Properties

Label 676.2.h.b.361.1
Level $676$
Weight $2$
Character 676.361
Analytic conductor $5.398$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [676,2,Mod(361,676)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("676.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 676.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.39788717664\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 676.361
Dual form 676.2.h.b.485.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 - 2.59808i) q^{3} -2.00000i q^{5} +(-0.866025 - 0.500000i) q^{7} +(-3.00000 + 5.19615i) q^{9} +(-4.33013 + 2.50000i) q^{11} +(-5.19615 + 3.00000i) q^{15} +(1.50000 - 2.59808i) q^{17} +(-2.59808 - 1.50000i) q^{19} +3.00000i q^{21} +(-0.500000 - 0.866025i) q^{23} +1.00000 q^{25} +9.00000 q^{27} +(0.500000 + 0.866025i) q^{29} +8.00000i q^{31} +(12.9904 + 7.50000i) q^{33} +(-1.00000 + 1.73205i) q^{35} +(2.59808 - 1.50000i) q^{37} +(-2.59808 + 1.50000i) q^{41} +(0.500000 - 0.866025i) q^{43} +(10.3923 + 6.00000i) q^{45} +4.00000i q^{47} +(-3.00000 - 5.19615i) q^{49} -9.00000 q^{51} -6.00000 q^{53} +(5.00000 + 8.66025i) q^{55} +9.00000i q^{57} +(-4.33013 - 2.50000i) q^{59} +(2.50000 - 4.33013i) q^{61} +(5.19615 - 3.00000i) q^{63} +(-6.06218 + 3.50000i) q^{67} +(-1.50000 + 2.59808i) q^{69} +(-9.52628 - 5.50000i) q^{71} +14.0000i q^{73} +(-1.50000 - 2.59808i) q^{75} +5.00000 q^{77} -4.00000 q^{79} +(-4.50000 - 7.79423i) q^{81} -12.0000i q^{83} +(-5.19615 - 3.00000i) q^{85} +(1.50000 - 2.59808i) q^{87} +(-7.79423 + 4.50000i) q^{89} +(20.7846 - 12.0000i) q^{93} +(-3.00000 + 5.19615i) q^{95} +(-0.866025 - 0.500000i) q^{97} -30.0000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{3} - 12 q^{9} + 6 q^{17} - 2 q^{23} + 4 q^{25} + 36 q^{27} + 2 q^{29} - 4 q^{35} + 2 q^{43} - 12 q^{49} - 36 q^{51} - 24 q^{53} + 20 q^{55} + 10 q^{61} - 6 q^{69} - 6 q^{75} + 20 q^{77} - 16 q^{79}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 2.59808i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(4\) 0 0
\(5\) 2.00000i 0.894427i −0.894427 0.447214i \(-0.852416\pi\)
0.894427 0.447214i \(-0.147584\pi\)
\(6\) 0 0
\(7\) −0.866025 0.500000i −0.327327 0.188982i 0.327327 0.944911i \(-0.393852\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 0 0
\(9\) −3.00000 + 5.19615i −1.00000 + 1.73205i
\(10\) 0 0
\(11\) −4.33013 + 2.50000i −1.30558 + 0.753778i −0.981356 0.192201i \(-0.938437\pi\)
−0.324227 + 0.945979i \(0.605104\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −5.19615 + 3.00000i −1.34164 + 0.774597i
\(16\) 0 0
\(17\) 1.50000 2.59808i 0.363803 0.630126i −0.624780 0.780801i \(-0.714811\pi\)
0.988583 + 0.150675i \(0.0481447\pi\)
\(18\) 0 0
\(19\) −2.59808 1.50000i −0.596040 0.344124i 0.171442 0.985194i \(-0.445157\pi\)
−0.767482 + 0.641071i \(0.778491\pi\)
\(20\) 0 0
\(21\) 3.00000i 0.654654i
\(22\) 0 0
\(23\) −0.500000 0.866025i −0.104257 0.180579i 0.809177 0.587565i \(-0.199913\pi\)
−0.913434 + 0.406986i \(0.866580\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 9.00000 1.73205
\(28\) 0 0
\(29\) 0.500000 + 0.866025i 0.0928477 + 0.160817i 0.908708 0.417432i \(-0.137070\pi\)
−0.815861 + 0.578249i \(0.803736\pi\)
\(30\) 0 0
\(31\) 8.00000i 1.43684i 0.695608 + 0.718421i \(0.255135\pi\)
−0.695608 + 0.718421i \(0.744865\pi\)
\(32\) 0 0
\(33\) 12.9904 + 7.50000i 2.26134 + 1.30558i
\(34\) 0 0
\(35\) −1.00000 + 1.73205i −0.169031 + 0.292770i
\(36\) 0 0
\(37\) 2.59808 1.50000i 0.427121 0.246598i −0.270998 0.962580i \(-0.587354\pi\)
0.698119 + 0.715981i \(0.254020\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.59808 + 1.50000i −0.405751 + 0.234261i −0.688963 0.724797i \(-0.741934\pi\)
0.283211 + 0.959058i \(0.408600\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.0762493 0.132068i −0.825380 0.564578i \(-0.809039\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) 0 0
\(45\) 10.3923 + 6.00000i 1.54919 + 0.894427i
\(46\) 0 0
\(47\) 4.00000i 0.583460i 0.956501 + 0.291730i \(0.0942309\pi\)
−0.956501 + 0.291730i \(0.905769\pi\)
\(48\) 0 0
\(49\) −3.00000 5.19615i −0.428571 0.742307i
\(50\) 0 0
\(51\) −9.00000 −1.26025
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 5.00000 + 8.66025i 0.674200 + 1.16775i
\(56\) 0 0
\(57\) 9.00000i 1.19208i
\(58\) 0 0
\(59\) −4.33013 2.50000i −0.563735 0.325472i 0.190909 0.981608i \(-0.438857\pi\)
−0.754643 + 0.656136i \(0.772190\pi\)
\(60\) 0 0
\(61\) 2.50000 4.33013i 0.320092 0.554416i −0.660415 0.750901i \(-0.729619\pi\)
0.980507 + 0.196485i \(0.0629528\pi\)
\(62\) 0 0
\(63\) 5.19615 3.00000i 0.654654 0.377964i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.06218 + 3.50000i −0.740613 + 0.427593i −0.822292 0.569066i \(-0.807305\pi\)
0.0816792 + 0.996659i \(0.473972\pi\)
\(68\) 0 0
\(69\) −1.50000 + 2.59808i −0.180579 + 0.312772i
\(70\) 0 0
\(71\) −9.52628 5.50000i −1.13056 0.652730i −0.186485 0.982458i \(-0.559710\pi\)
−0.944076 + 0.329728i \(0.893043\pi\)
\(72\) 0 0
\(73\) 14.0000i 1.63858i 0.573382 + 0.819288i \(0.305631\pi\)
−0.573382 + 0.819288i \(0.694369\pi\)
\(74\) 0 0
\(75\) −1.50000 2.59808i −0.173205 0.300000i
\(76\) 0 0
\(77\) 5.00000 0.569803
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0 0
\(83\) 12.0000i 1.31717i −0.752506 0.658586i \(-0.771155\pi\)
0.752506 0.658586i \(-0.228845\pi\)
\(84\) 0 0
\(85\) −5.19615 3.00000i −0.563602 0.325396i
\(86\) 0 0
\(87\) 1.50000 2.59808i 0.160817 0.278543i
\(88\) 0 0
\(89\) −7.79423 + 4.50000i −0.826187 + 0.476999i −0.852545 0.522654i \(-0.824942\pi\)
0.0263586 + 0.999653i \(0.491609\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 20.7846 12.0000i 2.15526 1.24434i
\(94\) 0 0
\(95\) −3.00000 + 5.19615i −0.307794 + 0.533114i
\(96\) 0 0
\(97\) −0.866025 0.500000i −0.0879316 0.0507673i 0.455389 0.890292i \(-0.349500\pi\)
−0.543321 + 0.839525i \(0.682833\pi\)
\(98\) 0 0
\(99\) 30.0000i 3.01511i
\(100\) 0 0
\(101\) 9.50000 + 16.4545i 0.945285 + 1.63728i 0.755179 + 0.655519i \(0.227550\pi\)
0.190106 + 0.981763i \(0.439117\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 6.00000 0.585540
\(106\) 0 0
\(107\) −5.50000 9.52628i −0.531705 0.920940i −0.999315 0.0370053i \(-0.988218\pi\)
0.467610 0.883935i \(-0.345115\pi\)
\(108\) 0 0
\(109\) 10.0000i 0.957826i −0.877862 0.478913i \(-0.841031\pi\)
0.877862 0.478913i \(-0.158969\pi\)
\(110\) 0 0
\(111\) −7.79423 4.50000i −0.739795 0.427121i
\(112\) 0 0
\(113\) −5.50000 + 9.52628i −0.517396 + 0.896157i 0.482399 + 0.875951i \(0.339765\pi\)
−0.999796 + 0.0202056i \(0.993568\pi\)
\(114\) 0 0
\(115\) −1.73205 + 1.00000i −0.161515 + 0.0932505i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.59808 + 1.50000i −0.238165 + 0.137505i
\(120\) 0 0
\(121\) 7.00000 12.1244i 0.636364 1.10221i
\(122\) 0 0
\(123\) 7.79423 + 4.50000i 0.702782 + 0.405751i
\(124\) 0 0
\(125\) 12.0000i 1.07331i
\(126\) 0 0
\(127\) −2.50000 4.33013i −0.221839 0.384237i 0.733527 0.679660i \(-0.237873\pi\)
−0.955366 + 0.295423i \(0.904539\pi\)
\(128\) 0 0
\(129\) −3.00000 −0.264135
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) 1.50000 + 2.59808i 0.130066 + 0.225282i
\(134\) 0 0
\(135\) 18.0000i 1.54919i
\(136\) 0 0
\(137\) −12.9904 7.50000i −1.10984 0.640768i −0.171054 0.985262i \(-0.554717\pi\)
−0.938789 + 0.344493i \(0.888051\pi\)
\(138\) 0 0
\(139\) 5.50000 9.52628i 0.466504 0.808008i −0.532764 0.846264i \(-0.678847\pi\)
0.999268 + 0.0382553i \(0.0121800\pi\)
\(140\) 0 0
\(141\) 10.3923 6.00000i 0.875190 0.505291i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 1.73205 1.00000i 0.143839 0.0830455i
\(146\) 0 0
\(147\) −9.00000 + 15.5885i −0.742307 + 1.28571i
\(148\) 0 0
\(149\) −18.1865 10.5000i −1.48990 0.860194i −0.489966 0.871742i \(-0.662991\pi\)
−0.999933 + 0.0115483i \(0.996324\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 9.00000 + 15.5885i 0.727607 + 1.26025i
\(154\) 0 0
\(155\) 16.0000 1.28515
\(156\) 0 0
\(157\) −22.0000 −1.75579 −0.877896 0.478852i \(-0.841053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) 0 0
\(159\) 9.00000 + 15.5885i 0.713746 + 1.23625i
\(160\) 0 0
\(161\) 1.00000i 0.0788110i
\(162\) 0 0
\(163\) 6.06218 + 3.50000i 0.474826 + 0.274141i 0.718258 0.695777i \(-0.244940\pi\)
−0.243432 + 0.969918i \(0.578273\pi\)
\(164\) 0 0
\(165\) 15.0000 25.9808i 1.16775 2.02260i
\(166\) 0 0
\(167\) −7.79423 + 4.50000i −0.603136 + 0.348220i −0.770274 0.637713i \(-0.779881\pi\)
0.167139 + 0.985933i \(0.446547\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 15.5885 9.00000i 1.19208 0.688247i
\(172\) 0 0
\(173\) 5.50000 9.52628i 0.418157 0.724270i −0.577597 0.816322i \(-0.696009\pi\)
0.995754 + 0.0920525i \(0.0293428\pi\)
\(174\) 0 0
\(175\) −0.866025 0.500000i −0.0654654 0.0377964i
\(176\) 0 0
\(177\) 15.0000i 1.12747i
\(178\) 0 0
\(179\) −10.5000 18.1865i −0.784807 1.35933i −0.929114 0.369792i \(-0.879429\pi\)
0.144308 0.989533i \(-0.453905\pi\)
\(180\) 0 0
\(181\) −18.0000 −1.33793 −0.668965 0.743294i \(-0.733262\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 0 0
\(183\) −15.0000 −1.10883
\(184\) 0 0
\(185\) −3.00000 5.19615i −0.220564 0.382029i
\(186\) 0 0
\(187\) 15.0000i 1.09691i
\(188\) 0 0
\(189\) −7.79423 4.50000i −0.566947 0.327327i
\(190\) 0 0
\(191\) −0.500000 + 0.866025i −0.0361787 + 0.0626634i −0.883548 0.468341i \(-0.844852\pi\)
0.847369 + 0.531004i \(0.178185\pi\)
\(192\) 0 0
\(193\) 9.52628 5.50000i 0.685717 0.395899i −0.116289 0.993215i \(-0.537100\pi\)
0.802005 + 0.597317i \(0.203766\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.79423 4.50000i 0.555316 0.320612i −0.195947 0.980614i \(-0.562778\pi\)
0.751263 + 0.660003i \(0.229445\pi\)
\(198\) 0 0
\(199\) −9.50000 + 16.4545i −0.673437 + 1.16643i 0.303486 + 0.952836i \(0.401849\pi\)
−0.976923 + 0.213591i \(0.931484\pi\)
\(200\) 0 0
\(201\) 18.1865 + 10.5000i 1.28278 + 0.740613i
\(202\) 0 0
\(203\) 1.00000i 0.0701862i
\(204\) 0 0
\(205\) 3.00000 + 5.19615i 0.209529 + 0.362915i
\(206\) 0 0
\(207\) 6.00000 0.417029
\(208\) 0 0
\(209\) 15.0000 1.03757
\(210\) 0 0
\(211\) 6.50000 + 11.2583i 0.447478 + 0.775055i 0.998221 0.0596196i \(-0.0189888\pi\)
−0.550743 + 0.834675i \(0.685655\pi\)
\(212\) 0 0
\(213\) 33.0000i 2.26112i
\(214\) 0 0
\(215\) −1.73205 1.00000i −0.118125 0.0681994i
\(216\) 0 0
\(217\) 4.00000 6.92820i 0.271538 0.470317i
\(218\) 0 0
\(219\) 36.3731 21.0000i 2.45786 1.41905i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 7.79423 4.50000i 0.521940 0.301342i −0.215788 0.976440i \(-0.569232\pi\)
0.737728 + 0.675098i \(0.235899\pi\)
\(224\) 0 0
\(225\) −3.00000 + 5.19615i −0.200000 + 0.346410i
\(226\) 0 0
\(227\) 18.1865 + 10.5000i 1.20708 + 0.696909i 0.962121 0.272623i \(-0.0878913\pi\)
0.244962 + 0.969533i \(0.421225\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i −0.980152 0.198246i \(-0.936476\pi\)
0.980152 0.198246i \(-0.0635244\pi\)
\(230\) 0 0
\(231\) −7.50000 12.9904i −0.493464 0.854704i
\(232\) 0 0
\(233\) −22.0000 −1.44127 −0.720634 0.693316i \(-0.756149\pi\)
−0.720634 + 0.693316i \(0.756149\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) 0 0
\(237\) 6.00000 + 10.3923i 0.389742 + 0.675053i
\(238\) 0 0
\(239\) 24.0000i 1.55243i −0.630468 0.776215i \(-0.717137\pi\)
0.630468 0.776215i \(-0.282863\pi\)
\(240\) 0 0
\(241\) 18.1865 + 10.5000i 1.17150 + 0.676364i 0.954032 0.299704i \(-0.0968878\pi\)
0.217465 + 0.976068i \(0.430221\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −10.3923 + 6.00000i −0.663940 + 0.383326i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −31.1769 + 18.0000i −1.97576 + 1.14070i
\(250\) 0 0
\(251\) 4.50000 7.79423i 0.284037 0.491967i −0.688338 0.725390i \(-0.741659\pi\)
0.972375 + 0.233423i \(0.0749927\pi\)
\(252\) 0 0
\(253\) 4.33013 + 2.50000i 0.272233 + 0.157174i
\(254\) 0 0
\(255\) 18.0000i 1.12720i
\(256\) 0 0
\(257\) 1.50000 + 2.59808i 0.0935674 + 0.162064i 0.909010 0.416775i \(-0.136840\pi\)
−0.815442 + 0.578838i \(0.803506\pi\)
\(258\) 0 0
\(259\) −3.00000 −0.186411
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) −7.50000 12.9904i −0.462470 0.801021i 0.536614 0.843828i \(-0.319703\pi\)
−0.999083 + 0.0428069i \(0.986370\pi\)
\(264\) 0 0
\(265\) 12.0000i 0.737154i
\(266\) 0 0
\(267\) 23.3827 + 13.5000i 1.43100 + 0.826187i
\(268\) 0 0
\(269\) −7.50000 + 12.9904i −0.457283 + 0.792038i −0.998816 0.0486418i \(-0.984511\pi\)
0.541533 + 0.840679i \(0.317844\pi\)
\(270\) 0 0
\(271\) −14.7224 + 8.50000i −0.894324 + 0.516338i −0.875354 0.483482i \(-0.839372\pi\)
−0.0189696 + 0.999820i \(0.506039\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.33013 + 2.50000i −0.261116 + 0.150756i
\(276\) 0 0
\(277\) −4.50000 + 7.79423i −0.270379 + 0.468310i −0.968959 0.247222i \(-0.920482\pi\)
0.698580 + 0.715532i \(0.253816\pi\)
\(278\) 0 0
\(279\) −41.5692 24.0000i −2.48868 1.43684i
\(280\) 0 0
\(281\) 2.00000i 0.119310i −0.998219 0.0596550i \(-0.981000\pi\)
0.998219 0.0596550i \(-0.0190001\pi\)
\(282\) 0 0
\(283\) 9.50000 + 16.4545i 0.564716 + 0.978117i 0.997076 + 0.0764162i \(0.0243478\pi\)
−0.432360 + 0.901701i \(0.642319\pi\)
\(284\) 0 0
\(285\) 18.0000 1.06623
\(286\) 0 0
\(287\) 3.00000 0.177084
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) 3.00000i 0.175863i
\(292\) 0 0
\(293\) −16.4545 9.50000i −0.961281 0.554996i −0.0647140 0.997904i \(-0.520614\pi\)
−0.896567 + 0.442908i \(0.853947\pi\)
\(294\) 0 0
\(295\) −5.00000 + 8.66025i −0.291111 + 0.504219i
\(296\) 0 0
\(297\) −38.9711 + 22.5000i −2.26134 + 1.30558i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −0.866025 + 0.500000i −0.0499169 + 0.0288195i
\(302\) 0 0
\(303\) 28.5000 49.3634i 1.63728 2.83586i
\(304\) 0 0
\(305\) −8.66025 5.00000i −0.495885 0.286299i
\(306\) 0 0
\(307\) 4.00000i 0.228292i −0.993464 0.114146i \(-0.963587\pi\)
0.993464 0.114146i \(-0.0364132\pi\)
\(308\) 0 0
\(309\) −12.0000 20.7846i −0.682656 1.18240i
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) −6.00000 10.3923i −0.338062 0.585540i
\(316\) 0 0
\(317\) 30.0000i 1.68497i −0.538721 0.842484i \(-0.681092\pi\)
0.538721 0.842484i \(-0.318908\pi\)
\(318\) 0 0
\(319\) −4.33013 2.50000i −0.242441 0.139973i
\(320\) 0 0
\(321\) −16.5000 + 28.5788i −0.920940 + 1.59512i
\(322\) 0 0
\(323\) −7.79423 + 4.50000i −0.433682 + 0.250387i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −25.9808 + 15.0000i −1.43674 + 0.829502i
\(328\) 0 0
\(329\) 2.00000 3.46410i 0.110264 0.190982i
\(330\) 0 0
\(331\) 14.7224 + 8.50000i 0.809218 + 0.467202i 0.846684 0.532096i \(-0.178595\pi\)
−0.0374662 + 0.999298i \(0.511929\pi\)
\(332\) 0 0
\(333\) 18.0000i 0.986394i
\(334\) 0 0
\(335\) 7.00000 + 12.1244i 0.382451 + 0.662424i
\(336\) 0 0
\(337\) 10.0000 0.544735 0.272367 0.962193i \(-0.412193\pi\)
0.272367 + 0.962193i \(0.412193\pi\)
\(338\) 0 0
\(339\) 33.0000 1.79231
\(340\) 0 0
\(341\) −20.0000 34.6410i −1.08306 1.87592i
\(342\) 0 0
\(343\) 13.0000i 0.701934i
\(344\) 0 0
\(345\) 5.19615 + 3.00000i 0.279751 + 0.161515i
\(346\) 0 0
\(347\) −16.5000 + 28.5788i −0.885766 + 1.53419i −0.0409337 + 0.999162i \(0.513033\pi\)
−0.844833 + 0.535031i \(0.820300\pi\)
\(348\) 0 0
\(349\) 16.4545 9.50000i 0.880788 0.508523i 0.00987003 0.999951i \(-0.496858\pi\)
0.870918 + 0.491428i \(0.163525\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.06218 + 3.50000i −0.322657 + 0.186286i −0.652576 0.757723i \(-0.726312\pi\)
0.329919 + 0.944009i \(0.392979\pi\)
\(354\) 0 0
\(355\) −11.0000 + 19.0526i −0.583819 + 1.01120i
\(356\) 0 0
\(357\) 7.79423 + 4.50000i 0.412514 + 0.238165i
\(358\) 0 0
\(359\) 24.0000i 1.26667i −0.773877 0.633336i \(-0.781685\pi\)
0.773877 0.633336i \(-0.218315\pi\)
\(360\) 0 0
\(361\) −5.00000 8.66025i −0.263158 0.455803i
\(362\) 0 0
\(363\) −42.0000 −2.20443
\(364\) 0 0
\(365\) 28.0000 1.46559
\(366\) 0 0
\(367\) −11.5000 19.9186i −0.600295 1.03974i −0.992776 0.119982i \(-0.961716\pi\)
0.392481 0.919760i \(-0.371617\pi\)
\(368\) 0 0
\(369\) 18.0000i 0.937043i
\(370\) 0 0
\(371\) 5.19615 + 3.00000i 0.269771 + 0.155752i
\(372\) 0 0
\(373\) −11.5000 + 19.9186i −0.595447 + 1.03135i 0.398036 + 0.917370i \(0.369692\pi\)
−0.993484 + 0.113975i \(0.963641\pi\)
\(374\) 0 0
\(375\) −31.1769 + 18.0000i −1.60997 + 0.929516i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 4.33013 2.50000i 0.222424 0.128416i −0.384648 0.923063i \(-0.625677\pi\)
0.607072 + 0.794647i \(0.292344\pi\)
\(380\) 0 0
\(381\) −7.50000 + 12.9904i −0.384237 + 0.665517i
\(382\) 0 0
\(383\) 7.79423 + 4.50000i 0.398266 + 0.229939i 0.685736 0.727851i \(-0.259481\pi\)
−0.287469 + 0.957790i \(0.592814\pi\)
\(384\) 0 0
\(385\) 10.0000i 0.509647i
\(386\) 0 0
\(387\) 3.00000 + 5.19615i 0.152499 + 0.264135i
\(388\) 0 0
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) −3.00000 −0.151717
\(392\) 0 0
\(393\) 6.00000 + 10.3923i 0.302660 + 0.524222i
\(394\) 0 0
\(395\) 8.00000i 0.402524i
\(396\) 0 0
\(397\) 21.6506 + 12.5000i 1.08661 + 0.627357i 0.932673 0.360723i \(-0.117470\pi\)
0.153941 + 0.988080i \(0.450803\pi\)
\(398\) 0 0
\(399\) 4.50000 7.79423i 0.225282 0.390199i
\(400\) 0 0
\(401\) 23.3827 13.5000i 1.16768 0.674158i 0.214544 0.976714i \(-0.431173\pi\)
0.953131 + 0.302556i \(0.0978401\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −15.5885 + 9.00000i −0.774597 + 0.447214i
\(406\) 0 0
\(407\) −7.50000 + 12.9904i −0.371761 + 0.643909i
\(408\) 0 0
\(409\) −4.33013 2.50000i −0.214111 0.123617i 0.389109 0.921192i \(-0.372783\pi\)
−0.603220 + 0.797574i \(0.706116\pi\)
\(410\) 0 0
\(411\) 45.0000i 2.21969i
\(412\) 0 0
\(413\) 2.50000 + 4.33013i 0.123017 + 0.213072i
\(414\) 0 0
\(415\) −24.0000 −1.17811
\(416\) 0 0
\(417\) −33.0000 −1.61602
\(418\) 0 0
\(419\) −7.50000 12.9904i −0.366399 0.634622i 0.622601 0.782540i \(-0.286076\pi\)
−0.989000 + 0.147918i \(0.952743\pi\)
\(420\) 0 0
\(421\) 10.0000i 0.487370i −0.969854 0.243685i \(-0.921644\pi\)
0.969854 0.243685i \(-0.0783563\pi\)
\(422\) 0 0
\(423\) −20.7846 12.0000i −1.01058 0.583460i
\(424\) 0 0
\(425\) 1.50000 2.59808i 0.0727607 0.126025i
\(426\) 0 0
\(427\) −4.33013 + 2.50000i −0.209550 + 0.120983i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.59808 + 1.50000i −0.125145 + 0.0722525i −0.561266 0.827636i \(-0.689685\pi\)
0.436121 + 0.899888i \(0.356352\pi\)
\(432\) 0 0
\(433\) 9.50000 16.4545i 0.456541 0.790752i −0.542234 0.840227i \(-0.682422\pi\)
0.998775 + 0.0494752i \(0.0157549\pi\)
\(434\) 0 0
\(435\) −5.19615 3.00000i −0.249136 0.143839i
\(436\) 0 0
\(437\) 3.00000i 0.143509i
\(438\) 0 0
\(439\) −6.50000 11.2583i −0.310228 0.537331i 0.668184 0.743996i \(-0.267072\pi\)
−0.978412 + 0.206666i \(0.933739\pi\)
\(440\) 0 0
\(441\) 36.0000 1.71429
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) 9.00000 + 15.5885i 0.426641 + 0.738964i
\(446\) 0 0
\(447\) 63.0000i 2.97980i
\(448\) 0 0
\(449\) 4.33013 + 2.50000i 0.204351 + 0.117982i 0.598684 0.800986i \(-0.295691\pi\)
−0.394332 + 0.918968i \(0.629024\pi\)
\(450\) 0 0
\(451\) 7.50000 12.9904i 0.353161 0.611693i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 14.7224 8.50000i 0.688686 0.397613i −0.114433 0.993431i \(-0.536505\pi\)
0.803120 + 0.595818i \(0.203172\pi\)
\(458\) 0 0
\(459\) 13.5000 23.3827i 0.630126 1.09141i
\(460\) 0 0
\(461\) −7.79423 4.50000i −0.363013 0.209586i 0.307388 0.951584i \(-0.400545\pi\)
−0.670402 + 0.741998i \(0.733878\pi\)
\(462\) 0 0
\(463\) 40.0000i 1.85896i 0.368875 + 0.929479i \(0.379743\pi\)
−0.368875 + 0.929479i \(0.620257\pi\)
\(464\) 0 0
\(465\) −24.0000 41.5692i −1.11297 1.92773i
\(466\) 0 0
\(467\) 16.0000 0.740392 0.370196 0.928954i \(-0.379291\pi\)
0.370196 + 0.928954i \(0.379291\pi\)
\(468\) 0 0
\(469\) 7.00000 0.323230
\(470\) 0 0
\(471\) 33.0000 + 57.1577i 1.52056 + 2.63369i
\(472\) 0 0
\(473\) 5.00000i 0.229900i
\(474\) 0 0
\(475\) −2.59808 1.50000i −0.119208 0.0688247i
\(476\) 0 0
\(477\) 18.0000 31.1769i 0.824163 1.42749i
\(478\) 0 0
\(479\) 2.59808 1.50000i 0.118709 0.0685367i −0.439470 0.898257i \(-0.644834\pi\)
0.558179 + 0.829721i \(0.311500\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 2.59808 1.50000i 0.118217 0.0682524i
\(484\) 0 0
\(485\) −1.00000 + 1.73205i −0.0454077 + 0.0786484i
\(486\) 0 0
\(487\) 25.1147 + 14.5000i 1.13806 + 0.657058i 0.945949 0.324316i \(-0.105134\pi\)
0.192109 + 0.981374i \(0.438467\pi\)
\(488\) 0 0
\(489\) 21.0000i 0.949653i
\(490\) 0 0
\(491\) 15.5000 + 26.8468i 0.699505 + 1.21158i 0.968638 + 0.248476i \(0.0799296\pi\)
−0.269133 + 0.963103i \(0.586737\pi\)
\(492\) 0 0
\(493\) 3.00000 0.135113
\(494\) 0 0
\(495\) −60.0000 −2.69680
\(496\) 0 0
\(497\) 5.50000 + 9.52628i 0.246709 + 0.427312i
\(498\) 0 0
\(499\) 4.00000i 0.179065i −0.995984 0.0895323i \(-0.971463\pi\)
0.995984 0.0895323i \(-0.0285372\pi\)
\(500\) 0 0
\(501\) 23.3827 + 13.5000i 1.04466 + 0.603136i
\(502\) 0 0
\(503\) 11.5000 19.9186i 0.512760 0.888126i −0.487131 0.873329i \(-0.661957\pi\)
0.999891 0.0147968i \(-0.00471014\pi\)
\(504\) 0 0
\(505\) 32.9090 19.0000i 1.46443 0.845489i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4.33013 2.50000i 0.191930 0.110811i −0.400956 0.916097i \(-0.631322\pi\)
0.592886 + 0.805287i \(0.297989\pi\)
\(510\) 0 0
\(511\) 7.00000 12.1244i 0.309662 0.536350i
\(512\) 0 0
\(513\) −23.3827 13.5000i −1.03237 0.596040i
\(514\) 0 0
\(515\) 16.0000i 0.705044i
\(516\) 0 0
\(517\) −10.0000 17.3205i −0.439799 0.761755i
\(518\) 0 0
\(519\) −33.0000 −1.44854
\(520\) 0 0
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 0 0
\(523\) −7.50000 12.9904i −0.327952 0.568030i 0.654153 0.756362i \(-0.273025\pi\)
−0.982105 + 0.188332i \(0.939692\pi\)
\(524\) 0 0
\(525\) 3.00000i 0.130931i
\(526\) 0 0
\(527\) 20.7846 + 12.0000i 0.905392 + 0.522728i
\(528\) 0 0
\(529\) 11.0000 19.0526i 0.478261 0.828372i
\(530\) 0 0
\(531\) 25.9808 15.0000i 1.12747 0.650945i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −19.0526 + 11.0000i −0.823714 + 0.475571i
\(536\) 0 0
\(537\) −31.5000 + 54.5596i −1.35933 + 2.35442i
\(538\) 0 0
\(539\) 25.9808 + 15.0000i 1.11907 + 0.646096i
\(540\) 0 0
\(541\) 34.0000i 1.46177i −0.682498 0.730887i \(-0.739107\pi\)
0.682498 0.730887i \(-0.260893\pi\)
\(542\) 0 0
\(543\) 27.0000 + 46.7654i 1.15868 + 2.00689i
\(544\) 0 0
\(545\) −20.0000 −0.856706
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 0 0
\(549\) 15.0000 + 25.9808i 0.640184 + 1.10883i
\(550\) 0 0
\(551\) 3.00000i 0.127804i
\(552\) 0 0
\(553\) 3.46410 + 2.00000i 0.147309 + 0.0850487i
\(554\) 0 0
\(555\) −9.00000 + 15.5885i −0.382029 + 0.661693i
\(556\) 0 0
\(557\) −28.5788 + 16.5000i −1.21092 + 0.699127i −0.962961 0.269642i \(-0.913095\pi\)
−0.247964 + 0.968769i \(0.579761\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 38.9711 22.5000i 1.64536 0.949951i
\(562\) 0 0
\(563\) −9.50000 + 16.4545i −0.400377 + 0.693474i −0.993771 0.111438i \(-0.964454\pi\)
0.593394 + 0.804912i \(0.297788\pi\)
\(564\) 0 0
\(565\) 19.0526 + 11.0000i 0.801547 + 0.462773i
\(566\) 0 0
\(567\) 9.00000i 0.377964i
\(568\) 0 0
\(569\) 3.50000 + 6.06218i 0.146728 + 0.254140i 0.930016 0.367519i \(-0.119793\pi\)
−0.783289 + 0.621658i \(0.786459\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 0 0
\(573\) 3.00000 0.125327
\(574\) 0 0
\(575\) −0.500000 0.866025i −0.0208514 0.0361158i
\(576\) 0 0
\(577\) 6.00000i 0.249783i −0.992170 0.124892i \(-0.960142\pi\)
0.992170 0.124892i \(-0.0398583\pi\)
\(578\) 0 0
\(579\) −28.5788 16.5000i −1.18770 0.685717i
\(580\) 0 0
\(581\) −6.00000 + 10.3923i −0.248922 + 0.431145i
\(582\) 0 0
\(583\) 25.9808 15.0000i 1.07601 0.621237i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 21.6506 12.5000i 0.893617 0.515930i 0.0184934 0.999829i \(-0.494113\pi\)
0.875124 + 0.483899i \(0.160780\pi\)
\(588\) 0 0
\(589\) 12.0000 20.7846i 0.494451 0.856415i
\(590\) 0 0
\(591\) −23.3827 13.5000i −0.961835 0.555316i
\(592\) 0 0
\(593\) 34.0000i 1.39621i −0.715994 0.698106i \(-0.754026\pi\)
0.715994 0.698106i \(-0.245974\pi\)
\(594\) 0 0
\(595\) 3.00000 + 5.19615i 0.122988 + 0.213021i
\(596\) 0 0
\(597\) 57.0000 2.33285
\(598\) 0 0
\(599\) −20.0000 −0.817178 −0.408589 0.912719i \(-0.633979\pi\)
−0.408589 + 0.912719i \(0.633979\pi\)
\(600\) 0 0
\(601\) −9.50000 16.4545i −0.387513 0.671192i 0.604601 0.796528i \(-0.293332\pi\)
−0.992114 + 0.125336i \(0.959999\pi\)
\(602\) 0 0
\(603\) 42.0000i 1.71037i
\(604\) 0 0
\(605\) −24.2487 14.0000i −0.985850 0.569181i
\(606\) 0 0
\(607\) 13.5000 23.3827i 0.547948 0.949074i −0.450467 0.892793i \(-0.648742\pi\)
0.998415 0.0562808i \(-0.0179242\pi\)
\(608\) 0 0
\(609\) −2.59808 + 1.50000i −0.105279 + 0.0607831i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −9.52628 + 5.50000i −0.384763 + 0.222143i −0.679888 0.733316i \(-0.737972\pi\)
0.295126 + 0.955458i \(0.404638\pi\)
\(614\) 0 0
\(615\) 9.00000 15.5885i 0.362915 0.628587i
\(616\) 0 0
\(617\) 6.06218 + 3.50000i 0.244054 + 0.140905i 0.617039 0.786933i \(-0.288332\pi\)
−0.372985 + 0.927838i \(0.621666\pi\)
\(618\) 0 0
\(619\) 20.0000i 0.803868i −0.915669 0.401934i \(-0.868338\pi\)
0.915669 0.401934i \(-0.131662\pi\)
\(620\) 0 0
\(621\) −4.50000 7.79423i −0.180579 0.312772i
\(622\) 0 0
\(623\) 9.00000 0.360577
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) −22.5000 38.9711i −0.898563 1.55636i
\(628\) 0 0
\(629\) 9.00000i 0.358854i
\(630\) 0 0
\(631\) −32.0429 18.5000i −1.27561 0.736473i −0.299571 0.954074i \(-0.596844\pi\)
−0.976038 + 0.217601i \(0.930177\pi\)
\(632\) 0 0
\(633\) 19.5000 33.7750i 0.775055 1.34244i
\(634\) 0 0
\(635\) −8.66025 + 5.00000i −0.343672 + 0.198419i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 57.1577 33.0000i 2.26112 1.30546i
\(640\) 0 0
\(641\) −2.50000 + 4.33013i −0.0987441 + 0.171030i −0.911165 0.412042i \(-0.864816\pi\)
0.812421 + 0.583071i \(0.198149\pi\)
\(642\) 0 0
\(643\) −26.8468 15.5000i −1.05873 0.611260i −0.133652 0.991028i \(-0.542670\pi\)
−0.925082 + 0.379768i \(0.876004\pi\)
\(644\) 0 0
\(645\) 6.00000i 0.236250i
\(646\) 0 0
\(647\) −14.5000 25.1147i −0.570054 0.987362i −0.996560 0.0828774i \(-0.973589\pi\)
0.426506 0.904485i \(-0.359744\pi\)
\(648\) 0 0
\(649\) 25.0000 0.981336
\(650\) 0 0
\(651\) −24.0000 −0.940634
\(652\) 0 0
\(653\) −1.50000 2.59808i −0.0586995 0.101671i 0.835182 0.549973i \(-0.185362\pi\)
−0.893882 + 0.448303i \(0.852029\pi\)
\(654\) 0 0
\(655\) 8.00000i 0.312586i
\(656\) 0 0
\(657\) −72.7461 42.0000i −2.83810 1.63858i
\(658\) 0 0
\(659\) −16.5000 + 28.5788i −0.642749 + 1.11327i 0.342068 + 0.939675i \(0.388873\pi\)
−0.984817 + 0.173598i \(0.944461\pi\)
\(660\) 0 0
\(661\) −32.0429 + 18.5000i −1.24633 + 0.719567i −0.970375 0.241605i \(-0.922326\pi\)
−0.275951 + 0.961172i \(0.588993\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.19615 3.00000i 0.201498 0.116335i
\(666\) 0 0
\(667\) 0.500000 0.866025i 0.0193601 0.0335326i
\(668\) 0 0
\(669\) −23.3827 13.5000i −0.904027 0.521940i
\(670\) 0 0
\(671\) 25.0000i 0.965114i
\(672\) 0 0
\(673\) 3.50000 + 6.06218i 0.134915 + 0.233680i 0.925565 0.378589i \(-0.123591\pi\)
−0.790650 + 0.612268i \(0.790257\pi\)
\(674\) 0 0
\(675\) 9.00000 0.346410
\(676\) 0 0
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) 0 0
\(679\) 0.500000 + 0.866025i 0.0191882 + 0.0332350i
\(680\) 0 0
\(681\) 63.0000i 2.41417i
\(682\) 0 0
\(683\) 9.52628 + 5.50000i 0.364513 + 0.210452i 0.671059 0.741404i \(-0.265840\pi\)
−0.306546 + 0.951856i \(0.599173\pi\)
\(684\) 0 0
\(685\) −15.0000 + 25.9808i −0.573121 + 0.992674i
\(686\) 0 0
\(687\) −15.5885 + 9.00000i −0.594737 + 0.343371i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 4.33013 2.50000i 0.164726 0.0951045i −0.415371 0.909652i \(-0.636348\pi\)
0.580097 + 0.814548i \(0.303015\pi\)
\(692\) 0 0
\(693\) −15.0000 + 25.9808i −0.569803 + 0.986928i
\(694\) 0 0
\(695\) −19.0526 11.0000i −0.722705 0.417254i
\(696\) 0 0
\(697\) 9.00000i 0.340899i
\(698\) 0 0
\(699\) 33.0000 + 57.1577i 1.24817 + 2.16190i
\(700\) 0 0
\(701\) −42.0000 −1.58632 −0.793159 0.609015i \(-0.791565\pi\)
−0.793159 + 0.609015i \(0.791565\pi\)
\(702\) 0 0
\(703\) −9.00000 −0.339441
\(704\) 0 0
\(705\) −12.0000 20.7846i −0.451946 0.782794i
\(706\) 0 0
\(707\) 19.0000i 0.714569i
\(708\) 0 0
\(709\) 0.866025 + 0.500000i 0.0325243 + 0.0187779i 0.516174 0.856484i \(-0.327356\pi\)
−0.483650 + 0.875262i \(0.660689\pi\)
\(710\) 0 0
\(711\) 12.0000 20.7846i 0.450035 0.779484i
\(712\) 0 0
\(713\) 6.92820 4.00000i 0.259463 0.149801i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −62.3538 + 36.0000i −2.32865 + 1.34444i
\(718\) 0 0
\(719\) 8.50000 14.7224i 0.316997 0.549054i −0.662863 0.748740i \(-0.730659\pi\)
0.979860 + 0.199686i \(0.0639923\pi\)
\(720\) 0 0
\(721\) −6.92820 4.00000i −0.258020 0.148968i
\(722\) 0 0
\(723\) 63.0000i 2.34300i
\(724\) 0 0
\(725\) 0.500000 + 0.866025i 0.0185695 + 0.0321634i
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −1.50000 2.59808i −0.0554795 0.0960933i
\(732\) 0 0
\(733\) 14.0000i 0.517102i −0.965998 0.258551i \(-0.916755\pi\)
0.965998 0.258551i \(-0.0832450\pi\)
\(734\) 0 0
\(735\) 31.1769 + 18.0000i 1.14998 + 0.663940i
\(736\) 0 0
\(737\) 17.5000 30.3109i 0.644621 1.11652i
\(738\) 0 0
\(739\) 12.9904 7.50000i 0.477859 0.275892i −0.241665 0.970360i \(-0.577693\pi\)
0.719524 + 0.694468i \(0.244360\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 25.1147 14.5000i 0.921370 0.531953i 0.0372984 0.999304i \(-0.488125\pi\)
0.884072 + 0.467351i \(0.154791\pi\)
\(744\) 0 0
\(745\) −21.0000 + 36.3731i −0.769380 + 1.33261i
\(746\) 0 0
\(747\) 62.3538 + 36.0000i 2.28141 + 1.31717i
\(748\) 0 0
\(749\) 11.0000i 0.401931i
\(750\) 0 0
\(751\) −4.50000 7.79423i −0.164207 0.284415i 0.772166 0.635421i \(-0.219173\pi\)
−0.936374 + 0.351005i \(0.885840\pi\)
\(752\) 0 0
\(753\) −27.0000 −0.983935
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.50000 2.59808i −0.0545184 0.0944287i 0.837478 0.546471i \(-0.184029\pi\)
−0.891997 + 0.452042i \(0.850696\pi\)
\(758\) 0 0
\(759\) 15.0000i 0.544466i
\(760\) 0 0
\(761\) −23.3827 13.5000i −0.847622 0.489375i 0.0122260 0.999925i \(-0.496108\pi\)
−0.859848 + 0.510551i \(0.829442\pi\)
\(762\) 0 0
\(763\) −5.00000 + 8.66025i −0.181012 + 0.313522i
\(764\) 0 0
\(765\) 31.1769 18.0000i 1.12720 0.650791i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 18.1865 10.5000i 0.655823 0.378640i −0.134860 0.990865i \(-0.543059\pi\)
0.790684 + 0.612225i \(0.209725\pi\)
\(770\) 0 0
\(771\) 4.50000 7.79423i 0.162064 0.280702i
\(772\) 0 0
\(773\) −0.866025 0.500000i −0.0311488 0.0179838i 0.484345 0.874877i \(-0.339058\pi\)
−0.515494 + 0.856893i \(0.672391\pi\)
\(774\) 0 0
\(775\) 8.00000i 0.287368i
\(776\) 0 0
\(777\) 4.50000 + 7.79423i 0.161437 + 0.279616i
\(778\) 0 0
\(779\) 9.00000 0.322458
\(780\) 0 0
\(781\) 55.0000 1.96805
\(782\) 0 0
\(783\) 4.50000 + 7.79423i 0.160817 + 0.278543i
\(784\) 0 0
\(785\) 44.0000i 1.57043i
\(786\) 0 0
\(787\) 6.06218 + 3.50000i 0.216093 + 0.124762i 0.604140 0.796878i \(-0.293517\pi\)
−0.388047 + 0.921640i \(0.626850\pi\)
\(788\) 0 0
\(789\) −22.5000 + 38.9711i −0.801021 + 1.38741i
\(790\) 0 0
\(791\) 9.52628 5.50000i 0.338716 0.195557i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 31.1769 18.0000i 1.10573 0.638394i
\(796\) 0 0
\(797\) 13.5000 23.3827i 0.478195 0.828257i −0.521493 0.853256i \(-0.674625\pi\)
0.999687 + 0.0249984i \(0.00795805\pi\)
\(798\) 0 0
\(799\) 10.3923 + 6.00000i 0.367653 + 0.212265i
\(800\) 0 0
\(801\) 54.0000i 1.90800i
\(802\) 0 0
\(803\) −35.0000 60.6218i −1.23512 2.13930i
\(804\) 0 0
\(805\) 2.00000 0.0704907
\(806\) 0 0
\(807\) 45.0000 1.58408
\(808\) 0 0
\(809\) 22.5000 + 38.9711i 0.791058 + 1.37015i 0.925312 + 0.379206i \(0.123803\pi\)
−0.134255 + 0.990947i \(0.542864\pi\)
\(810\) 0 0
\(811\) 40.0000i 1.40459i 0.711886 + 0.702295i \(0.247841\pi\)
−0.711886 + 0.702295i \(0.752159\pi\)
\(812\) 0 0
\(813\) 44.1673 + 25.5000i 1.54901 + 0.894324i
\(814\) 0 0
\(815\) 7.00000 12.1244i 0.245199 0.424698i
\(816\) 0 0
\(817\) −2.59808 + 1.50000i −0.0908952 + 0.0524784i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −40.7032 + 23.5000i −1.42055 + 0.820156i −0.996346 0.0854103i \(-0.972780\pi\)
−0.424205 + 0.905566i \(0.639447\pi\)
\(822\) 0 0
\(823\) −1.50000 + 2.59808i −0.0522867 + 0.0905632i −0.890984 0.454034i \(-0.849984\pi\)
0.838697 + 0.544598i \(0.183318\pi\)
\(824\) 0 0
\(825\) 12.9904 + 7.50000i 0.452267 + 0.261116i
\(826\) 0 0
\(827\) 36.0000i 1.25184i 0.779886 + 0.625921i \(0.215277\pi\)
−0.779886 + 0.625921i \(0.784723\pi\)
\(828\) 0 0
\(829\) 15.5000 + 26.8468i 0.538337 + 0.932427i 0.998994 + 0.0448490i \(0.0142807\pi\)
−0.460657 + 0.887578i \(0.652386\pi\)
\(830\) 0 0
\(831\) 27.0000 0.936620
\(832\) 0 0
\(833\) −18.0000 −0.623663
\(834\) 0 0
\(835\) 9.00000 + 15.5885i 0.311458 + 0.539461i
\(836\) 0 0
\(837\) 72.0000i 2.48868i
\(838\) 0 0
\(839\) 37.2391 + 21.5000i 1.28564 + 0.742262i 0.977873 0.209200i \(-0.0670861\pi\)
0.307763 + 0.951463i \(0.400419\pi\)
\(840\) 0 0
\(841\) 14.0000 24.2487i 0.482759 0.836162i
\(842\) 0 0
\(843\) −5.19615 + 3.00000i −0.178965 + 0.103325i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −12.1244 + 7.00000i −0.416598 + 0.240523i
\(848\) 0 0
\(849\) 28.5000 49.3634i 0.978117 1.69415i
\(850\) 0 0
\(851\) −2.59808 1.50000i −0.0890609 0.0514193i
\(852\) 0 0
\(853\) 10.0000i 0.342393i 0.985237 + 0.171197i \(0.0547634\pi\)
−0.985237 + 0.171197i \(0.945237\pi\)
\(854\) 0 0
\(855\) −18.0000 31.1769i −0.615587 1.06623i
\(856\) 0 0
\(857\) 2.00000 0.0683187 0.0341593 0.999416i \(-0.489125\pi\)
0.0341593 + 0.999416i \(0.489125\pi\)
\(858\) 0 0
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) 0 0
\(861\) −4.50000 7.79423i −0.153360 0.265627i
\(862\) 0 0
\(863\) 16.0000i 0.544646i −0.962206 0.272323i \(-0.912208\pi\)
0.962206 0.272323i \(-0.0877920\pi\)
\(864\) 0 0
\(865\) −19.0526 11.0000i −0.647806 0.374011i
\(866\) 0 0
\(867\) 12.0000 20.7846i 0.407541 0.705882i
\(868\) 0 0
\(869\) 17.3205 10.0000i 0.587558 0.339227i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 5.19615 3.00000i 0.175863 0.101535i
\(874\) 0 0
\(875\) −6.00000 + 10.3923i −0.202837 + 0.351324i
\(876\) 0 0
\(877\) −38.9711 22.5000i −1.31596 0.759771i −0.332886 0.942967i \(-0.608022\pi\)
−0.983076 + 0.183196i \(0.941356\pi\)
\(878\) 0 0
\(879\) 57.0000i 1.92256i
\(880\) 0 0
\(881\) 25.5000 + 44.1673i 0.859117 + 1.48803i 0.872772 + 0.488127i \(0.162320\pi\)
−0.0136556 + 0.999907i \(0.504347\pi\)
\(882\) 0 0
\(883\) 44.0000 1.48072 0.740359 0.672212i \(-0.234656\pi\)
0.740359 + 0.672212i \(0.234656\pi\)
\(884\) 0 0
\(885\) 30.0000 1.00844
\(886\) 0 0
\(887\) 26.5000 + 45.8993i 0.889783 + 1.54115i 0.840132 + 0.542383i \(0.182478\pi\)
0.0496513 + 0.998767i \(0.484189\pi\)
\(888\) 0 0
\(889\) 5.00000i 0.167695i
\(890\) 0 0
\(891\) 38.9711 + 22.5000i 1.30558 + 0.753778i
\(892\) 0 0
\(893\) 6.00000 10.3923i 0.200782 0.347765i
\(894\) 0 0
\(895\) −36.3731 + 21.0000i −1.21582 + 0.701953i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.92820 + 4.00000i −0.231069 + 0.133407i
\(900\) 0 0
\(901\) −9.00000 + 15.5885i −0.299833 + 0.519327i
\(902\) 0 0
\(903\) 2.59808 + 1.50000i 0.0864586 + 0.0499169i
\(904\) 0 0
\(905\) 36.0000i 1.19668i
\(906\) 0 0
\(907\) 1.50000 + 2.59808i 0.0498067 + 0.0862677i 0.889854 0.456246i \(-0.150806\pi\)
−0.840047 + 0.542513i \(0.817473\pi\)
\(908\) 0 0
\(909\) −114.000 −3.78114
\(910\) 0 0
\(911\) −48.0000 −1.59031 −0.795155 0.606406i \(-0.792611\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(912\) 0 0
\(913\) 30.0000 + 51.9615i 0.992855 + 1.71968i
\(914\) 0 0
\(915\) 30.0000i 0.991769i
\(916\) 0 0
\(917\) 3.46410 + 2.00000i 0.114395 + 0.0660458i
\(918\) 0 0
\(919\) −16.5000 + 28.5788i −0.544285 + 0.942729i 0.454367 + 0.890815i \(0.349866\pi\)
−0.998652 + 0.0519142i \(0.983468\pi\)
\(920\) 0 0
\(921\) −10.3923 + 6.00000i −0.342438 + 0.197707i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 2.59808 1.50000i 0.0854242 0.0493197i
\(926\) 0 0
\(927\) −24.0000 + 41.5692i −0.788263 + 1.36531i
\(928\) 0 0
\(929\) −18.1865 10.5000i −0.596681 0.344494i 0.171054 0.985262i \(-0.445283\pi\)
−0.767735 + 0.640768i \(0.778616\pi\)
\(930\) 0 0
\(931\) 18.0000i 0.589926i
\(932\) 0 0
\(933\) −36.0000 62.3538i −1.17859 2.04137i
\(934\) 0 0
\(935\) 30.0000 0.981105
\(936\) 0 0
\(937\) −18.0000 −0.588034 −0.294017 0.955800i \(-0.594992\pi\)
−0.294017 + 0.955800i \(0.594992\pi\)
\(938\) 0 0
\(939\) −21.0000 36.3731i −0.685309 1.18699i
\(940\) 0 0
\(941\) 50.0000i 1.62995i 0.579494 + 0.814977i \(0.303250\pi\)
−0.579494 + 0.814977i \(0.696750\pi\)
\(942\) 0 0
\(943\) 2.59808 + 1.50000i 0.0846050 + 0.0488467i
\(944\) 0 0
\(945\) −9.00000 + 15.5885i −0.292770 + 0.507093i
\(946\) 0 0
\(947\) 23.3827 13.5000i 0.759835 0.438691i −0.0694014 0.997589i \(-0.522109\pi\)
0.829237 + 0.558898i \(0.188776\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −77.9423 + 45.0000i −2.52745 + 1.45922i
\(952\) 0 0
\(953\) −0.500000 + 0.866025i −0.0161966 + 0.0280533i −0.874010 0.485908i \(-0.838489\pi\)
0.857814 + 0.513961i \(0.171822\pi\)
\(954\) 0 0
\(955\) 1.73205 + 1.00000i 0.0560478 + 0.0323592i
\(956\) 0 0
\(957\) 15.0000i 0.484881i
\(958\) 0 0
\(959\) 7.50000 + 12.9904i 0.242188 + 0.419481i
\(960\) 0 0
\(961\) −33.0000 −1.06452
\(962\) 0 0
\(963\) 66.0000 2.12682
\(964\) 0 0
\(965\) −11.0000 19.0526i −0.354103 0.613324i
\(966\) 0 0
\(967\) 32.0000i 1.02905i −0.857475 0.514525i \(-0.827968\pi\)
0.857475 0.514525i \(-0.172032\pi\)
\(968\) 0 0
\(969\) 23.3827 + 13.5000i 0.751160 + 0.433682i
\(970\) 0 0
\(971\) 7.50000 12.9904i 0.240686 0.416881i −0.720224 0.693742i \(-0.755961\pi\)
0.960910 + 0.276861i \(0.0892941\pi\)
\(972\) 0 0
\(973\) −9.52628 + 5.50000i −0.305398 + 0.176322i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −33.7750 + 19.5000i −1.08056 + 0.623860i −0.931047 0.364900i \(-0.881103\pi\)
−0.149511 + 0.988760i \(0.547770\pi\)
\(978\) 0 0
\(979\) 22.5000 38.9711i 0.719103 1.24552i
\(980\) 0 0
\(981\) 51.9615 + 30.0000i 1.65900 + 0.957826i
\(982\) 0 0
\(983\) 16.0000i 0.510321i −0.966899 0.255160i \(-0.917872\pi\)
0.966899 0.255160i \(-0.0821283\pi\)
\(984\) 0 0
\(985\) −9.00000 15.5885i −0.286764 0.496690i
\(986\) 0 0
\(987\) −12.0000 −0.381964
\(988\) 0 0
\(989\) −1.00000 −0.0317982
\(990\) 0 0
\(991\) −13.5000 23.3827i −0.428842 0.742775i 0.567929 0.823078i \(-0.307745\pi\)
−0.996771 + 0.0803021i \(0.974411\pi\)
\(992\) 0 0
\(993\) 51.0000i 1.61844i
\(994\) 0 0
\(995\) 32.9090 + 19.0000i 1.04328 + 0.602340i
\(996\) 0 0
\(997\) −17.5000 + 30.3109i −0.554231 + 0.959955i 0.443732 + 0.896159i \(0.353654\pi\)
−0.997963 + 0.0637961i \(0.979679\pi\)
\(998\) 0 0
\(999\) 23.3827 13.5000i 0.739795 0.427121i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.2.h.b.361.1 4
13.2 odd 12 676.2.a.d.1.1 1
13.3 even 3 676.2.d.d.337.1 2
13.4 even 6 inner 676.2.h.b.485.2 4
13.5 odd 4 676.2.e.a.653.1 2
13.6 odd 12 676.2.e.a.529.1 2
13.7 odd 12 52.2.e.a.9.1 2
13.8 odd 4 52.2.e.a.29.1 yes 2
13.9 even 3 inner 676.2.h.b.485.1 4
13.10 even 6 676.2.d.d.337.2 2
13.11 odd 12 676.2.a.e.1.1 1
13.12 even 2 inner 676.2.h.b.361.2 4
39.2 even 12 6084.2.a.k.1.1 1
39.8 even 4 468.2.l.a.289.1 2
39.11 even 12 6084.2.a.f.1.1 1
39.20 even 12 468.2.l.a.217.1 2
39.23 odd 6 6084.2.b.l.4393.1 2
39.29 odd 6 6084.2.b.l.4393.2 2
52.3 odd 6 2704.2.f.a.337.1 2
52.7 even 12 208.2.i.d.113.1 2
52.11 even 12 2704.2.a.b.1.1 1
52.15 even 12 2704.2.a.a.1.1 1
52.23 odd 6 2704.2.f.a.337.2 2
52.47 even 4 208.2.i.d.81.1 2
65.7 even 12 1300.2.bb.f.1049.2 4
65.8 even 4 1300.2.bb.f.549.2 4
65.33 even 12 1300.2.bb.f.1049.1 4
65.34 odd 4 1300.2.i.f.601.1 2
65.47 even 4 1300.2.bb.f.549.1 4
65.59 odd 12 1300.2.i.f.1101.1 2
91.20 even 12 2548.2.k.d.1569.1 2
91.33 even 12 2548.2.i.h.165.1 2
91.34 even 4 2548.2.k.d.393.1 2
91.46 odd 12 2548.2.l.h.373.1 2
91.47 even 12 2548.2.l.a.1537.1 2
91.59 even 12 2548.2.l.a.373.1 2
91.60 odd 12 2548.2.i.a.1745.1 2
91.72 odd 12 2548.2.i.a.165.1 2
91.73 even 12 2548.2.i.h.1745.1 2
91.86 odd 12 2548.2.l.h.1537.1 2
104.21 odd 4 832.2.i.j.705.1 2
104.59 even 12 832.2.i.a.321.1 2
104.85 odd 12 832.2.i.j.321.1 2
104.99 even 4 832.2.i.a.705.1 2
156.47 odd 4 1872.2.t.f.289.1 2
156.59 odd 12 1872.2.t.f.1153.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.2.e.a.9.1 2 13.7 odd 12
52.2.e.a.29.1 yes 2 13.8 odd 4
208.2.i.d.81.1 2 52.47 even 4
208.2.i.d.113.1 2 52.7 even 12
468.2.l.a.217.1 2 39.20 even 12
468.2.l.a.289.1 2 39.8 even 4
676.2.a.d.1.1 1 13.2 odd 12
676.2.a.e.1.1 1 13.11 odd 12
676.2.d.d.337.1 2 13.3 even 3
676.2.d.d.337.2 2 13.10 even 6
676.2.e.a.529.1 2 13.6 odd 12
676.2.e.a.653.1 2 13.5 odd 4
676.2.h.b.361.1 4 1.1 even 1 trivial
676.2.h.b.361.2 4 13.12 even 2 inner
676.2.h.b.485.1 4 13.9 even 3 inner
676.2.h.b.485.2 4 13.4 even 6 inner
832.2.i.a.321.1 2 104.59 even 12
832.2.i.a.705.1 2 104.99 even 4
832.2.i.j.321.1 2 104.85 odd 12
832.2.i.j.705.1 2 104.21 odd 4
1300.2.i.f.601.1 2 65.34 odd 4
1300.2.i.f.1101.1 2 65.59 odd 12
1300.2.bb.f.549.1 4 65.47 even 4
1300.2.bb.f.549.2 4 65.8 even 4
1300.2.bb.f.1049.1 4 65.33 even 12
1300.2.bb.f.1049.2 4 65.7 even 12
1872.2.t.f.289.1 2 156.47 odd 4
1872.2.t.f.1153.1 2 156.59 odd 12
2548.2.i.a.165.1 2 91.72 odd 12
2548.2.i.a.1745.1 2 91.60 odd 12
2548.2.i.h.165.1 2 91.33 even 12
2548.2.i.h.1745.1 2 91.73 even 12
2548.2.k.d.393.1 2 91.34 even 4
2548.2.k.d.1569.1 2 91.20 even 12
2548.2.l.a.373.1 2 91.59 even 12
2548.2.l.a.1537.1 2 91.47 even 12
2548.2.l.h.373.1 2 91.46 odd 12
2548.2.l.h.1537.1 2 91.86 odd 12
2704.2.a.a.1.1 1 52.15 even 12
2704.2.a.b.1.1 1 52.11 even 12
2704.2.f.a.337.1 2 52.3 odd 6
2704.2.f.a.337.2 2 52.23 odd 6
6084.2.a.f.1.1 1 39.11 even 12
6084.2.a.k.1.1 1 39.2 even 12
6084.2.b.l.4393.1 2 39.23 odd 6
6084.2.b.l.4393.2 2 39.29 odd 6