\) 0 0
\(519\) 2.57135 0.112870
\(520\) 0 0
\(521\) 20.5797 0.901614 0.450807 0.892622i \(-0.351136\pi\)
0.450807 + 0.892622i \(0.351136\pi\)
\(522\) 0 0
\(523\) 3.38740 5.86714i 0.148120 0.256552i −0.782412 0.622761i \(-0.786011\pi\)
0.930533 + 0.366209i \(0.119344\pi\)
\(524\) 0 0
\(525\) −4.92154 −0.214794
\(526\) 0 0
\(527\) 5.76205 + 9.98015i 0.250999 + 0.434742i
\(528\) 0 0
\(529\) −5.10441 8.84109i −0.221931 0.384395i
\(530\) 0 0
\(531\) −1.55496 + 2.69327i −0.0674794 + 0.116878i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 2.00604 3.47456i 0.0867287 0.150219i
\(536\) 0 0
\(537\) −1.50269 2.60273i −0.0648458 0.112316i
\(538\) 0 0
\(539\) 8.58964 + 14.8777i 0.369982 + 0.640827i
\(540\) 0 0
\(541\) 1.94331 0.0835495 0.0417748 0.999127i \(-0.486699\pi\)
0.0417748 + 0.999127i \(0.486699\pi\)
\(542\) 0 0
\(543\) −7.34213 + 12.7169i −0.315081 + 0.545736i
\(544\) 0 0
\(545\) 8.60388 0.368550
\(546\) 0 0
\(547\) −39.1323 −1.67318 −0.836588 0.547833i \(-0.815453\pi\)
−0.836588 + 0.547833i \(0.815453\pi\)
\(548\) 0 0
\(549\) −5.45257 + 9.44414i −0.232710 + 0.403066i
\(550\) 0 0
\(551\) −12.9758 −0.552789
\(552\) 0 0
\(553\) −1.89290 3.27861i −0.0804945 0.139420i
\(554\) 0 0
\(555\) −0.129531 0.224354i −0.00549827 0.00952328i
\(556\) 0 0
\(557\) 12.2494 21.2166i 0.519025 0.898978i −0.480731 0.876868i \(-0.659628\pi\)
0.999756 0.0221094i \(-0.00703820\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 4.00820 6.94240i 0.169226 0.293108i
\(562\) 0 0
\(563\) 10.9133 + 18.9025i 0.459943 + 0.796644i 0.998957 0.0456522i \(-0.0145366\pi\)
−0.539015 + 0.842296i \(0.681203\pi\)
\(564\) 0 0
\(565\) 3.83662 + 6.64522i 0.161408 + 0.279566i
\(566\) 0 0
\(567\) −1.04892 −0.0440504
\(568\) 0 0
\(569\) 5.78136 10.0136i 0.242367 0.419793i −0.719021 0.694989i \(-0.755409\pi\)
0.961388 + 0.275196i \(0.0887427\pi\)
\(570\) 0 0
\(571\) 24.7614 1.03623 0.518116 0.855310i \(-0.326634\pi\)
0.518116 + 0.855310i \(0.326634\pi\)
\(572\) 0 0
\(573\) 17.0804 0.713543
\(574\) 0 0
\(575\) −13.5194 + 23.4162i −0.563797 + 0.976525i
\(576\) 0 0
\(577\) 13.5090 0.562388 0.281194 0.959651i \(-0.409270\pi\)
0.281194 + 0.959651i \(0.409270\pi\)
\(578\) 0 0
\(579\) −7.48792 12.9695i −0.311187 0.538992i
\(580\) 0 0
\(581\) 0.868076 + 1.50355i 0.0360139 + 0.0623779i
\(582\) 0 0
\(583\) −8.19053 + 14.1864i −0.339217 + 0.587541i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.35152 5.80500i 0.138332 0.239598i −0.788533 0.614992i \(-0.789159\pi\)
0.926865 + 0.375394i \(0.122493\pi\)
\(588\) 0 0
\(589\) 9.69269 + 16.7882i 0.399380 + 0.691747i
\(590\) 0 0
\(591\) 0.0963427 + 0.166870i 0.00396301 + 0.00686414i
\(592\) 0 0
\(593\) −16.0194 −0.657837 −0.328918 0.944358i \(-0.606684\pi\)
−0.328918 + 0.944358i \(0.606684\pi\)
\(594\) 0 0
\(595\) −0.801274 + 1.38785i −0.0328490 + 0.0568962i
\(596\) 0 0
\(597\) −11.8726 −0.485914
\(598\) 0 0
\(599\) 19.8243 0.809999 0.404999 0.914317i \(-0.367272\pi\)
0.404999 + 0.914317i \(0.367272\pi\)
\(600\) 0 0
\(601\) −14.5954 + 25.2800i −0.595360 + 1.03119i 0.398135 + 0.917327i \(0.369657\pi\)
−0.993496 + 0.113868i \(0.963676\pi\)
\(602\) 0 0
\(603\) 8.04892 0.327777
\(604\) 0 0
\(605\) −0.699554 1.21166i −0.0284409 0.0492611i
\(606\) 0 0
\(607\) 3.18114 + 5.50989i 0.129118 + 0.223640i 0.923335 0.383995i \(-0.125452\pi\)
−0.794217 + 0.607634i \(0.792119\pi\)
\(608\) 0 0
\(609\) 1.46950 2.54525i 0.0595472 0.103139i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −15.3855 + 26.6485i −0.621416 + 1.07632i 0.367806 + 0.929902i \(0.380109\pi\)
−0.989222 + 0.146422i \(0.953224\pi\)
\(614\) 0 0
\(615\) 1.08211 + 1.87426i 0.0436347 + 0.0755775i
\(616\) 0 0
\(617\) −6.01208 10.4132i −0.242037 0.419221i 0.719257 0.694744i \(-0.244482\pi\)
−0.961294 + 0.275523i \(0.911149\pi\)
\(618\) 0 0
\(619\) 9.02715 0.362832 0.181416 0.983406i \(-0.441932\pi\)
0.181416 + 0.983406i \(0.441932\pi\)
\(620\) 0 0
\(621\) −2.88135 + 4.99065i −0.115625 + 0.200268i
\(622\) 0 0
\(623\) −18.8495 −0.755190
\(624\) 0 0
\(625\) 20.4752 0.819007
\(626\) 0 0
\(627\) 6.74243 11.6782i 0.269267 0.466384i
\(628\) 0 0
\(629\) 1.28514 0.0512420
\(630\) 0 0
\(631\) −7.77628 13.4689i −0.309569 0.536189i 0.668699 0.743533i \(-0.266851\pi\)
−0.978268 + 0.207344i \(0.933518\pi\)
\(632\) 0 0
\(633\) 3.01693 + 5.22547i 0.119912 + 0.207694i
\(634\) 0 0
\(635\) 1.99127 3.44898i 0.0790212 0.136869i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −6.84601 + 11.8576i −0.270824 + 0.469081i
\(640\) 0 0
\(641\) 9.71044 + 16.8190i 0.383539 + 0.664310i 0.991565 0.129608i \(-0.0413717\pi\)
−0.608026 + 0.793917i \(0.708038\pi\)
\(642\) 0 0
\(643\) 13.4133 + 23.2326i 0.528971 + 0.916204i 0.999429 + 0.0337821i \(0.0107552\pi\)
−0.470458 + 0.882422i \(0.655911\pi\)
\(644\) 0 0
\(645\) 5.10321 0.200939
\(646\) 0 0
\(647\) −2.54407 + 4.40646i −0.100018 + 0.173236i −0.911692 0.410875i \(-0.865223\pi\)
0.811674 + 0.584111i \(0.198557\pi\)
\(648\) 0 0
\(649\) 9.05562 0.355464
\(650\) 0 0
\(651\) −4.39075 −0.172087
\(652\) 0 0
\(653\) 9.85786 17.0743i 0.385768 0.668169i −0.606108 0.795383i \(-0.707270\pi\)
0.991875 + 0.127213i \(0.0406033\pi\)
\(654\) 0 0
\(655\) −7.28680 −0.284719
\(656\) 0 0
\(657\) −4.68329 8.11170i −0.182713 0.316468i
\(658\) 0 0
\(659\) −4.71260 8.16245i −0.183577 0.317964i 0.759519 0.650485i \(-0.225434\pi\)
−0.943096 + 0.332521i \(0.892101\pi\)
\(660\) 0 0
\(661\) 14.9973 25.9761i 0.583328 1.01035i −0.411754 0.911295i \(-0.635084\pi\)
0.995082 0.0990583i \(-0.0315830\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.34787 + 2.33458i −0.0522682 + 0.0905312i
\(666\) 0 0
\(667\) −8.07338 13.9835i −0.312602 0.541443i
\(668\) 0 0
\(669\) 4.26324 + 7.38415i 0.164826 + 0.285488i
\(670\) 0 0
\(671\) 31.7542 1.22586
\(672\) 0 0
\(673\) 23.8647 41.3349i 0.919918 1.59334i 0.120380 0.992728i \(-0.461589\pi\)
0.799538 0.600616i \(-0.205078\pi\)
\(674\) 0 0
\(675\) 4.69202 0.180596
\(676\) 0 0
\(677\) −42.9124 −1.64926 −0.824630 0.565673i \(-0.808616\pi\)
−0.824630 + 0.565673i \(0.808616\pi\)
\(678\) 0 0
\(679\) −0.691062 + 1.19695i −0.0265205 + 0.0459349i
\(680\) 0 0
\(681\) −11.0000 −0.421521
\(682\) 0 0
\(683\) −0.485230 0.840443i −0.0185668 0.0321587i 0.856593 0.515993i \(-0.172577\pi\)
−0.875160 + 0.483834i \(0.839244\pi\)
\(684\) 0 0
\(685\) 6.05227 + 10.4828i 0.231245 + 0.400529i
\(686\) 0 0
\(687\) −8.95593 + 15.5121i −0.341690 + 0.591824i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −0.583302 + 1.01031i −0.0221898 + 0.0384339i −0.876907 0.480660i \(-0.840397\pi\)
0.854717 + 0.519094i \(0.173730\pi\)
\(692\) 0 0
\(693\) 1.52715 + 2.64510i 0.0580115 + 0.100479i
\(694\) 0 0
\(695\) −0.823044 1.42555i −0.0312198 0.0540743i
\(696\) 0 0
\(697\) −10.7362 −0.406661
\(698\) 0 0
\(699\) 11.4080 19.7592i 0.431489 0.747361i
\(700\) 0 0
\(701\) −17.3274 −0.654445 −0.327223 0.944947i \(-0.606113\pi\)
−0.327223 + 0.944947i \(0.606113\pi\)
\(702\) 0 0
\(703\) 2.16182 0.0815345
\(704\) 0 0
\(705\) −3.19687 + 5.53713i −0.120401 + 0.208541i
\(706\) 0 0
\(707\) 15.7597 0.592705
\(708\) 0 0
\(709\) −8.23005 14.2549i −0.309086 0.535353i 0.669077 0.743193i \(-0.266690\pi\)
−0.978163 + 0.207841i \(0.933356\pi\)
\(710\) 0 0
\(711\) 1.80463 + 3.12570i 0.0676788 + 0.117223i
\(712\) 0 0
\(713\) −12.0613 + 20.8908i −0.451699 + 0.782366i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 4.17241 7.22682i 0.155821 0.269891i
\(718\) 0 0
\(719\) −7.08575 12.2729i −0.264254 0.457701i 0.703114 0.711077i \(-0.251792\pi\)
−0.967368 + 0.253376i \(0.918459\pi\)
\(720\) 0 0
\(721\) −4.82908 8.36422i −0.179845 0.311500i
\(722\) 0 0
\(723\) 3.75541 0.139665
\(724\) 0 0
\(725\) −6.57338 + 11.3854i −0.244129 + 0.422844i
\(726\) 0 0
\(727\) −37.8810 −1.40493 −0.702464 0.711719i \(-0.747917\pi\)
−0.702464 + 0.711719i \(0.747917\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −12.6579 + 21.9242i −0.468171 + 0.810895i
\(732\) 0 0
\(733\) 0.377338 0.0139373 0.00696865 0.999976i \(-0.497782\pi\)
0.00696865 + 0.999976i \(0.497782\pi\)
\(734\) 0 0
\(735\) 1.63706 + 2.83548i 0.0603840 + 0.104588i
\(736\) 0 0
\(737\) −11.7186 20.2973i −0.431662 0.747660i
\(738\) 0 0
\(739\) −0.563155 + 0.975413i −0.0207160 + 0.0358811i −0.876198 0.481952i \(-0.839928\pi\)
0.855482 + 0.517833i \(0.173261\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11.3523 19.6628i 0.416477 0.721360i −0.579105 0.815253i \(-0.696598\pi\)
0.995582 + 0.0938932i \(0.0299312\pi\)
\(744\) 0 0
\(745\) −1.58061 2.73770i −0.0579092 0.100302i
\(746\) 0 0
\(747\) −0.827593 1.43343i −0.0302800 0.0524466i
\(748\) 0 0
\(749\) −7.58317 −0.277083
\(750\) 0 0
\(751\) −6.96412 + 12.0622i −0.254124 + 0.440157i −0.964657 0.263508i \(-0.915121\pi\)
0.710533 + 0.703664i \(0.248454\pi\)
\(752\) 0 0
\(753\) 30.3086 1.10451
\(754\) 0 0
\(755\) −10.6256 −0.386707
\(756\) 0 0
\(757\) −0.583302 + 1.01031i −0.0212005 + 0.0367203i −0.876431 0.481527i \(-0.840082\pi\)
0.855231 + 0.518248i \(0.173415\pi\)
\(758\) 0 0
\(759\) 16.7802 0.609081
\(760\) 0 0
\(761\) −0.410895 0.711690i −0.0148949 0.0257987i 0.858482 0.512844i \(-0.171408\pi\)
−0.873377 + 0.487045i \(0.838075\pi\)
\(762\) 0 0
\(763\) −8.13102 14.0833i −0.294363 0.509851i
\(764\) 0 0
\(765\) 0.763906 1.32312i 0.0276191 0.0478376i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 16.8509 29.1865i 0.607657 1.05249i −0.383968 0.923346i \(-0.625443\pi\)
0.991625 0.129147i \(-0.0412239\pi\)
\(770\) 0 0
\(771\) −10.4206 18.0490i −0.375288 0.650018i
\(772\) 0 0
\(773\) 0.382019 + 0.661675i 0.0137403 + 0.0237988i 0.872814 0.488053i \(-0.162293\pi\)
−0.859074 + 0.511852i \(0.828960\pi\)
\(774\) 0 0
\(775\) 19.6407 0.705515
\(776\) 0 0
\(777\) −0.244824 + 0.424047i −0.00878300 + 0.0152126i
\(778\) 0 0
\(779\) −18.0599 −0.647064
\(780\) 0 0
\(781\) 39.8692 1.42663
\(782\) 0 0
\(783\) −1.40097 + 2.42655i −0.0500665 + 0.0867178i
\(784\) 0 0
\(785\) 4.65279 0.166065
\(786\) 0 0
\(787\) −6.08695 10.5429i −0.216976 0.375814i 0.736906 0.675995i \(-0.236286\pi\)
−0.953882 + 0.300181i \(0.902953\pi\)
\(788\) 0 0
\(789\) 4.29321 + 7.43606i 0.152842 + 0.264731i
\(790\) 0 0
\(791\) 7.25153 12.5600i 0.257835 0.446583i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −1.56100 + 2.70373i −0.0553629 + 0.0958914i
\(796\) 0 0
\(797\) −19.1444 33.1590i −0.678128 1.17455i −0.975544 0.219804i \(-0.929458\pi\)
0.297416 0.954748i \(-0.403875\pi\)
\(798\) 0 0
\(799\) −15.8589 27.4685i −0.561048 0.971764i
\(800\) 0 0
\(801\) 17.9705 0.634955
\(802\) 0 0
\(803\) −13.6371 + 23.6201i −0.481242 + 0.833535i
\(804\) 0 0
\(805\) −3.35450 −0.118231
\(806\) 0 0
\(807\) −14.8267 −0.521924
\(808\) 0 0
\(809\) 14.9819 25.9494i 0.526735 0.912331i −0.472780 0.881181i \(-0.656749\pi\)
0.999515 0.0311508i \(-0.00991722\pi\)
\(810\) 0 0
\(811\) −46.3521 −1.62764 −0.813821 0.581115i \(-0.802617\pi\)
−0.813821 + 0.581115i \(0.802617\pi\)
\(812\) 0 0
\(813\) −3.61745 6.26561i −0.126869 0.219744i
\(814\) 0 0
\(815\) −0.546761 0.947019i −0.0191522 0.0331726i
\(816\) 0 0
\(817\) −21.2927 + 36.8800i −0.744936 + 1.29027i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −24.1552 + 41.8381i −0.843024 + 1.46016i 0.0443025 + 0.999018i \(0.485893\pi\)
−0.887326 + 0.461142i \(0.847440\pi\)
\(822\) 0 0
\(823\) 2.65615 + 4.60058i 0.0925874 + 0.160366i 0.908599 0.417669i \(-0.137153\pi\)
−0.816012 + 0.578035i \(0.803820\pi\)
\(824\) 0 0
\(825\) −6.83124 11.8321i −0.237833 0.411939i
\(826\) 0 0
\(827\) 22.0968 0.768380 0.384190 0.923254i \(-0.374481\pi\)
0.384190 + 0.923254i \(0.374481\pi\)
\(828\) 0 0
\(829\) 0.808274 1.39997i 0.0280725 0.0486230i −0.851648 0.524114i \(-0.824396\pi\)
0.879720 + 0.475491i \(0.157730\pi\)
\(830\) 0 0
\(831\) −11.2054 −0.388710
\(832\) 0 0
\(833\) −16.2422 −0.562759
\(834\) 0 0
\(835\) 6.88135 11.9189i 0.238139 0.412469i
\(836\) 0 0
\(837\) 4.18598 0.144689
\(838\) 0 0
\(839\) 20.5411 + 35.5783i 0.709159 + 1.22830i 0.965169 + 0.261626i \(0.0842586\pi\)
−0.256010 + 0.966674i \(0.582408\pi\)
\(840\) 0 0
\(841\) 10.5746 + 18.3157i 0.364640 + 0.631576i
\(842\) 0 0
\(843\) −6.15010 + 10.6523i −0.211821 + 0.366884i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −1.32222 + 2.29015i −0.0454319 + 0.0786903i
\(848\) 0 0
\(849\) 12.1761 + 21.0895i 0.417881 + 0.723791i
\(850\) 0 0
\(851\) 1.34505 + 2.32970i 0.0461078 + 0.0798610i
\(852\) 0 0
\(853\) 35.0441 1.19989 0.599944 0.800042i \(-0.295189\pi\)
0.599944 + 0.800042i \(0.295189\pi\)
\(854\) 0 0
\(855\) 1.28501 2.22571i 0.0439465 0.0761175i
\(856\) 0 0
\(857\) −3.76079 −0.128466 −0.0642331 0.997935i \(-0.520460\pi\)
−0.0642331 + 0.997935i \(0.520460\pi\)
\(858\) 0 0
\(859\) 7.11662 0.242816 0.121408 0.992603i \(-0.461259\pi\)
0.121408 + 0.992603i \(0.461259\pi\)
\(860\) 0 0
\(861\) 2.04527 3.54251i 0.0697026 0.120728i
\(862\) 0 0
\(863\) −57.5900 −1.96039 −0.980193 0.198044i \(-0.936541\pi\)
−0.980193 + 0.198044i \(0.936541\pi\)
\(864\) 0 0
\(865\) −0.713496 1.23581i −0.0242596 0.0420189i
\(866\) 0 0
\(867\) −4.71044 8.15872i −0.159975 0.277085i
\(868\) 0 0
\(869\) 5.25481 9.10159i 0.178257 0.308750i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0.658834 1.14113i 0.0222981 0.0386215i
\(874\) 0 0
\(875\) 2.82089 + 4.88592i 0.0953634 + 0.165174i
\(876\) 0 0
\(877\) −9.60752 16.6407i −0.324423 0.561917i 0.656972 0.753915i \(-0.271837\pi\)
−0.981395 + 0.191997i \(0.938503\pi\)
\(878\) 0 0
\(879\) −6.20237 −0.209201
\(880\) 0 0
\(881\) 5.57218 9.65130i 0.187731 0.325160i −0.756762 0.653690i \(-0.773220\pi\)
0.944494 + 0.328530i \(0.106553\pi\)
\(882\) 0 0
\(883\) −4.28919 −0.144343 −0.0721714 0.997392i \(-0.522993\pi\)
−0.0721714 + 0.997392i \(0.522993\pi\)
\(884\) 0 0
\(885\) 1.72587 0.0580146
\(886\) 0 0
\(887\) 16.5869 28.7294i 0.556935 0.964640i −0.440815 0.897598i \(-0.645310\pi\)
0.997750 0.0670421i \(-0.0213562\pi\)
\(888\) 0 0
\(889\) −7.52734 −0.252459
\(890\) 0 0
\(891\) −1.45593 2.52174i −0.0487754 0.0844815i
\(892\) 0 0
\(893\) −26.6773 46.2064i −0.892720 1.54624i
\(894\) 0 0
\(895\) −0.833929 + 1.44441i −0.0278752 + 0.0482812i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.86443 + 10.1575i −0.195590 + 0.338771i
\(900\) 0 0
\(901\) −7.74376 13.4126i −0.257982 0.446838i
\(902\) 0 0
\(903\) −4.82275 8.35325i −0.160491 0.277979i
\(904\) 0 0
\(905\) 8.14914 0.270887
\(906\) 0 0
\(907\) 20.3141 35.1850i 0.674518 1.16830i −0.302092 0.953279i \(-0.597685\pi\)
0.976610 0.215020i \(-0.0689818\pi\)
\(908\) 0 0
\(909\) −15.0248 −0.498340
\(910\) 0 0
\(911\) 46.2731 1.53309 0.766547 0.642188i \(-0.221973\pi\)
0.766547 + 0.642188i \(0.221973\pi\)
\(912\) 0 0
\(913\) −2.40983 + 4.17395i −0.0797537 + 0.138137i
\(914\) 0 0
\(915\) 6.05190 0.200070
\(916\) 0 0
\(917\) 6.88633 + 11.9275i 0.227407 + 0.393880i
\(918\) 0 0
\(919\) −25.2337 43.7061i −0.832383 1.44173i −0.896143 0.443764i \(-0.853643\pi\)
0.0637605 0.997965i \(-0.479691\pi\)
\(920\) 0 0
\(921\) −13.2397 + 22.9319i −0.436264 + 0.755632i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1.09515 1.89685i 0.0360082 0.0623680i
\(926\) 0 0
\(927\) 4.60388 + 7.97415i 0.151211 + 0.261905i
\(928\) 0 0
\(929\) −8.96250 15.5235i −0.294050 0.509310i 0.680713 0.732550i \(-0.261670\pi\)
−0.974763 + 0.223240i \(0.928337\pi\)
\(930\) 0 0
\(931\) −27.3220 −0.895442
\(932\) 0 0
\(933\) 7.76540 13.4501i 0.254228 0.440335i
\(934\) 0 0
\(935\) −4.44876 −0.145490
\(936\) 0 0
\(937\) 5.85325 0.191217 0.0956086 0.995419i \(-0.469520\pi\)
0.0956086 + 0.995419i \(0.469520\pi\)
\(938\) 0 0
\(939\) 8.48403 14.6948i 0.276866 0.479546i
\(940\) 0 0
\(941\) −56.7958 −1.85149 −0.925745 0.378147i \(-0.876561\pi\)
−0.925745 + 0.378147i \(0.876561\pi\)
\(942\) 0 0
\(943\) −11.2366 19.4624i −0.365915 0.633783i
\(944\) 0 0
\(945\) 0.291053 + 0.504118i 0.00946794 + 0.0163990i
\(946\) 0 0
\(947\) 3.07487 5.32583i 0.0999198 0.173066i −0.811731 0.584031i \(-0.801475\pi\)
0.911651 + 0.410965i \(0.134808\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 12.7533 22.0894i 0.413555 0.716298i
\(952\) 0 0
\(953\) −24.4889 42.4160i −0.793273 1.37399i −0.923930 0.382561i \(-0.875042\pi\)
0.130658 0.991428i \(-0.458291\pi\)
\(954\) 0 0
\(955\) −4.73945 8.20896i −0.153365 0.265636i
\(956\) 0 0
\(957\) 8.15883 0.263738
\(958\) 0 0
\(959\) 11.4393 19.8134i 0.369394 0.639809i
\(960\) 0 0
\(961\) −13.4776 −0.434760
\(962\) 0 0
\(963\) 7.22952 0.232968
\(964\) 0 0
\(965\) −4.15548 + 7.19750i −0.133770 + 0.231696i
\(966\) 0 0
\(967\) 54.2616 1.74493 0.872467 0.488673i \(-0.162519\pi\)
0.872467 + 0.488673i \(0.162519\pi\)
\(968\) 0 0
\(969\) 6.37465 + 11.0412i 0.204783 + 0.354695i
\(970\) 0 0
\(971\) 18.1571 + 31.4490i 0.582689 + 1.00925i 0.995159 + 0.0982761i \(0.0313328\pi\)
−0.412470 + 0.910971i \(0.635334\pi\)
\(972\) 0 0
\(973\) −1.55562 + 2.69442i −0.0498710 + 0.0863790i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −24.8687 + 43.0739i −0.795621 + 1.37806i 0.126822 + 0.991925i \(0.459522\pi\)
−0.922444 + 0.386131i \(0.873811\pi\)
\(978\) 0 0
\(979\) −26.1637 45.3168i −0.836195 1.44833i
\(980\) 0 0
\(981\) 7.75182 + 13.4266i 0.247497 + 0.428677i
\(982\) 0 0
\(983\) −10.9981 −0.350784 −0.175392 0.984499i \(-0.556119\pi\)
−0.175392 + 0.984499i \(0.556119\pi\)
\(984\) 0 0
\(985\) 0.0534662 0.0926061i 0.00170357 0.00295068i
\(986\) 0 0
\(987\) 12.0847 0.384660
\(988\) 0 0
\(989\) −52.9920 −1.68505
\(990\) 0 0
\(991\) −3.36539 + 5.82902i −0.106905 + 0.185165i −0.914515 0.404552i \(-0.867427\pi\)
0.807610 + 0.589717i \(0.200761\pi\)
\(992\) 0 0
\(993\) −10.6136 −0.336811
\(994\) 0 0
\(995\) 3.29440 + 5.70608i 0.104440 + 0.180895i
\(996\) 0 0
\(997\) −21.6749 37.5420i −0.686450 1.18897i −0.972979 0.230894i \(-0.925835\pi\)
0.286529 0.958072i \(-0.407498\pi\)
\(998\) 0 0
\(999\) 0.233406 0.404271i 0.00738464 0.0127906i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2028.2.i.l.529.2 6
13.2 odd 12 2028.2.q.j.361.4 12
13.3 even 3 inner 2028.2.i.l.2005.2 6
13.4 even 6 2028.2.a.j.1.2 yes 3
13.5 odd 4 2028.2.q.j.1837.4 12
13.6 odd 12 2028.2.b.f.337.4 6
13.7 odd 12 2028.2.b.f.337.3 6
13.8 odd 4 2028.2.q.j.1837.3 12
13.9 even 3 2028.2.a.i.1.2 3
13.10 even 6 2028.2.i.m.2005.2 6
13.11 odd 12 2028.2.q.j.361.3 12
13.12 even 2 2028.2.i.m.529.2 6
39.17 odd 6 6084.2.a.y.1.2 3
39.20 even 12 6084.2.b.r.4393.4 6
39.32 even 12 6084.2.b.r.4393.3 6
39.35 odd 6 6084.2.a.bb.1.2 3
52.35 odd 6 8112.2.a.ch.1.2 3
52.43 odd 6 8112.2.a.co.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2028.2.a.i.1.2 3 13.9 even 3
2028.2.a.j.1.2 yes 3 13.4 even 6
2028.2.b.f.337.3 6 13.7 odd 12
2028.2.b.f.337.4 6 13.6 odd 12
2028.2.i.l.529.2 6 1.1 even 1 trivial
2028.2.i.l.2005.2 6 13.3 even 3 inner
2028.2.i.m.529.2 6 13.12 even 2
2028.2.i.m.2005.2 6 13.10 even 6
2028.2.q.j.361.3 12 13.11 odd 12
2028.2.q.j.361.4 12 13.2 odd 12
2028.2.q.j.1837.3 12 13.8 odd 4
2028.2.q.j.1837.4 12 13.5 odd 4
6084.2.a.y.1.2 3 39.17 odd 6
6084.2.a.bb.1.2 3 39.35 odd 6
6084.2.b.r.4393.3 6 39.32 even 12
6084.2.b.r.4393.4 6 39.20 even 12
8112.2.a.ch.1.2 3 52.35 odd 6
8112.2.a.co.1.2 3 52.43 odd 6