Properties

Label 6084.2.b.l.4393.1
Level $6084$
Weight $2$
Character 6084.4393
Analytic conductor $48.581$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6084,2,Mod(4393,6084)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6084, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6084.4393");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6084 = 2^{2} \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6084.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.5809845897\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4393.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 6084.4393
Dual form 6084.2.b.l.4393.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{5} -1.00000i q^{7} -5.00000i q^{11} +3.00000 q^{17} -3.00000i q^{19} -1.00000 q^{23} +1.00000 q^{25} +1.00000 q^{29} -8.00000i q^{31} -2.00000 q^{35} -3.00000i q^{37} -3.00000i q^{41} -1.00000 q^{43} +4.00000i q^{47} +6.00000 q^{49} +6.00000 q^{53} -10.0000 q^{55} +5.00000i q^{59} -5.00000 q^{61} +7.00000i q^{67} +11.0000i q^{71} -14.0000i q^{73} -5.00000 q^{77} -4.00000 q^{79} -12.0000i q^{83} -6.00000i q^{85} -9.00000i q^{89} -6.00000 q^{95} -1.00000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{17} - 2 q^{23} + 2 q^{25} + 2 q^{29} - 4 q^{35} - 2 q^{43} + 12 q^{49} + 12 q^{53} - 20 q^{55} - 10 q^{61} - 10 q^{77} - 8 q^{79} - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6084\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(3043\) \(3889\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 2.00000i − 0.894427i −0.894427 0.447214i \(-0.852416\pi\)
0.894427 0.447214i \(-0.147584\pi\)
\(6\) 0 0
\(7\) − 1.00000i − 0.377964i −0.981981 0.188982i \(-0.939481\pi\)
0.981981 0.188982i \(-0.0605189\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 5.00000i − 1.50756i −0.657129 0.753778i \(-0.728229\pi\)
0.657129 0.753778i \(-0.271771\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) − 3.00000i − 0.688247i −0.938924 0.344124i \(-0.888176\pi\)
0.938924 0.344124i \(-0.111824\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.00000 −0.208514 −0.104257 0.994550i \(-0.533247\pi\)
−0.104257 + 0.994550i \(0.533247\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.00000 0.185695 0.0928477 0.995680i \(-0.470403\pi\)
0.0928477 + 0.995680i \(0.470403\pi\)
\(30\) 0 0
\(31\) − 8.00000i − 1.43684i −0.695608 0.718421i \(-0.744865\pi\)
0.695608 0.718421i \(-0.255135\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.00000 −0.338062
\(36\) 0 0
\(37\) − 3.00000i − 0.493197i −0.969118 0.246598i \(-0.920687\pi\)
0.969118 0.246598i \(-0.0793129\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 3.00000i − 0.468521i −0.972174 0.234261i \(-0.924733\pi\)
0.972174 0.234261i \(-0.0752669\pi\)
\(42\) 0 0
\(43\) −1.00000 −0.152499 −0.0762493 0.997089i \(-0.524294\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000i 0.583460i 0.956501 + 0.291730i \(0.0942309\pi\)
−0.956501 + 0.291730i \(0.905769\pi\)
\(48\) 0 0
\(49\) 6.00000 0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −10.0000 −1.34840
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.00000i 0.650945i 0.945552 + 0.325472i \(0.105523\pi\)
−0.945552 + 0.325472i \(0.894477\pi\)
\(60\) 0 0
\(61\) −5.00000 −0.640184 −0.320092 0.947386i \(-0.603714\pi\)
−0.320092 + 0.947386i \(0.603714\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 7.00000i 0.855186i 0.903971 + 0.427593i \(0.140638\pi\)
−0.903971 + 0.427593i \(0.859362\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.0000i 1.30546i 0.757591 + 0.652730i \(0.226376\pi\)
−0.757591 + 0.652730i \(0.773624\pi\)
\(72\) 0 0
\(73\) − 14.0000i − 1.63858i −0.573382 0.819288i \(-0.694369\pi\)
0.573382 0.819288i \(-0.305631\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.00000 −0.569803
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 12.0000i − 1.31717i −0.752506 0.658586i \(-0.771155\pi\)
0.752506 0.658586i \(-0.228845\pi\)
\(84\) 0 0
\(85\) − 6.00000i − 0.650791i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 9.00000i − 0.953998i −0.878904 0.476999i \(-0.841725\pi\)
0.878904 0.476999i \(-0.158275\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −6.00000 −0.615587
\(96\) 0 0
\(97\) − 1.00000i − 0.101535i −0.998711 0.0507673i \(-0.983833\pi\)
0.998711 0.0507673i \(-0.0161667\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 19.0000 1.89057 0.945285 0.326245i \(-0.105783\pi\)
0.945285 + 0.326245i \(0.105783\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11.0000 −1.06341 −0.531705 0.846930i \(-0.678449\pi\)
−0.531705 + 0.846930i \(0.678449\pi\)
\(108\) 0 0
\(109\) 10.0000i 0.957826i 0.877862 + 0.478913i \(0.158969\pi\)
−0.877862 + 0.478913i \(0.841031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −11.0000 −1.03479 −0.517396 0.855746i \(-0.673099\pi\)
−0.517396 + 0.855746i \(0.673099\pi\)
\(114\) 0 0
\(115\) 2.00000i 0.186501i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 3.00000i − 0.275010i
\(120\) 0 0
\(121\) −14.0000 −1.27273
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 12.0000i − 1.07331i
\(126\) 0 0
\(127\) 5.00000 0.443678 0.221839 0.975083i \(-0.428794\pi\)
0.221839 + 0.975083i \(0.428794\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) −3.00000 −0.260133
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 15.0000i 1.28154i 0.767734 + 0.640768i \(0.221384\pi\)
−0.767734 + 0.640768i \(0.778616\pi\)
\(138\) 0 0
\(139\) −11.0000 −0.933008 −0.466504 0.884519i \(-0.654487\pi\)
−0.466504 + 0.884519i \(0.654487\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) − 2.00000i − 0.166091i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 21.0000i 1.72039i 0.509968 + 0.860194i \(0.329657\pi\)
−0.509968 + 0.860194i \(0.670343\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −16.0000 −1.28515
\(156\) 0 0
\(157\) −22.0000 −1.75579 −0.877896 0.478852i \(-0.841053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.00000i 0.0788110i
\(162\) 0 0
\(163\) 7.00000i 0.548282i 0.961689 + 0.274141i \(0.0883936\pi\)
−0.961689 + 0.274141i \(0.911606\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 9.00000i − 0.696441i −0.937413 0.348220i \(-0.886786\pi\)
0.937413 0.348220i \(-0.113214\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 11.0000 0.836315 0.418157 0.908375i \(-0.362676\pi\)
0.418157 + 0.908375i \(0.362676\pi\)
\(174\) 0 0
\(175\) − 1.00000i − 0.0755929i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −21.0000 −1.56961 −0.784807 0.619740i \(-0.787238\pi\)
−0.784807 + 0.619740i \(0.787238\pi\)
\(180\) 0 0
\(181\) −18.0000 −1.33793 −0.668965 0.743294i \(-0.733262\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.00000 −0.441129
\(186\) 0 0
\(187\) − 15.0000i − 1.09691i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.00000 −0.0723575 −0.0361787 0.999345i \(-0.511519\pi\)
−0.0361787 + 0.999345i \(0.511519\pi\)
\(192\) 0 0
\(193\) − 11.0000i − 0.791797i −0.918294 0.395899i \(-0.870433\pi\)
0.918294 0.395899i \(-0.129567\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.00000i 0.641223i 0.947211 + 0.320612i \(0.103888\pi\)
−0.947211 + 0.320612i \(0.896112\pi\)
\(198\) 0 0
\(199\) 19.0000 1.34687 0.673437 0.739244i \(-0.264817\pi\)
0.673437 + 0.739244i \(0.264817\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 1.00000i − 0.0701862i
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −15.0000 −1.03757
\(210\) 0 0
\(211\) −13.0000 −0.894957 −0.447478 0.894295i \(-0.647678\pi\)
−0.447478 + 0.894295i \(0.647678\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.00000i 0.136399i
\(216\) 0 0
\(217\) −8.00000 −0.543075
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 9.00000i − 0.602685i −0.953516 0.301342i \(-0.902565\pi\)
0.953516 0.301342i \(-0.0974347\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 21.0000i − 1.39382i −0.717159 0.696909i \(-0.754558\pi\)
0.717159 0.696909i \(-0.245442\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i 0.980152 + 0.198246i \(0.0635244\pi\)
−0.980152 + 0.198246i \(0.936476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 22.0000 1.44127 0.720634 0.693316i \(-0.243851\pi\)
0.720634 + 0.693316i \(0.243851\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 24.0000i − 1.55243i −0.630468 0.776215i \(-0.717137\pi\)
0.630468 0.776215i \(-0.282863\pi\)
\(240\) 0 0
\(241\) 21.0000i 1.35273i 0.736567 + 0.676364i \(0.236446\pi\)
−0.736567 + 0.676364i \(0.763554\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 12.0000i − 0.766652i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.00000 0.568075 0.284037 0.958813i \(-0.408326\pi\)
0.284037 + 0.958813i \(0.408326\pi\)
\(252\) 0 0
\(253\) 5.00000i 0.314347i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.00000 0.187135 0.0935674 0.995613i \(-0.470173\pi\)
0.0935674 + 0.995613i \(0.470173\pi\)
\(258\) 0 0
\(259\) −3.00000 −0.186411
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −15.0000 −0.924940 −0.462470 0.886635i \(-0.653037\pi\)
−0.462470 + 0.886635i \(0.653037\pi\)
\(264\) 0 0
\(265\) − 12.0000i − 0.737154i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −15.0000 −0.914566 −0.457283 0.889321i \(-0.651177\pi\)
−0.457283 + 0.889321i \(0.651177\pi\)
\(270\) 0 0
\(271\) 17.0000i 1.03268i 0.856385 + 0.516338i \(0.172705\pi\)
−0.856385 + 0.516338i \(0.827295\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 5.00000i − 0.301511i
\(276\) 0 0
\(277\) 9.00000 0.540758 0.270379 0.962754i \(-0.412851\pi\)
0.270379 + 0.962754i \(0.412851\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 2.00000i − 0.119310i −0.998219 0.0596550i \(-0.981000\pi\)
0.998219 0.0596550i \(-0.0190001\pi\)
\(282\) 0 0
\(283\) −19.0000 −1.12943 −0.564716 0.825285i \(-0.691014\pi\)
−0.564716 + 0.825285i \(0.691014\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.00000 −0.177084
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 19.0000i 1.10999i 0.831853 + 0.554996i \(0.187280\pi\)
−0.831853 + 0.554996i \(0.812720\pi\)
\(294\) 0 0
\(295\) 10.0000 0.582223
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 1.00000i 0.0576390i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10.0000i 0.572598i
\(306\) 0 0
\(307\) 4.00000i 0.228292i 0.993464 + 0.114146i \(0.0364132\pi\)
−0.993464 + 0.114146i \(0.963587\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 30.0000i − 1.68497i −0.538721 0.842484i \(-0.681092\pi\)
0.538721 0.842484i \(-0.318908\pi\)
\(318\) 0 0
\(319\) − 5.00000i − 0.279946i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 9.00000i − 0.500773i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.00000 0.220527
\(330\) 0 0
\(331\) 17.0000i 0.934405i 0.884150 + 0.467202i \(0.154738\pi\)
−0.884150 + 0.467202i \(0.845262\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 14.0000 0.764902
\(336\) 0 0
\(337\) 10.0000 0.544735 0.272367 0.962193i \(-0.412193\pi\)
0.272367 + 0.962193i \(0.412193\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −40.0000 −2.16612
\(342\) 0 0
\(343\) − 13.0000i − 0.701934i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −33.0000 −1.77153 −0.885766 0.464131i \(-0.846367\pi\)
−0.885766 + 0.464131i \(0.846367\pi\)
\(348\) 0 0
\(349\) − 19.0000i − 1.01705i −0.861048 0.508523i \(-0.830192\pi\)
0.861048 0.508523i \(-0.169808\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 7.00000i − 0.372572i −0.982496 0.186286i \(-0.940355\pi\)
0.982496 0.186286i \(-0.0596452\pi\)
\(354\) 0 0
\(355\) 22.0000 1.16764
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 24.0000i − 1.26667i −0.773877 0.633336i \(-0.781685\pi\)
0.773877 0.633336i \(-0.218315\pi\)
\(360\) 0 0
\(361\) 10.0000 0.526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −28.0000 −1.46559
\(366\) 0 0
\(367\) 23.0000 1.20059 0.600295 0.799779i \(-0.295050\pi\)
0.600295 + 0.799779i \(0.295050\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 6.00000i − 0.311504i
\(372\) 0 0
\(373\) 23.0000 1.19089 0.595447 0.803394i \(-0.296975\pi\)
0.595447 + 0.803394i \(0.296975\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 5.00000i − 0.256833i −0.991720 0.128416i \(-0.959011\pi\)
0.991720 0.128416i \(-0.0409894\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 9.00000i − 0.459879i −0.973205 0.229939i \(-0.926147\pi\)
0.973205 0.229939i \(-0.0738528\pi\)
\(384\) 0 0
\(385\) 10.0000i 0.509647i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) −3.00000 −0.151717
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.00000i 0.402524i
\(396\) 0 0
\(397\) 25.0000i 1.25471i 0.778732 + 0.627357i \(0.215863\pi\)
−0.778732 + 0.627357i \(0.784137\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 27.0000i 1.34832i 0.738587 + 0.674158i \(0.235493\pi\)
−0.738587 + 0.674158i \(0.764507\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −15.0000 −0.743522
\(408\) 0 0
\(409\) − 5.00000i − 0.247234i −0.992330 0.123617i \(-0.960551\pi\)
0.992330 0.123617i \(-0.0394494\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.00000 0.246034
\(414\) 0 0
\(415\) −24.0000 −1.17811
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −15.0000 −0.732798 −0.366399 0.930458i \(-0.619409\pi\)
−0.366399 + 0.930458i \(0.619409\pi\)
\(420\) 0 0
\(421\) 10.0000i 0.487370i 0.969854 + 0.243685i \(0.0783563\pi\)
−0.969854 + 0.243685i \(0.921644\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.00000 0.145521
\(426\) 0 0
\(427\) 5.00000i 0.241967i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 3.00000i − 0.144505i −0.997386 0.0722525i \(-0.976981\pi\)
0.997386 0.0722525i \(-0.0230187\pi\)
\(432\) 0 0
\(433\) −19.0000 −0.913082 −0.456541 0.889702i \(-0.650912\pi\)
−0.456541 + 0.889702i \(0.650912\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.00000i 0.143509i
\(438\) 0 0
\(439\) 13.0000 0.620456 0.310228 0.950662i \(-0.399595\pi\)
0.310228 + 0.950662i \(0.399595\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) −18.0000 −0.853282
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 5.00000i − 0.235965i −0.993016 0.117982i \(-0.962357\pi\)
0.993016 0.117982i \(-0.0376426\pi\)
\(450\) 0 0
\(451\) −15.0000 −0.706322
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 17.0000i − 0.795226i −0.917553 0.397613i \(-0.869839\pi\)
0.917553 0.397613i \(-0.130161\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.00000i 0.419172i 0.977790 + 0.209586i \(0.0672116\pi\)
−0.977790 + 0.209586i \(0.932788\pi\)
\(462\) 0 0
\(463\) − 40.0000i − 1.85896i −0.368875 0.929479i \(-0.620257\pi\)
0.368875 0.929479i \(-0.379743\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −16.0000 −0.740392 −0.370196 0.928954i \(-0.620709\pi\)
−0.370196 + 0.928954i \(0.620709\pi\)
\(468\) 0 0
\(469\) 7.00000 0.323230
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.00000i 0.229900i
\(474\) 0 0
\(475\) − 3.00000i − 0.137649i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 3.00000i 0.137073i 0.997649 + 0.0685367i \(0.0218330\pi\)
−0.997649 + 0.0685367i \(0.978167\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.00000 −0.0908153
\(486\) 0 0
\(487\) 29.0000i 1.31412i 0.753840 + 0.657058i \(0.228199\pi\)
−0.753840 + 0.657058i \(0.771801\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 31.0000 1.39901 0.699505 0.714628i \(-0.253404\pi\)
0.699505 + 0.714628i \(0.253404\pi\)
\(492\) 0 0
\(493\) 3.00000 0.135113
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 11.0000 0.493417
\(498\) 0 0
\(499\) 4.00000i 0.179065i 0.995984 + 0.0895323i \(0.0285372\pi\)
−0.995984 + 0.0895323i \(0.971463\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 23.0000 1.02552 0.512760 0.858532i \(-0.328623\pi\)
0.512760 + 0.858532i \(0.328623\pi\)
\(504\) 0 0
\(505\) − 38.0000i − 1.69098i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5.00000i 0.221621i 0.993842 + 0.110811i \(0.0353447\pi\)
−0.993842 + 0.110811i \(0.964655\pi\)
\(510\) 0 0
\(511\) −14.0000 −0.619324
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 16.0000i − 0.705044i
\(516\) 0 0
\(517\) 20.0000 0.879599
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) 15.0000 0.655904 0.327952 0.944694i \(-0.393642\pi\)
0.327952 + 0.944694i \(0.393642\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 24.0000i − 1.04546i
\(528\) 0 0
\(529\) −22.0000 −0.956522
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 22.0000i 0.951143i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 30.0000i − 1.29219i
\(540\) 0 0
\(541\) 34.0000i 1.46177i 0.682498 + 0.730887i \(0.260893\pi\)
−0.682498 + 0.730887i \(0.739107\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 20.0000 0.856706
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 3.00000i − 0.127804i
\(552\) 0 0
\(553\) 4.00000i 0.170097i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 33.0000i − 1.39825i −0.714997 0.699127i \(-0.753572\pi\)
0.714997 0.699127i \(-0.246428\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −19.0000 −0.800755 −0.400377 0.916350i \(-0.631121\pi\)
−0.400377 + 0.916350i \(0.631121\pi\)
\(564\) 0 0
\(565\) 22.0000i 0.925547i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7.00000 0.293455 0.146728 0.989177i \(-0.453126\pi\)
0.146728 + 0.989177i \(0.453126\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.00000 −0.0417029
\(576\) 0 0
\(577\) 6.00000i 0.249783i 0.992170 + 0.124892i \(0.0398583\pi\)
−0.992170 + 0.124892i \(0.960142\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) − 30.0000i − 1.24247i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 25.0000i 1.03186i 0.856631 + 0.515930i \(0.172554\pi\)
−0.856631 + 0.515930i \(0.827446\pi\)
\(588\) 0 0
\(589\) −24.0000 −0.988903
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 34.0000i − 1.39621i −0.715994 0.698106i \(-0.754026\pi\)
0.715994 0.698106i \(-0.245974\pi\)
\(594\) 0 0
\(595\) −6.00000 −0.245976
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 20.0000 0.817178 0.408589 0.912719i \(-0.366021\pi\)
0.408589 + 0.912719i \(0.366021\pi\)
\(600\) 0 0
\(601\) 19.0000 0.775026 0.387513 0.921864i \(-0.373334\pi\)
0.387513 + 0.921864i \(0.373334\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 28.0000i 1.13836i
\(606\) 0 0
\(607\) −27.0000 −1.09590 −0.547948 0.836512i \(-0.684591\pi\)
−0.547948 + 0.836512i \(0.684591\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 11.0000i 0.444286i 0.975014 + 0.222143i \(0.0713052\pi\)
−0.975014 + 0.222143i \(0.928695\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 7.00000i − 0.281809i −0.990023 0.140905i \(-0.954999\pi\)
0.990023 0.140905i \(-0.0450011\pi\)
\(618\) 0 0
\(619\) 20.0000i 0.803868i 0.915669 + 0.401934i \(0.131662\pi\)
−0.915669 + 0.401934i \(0.868338\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −9.00000 −0.360577
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 9.00000i − 0.358854i
\(630\) 0 0
\(631\) − 37.0000i − 1.47295i −0.676467 0.736473i \(-0.736490\pi\)
0.676467 0.736473i \(-0.263510\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 10.0000i − 0.396838i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5.00000 −0.197488 −0.0987441 0.995113i \(-0.531483\pi\)
−0.0987441 + 0.995113i \(0.531483\pi\)
\(642\) 0 0
\(643\) − 31.0000i − 1.22252i −0.791430 0.611260i \(-0.790663\pi\)
0.791430 0.611260i \(-0.209337\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −29.0000 −1.14011 −0.570054 0.821607i \(-0.693078\pi\)
−0.570054 + 0.821607i \(0.693078\pi\)
\(648\) 0 0
\(649\) 25.0000 0.981336
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.00000 −0.117399 −0.0586995 0.998276i \(-0.518695\pi\)
−0.0586995 + 0.998276i \(0.518695\pi\)
\(654\) 0 0
\(655\) − 8.00000i − 0.312586i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −33.0000 −1.28550 −0.642749 0.766077i \(-0.722206\pi\)
−0.642749 + 0.766077i \(0.722206\pi\)
\(660\) 0 0
\(661\) 37.0000i 1.43913i 0.694423 + 0.719567i \(0.255660\pi\)
−0.694423 + 0.719567i \(0.744340\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.00000i 0.232670i
\(666\) 0 0
\(667\) −1.00000 −0.0387202
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 25.0000i 0.965114i
\(672\) 0 0
\(673\) −7.00000 −0.269830 −0.134915 0.990857i \(-0.543076\pi\)
−0.134915 + 0.990857i \(0.543076\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) −1.00000 −0.0383765
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 11.0000i − 0.420903i −0.977604 0.210452i \(-0.932507\pi\)
0.977604 0.210452i \(-0.0674935\pi\)
\(684\) 0 0
\(685\) 30.0000 1.14624
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 5.00000i − 0.190209i −0.995467 0.0951045i \(-0.969681\pi\)
0.995467 0.0951045i \(-0.0303185\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 22.0000i 0.834508i
\(696\) 0 0
\(697\) − 9.00000i − 0.340899i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) −9.00000 −0.339441
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 19.0000i − 0.714569i
\(708\) 0 0
\(709\) 1.00000i 0.0375558i 0.999824 + 0.0187779i \(0.00597754\pi\)
−0.999824 + 0.0187779i \(0.994022\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.00000i 0.299602i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17.0000 0.633993 0.316997 0.948427i \(-0.397326\pi\)
0.316997 + 0.948427i \(0.397326\pi\)
\(720\) 0 0
\(721\) − 8.00000i − 0.297936i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.00000 0.0371391
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −3.00000 −0.110959
\(732\) 0 0
\(733\) 14.0000i 0.517102i 0.965998 + 0.258551i \(0.0832450\pi\)
−0.965998 + 0.258551i \(0.916755\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 35.0000 1.28924
\(738\) 0 0
\(739\) − 15.0000i − 0.551784i −0.961189 0.275892i \(-0.911027\pi\)
0.961189 0.275892i \(-0.0889732\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 29.0000i 1.06391i 0.846774 + 0.531953i \(0.178542\pi\)
−0.846774 + 0.531953i \(0.821458\pi\)
\(744\) 0 0
\(745\) 42.0000 1.53876
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 11.0000i 0.401931i
\(750\) 0 0
\(751\) 9.00000 0.328415 0.164207 0.986426i \(-0.447493\pi\)
0.164207 + 0.986426i \(0.447493\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 3.00000 0.109037 0.0545184 0.998513i \(-0.482638\pi\)
0.0545184 + 0.998513i \(0.482638\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 27.0000i 0.978749i 0.872074 + 0.489375i \(0.162775\pi\)
−0.872074 + 0.489375i \(0.837225\pi\)
\(762\) 0 0
\(763\) 10.0000 0.362024
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) − 21.0000i − 0.757279i −0.925544 0.378640i \(-0.876392\pi\)
0.925544 0.378640i \(-0.123608\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.00000i 0.0359675i 0.999838 + 0.0179838i \(0.00572471\pi\)
−0.999838 + 0.0179838i \(0.994275\pi\)
\(774\) 0 0
\(775\) − 8.00000i − 0.287368i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.00000 −0.322458
\(780\) 0 0
\(781\) 55.0000 1.96805
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 44.0000i 1.57043i
\(786\) 0 0
\(787\) 7.00000i 0.249523i 0.992187 + 0.124762i \(0.0398166\pi\)
−0.992187 + 0.124762i \(0.960183\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 11.0000i 0.391115i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27.0000 0.956389 0.478195 0.878254i \(-0.341291\pi\)
0.478195 + 0.878254i \(0.341291\pi\)
\(798\) 0 0
\(799\) 12.0000i 0.424529i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −70.0000 −2.47025
\(804\) 0 0
\(805\) 2.00000 0.0704907
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 45.0000 1.58212 0.791058 0.611741i \(-0.209531\pi\)
0.791058 + 0.611741i \(0.209531\pi\)
\(810\) 0 0
\(811\) − 40.0000i − 1.40459i −0.711886 0.702295i \(-0.752159\pi\)
0.711886 0.702295i \(-0.247841\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 14.0000 0.490399
\(816\) 0 0
\(817\) 3.00000i 0.104957i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 47.0000i − 1.64031i −0.572140 0.820156i \(-0.693887\pi\)
0.572140 0.820156i \(-0.306113\pi\)
\(822\) 0 0
\(823\) 3.00000 0.104573 0.0522867 0.998632i \(-0.483349\pi\)
0.0522867 + 0.998632i \(0.483349\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.0000i 1.25184i 0.779886 + 0.625921i \(0.215277\pi\)
−0.779886 + 0.625921i \(0.784723\pi\)
\(828\) 0 0
\(829\) −31.0000 −1.07667 −0.538337 0.842729i \(-0.680947\pi\)
−0.538337 + 0.842729i \(0.680947\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 18.0000 0.623663
\(834\) 0 0
\(835\) −18.0000 −0.622916
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 43.0000i − 1.48452i −0.670109 0.742262i \(-0.733753\pi\)
0.670109 0.742262i \(-0.266247\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 14.0000i 0.481046i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 3.00000i 0.102839i
\(852\) 0 0
\(853\) − 10.0000i − 0.342393i −0.985237 0.171197i \(-0.945237\pi\)
0.985237 0.171197i \(-0.0547634\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.00000 −0.0683187 −0.0341593 0.999416i \(-0.510875\pi\)
−0.0341593 + 0.999416i \(0.510875\pi\)
\(858\) 0 0
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 16.0000i − 0.544646i −0.962206 0.272323i \(-0.912208\pi\)
0.962206 0.272323i \(-0.0877920\pi\)
\(864\) 0 0
\(865\) − 22.0000i − 0.748022i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 20.0000i 0.678454i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −12.0000 −0.405674
\(876\) 0 0
\(877\) − 45.0000i − 1.51954i −0.650191 0.759771i \(-0.725311\pi\)
0.650191 0.759771i \(-0.274689\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 51.0000 1.71823 0.859117 0.511780i \(-0.171014\pi\)
0.859117 + 0.511780i \(0.171014\pi\)
\(882\) 0 0
\(883\) 44.0000 1.48072 0.740359 0.672212i \(-0.234656\pi\)
0.740359 + 0.672212i \(0.234656\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 53.0000 1.77957 0.889783 0.456384i \(-0.150856\pi\)
0.889783 + 0.456384i \(0.150856\pi\)
\(888\) 0 0
\(889\) − 5.00000i − 0.167695i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 12.0000 0.401565
\(894\) 0 0
\(895\) 42.0000i 1.40391i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 8.00000i − 0.266815i
\(900\) 0 0
\(901\) 18.0000 0.599667
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 36.0000i 1.19668i
\(906\) 0 0
\(907\) −3.00000 −0.0996134 −0.0498067 0.998759i \(-0.515861\pi\)
−0.0498067 + 0.998759i \(0.515861\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) −60.0000 −1.98571
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 4.00000i − 0.132092i
\(918\) 0 0
\(919\) 33.0000 1.08857 0.544285 0.838901i \(-0.316801\pi\)
0.544285 + 0.838901i \(0.316801\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 3.00000i − 0.0986394i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 21.0000i 0.688988i 0.938789 + 0.344494i \(0.111949\pi\)
−0.938789 + 0.344494i \(0.888051\pi\)
\(930\) 0 0
\(931\) − 18.0000i − 0.589926i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −30.0000 −0.981105
\(936\) 0 0
\(937\) −18.0000 −0.588034 −0.294017 0.955800i \(-0.594992\pi\)
−0.294017 + 0.955800i \(0.594992\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 50.0000i 1.62995i 0.579494 + 0.814977i \(0.303250\pi\)
−0.579494 + 0.814977i \(0.696750\pi\)
\(942\) 0 0
\(943\) 3.00000i 0.0976934i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 27.0000i 0.877382i 0.898638 + 0.438691i \(0.144558\pi\)
−0.898638 + 0.438691i \(0.855442\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.00000 −0.0323932 −0.0161966 0.999869i \(-0.505156\pi\)
−0.0161966 + 0.999869i \(0.505156\pi\)
\(954\) 0 0
\(955\) 2.00000i 0.0647185i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 15.0000 0.484375
\(960\) 0 0
\(961\) −33.0000 −1.06452
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −22.0000 −0.708205
\(966\) 0 0
\(967\) 32.0000i 1.02905i 0.857475 + 0.514525i \(0.172032\pi\)
−0.857475 + 0.514525i \(0.827968\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 15.0000 0.481373 0.240686 0.970603i \(-0.422627\pi\)
0.240686 + 0.970603i \(0.422627\pi\)
\(972\) 0 0
\(973\) 11.0000i 0.352644i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 39.0000i − 1.24772i −0.781536 0.623860i \(-0.785563\pi\)
0.781536 0.623860i \(-0.214437\pi\)
\(978\) 0 0
\(979\) −45.0000 −1.43821
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 16.0000i − 0.510321i −0.966899 0.255160i \(-0.917872\pi\)
0.966899 0.255160i \(-0.0821283\pi\)
\(984\) 0 0
\(985\) 18.0000 0.573528
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.00000 0.0317982
\(990\) 0 0
\(991\) 27.0000 0.857683 0.428842 0.903380i \(-0.358922\pi\)
0.428842 + 0.903380i \(0.358922\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 38.0000i − 1.20468i
\(996\) 0 0
\(997\) 35.0000 1.10846 0.554231 0.832363i \(-0.313013\pi\)
0.554231 + 0.832363i \(0.313013\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6084.2.b.l.4393.1 2
3.2 odd 2 676.2.d.d.337.2 2
12.11 even 2 2704.2.f.a.337.2 2
13.2 odd 12 468.2.l.a.217.1 2
13.5 odd 4 6084.2.a.f.1.1 1
13.6 odd 12 468.2.l.a.289.1 2
13.8 odd 4 6084.2.a.k.1.1 1
13.12 even 2 inner 6084.2.b.l.4393.2 2
39.2 even 12 52.2.e.a.9.1 2
39.5 even 4 676.2.a.e.1.1 1
39.8 even 4 676.2.a.d.1.1 1
39.11 even 12 676.2.e.a.529.1 2
39.17 odd 6 676.2.h.b.361.1 4
39.20 even 12 676.2.e.a.653.1 2
39.23 odd 6 676.2.h.b.485.1 4
39.29 odd 6 676.2.h.b.485.2 4
39.32 even 12 52.2.e.a.29.1 yes 2
39.35 odd 6 676.2.h.b.361.2 4
39.38 odd 2 676.2.d.d.337.1 2
52.15 even 12 1872.2.t.f.1153.1 2
52.19 even 12 1872.2.t.f.289.1 2
156.47 odd 4 2704.2.a.a.1.1 1
156.71 odd 12 208.2.i.d.81.1 2
156.83 odd 4 2704.2.a.b.1.1 1
156.119 odd 12 208.2.i.d.113.1 2
156.155 even 2 2704.2.f.a.337.1 2
195.2 odd 12 1300.2.bb.f.1049.2 4
195.32 odd 12 1300.2.bb.f.549.1 4
195.119 even 12 1300.2.i.f.1101.1 2
195.149 even 12 1300.2.i.f.601.1 2
195.158 odd 12 1300.2.bb.f.1049.1 4
195.188 odd 12 1300.2.bb.f.549.2 4
273.2 even 12 2548.2.i.a.165.1 2
273.32 even 12 2548.2.i.a.1745.1 2
273.41 odd 12 2548.2.k.d.1569.1 2
273.80 odd 12 2548.2.l.a.373.1 2
273.110 odd 12 2548.2.l.a.1537.1 2
273.149 even 12 2548.2.l.h.1537.1 2
273.158 even 12 2548.2.l.h.373.1 2
273.188 odd 12 2548.2.k.d.393.1 2
273.227 odd 12 2548.2.i.h.1745.1 2
273.236 odd 12 2548.2.i.h.165.1 2
312.149 even 12 832.2.i.j.705.1 2
312.197 even 12 832.2.i.j.321.1 2
312.227 odd 12 832.2.i.a.705.1 2
312.275 odd 12 832.2.i.a.321.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.2.e.a.9.1 2 39.2 even 12
52.2.e.a.29.1 yes 2 39.32 even 12
208.2.i.d.81.1 2 156.71 odd 12
208.2.i.d.113.1 2 156.119 odd 12
468.2.l.a.217.1 2 13.2 odd 12
468.2.l.a.289.1 2 13.6 odd 12
676.2.a.d.1.1 1 39.8 even 4
676.2.a.e.1.1 1 39.5 even 4
676.2.d.d.337.1 2 39.38 odd 2
676.2.d.d.337.2 2 3.2 odd 2
676.2.e.a.529.1 2 39.11 even 12
676.2.e.a.653.1 2 39.20 even 12
676.2.h.b.361.1 4 39.17 odd 6
676.2.h.b.361.2 4 39.35 odd 6
676.2.h.b.485.1 4 39.23 odd 6
676.2.h.b.485.2 4 39.29 odd 6
832.2.i.a.321.1 2 312.275 odd 12
832.2.i.a.705.1 2 312.227 odd 12
832.2.i.j.321.1 2 312.197 even 12
832.2.i.j.705.1 2 312.149 even 12
1300.2.i.f.601.1 2 195.149 even 12
1300.2.i.f.1101.1 2 195.119 even 12
1300.2.bb.f.549.1 4 195.32 odd 12
1300.2.bb.f.549.2 4 195.188 odd 12
1300.2.bb.f.1049.1 4 195.158 odd 12
1300.2.bb.f.1049.2 4 195.2 odd 12
1872.2.t.f.289.1 2 52.19 even 12
1872.2.t.f.1153.1 2 52.15 even 12
2548.2.i.a.165.1 2 273.2 even 12
2548.2.i.a.1745.1 2 273.32 even 12
2548.2.i.h.165.1 2 273.236 odd 12
2548.2.i.h.1745.1 2 273.227 odd 12
2548.2.k.d.393.1 2 273.188 odd 12
2548.2.k.d.1569.1 2 273.41 odd 12
2548.2.l.a.373.1 2 273.80 odd 12
2548.2.l.a.1537.1 2 273.110 odd 12
2548.2.l.h.373.1 2 273.158 even 12
2548.2.l.h.1537.1 2 273.149 even 12
2704.2.a.a.1.1 1 156.47 odd 4
2704.2.a.b.1.1 1 156.83 odd 4
2704.2.f.a.337.1 2 156.155 even 2
2704.2.f.a.337.2 2 12.11 even 2
6084.2.a.f.1.1 1 13.5 odd 4
6084.2.a.k.1.1 1 13.8 odd 4
6084.2.b.l.4393.1 2 1.1 even 1 trivial
6084.2.b.l.4393.2 2 13.12 even 2 inner