Properties

Label 612.2.k.d.217.1
Level $612$
Weight $2$
Character 612.217
Analytic conductor $4.887$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [612,2,Mod(217,612)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(612, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("612.217");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 612 = 2^{2} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 612.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.88684460370\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{34})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 289 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 217.1
Root \(-2.91548 - 2.91548i\) of defining polynomial
Character \(\chi\) \(=\) 612.217
Dual form 612.2.k.d.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.91548 - 2.91548i) q^{5} +(3.00000 - 3.00000i) q^{7} +(-2.91548 + 2.91548i) q^{11} -5.00000 q^{13} +(-2.91548 + 2.91548i) q^{17} +1.00000i q^{19} +(2.91548 - 2.91548i) q^{23} +12.0000i q^{25} +(-4.00000 - 4.00000i) q^{31} -17.4929 q^{35} +(-3.00000 - 3.00000i) q^{37} +(2.91548 - 2.91548i) q^{41} +5.00000i q^{43} -11.6619 q^{47} -11.0000i q^{49} -11.6619i q^{53} +17.0000 q^{55} -5.83095i q^{59} +(3.00000 - 3.00000i) q^{61} +(14.5774 + 14.5774i) q^{65} -6.00000 q^{67} +(5.83095 + 5.83095i) q^{71} +(-4.00000 - 4.00000i) q^{73} +17.4929i q^{77} +(5.00000 - 5.00000i) q^{79} -11.6619i q^{83} +17.0000 q^{85} +17.4929 q^{89} +(-15.0000 + 15.0000i) q^{91} +(2.91548 - 2.91548i) q^{95} +(6.00000 + 6.00000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{7} - 20 q^{13} - 16 q^{31} - 12 q^{37} + 68 q^{55} + 12 q^{61} - 24 q^{67} - 16 q^{73} + 20 q^{79} + 68 q^{85} - 60 q^{91} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/612\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\) \(307\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.91548 2.91548i −1.30384 1.30384i −0.925782 0.378059i \(-0.876592\pi\)
−0.378059 0.925782i \(-0.623408\pi\)
\(6\) 0 0
\(7\) 3.00000 3.00000i 1.13389 1.13389i 0.144370 0.989524i \(-0.453885\pi\)
0.989524 0.144370i \(-0.0461154\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.91548 + 2.91548i −0.879049 + 0.879049i −0.993436 0.114387i \(-0.963510\pi\)
0.114387 + 0.993436i \(0.463510\pi\)
\(12\) 0 0
\(13\) −5.00000 −1.38675 −0.693375 0.720577i \(-0.743877\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.91548 + 2.91548i −0.707107 + 0.707107i
\(18\) 0 0
\(19\) 1.00000i 0.229416i 0.993399 + 0.114708i \(0.0365932\pi\)
−0.993399 + 0.114708i \(0.963407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.91548 2.91548i 0.607919 0.607919i −0.334483 0.942402i \(-0.608562\pi\)
0.942402 + 0.334483i \(0.108562\pi\)
\(24\) 0 0
\(25\) 12.0000i 2.40000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(30\) 0 0
\(31\) −4.00000 4.00000i −0.718421 0.718421i 0.249861 0.968282i \(-0.419615\pi\)
−0.968282 + 0.249861i \(0.919615\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −17.4929 −2.95683
\(36\) 0 0
\(37\) −3.00000 3.00000i −0.493197 0.493197i 0.416115 0.909312i \(-0.363391\pi\)
−0.909312 + 0.416115i \(0.863391\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.91548 2.91548i 0.455321 0.455321i −0.441795 0.897116i \(-0.645658\pi\)
0.897116 + 0.441795i \(0.145658\pi\)
\(42\) 0 0
\(43\) 5.00000i 0.762493i 0.924473 + 0.381246i \(0.124505\pi\)
−0.924473 + 0.381246i \(0.875495\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −11.6619 −1.70106 −0.850532 0.525924i \(-0.823720\pi\)
−0.850532 + 0.525924i \(0.823720\pi\)
\(48\) 0 0
\(49\) 11.0000i 1.57143i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.6619i 1.60189i −0.598741 0.800943i \(-0.704332\pi\)
0.598741 0.800943i \(-0.295668\pi\)
\(54\) 0 0
\(55\) 17.0000 2.29228
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.83095i 0.759125i −0.925166 0.379563i \(-0.876074\pi\)
0.925166 0.379563i \(-0.123926\pi\)
\(60\) 0 0
\(61\) 3.00000 3.00000i 0.384111 0.384111i −0.488470 0.872581i \(-0.662445\pi\)
0.872581 + 0.488470i \(0.162445\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 14.5774 + 14.5774i 1.80810 + 1.80810i
\(66\) 0 0
\(67\) −6.00000 −0.733017 −0.366508 0.930415i \(-0.619447\pi\)
−0.366508 + 0.930415i \(0.619447\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.83095 + 5.83095i 0.692007 + 0.692007i 0.962673 0.270667i \(-0.0872441\pi\)
−0.270667 + 0.962673i \(0.587244\pi\)
\(72\) 0 0
\(73\) −4.00000 4.00000i −0.468165 0.468165i 0.433155 0.901319i \(-0.357400\pi\)
−0.901319 + 0.433155i \(0.857400\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 17.4929i 1.99350i
\(78\) 0 0
\(79\) 5.00000 5.00000i 0.562544 0.562544i −0.367485 0.930029i \(-0.619781\pi\)
0.930029 + 0.367485i \(0.119781\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11.6619i 1.28006i −0.768350 0.640030i \(-0.778922\pi\)
0.768350 0.640030i \(-0.221078\pi\)
\(84\) 0 0
\(85\) 17.0000 1.84391
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 17.4929 1.85424 0.927119 0.374766i \(-0.122277\pi\)
0.927119 + 0.374766i \(0.122277\pi\)
\(90\) 0 0
\(91\) −15.0000 + 15.0000i −1.57243 + 1.57243i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.91548 2.91548i 0.299122 0.299122i
\(96\) 0 0
\(97\) 6.00000 + 6.00000i 0.609208 + 0.609208i 0.942739 0.333531i \(-0.108240\pi\)
−0.333531 + 0.942739i \(0.608240\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) −13.0000 −1.28093 −0.640464 0.767988i \(-0.721258\pi\)
−0.640464 + 0.767988i \(0.721258\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.91548 2.91548i −0.281850 0.281850i 0.551997 0.833846i \(-0.313866\pi\)
−0.833846 + 0.551997i \(0.813866\pi\)
\(108\) 0 0
\(109\) −6.00000 + 6.00000i −0.574696 + 0.574696i −0.933437 0.358741i \(-0.883206\pi\)
0.358741 + 0.933437i \(0.383206\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.91548 + 2.91548i −0.274265 + 0.274265i −0.830814 0.556550i \(-0.812125\pi\)
0.556550 + 0.830814i \(0.312125\pi\)
\(114\) 0 0
\(115\) −17.0000 −1.58526
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 17.4929i 1.60357i
\(120\) 0 0
\(121\) 6.00000i 0.545455i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 20.4083 20.4083i 1.82538 1.82538i
\(126\) 0 0
\(127\) 1.00000i 0.0887357i −0.999015 0.0443678i \(-0.985873\pi\)
0.999015 0.0443678i \(-0.0141274\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.91548 2.91548i −0.254726 0.254726i 0.568179 0.822905i \(-0.307648\pi\)
−0.822905 + 0.568179i \(0.807648\pi\)
\(132\) 0 0
\(133\) 3.00000 + 3.00000i 0.260133 + 0.260133i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.83095 0.498172 0.249086 0.968481i \(-0.419870\pi\)
0.249086 + 0.968481i \(0.419870\pi\)
\(138\) 0 0
\(139\) 1.00000 + 1.00000i 0.0848189 + 0.0848189i 0.748243 0.663424i \(-0.230898\pi\)
−0.663424 + 0.748243i \(0.730898\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 14.5774 14.5774i 1.21902 1.21902i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.83095 0.477690 0.238845 0.971058i \(-0.423231\pi\)
0.238845 + 0.971058i \(0.423231\pi\)
\(150\) 0 0
\(151\) 6.00000i 0.488273i −0.969741 0.244137i \(-0.921495\pi\)
0.969741 0.244137i \(-0.0785045\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 23.3238i 1.87341i
\(156\) 0 0
\(157\) −11.0000 −0.877896 −0.438948 0.898513i \(-0.644649\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 17.4929i 1.37863i
\(162\) 0 0
\(163\) 10.0000 10.0000i 0.783260 0.783260i −0.197119 0.980380i \(-0.563159\pi\)
0.980380 + 0.197119i \(0.0631586\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.91548 2.91548i −0.225606 0.225606i 0.585248 0.810854i \(-0.300997\pi\)
−0.810854 + 0.585248i \(0.800997\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14.5774 + 14.5774i 1.10830 + 1.10830i 0.993374 + 0.114923i \(0.0366622\pi\)
0.114923 + 0.993374i \(0.463338\pi\)
\(174\) 0 0
\(175\) 36.0000 + 36.0000i 2.72134 + 2.72134i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.6619i 0.871652i 0.900031 + 0.435826i \(0.143544\pi\)
−0.900031 + 0.435826i \(0.856456\pi\)
\(180\) 0 0
\(181\) 11.0000 11.0000i 0.817624 0.817624i −0.168140 0.985763i \(-0.553776\pi\)
0.985763 + 0.168140i \(0.0537759\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 17.4929i 1.28610i
\(186\) 0 0
\(187\) 17.0000i 1.24316i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.83095 −0.421913 −0.210956 0.977495i \(-0.567658\pi\)
−0.210956 + 0.977495i \(0.567658\pi\)
\(192\) 0 0
\(193\) 10.0000 10.0000i 0.719816 0.719816i −0.248752 0.968567i \(-0.580020\pi\)
0.968567 + 0.248752i \(0.0800203\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.91548 + 2.91548i −0.207719 + 0.207719i −0.803297 0.595578i \(-0.796923\pi\)
0.595578 + 0.803297i \(0.296923\pi\)
\(198\) 0 0
\(199\) −18.0000 18.0000i −1.27599 1.27599i −0.942894 0.333092i \(-0.891908\pi\)
−0.333092 0.942894i \(-0.608092\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −17.0000 −1.18733
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.91548 2.91548i −0.201668 0.201668i
\(210\) 0 0
\(211\) −2.00000 + 2.00000i −0.137686 + 0.137686i −0.772590 0.634905i \(-0.781039\pi\)
0.634905 + 0.772590i \(0.281039\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 14.5774 14.5774i 0.994169 0.994169i
\(216\) 0 0
\(217\) −24.0000 −1.62923
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 14.5774 14.5774i 0.980581 0.980581i
\(222\) 0 0
\(223\) 23.0000i 1.54019i −0.637927 0.770097i \(-0.720208\pi\)
0.637927 0.770097i \(-0.279792\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.91548 + 2.91548i −0.193507 + 0.193507i −0.797210 0.603703i \(-0.793691\pi\)
0.603703 + 0.797210i \(0.293691\pi\)
\(228\) 0 0
\(229\) 12.0000i 0.792982i 0.918039 + 0.396491i \(0.129772\pi\)
−0.918039 + 0.396491i \(0.870228\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.5774 14.5774i −0.954996 0.954996i 0.0440341 0.999030i \(-0.485979\pi\)
−0.999030 + 0.0440341i \(0.985979\pi\)
\(234\) 0 0
\(235\) 34.0000 + 34.0000i 2.21792 + 2.21792i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −9.00000 9.00000i −0.579741 0.579741i 0.355091 0.934832i \(-0.384450\pi\)
−0.934832 + 0.355091i \(0.884450\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −32.0702 + 32.0702i −2.04889 + 2.04889i
\(246\) 0 0
\(247\) 5.00000i 0.318142i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −17.4929 −1.10414 −0.552070 0.833798i \(-0.686162\pi\)
−0.552070 + 0.833798i \(0.686162\pi\)
\(252\) 0 0
\(253\) 17.0000i 1.06878i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 17.4929i 1.09117i −0.838054 0.545587i \(-0.816307\pi\)
0.838054 0.545587i \(-0.183693\pi\)
\(258\) 0 0
\(259\) −18.0000 −1.11847
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 17.4929i 1.07866i 0.842096 + 0.539328i \(0.181322\pi\)
−0.842096 + 0.539328i \(0.818678\pi\)
\(264\) 0 0
\(265\) −34.0000 + 34.0000i −2.08860 + 2.08860i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.91548 2.91548i −0.177760 0.177760i 0.612619 0.790379i \(-0.290116\pi\)
−0.790379 + 0.612619i \(0.790116\pi\)
\(270\) 0 0
\(271\) −5.00000 −0.303728 −0.151864 0.988401i \(-0.548528\pi\)
−0.151864 + 0.988401i \(0.548528\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −34.9857 34.9857i −2.10972 2.10972i
\(276\) 0 0
\(277\) 8.00000 + 8.00000i 0.480673 + 0.480673i 0.905347 0.424673i \(-0.139611\pi\)
−0.424673 + 0.905347i \(0.639611\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 17.4929i 1.04354i −0.853087 0.521768i \(-0.825273\pi\)
0.853087 0.521768i \(-0.174727\pi\)
\(282\) 0 0
\(283\) 13.0000 13.0000i 0.772770 0.772770i −0.205820 0.978590i \(-0.565986\pi\)
0.978590 + 0.205820i \(0.0659862\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 17.4929i 1.03257i
\(288\) 0 0
\(289\) 17.0000i 1.00000i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −17.4929 −1.02194 −0.510972 0.859597i \(-0.670714\pi\)
−0.510972 + 0.859597i \(0.670714\pi\)
\(294\) 0 0
\(295\) −17.0000 + 17.0000i −0.989778 + 0.989778i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −14.5774 + 14.5774i −0.843032 + 0.843032i
\(300\) 0 0
\(301\) 15.0000 + 15.0000i 0.864586 + 0.864586i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −17.4929 −1.00164
\(306\) 0 0
\(307\) 18.0000 1.02731 0.513657 0.857996i \(-0.328290\pi\)
0.513657 + 0.857996i \(0.328290\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 17.4929 + 17.4929i 0.991929 + 0.991929i 0.999968 0.00803884i \(-0.00255887\pi\)
−0.00803884 + 0.999968i \(0.502559\pi\)
\(312\) 0 0
\(313\) −12.0000 + 12.0000i −0.678280 + 0.678280i −0.959611 0.281331i \(-0.909224\pi\)
0.281331 + 0.959611i \(0.409224\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2.91548 2.91548i −0.162221 0.162221i
\(324\) 0 0
\(325\) 60.0000i 3.32820i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −34.9857 + 34.9857i −1.92882 + 1.92882i
\(330\) 0 0
\(331\) 31.0000i 1.70391i −0.523612 0.851957i \(-0.675416\pi\)
0.523612 0.851957i \(-0.324584\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 17.4929 + 17.4929i 0.955737 + 0.955737i
\(336\) 0 0
\(337\) 17.0000 + 17.0000i 0.926049 + 0.926049i 0.997448 0.0713988i \(-0.0227463\pi\)
−0.0713988 + 0.997448i \(0.522746\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 23.3238 1.26305
\(342\) 0 0
\(343\) −12.0000 12.0000i −0.647939 0.647939i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.4929 17.4929i 0.939066 0.939066i −0.0591815 0.998247i \(-0.518849\pi\)
0.998247 + 0.0591815i \(0.0188491\pi\)
\(348\) 0 0
\(349\) 31.0000i 1.65939i 0.558216 + 0.829696i \(0.311486\pi\)
−0.558216 + 0.829696i \(0.688514\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5.83095 0.310350 0.155175 0.987887i \(-0.450406\pi\)
0.155175 + 0.987887i \(0.450406\pi\)
\(354\) 0 0
\(355\) 34.0000i 1.80453i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 17.4929i 0.923238i 0.887078 + 0.461619i \(0.152731\pi\)
−0.887078 + 0.461619i \(0.847269\pi\)
\(360\) 0 0
\(361\) 18.0000 0.947368
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 23.3238i 1.22082i
\(366\) 0 0
\(367\) −9.00000 + 9.00000i −0.469796 + 0.469796i −0.901849 0.432052i \(-0.857790\pi\)
0.432052 + 0.901849i \(0.357790\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −34.9857 34.9857i −1.81637 1.81637i
\(372\) 0 0
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 9.00000 + 9.00000i 0.462299 + 0.462299i 0.899408 0.437109i \(-0.143998\pi\)
−0.437109 + 0.899408i \(0.643998\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 34.9857i 1.78769i −0.448380 0.893843i \(-0.647999\pi\)
0.448380 0.893843i \(-0.352001\pi\)
\(384\) 0 0
\(385\) 51.0000 51.0000i 2.59920 2.59920i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 17.4929i 0.886923i 0.896293 + 0.443461i \(0.146250\pi\)
−0.896293 + 0.443461i \(0.853750\pi\)
\(390\) 0 0
\(391\) 17.0000i 0.859727i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −29.1548 −1.46694
\(396\) 0 0
\(397\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.5774 14.5774i 0.727960 0.727960i −0.242253 0.970213i \(-0.577887\pi\)
0.970213 + 0.242253i \(0.0778865\pi\)
\(402\) 0 0
\(403\) 20.0000 + 20.0000i 0.996271 + 0.996271i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 17.4929 0.867089
\(408\) 0 0
\(409\) −7.00000 −0.346128 −0.173064 0.984911i \(-0.555367\pi\)
−0.173064 + 0.984911i \(0.555367\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −17.4929 17.4929i −0.860767 0.860767i
\(414\) 0 0
\(415\) −34.0000 + 34.0000i −1.66899 + 1.66899i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −17.4929 + 17.4929i −0.854582 + 0.854582i −0.990694 0.136112i \(-0.956539\pi\)
0.136112 + 0.990694i \(0.456539\pi\)
\(420\) 0 0
\(421\) −7.00000 −0.341159 −0.170580 0.985344i \(-0.554564\pi\)
−0.170580 + 0.985344i \(0.554564\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −34.9857 34.9857i −1.69706 1.69706i
\(426\) 0 0
\(427\) 18.0000i 0.871081i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −17.4929 + 17.4929i −0.842601 + 0.842601i −0.989197 0.146595i \(-0.953168\pi\)
0.146595 + 0.989197i \(0.453168\pi\)
\(432\) 0 0
\(433\) 31.0000i 1.48976i 0.667196 + 0.744882i \(0.267494\pi\)
−0.667196 + 0.744882i \(0.732506\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.91548 + 2.91548i 0.139466 + 0.139466i
\(438\) 0 0
\(439\) 12.0000 + 12.0000i 0.572729 + 0.572729i 0.932890 0.360161i \(-0.117278\pi\)
−0.360161 + 0.932890i \(0.617278\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.6619 0.554074 0.277037 0.960859i \(-0.410648\pi\)
0.277037 + 0.960859i \(0.410648\pi\)
\(444\) 0 0
\(445\) −51.0000 51.0000i −2.41763 2.41763i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −17.4929 + 17.4929i −0.825539 + 0.825539i −0.986896 0.161357i \(-0.948413\pi\)
0.161357 + 0.986896i \(0.448413\pi\)
\(450\) 0 0
\(451\) 17.0000i 0.800499i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 87.4643 4.10039
\(456\) 0 0
\(457\) 7.00000i 0.327446i −0.986506 0.163723i \(-0.947650\pi\)
0.986506 0.163723i \(-0.0523504\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.83095i 0.271575i −0.990738 0.135787i \(-0.956644\pi\)
0.990738 0.135787i \(-0.0433564\pi\)
\(462\) 0 0
\(463\) −6.00000 −0.278844 −0.139422 0.990233i \(-0.544524\pi\)
−0.139422 + 0.990233i \(0.544524\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.83095i 0.269824i −0.990858 0.134912i \(-0.956925\pi\)
0.990858 0.134912i \(-0.0430752\pi\)
\(468\) 0 0
\(469\) −18.0000 + 18.0000i −0.831163 + 0.831163i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −14.5774 14.5774i −0.670269 0.670269i
\(474\) 0 0
\(475\) −12.0000 −0.550598
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 20.4083 + 20.4083i 0.932480 + 0.932480i 0.997860 0.0653800i \(-0.0208259\pi\)
−0.0653800 + 0.997860i \(0.520826\pi\)
\(480\) 0 0
\(481\) 15.0000 + 15.0000i 0.683941 + 0.683941i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 34.9857i 1.58862i
\(486\) 0 0
\(487\) −7.00000 + 7.00000i −0.317200 + 0.317200i −0.847691 0.530491i \(-0.822008\pi\)
0.530491 + 0.847691i \(0.322008\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 23.3238i 1.05259i 0.850302 + 0.526294i \(0.176419\pi\)
−0.850302 + 0.526294i \(0.823581\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 34.9857 1.56932
\(498\) 0 0
\(499\) −10.0000 + 10.0000i −0.447661 + 0.447661i −0.894576 0.446915i \(-0.852523\pi\)
0.446915 + 0.894576i \(0.352523\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 20.4083 20.4083i 0.909963 0.909963i −0.0863061 0.996269i \(-0.527506\pi\)
0.996269 + 0.0863061i \(0.0275063\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) −24.0000 −1.06170
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 37.9012 + 37.9012i 1.67013 + 1.67013i
\(516\) 0 0
\(517\) 34.0000 34.0000i 1.49532 1.49532i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −14.5774 + 14.5774i −0.638647 + 0.638647i −0.950222 0.311575i \(-0.899143\pi\)
0.311575 + 0.950222i \(0.399143\pi\)
\(522\) 0 0
\(523\) −42.0000 −1.83653 −0.918266 0.395964i \(-0.870410\pi\)
−0.918266 + 0.395964i \(0.870410\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 23.3238 1.01600
\(528\) 0 0
\(529\) 6.00000i 0.260870i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −14.5774 + 14.5774i −0.631416 + 0.631416i
\(534\) 0 0
\(535\) 17.0000i 0.734974i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 32.0702 + 32.0702i 1.38136 + 1.38136i
\(540\) 0 0
\(541\) 15.0000 + 15.0000i 0.644900 + 0.644900i 0.951756 0.306856i \(-0.0992769\pi\)
−0.306856 + 0.951756i \(0.599277\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 34.9857 1.49862
\(546\) 0 0
\(547\) 21.0000 + 21.0000i 0.897895 + 0.897895i 0.995250 0.0973546i \(-0.0310381\pi\)
−0.0973546 + 0.995250i \(0.531038\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 30.0000i 1.27573i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.83095 −0.247065 −0.123533 0.992341i \(-0.539422\pi\)
−0.123533 + 0.992341i \(0.539422\pi\)
\(558\) 0 0
\(559\) 25.0000i 1.05739i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11.6619i 0.491491i −0.969334 0.245745i \(-0.920967\pi\)
0.969334 0.245745i \(-0.0790327\pi\)
\(564\) 0 0
\(565\) 17.0000 0.715195
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 34.9857i 1.46668i 0.679864 + 0.733339i \(0.262039\pi\)
−0.679864 + 0.733339i \(0.737961\pi\)
\(570\) 0 0
\(571\) 12.0000 12.0000i 0.502184 0.502184i −0.409932 0.912116i \(-0.634448\pi\)
0.912116 + 0.409932i \(0.134448\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 34.9857 + 34.9857i 1.45901 + 1.45901i
\(576\) 0 0
\(577\) 1.00000 0.0416305 0.0208153 0.999783i \(-0.493374\pi\)
0.0208153 + 0.999783i \(0.493374\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −34.9857 34.9857i −1.45145 1.45145i
\(582\) 0 0
\(583\) 34.0000 + 34.0000i 1.40814 + 1.40814i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 34.9857i 1.44401i −0.691885 0.722007i \(-0.743220\pi\)
0.691885 0.722007i \(-0.256780\pi\)
\(588\) 0 0
\(589\) 4.00000 4.00000i 0.164817 0.164817i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 23.3238i 0.957794i −0.877871 0.478897i \(-0.841037\pi\)
0.877871 0.478897i \(-0.158963\pi\)
\(594\) 0 0
\(595\) 51.0000 51.0000i 2.09080 2.09080i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −40.8167 −1.66772 −0.833862 0.551973i \(-0.813875\pi\)
−0.833862 + 0.551973i \(0.813875\pi\)
\(600\) 0 0
\(601\) −16.0000 + 16.0000i −0.652654 + 0.652654i −0.953631 0.300978i \(-0.902687\pi\)
0.300978 + 0.953631i \(0.402687\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −17.4929 + 17.4929i −0.711186 + 0.711186i
\(606\) 0 0
\(607\) −23.0000 23.0000i −0.933541 0.933541i 0.0643840 0.997925i \(-0.479492\pi\)
−0.997925 + 0.0643840i \(0.979492\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 58.3095 2.35895
\(612\) 0 0
\(613\) 31.0000 1.25208 0.626039 0.779792i \(-0.284675\pi\)
0.626039 + 0.779792i \(0.284675\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(618\) 0 0
\(619\) 23.0000 23.0000i 0.924448 0.924448i −0.0728918 0.997340i \(-0.523223\pi\)
0.997340 + 0.0728918i \(0.0232228\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 52.4786 52.4786i 2.10251 2.10251i
\(624\) 0 0
\(625\) −59.0000 −2.36000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 17.4929 0.697486
\(630\) 0 0
\(631\) 25.0000i 0.995234i −0.867397 0.497617i \(-0.834208\pi\)
0.867397 0.497617i \(-0.165792\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.91548 + 2.91548i −0.115697 + 0.115697i
\(636\) 0 0
\(637\) 55.0000i 2.17918i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14.5774 + 14.5774i 0.575772 + 0.575772i 0.933736 0.357964i \(-0.116529\pi\)
−0.357964 + 0.933736i \(0.616529\pi\)
\(642\) 0 0
\(643\) −12.0000 12.0000i −0.473234 0.473234i 0.429726 0.902959i \(-0.358610\pi\)
−0.902959 + 0.429726i \(0.858610\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.83095 −0.229238 −0.114619 0.993410i \(-0.536565\pi\)
−0.114619 + 0.993410i \(0.536565\pi\)
\(648\) 0 0
\(649\) 17.0000 + 17.0000i 0.667308 + 0.667308i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14.5774 14.5774i 0.570457 0.570457i −0.361799 0.932256i \(-0.617837\pi\)
0.932256 + 0.361799i \(0.117837\pi\)
\(654\) 0 0
\(655\) 17.0000i 0.664245i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −40.8167 −1.58999 −0.794996 0.606615i \(-0.792527\pi\)
−0.794996 + 0.606615i \(0.792527\pi\)
\(660\) 0 0
\(661\) 11.0000i 0.427850i −0.976850 0.213925i \(-0.931375\pi\)
0.976850 0.213925i \(-0.0686249\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 17.4929i 0.678344i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 17.4929i 0.675304i
\(672\) 0 0
\(673\) 22.0000 22.0000i 0.848038 0.848038i −0.141850 0.989888i \(-0.545305\pi\)
0.989888 + 0.141850i \(0.0453052\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14.5774 14.5774i −0.560254 0.560254i 0.369125 0.929380i \(-0.379657\pi\)
−0.929380 + 0.369125i \(0.879657\pi\)
\(678\) 0 0
\(679\) 36.0000 1.38155
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −2.91548 2.91548i −0.111558 0.111558i 0.649125 0.760682i \(-0.275135\pi\)
−0.760682 + 0.649125i \(0.775135\pi\)
\(684\) 0 0
\(685\) −17.0000 17.0000i −0.649537 0.649537i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 58.3095i 2.22142i
\(690\) 0 0
\(691\) 6.00000 6.00000i 0.228251 0.228251i −0.583711 0.811962i \(-0.698400\pi\)
0.811962 + 0.583711i \(0.198400\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.83095i 0.221181i
\(696\) 0 0
\(697\) 17.0000i 0.643921i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 34.9857 1.32139 0.660696 0.750654i \(-0.270261\pi\)
0.660696 + 0.750654i \(0.270261\pi\)
\(702\) 0 0
\(703\) 3.00000 3.00000i 0.113147 0.113147i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −26.0000 26.0000i −0.976450 0.976450i 0.0232785 0.999729i \(-0.492590\pi\)
−0.999729 + 0.0232785i \(0.992590\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −23.3238 −0.873483
\(714\) 0 0
\(715\) −85.0000 −3.17882
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2.91548 + 2.91548i 0.108729 + 0.108729i 0.759378 0.650649i \(-0.225503\pi\)
−0.650649 + 0.759378i \(0.725503\pi\)
\(720\) 0 0
\(721\) −39.0000 + 39.0000i −1.45244 + 1.45244i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −36.0000 −1.33517 −0.667583 0.744535i \(-0.732671\pi\)
−0.667583 + 0.744535i \(0.732671\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −14.5774 14.5774i −0.539164 0.539164i
\(732\) 0 0
\(733\) 24.0000i 0.886460i 0.896408 + 0.443230i \(0.146168\pi\)
−0.896408 + 0.443230i \(0.853832\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 17.4929 17.4929i 0.644358 0.644358i
\(738\) 0 0
\(739\) 19.0000i 0.698926i 0.936950 + 0.349463i \(0.113636\pi\)
−0.936950 + 0.349463i \(0.886364\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −34.9857 34.9857i −1.28350 1.28350i −0.938662 0.344840i \(-0.887933\pi\)
−0.344840 0.938662i \(-0.612067\pi\)
\(744\) 0 0
\(745\) −17.0000 17.0000i −0.622832 0.622832i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −17.4929 −0.639175
\(750\) 0 0
\(751\) 16.0000 + 16.0000i 0.583848 + 0.583848i 0.935959 0.352110i \(-0.114536\pi\)
−0.352110 + 0.935959i \(0.614536\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −17.4929 + 17.4929i −0.636630 + 0.636630i
\(756\) 0 0
\(757\) 29.0000i 1.05402i 0.849858 + 0.527011i \(0.176688\pi\)
−0.849858 + 0.527011i \(0.823312\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11.6619 0.422744 0.211372 0.977406i \(-0.432207\pi\)
0.211372 + 0.977406i \(0.432207\pi\)
\(762\) 0 0
\(763\) 36.0000i 1.30329i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 29.1548i 1.05272i
\(768\) 0 0
\(769\) 49.0000 1.76699 0.883493 0.468445i \(-0.155186\pi\)
0.883493 + 0.468445i \(0.155186\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 48.0000 48.0000i 1.72421 1.72421i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.91548 + 2.91548i 0.104458 + 0.104458i
\(780\) 0 0
\(781\) −34.0000 −1.21662
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 32.0702 + 32.0702i 1.14464 + 1.14464i
\(786\) 0 0
\(787\) 24.0000 + 24.0000i 0.855508 + 0.855508i 0.990805 0.135297i \(-0.0431990\pi\)
−0.135297 + 0.990805i \(0.543199\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 17.4929i 0.621974i
\(792\) 0 0
\(793\) −15.0000 + 15.0000i −0.532666 + 0.532666i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 34.9857i 1.23926i 0.784895 + 0.619629i \(0.212717\pi\)
−0.784895 + 0.619629i \(0.787283\pi\)
\(798\) 0 0
\(799\) 34.0000 34.0000i 1.20283 1.20283i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 23.3238 0.823079
\(804\) 0 0
\(805\) −51.0000 + 51.0000i −1.79751 + 1.79751i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2.91548 + 2.91548i −0.102503 + 0.102503i −0.756498 0.653996i \(-0.773091\pi\)
0.653996 + 0.756498i \(0.273091\pi\)
\(810\) 0 0
\(811\) 26.0000 + 26.0000i 0.912983 + 0.912983i 0.996506 0.0835224i \(-0.0266170\pi\)
−0.0835224 + 0.996506i \(0.526617\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −58.3095 −2.04249
\(816\) 0 0
\(817\) −5.00000 −0.174928
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −37.9012 37.9012i −1.32276 1.32276i −0.911532 0.411228i \(-0.865100\pi\)
−0.411228 0.911532i \(-0.634900\pi\)
\(822\) 0 0
\(823\) −15.0000 + 15.0000i −0.522867 + 0.522867i −0.918436 0.395569i \(-0.870547\pi\)
0.395569 + 0.918436i \(0.370547\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −32.0702 + 32.0702i −1.11519 + 1.11519i −0.122754 + 0.992437i \(0.539173\pi\)
−0.992437 + 0.122754i \(0.960827\pi\)
\(828\) 0 0
\(829\) 24.0000 0.833554 0.416777 0.909009i \(-0.363160\pi\)
0.416777 + 0.909009i \(0.363160\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 32.0702 + 32.0702i 1.11117 + 1.11117i
\(834\) 0 0
\(835\) 17.0000i 0.588309i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 37.9012 37.9012i 1.30849 1.30849i 0.385992 0.922502i \(-0.373859\pi\)
0.922502 0.385992i \(-0.126141\pi\)
\(840\) 0 0
\(841\) 29.0000i 1.00000i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −34.9857 34.9857i −1.20355 1.20355i
\(846\) 0 0
\(847\) −18.0000 18.0000i −0.618487 0.618487i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −17.4929 −0.599647
\(852\) 0 0
\(853\) −31.0000 31.0000i −1.06142 1.06142i −0.997986 0.0634337i \(-0.979795\pi\)
−0.0634337 0.997986i \(-0.520205\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(858\) 0 0
\(859\) 30.0000i 1.02359i −0.859109 0.511793i \(-0.828981\pi\)
0.859109 0.511793i \(-0.171019\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −17.4929 −0.595464 −0.297732 0.954650i \(-0.596230\pi\)
−0.297732 + 0.954650i \(0.596230\pi\)
\(864\) 0 0
\(865\) 85.0000i 2.89009i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 29.1548i 0.989007i
\(870\) 0 0
\(871\) 30.0000 1.01651
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 122.450i 4.13957i
\(876\) 0 0
\(877\) 17.0000 17.0000i 0.574049 0.574049i −0.359208 0.933257i \(-0.616953\pi\)
0.933257 + 0.359208i \(0.116953\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −17.4929 17.4929i −0.589349 0.589349i 0.348106 0.937455i \(-0.386825\pi\)
−0.937455 + 0.348106i \(0.886825\pi\)
\(882\) 0 0
\(883\) −43.0000 −1.44707 −0.723533 0.690290i \(-0.757483\pi\)
−0.723533 + 0.690290i \(0.757483\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.91548 + 2.91548i 0.0978921 + 0.0978921i 0.754357 0.656465i \(-0.227949\pi\)
−0.656465 + 0.754357i \(0.727949\pi\)
\(888\) 0 0
\(889\) −3.00000 3.00000i −0.100617 0.100617i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 11.6619i 0.390251i
\(894\) 0 0
\(895\) 34.0000 34.0000i 1.13649 1.13649i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 34.0000 + 34.0000i 1.13270 + 1.13270i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −64.1405 −2.13210
\(906\) 0 0
\(907\) 11.0000 11.0000i 0.365249 0.365249i −0.500492 0.865741i \(-0.666848\pi\)
0.865741 + 0.500492i \(0.166848\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −20.4083 + 20.4083i −0.676158 + 0.676158i −0.959129 0.282970i \(-0.908680\pi\)
0.282970 + 0.959129i \(0.408680\pi\)
\(912\) 0 0
\(913\) 34.0000 + 34.0000i 1.12524 + 1.12524i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −17.4929 −0.577665
\(918\) 0 0
\(919\) −35.0000 −1.15454 −0.577272 0.816552i \(-0.695883\pi\)
−0.577272 + 0.816552i \(0.695883\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −29.1548 29.1548i −0.959641 0.959641i
\(924\) 0 0
\(925\) 36.0000 36.0000i 1.18367 1.18367i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −14.5774 + 14.5774i −0.478268 + 0.478268i −0.904578 0.426309i \(-0.859814\pi\)
0.426309 + 0.904578i \(0.359814\pi\)
\(930\) 0 0
\(931\) 11.0000 0.360510
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −49.5631 + 49.5631i −1.62089 + 1.62089i
\(936\) 0 0
\(937\) 18.0000i 0.588034i −0.955800 0.294017i \(-0.905008\pi\)
0.955800 0.294017i \(-0.0949923\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 11.6619 11.6619i 0.380167 0.380167i −0.490995 0.871162i \(-0.663367\pi\)
0.871162 + 0.490995i \(0.163367\pi\)
\(942\) 0 0
\(943\) 17.0000i 0.553596i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17.4929 17.4929i −0.568441 0.568441i 0.363250 0.931692i \(-0.381667\pi\)
−0.931692 + 0.363250i \(0.881667\pi\)
\(948\) 0 0
\(949\) 20.0000 + 20.0000i 0.649227 + 0.649227i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −34.9857 −1.13330 −0.566649 0.823959i \(-0.691761\pi\)
−0.566649 + 0.823959i \(0.691761\pi\)
\(954\) 0 0
\(955\) 17.0000 + 17.0000i 0.550107 + 0.550107i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 17.4929 17.4929i 0.564874 0.564874i
\(960\) 0 0
\(961\) 1.00000i 0.0322581i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −58.3095 −1.87705
\(966\) 0 0
\(967\) 31.0000i 0.996893i 0.866921 + 0.498446i \(0.166096\pi\)
−0.866921 + 0.498446i \(0.833904\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 11.6619i 0.374248i 0.982336 + 0.187124i \(0.0599167\pi\)
−0.982336 + 0.187124i \(0.940083\pi\)
\(972\) 0 0
\(973\) 6.00000 0.192351
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 29.1548i 0.932743i −0.884589 0.466372i \(-0.845561\pi\)
0.884589 0.466372i \(-0.154439\pi\)
\(978\) 0 0
\(979\) −51.0000 + 51.0000i −1.62997 + 1.62997i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 20.4083 + 20.4083i 0.650925 + 0.650925i 0.953216 0.302291i \(-0.0977514\pi\)
−0.302291 + 0.953216i \(0.597751\pi\)
\(984\) 0 0
\(985\) 17.0000 0.541665
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 14.5774 + 14.5774i 0.463534 + 0.463534i
\(990\) 0 0
\(991\) −30.0000 30.0000i −0.952981 0.952981i 0.0459618 0.998943i \(-0.485365\pi\)
−0.998943 + 0.0459618i \(0.985365\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 104.957i 3.32736i
\(996\) 0 0
\(997\) 7.00000 7.00000i 0.221692 0.221692i −0.587519 0.809211i \(-0.699895\pi\)
0.809211 + 0.587519i \(0.199895\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 612.2.k.d.217.1 4
3.2 odd 2 inner 612.2.k.d.217.2 yes 4
4.3 odd 2 2448.2.be.q.1441.1 4
12.11 even 2 2448.2.be.q.1441.2 4
17.4 even 4 inner 612.2.k.d.361.1 yes 4
51.38 odd 4 inner 612.2.k.d.361.2 yes 4
68.55 odd 4 2448.2.be.q.1585.1 4
204.191 even 4 2448.2.be.q.1585.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
612.2.k.d.217.1 4 1.1 even 1 trivial
612.2.k.d.217.2 yes 4 3.2 odd 2 inner
612.2.k.d.361.1 yes 4 17.4 even 4 inner
612.2.k.d.361.2 yes 4 51.38 odd 4 inner
2448.2.be.q.1441.1 4 4.3 odd 2
2448.2.be.q.1441.2 4 12.11 even 2
2448.2.be.q.1585.1 4 68.55 odd 4
2448.2.be.q.1585.2 4 204.191 even 4