Properties

Label 612.4.a.b
Level $612$
Weight $4$
Character orbit 612.a
Self dual yes
Analytic conductor $36.109$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [612,4,Mod(1,612)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(612, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("612.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 612 = 2^{2} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 612.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.1091689235\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 204)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{5} - 16 q^{7} + 57 q^{11} - 25 q^{13} - 17 q^{17} - 13 q^{19} + 93 q^{23} - 116 q^{25} + 6 q^{29} + 110 q^{31} - 48 q^{35} + 248 q^{37} + 333 q^{41} - 115 q^{43} + 294 q^{47} - 87 q^{49} + 318 q^{53}+ \cdots + 1568 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 3.00000 0 −16.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 612.4.a.b 1
3.b odd 2 1 204.4.a.a 1
4.b odd 2 1 2448.4.a.i 1
12.b even 2 1 816.4.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
204.4.a.a 1 3.b odd 2 1
612.4.a.b 1 1.a even 1 1 trivial
816.4.a.d 1 12.b even 2 1
2448.4.a.i 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 3 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(612))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 3 \) Copy content Toggle raw display
$7$ \( T + 16 \) Copy content Toggle raw display
$11$ \( T - 57 \) Copy content Toggle raw display
$13$ \( T + 25 \) Copy content Toggle raw display
$17$ \( T + 17 \) Copy content Toggle raw display
$19$ \( T + 13 \) Copy content Toggle raw display
$23$ \( T - 93 \) Copy content Toggle raw display
$29$ \( T - 6 \) Copy content Toggle raw display
$31$ \( T - 110 \) Copy content Toggle raw display
$37$ \( T - 248 \) Copy content Toggle raw display
$41$ \( T - 333 \) Copy content Toggle raw display
$43$ \( T + 115 \) Copy content Toggle raw display
$47$ \( T - 294 \) Copy content Toggle raw display
$53$ \( T - 318 \) Copy content Toggle raw display
$59$ \( T - 30 \) Copy content Toggle raw display
$61$ \( T - 668 \) Copy content Toggle raw display
$67$ \( T + 220 \) Copy content Toggle raw display
$71$ \( T + 540 \) Copy content Toggle raw display
$73$ \( T - 1214 \) Copy content Toggle raw display
$79$ \( T + 442 \) Copy content Toggle raw display
$83$ \( T - 438 \) Copy content Toggle raw display
$89$ \( T + 60 \) Copy content Toggle raw display
$97$ \( T - 1568 \) Copy content Toggle raw display
show more
show less