Properties

Label 616.2.a.g.1.2
Level $616$
Weight $2$
Character 616.1
Self dual yes
Analytic conductor $4.919$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [616,2,Mod(1,616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(616, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("616.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 616 = 2^{3} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 616.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.91878476451\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.11491\) of defining polynomial
Character \(\chi\) \(=\) 616.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.642074 q^{3} +0.642074 q^{5} +1.00000 q^{7} -2.58774 q^{9} +1.00000 q^{11} +2.22982 q^{13} +0.412259 q^{15} +7.17548 q^{17} +4.94567 q^{19} +0.642074 q^{21} +6.30359 q^{23} -4.58774 q^{25} -3.58774 q^{27} -6.45963 q^{29} -1.58774 q^{31} +0.642074 q^{33} +0.642074 q^{35} +4.30359 q^{37} +1.43171 q^{39} -9.74378 q^{41} +8.45963 q^{43} -1.66152 q^{45} +4.71585 q^{47} +1.00000 q^{49} +4.60719 q^{51} +6.45963 q^{53} +0.642074 q^{55} +3.17548 q^{57} +5.92622 q^{59} -10.8370 q^{61} -2.58774 q^{63} +1.43171 q^{65} -14.7632 q^{67} +4.04737 q^{69} +10.1560 q^{71} -9.28415 q^{73} -2.94567 q^{75} +1.00000 q^{77} -7.17548 q^{79} +5.45963 q^{81} -2.22982 q^{83} +4.60719 q^{85} -4.14756 q^{87} +11.4791 q^{89} +2.22982 q^{91} -1.01945 q^{93} +3.17548 q^{95} -17.5877 q^{97} -2.58774 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{3} + q^{5} + 3 q^{7} + 4 q^{9} + 3 q^{11} - 6 q^{13} + 13 q^{15} - 2 q^{17} + 4 q^{19} + q^{21} + 9 q^{23} - 2 q^{25} + q^{27} + 6 q^{29} + 7 q^{31} + q^{33} + q^{35} + 3 q^{37} + 8 q^{39}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.642074 0.370701 0.185351 0.982672i \(-0.440658\pi\)
0.185351 + 0.982672i \(0.440658\pi\)
\(4\) 0 0
\(5\) 0.642074 0.287144 0.143572 0.989640i \(-0.454141\pi\)
0.143572 + 0.989640i \(0.454141\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.58774 −0.862580
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 2.22982 0.618439 0.309220 0.950991i \(-0.399932\pi\)
0.309220 + 0.950991i \(0.399932\pi\)
\(14\) 0 0
\(15\) 0.412259 0.106445
\(16\) 0 0
\(17\) 7.17548 1.74031 0.870155 0.492778i \(-0.164019\pi\)
0.870155 + 0.492778i \(0.164019\pi\)
\(18\) 0 0
\(19\) 4.94567 1.13461 0.567307 0.823506i \(-0.307985\pi\)
0.567307 + 0.823506i \(0.307985\pi\)
\(20\) 0 0
\(21\) 0.642074 0.140112
\(22\) 0 0
\(23\) 6.30359 1.31439 0.657195 0.753720i \(-0.271743\pi\)
0.657195 + 0.753720i \(0.271743\pi\)
\(24\) 0 0
\(25\) −4.58774 −0.917548
\(26\) 0 0
\(27\) −3.58774 −0.690461
\(28\) 0 0
\(29\) −6.45963 −1.19952 −0.599762 0.800179i \(-0.704738\pi\)
−0.599762 + 0.800179i \(0.704738\pi\)
\(30\) 0 0
\(31\) −1.58774 −0.285167 −0.142583 0.989783i \(-0.545541\pi\)
−0.142583 + 0.989783i \(0.545541\pi\)
\(32\) 0 0
\(33\) 0.642074 0.111771
\(34\) 0 0
\(35\) 0.642074 0.108530
\(36\) 0 0
\(37\) 4.30359 0.707507 0.353753 0.935339i \(-0.384905\pi\)
0.353753 + 0.935339i \(0.384905\pi\)
\(38\) 0 0
\(39\) 1.43171 0.229256
\(40\) 0 0
\(41\) −9.74378 −1.52172 −0.760861 0.648915i \(-0.775223\pi\)
−0.760861 + 0.648915i \(0.775223\pi\)
\(42\) 0 0
\(43\) 8.45963 1.29008 0.645041 0.764148i \(-0.276840\pi\)
0.645041 + 0.764148i \(0.276840\pi\)
\(44\) 0 0
\(45\) −1.66152 −0.247685
\(46\) 0 0
\(47\) 4.71585 0.687878 0.343939 0.938992i \(-0.388239\pi\)
0.343939 + 0.938992i \(0.388239\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 4.60719 0.645135
\(52\) 0 0
\(53\) 6.45963 0.887298 0.443649 0.896201i \(-0.353684\pi\)
0.443649 + 0.896201i \(0.353684\pi\)
\(54\) 0 0
\(55\) 0.642074 0.0865772
\(56\) 0 0
\(57\) 3.17548 0.420603
\(58\) 0 0
\(59\) 5.92622 0.771528 0.385764 0.922597i \(-0.373938\pi\)
0.385764 + 0.922597i \(0.373938\pi\)
\(60\) 0 0
\(61\) −10.8370 −1.38754 −0.693768 0.720199i \(-0.744051\pi\)
−0.693768 + 0.720199i \(0.744051\pi\)
\(62\) 0 0
\(63\) −2.58774 −0.326025
\(64\) 0 0
\(65\) 1.43171 0.177581
\(66\) 0 0
\(67\) −14.7632 −1.80361 −0.901807 0.432138i \(-0.857759\pi\)
−0.901807 + 0.432138i \(0.857759\pi\)
\(68\) 0 0
\(69\) 4.04737 0.487246
\(70\) 0 0
\(71\) 10.1560 1.20530 0.602650 0.798006i \(-0.294112\pi\)
0.602650 + 0.798006i \(0.294112\pi\)
\(72\) 0 0
\(73\) −9.28415 −1.08663 −0.543314 0.839530i \(-0.682831\pi\)
−0.543314 + 0.839530i \(0.682831\pi\)
\(74\) 0 0
\(75\) −2.94567 −0.340136
\(76\) 0 0
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) −7.17548 −0.807305 −0.403652 0.914912i \(-0.632260\pi\)
−0.403652 + 0.914912i \(0.632260\pi\)
\(80\) 0 0
\(81\) 5.45963 0.606626
\(82\) 0 0
\(83\) −2.22982 −0.244754 −0.122377 0.992484i \(-0.539052\pi\)
−0.122377 + 0.992484i \(0.539052\pi\)
\(84\) 0 0
\(85\) 4.60719 0.499720
\(86\) 0 0
\(87\) −4.14756 −0.444665
\(88\) 0 0
\(89\) 11.4791 1.21678 0.608390 0.793638i \(-0.291816\pi\)
0.608390 + 0.793638i \(0.291816\pi\)
\(90\) 0 0
\(91\) 2.22982 0.233748
\(92\) 0 0
\(93\) −1.01945 −0.105712
\(94\) 0 0
\(95\) 3.17548 0.325798
\(96\) 0 0
\(97\) −17.5877 −1.78576 −0.892882 0.450290i \(-0.851321\pi\)
−0.892882 + 0.450290i \(0.851321\pi\)
\(98\) 0 0
\(99\) −2.58774 −0.260078
\(100\) 0 0
\(101\) −16.5808 −1.64985 −0.824925 0.565243i \(-0.808783\pi\)
−0.824925 + 0.565243i \(0.808783\pi\)
\(102\) 0 0
\(103\) 15.2841 1.50599 0.752996 0.658025i \(-0.228608\pi\)
0.752996 + 0.658025i \(0.228608\pi\)
\(104\) 0 0
\(105\) 0.412259 0.0402323
\(106\) 0 0
\(107\) −15.6351 −1.51150 −0.755752 0.654858i \(-0.772728\pi\)
−0.755752 + 0.654858i \(0.772728\pi\)
\(108\) 0 0
\(109\) −9.17548 −0.878852 −0.439426 0.898279i \(-0.644818\pi\)
−0.439426 + 0.898279i \(0.644818\pi\)
\(110\) 0 0
\(111\) 2.76322 0.262274
\(112\) 0 0
\(113\) −11.3315 −1.06598 −0.532990 0.846122i \(-0.678932\pi\)
−0.532990 + 0.846122i \(0.678932\pi\)
\(114\) 0 0
\(115\) 4.04737 0.377419
\(116\) 0 0
\(117\) −5.77018 −0.533454
\(118\) 0 0
\(119\) 7.17548 0.657775
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −6.25622 −0.564105
\(124\) 0 0
\(125\) −6.15604 −0.550613
\(126\) 0 0
\(127\) 16.6072 1.47365 0.736825 0.676084i \(-0.236324\pi\)
0.736825 + 0.676084i \(0.236324\pi\)
\(128\) 0 0
\(129\) 5.43171 0.478235
\(130\) 0 0
\(131\) −10.8370 −0.946833 −0.473417 0.880839i \(-0.656980\pi\)
−0.473417 + 0.880839i \(0.656980\pi\)
\(132\) 0 0
\(133\) 4.94567 0.428844
\(134\) 0 0
\(135\) −2.30359 −0.198262
\(136\) 0 0
\(137\) −1.73530 −0.148257 −0.0741283 0.997249i \(-0.523617\pi\)
−0.0741283 + 0.997249i \(0.523617\pi\)
\(138\) 0 0
\(139\) −15.5140 −1.31588 −0.657939 0.753072i \(-0.728571\pi\)
−0.657939 + 0.753072i \(0.728571\pi\)
\(140\) 0 0
\(141\) 3.02792 0.254997
\(142\) 0 0
\(143\) 2.22982 0.186467
\(144\) 0 0
\(145\) −4.14756 −0.344436
\(146\) 0 0
\(147\) 0.642074 0.0529573
\(148\) 0 0
\(149\) 19.8913 1.62956 0.814781 0.579769i \(-0.196857\pi\)
0.814781 + 0.579769i \(0.196857\pi\)
\(150\) 0 0
\(151\) −4.82452 −0.392614 −0.196307 0.980543i \(-0.562895\pi\)
−0.196307 + 0.980543i \(0.562895\pi\)
\(152\) 0 0
\(153\) −18.5683 −1.50116
\(154\) 0 0
\(155\) −1.01945 −0.0818839
\(156\) 0 0
\(157\) −0.0348853 −0.00278415 −0.00139207 0.999999i \(-0.500443\pi\)
−0.00139207 + 0.999999i \(0.500443\pi\)
\(158\) 0 0
\(159\) 4.14756 0.328923
\(160\) 0 0
\(161\) 6.30359 0.496793
\(162\) 0 0
\(163\) 1.89134 0.148141 0.0740704 0.997253i \(-0.476401\pi\)
0.0740704 + 0.997253i \(0.476401\pi\)
\(164\) 0 0
\(165\) 0.412259 0.0320943
\(166\) 0 0
\(167\) −10.7159 −0.829218 −0.414609 0.910000i \(-0.636082\pi\)
−0.414609 + 0.910000i \(0.636082\pi\)
\(168\) 0 0
\(169\) −8.02792 −0.617533
\(170\) 0 0
\(171\) −12.7981 −0.978696
\(172\) 0 0
\(173\) 16.5808 1.26061 0.630307 0.776346i \(-0.282929\pi\)
0.630307 + 0.776346i \(0.282929\pi\)
\(174\) 0 0
\(175\) −4.58774 −0.346801
\(176\) 0 0
\(177\) 3.80507 0.286007
\(178\) 0 0
\(179\) −11.4402 −0.855079 −0.427540 0.903997i \(-0.640620\pi\)
−0.427540 + 0.903997i \(0.640620\pi\)
\(180\) 0 0
\(181\) −6.07378 −0.451460 −0.225730 0.974190i \(-0.572477\pi\)
−0.225730 + 0.974190i \(0.572477\pi\)
\(182\) 0 0
\(183\) −6.95815 −0.514362
\(184\) 0 0
\(185\) 2.76322 0.203156
\(186\) 0 0
\(187\) 7.17548 0.524723
\(188\) 0 0
\(189\) −3.58774 −0.260970
\(190\) 0 0
\(191\) 22.1560 1.60315 0.801577 0.597891i \(-0.203995\pi\)
0.801577 + 0.597891i \(0.203995\pi\)
\(192\) 0 0
\(193\) 8.56829 0.616759 0.308380 0.951263i \(-0.400213\pi\)
0.308380 + 0.951263i \(0.400213\pi\)
\(194\) 0 0
\(195\) 0.919260 0.0658296
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) −12.2034 −0.865077 −0.432538 0.901616i \(-0.642382\pi\)
−0.432538 + 0.901616i \(0.642382\pi\)
\(200\) 0 0
\(201\) −9.47908 −0.668603
\(202\) 0 0
\(203\) −6.45963 −0.453377
\(204\) 0 0
\(205\) −6.25622 −0.436954
\(206\) 0 0
\(207\) −16.3121 −1.13377
\(208\) 0 0
\(209\) 4.94567 0.342099
\(210\) 0 0
\(211\) −20.7717 −1.42998 −0.714991 0.699133i \(-0.753569\pi\)
−0.714991 + 0.699133i \(0.753569\pi\)
\(212\) 0 0
\(213\) 6.52092 0.446806
\(214\) 0 0
\(215\) 5.43171 0.370439
\(216\) 0 0
\(217\) −1.58774 −0.107783
\(218\) 0 0
\(219\) −5.96111 −0.402814
\(220\) 0 0
\(221\) 16.0000 1.07628
\(222\) 0 0
\(223\) −7.47908 −0.500836 −0.250418 0.968138i \(-0.580568\pi\)
−0.250418 + 0.968138i \(0.580568\pi\)
\(224\) 0 0
\(225\) 11.8719 0.791459
\(226\) 0 0
\(227\) −14.2298 −0.944466 −0.472233 0.881474i \(-0.656552\pi\)
−0.472233 + 0.881474i \(0.656552\pi\)
\(228\) 0 0
\(229\) −17.5613 −1.16049 −0.580243 0.814444i \(-0.697042\pi\)
−0.580243 + 0.814444i \(0.697042\pi\)
\(230\) 0 0
\(231\) 0.642074 0.0422453
\(232\) 0 0
\(233\) 25.4876 1.66975 0.834873 0.550443i \(-0.185541\pi\)
0.834873 + 0.550443i \(0.185541\pi\)
\(234\) 0 0
\(235\) 3.02792 0.197520
\(236\) 0 0
\(237\) −4.60719 −0.299269
\(238\) 0 0
\(239\) 10.3510 0.669548 0.334774 0.942298i \(-0.391340\pi\)
0.334774 + 0.942298i \(0.391340\pi\)
\(240\) 0 0
\(241\) 6.35097 0.409102 0.204551 0.978856i \(-0.434427\pi\)
0.204551 + 0.978856i \(0.434427\pi\)
\(242\) 0 0
\(243\) 14.2687 0.915338
\(244\) 0 0
\(245\) 0.642074 0.0410206
\(246\) 0 0
\(247\) 11.0279 0.701690
\(248\) 0 0
\(249\) −1.43171 −0.0907306
\(250\) 0 0
\(251\) 3.81756 0.240962 0.120481 0.992716i \(-0.461556\pi\)
0.120481 + 0.992716i \(0.461556\pi\)
\(252\) 0 0
\(253\) 6.30359 0.396304
\(254\) 0 0
\(255\) 2.95815 0.185247
\(256\) 0 0
\(257\) −9.78267 −0.610226 −0.305113 0.952316i \(-0.598694\pi\)
−0.305113 + 0.952316i \(0.598694\pi\)
\(258\) 0 0
\(259\) 4.30359 0.267412
\(260\) 0 0
\(261\) 16.7159 1.03469
\(262\) 0 0
\(263\) −2.03889 −0.125724 −0.0628618 0.998022i \(-0.520023\pi\)
−0.0628618 + 0.998022i \(0.520023\pi\)
\(264\) 0 0
\(265\) 4.14756 0.254782
\(266\) 0 0
\(267\) 7.37041 0.451062
\(268\) 0 0
\(269\) 17.6615 1.07684 0.538421 0.842676i \(-0.319021\pi\)
0.538421 + 0.842676i \(0.319021\pi\)
\(270\) 0 0
\(271\) 12.0000 0.728948 0.364474 0.931214i \(-0.381249\pi\)
0.364474 + 0.931214i \(0.381249\pi\)
\(272\) 0 0
\(273\) 1.43171 0.0866508
\(274\) 0 0
\(275\) −4.58774 −0.276651
\(276\) 0 0
\(277\) −5.85244 −0.351639 −0.175820 0.984422i \(-0.556258\pi\)
−0.175820 + 0.984422i \(0.556258\pi\)
\(278\) 0 0
\(279\) 4.10866 0.245979
\(280\) 0 0
\(281\) 23.7438 1.41644 0.708218 0.705994i \(-0.249500\pi\)
0.708218 + 0.705994i \(0.249500\pi\)
\(282\) 0 0
\(283\) −15.4442 −0.918062 −0.459031 0.888420i \(-0.651803\pi\)
−0.459031 + 0.888420i \(0.651803\pi\)
\(284\) 0 0
\(285\) 2.03889 0.120774
\(286\) 0 0
\(287\) −9.74378 −0.575157
\(288\) 0 0
\(289\) 34.4876 2.02868
\(290\) 0 0
\(291\) −11.2926 −0.661985
\(292\) 0 0
\(293\) 0.0264075 0.00154274 0.000771371 1.00000i \(-0.499754\pi\)
0.000771371 1.00000i \(0.499754\pi\)
\(294\) 0 0
\(295\) 3.80507 0.221540
\(296\) 0 0
\(297\) −3.58774 −0.208182
\(298\) 0 0
\(299\) 14.0558 0.812871
\(300\) 0 0
\(301\) 8.45963 0.487605
\(302\) 0 0
\(303\) −10.6461 −0.611601
\(304\) 0 0
\(305\) −6.95815 −0.398423
\(306\) 0 0
\(307\) −8.79811 −0.502135 −0.251067 0.967970i \(-0.580782\pi\)
−0.251067 + 0.967970i \(0.580782\pi\)
\(308\) 0 0
\(309\) 9.81355 0.558273
\(310\) 0 0
\(311\) 12.0389 0.682663 0.341332 0.939943i \(-0.389122\pi\)
0.341332 + 0.939943i \(0.389122\pi\)
\(312\) 0 0
\(313\) −0.980553 −0.0554241 −0.0277121 0.999616i \(-0.508822\pi\)
−0.0277121 + 0.999616i \(0.508822\pi\)
\(314\) 0 0
\(315\) −1.66152 −0.0936161
\(316\) 0 0
\(317\) −18.6546 −1.04774 −0.523872 0.851797i \(-0.675513\pi\)
−0.523872 + 0.851797i \(0.675513\pi\)
\(318\) 0 0
\(319\) −6.45963 −0.361670
\(320\) 0 0
\(321\) −10.0389 −0.560316
\(322\) 0 0
\(323\) 35.4876 1.97458
\(324\) 0 0
\(325\) −10.2298 −0.567448
\(326\) 0 0
\(327\) −5.89134 −0.325792
\(328\) 0 0
\(329\) 4.71585 0.259993
\(330\) 0 0
\(331\) 3.44018 0.189090 0.0945448 0.995521i \(-0.469860\pi\)
0.0945448 + 0.995521i \(0.469860\pi\)
\(332\) 0 0
\(333\) −11.1366 −0.610281
\(334\) 0 0
\(335\) −9.47908 −0.517897
\(336\) 0 0
\(337\) 2.91926 0.159022 0.0795111 0.996834i \(-0.474664\pi\)
0.0795111 + 0.996834i \(0.474664\pi\)
\(338\) 0 0
\(339\) −7.27567 −0.395160
\(340\) 0 0
\(341\) −1.58774 −0.0859810
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 2.59871 0.139910
\(346\) 0 0
\(347\) 23.6351 1.26880 0.634400 0.773005i \(-0.281247\pi\)
0.634400 + 0.773005i \(0.281247\pi\)
\(348\) 0 0
\(349\) 1.62263 0.0868572 0.0434286 0.999057i \(-0.486172\pi\)
0.0434286 + 0.999057i \(0.486172\pi\)
\(350\) 0 0
\(351\) −8.00000 −0.427008
\(352\) 0 0
\(353\) 15.6964 0.835435 0.417718 0.908577i \(-0.362830\pi\)
0.417718 + 0.908577i \(0.362830\pi\)
\(354\) 0 0
\(355\) 6.52092 0.346095
\(356\) 0 0
\(357\) 4.60719 0.243838
\(358\) 0 0
\(359\) 9.13659 0.482211 0.241105 0.970499i \(-0.422490\pi\)
0.241105 + 0.970499i \(0.422490\pi\)
\(360\) 0 0
\(361\) 5.45963 0.287349
\(362\) 0 0
\(363\) 0.642074 0.0337001
\(364\) 0 0
\(365\) −5.96111 −0.312019
\(366\) 0 0
\(367\) 29.5180 1.54083 0.770413 0.637545i \(-0.220050\pi\)
0.770413 + 0.637545i \(0.220050\pi\)
\(368\) 0 0
\(369\) 25.2144 1.31261
\(370\) 0 0
\(371\) 6.45963 0.335367
\(372\) 0 0
\(373\) −14.0947 −0.729798 −0.364899 0.931047i \(-0.618897\pi\)
−0.364899 + 0.931047i \(0.618897\pi\)
\(374\) 0 0
\(375\) −3.95263 −0.204113
\(376\) 0 0
\(377\) −14.4038 −0.741832
\(378\) 0 0
\(379\) −21.9387 −1.12692 −0.563458 0.826145i \(-0.690529\pi\)
−0.563458 + 0.826145i \(0.690529\pi\)
\(380\) 0 0
\(381\) 10.6630 0.546284
\(382\) 0 0
\(383\) −6.72433 −0.343597 −0.171799 0.985132i \(-0.554958\pi\)
−0.171799 + 0.985132i \(0.554958\pi\)
\(384\) 0 0
\(385\) 0.642074 0.0327231
\(386\) 0 0
\(387\) −21.8913 −1.11280
\(388\) 0 0
\(389\) 33.3704 1.69195 0.845974 0.533225i \(-0.179020\pi\)
0.845974 + 0.533225i \(0.179020\pi\)
\(390\) 0 0
\(391\) 45.2313 2.28745
\(392\) 0 0
\(393\) −6.95815 −0.350992
\(394\) 0 0
\(395\) −4.60719 −0.231813
\(396\) 0 0
\(397\) −10.3385 −0.518873 −0.259437 0.965760i \(-0.583537\pi\)
−0.259437 + 0.965760i \(0.583537\pi\)
\(398\) 0 0
\(399\) 3.17548 0.158973
\(400\) 0 0
\(401\) 20.1087 1.00418 0.502089 0.864816i \(-0.332565\pi\)
0.502089 + 0.864816i \(0.332565\pi\)
\(402\) 0 0
\(403\) −3.54037 −0.176358
\(404\) 0 0
\(405\) 3.50548 0.174189
\(406\) 0 0
\(407\) 4.30359 0.213321
\(408\) 0 0
\(409\) −16.3121 −0.806580 −0.403290 0.915072i \(-0.632133\pi\)
−0.403290 + 0.915072i \(0.632133\pi\)
\(410\) 0 0
\(411\) −1.11419 −0.0549589
\(412\) 0 0
\(413\) 5.92622 0.291610
\(414\) 0 0
\(415\) −1.43171 −0.0702797
\(416\) 0 0
\(417\) −9.96111 −0.487797
\(418\) 0 0
\(419\) −7.62263 −0.372390 −0.186195 0.982513i \(-0.559616\pi\)
−0.186195 + 0.982513i \(0.559616\pi\)
\(420\) 0 0
\(421\) −21.0279 −1.02484 −0.512419 0.858735i \(-0.671251\pi\)
−0.512419 + 0.858735i \(0.671251\pi\)
\(422\) 0 0
\(423\) −12.2034 −0.593350
\(424\) 0 0
\(425\) −32.9193 −1.59682
\(426\) 0 0
\(427\) −10.8370 −0.524439
\(428\) 0 0
\(429\) 1.43171 0.0691234
\(430\) 0 0
\(431\) −29.8385 −1.43727 −0.718635 0.695387i \(-0.755233\pi\)
−0.718635 + 0.695387i \(0.755233\pi\)
\(432\) 0 0
\(433\) −3.23678 −0.155550 −0.0777748 0.996971i \(-0.524782\pi\)
−0.0777748 + 0.996971i \(0.524782\pi\)
\(434\) 0 0
\(435\) −2.66304 −0.127683
\(436\) 0 0
\(437\) 31.1755 1.49133
\(438\) 0 0
\(439\) 28.0947 1.34089 0.670444 0.741960i \(-0.266103\pi\)
0.670444 + 0.741960i \(0.266103\pi\)
\(440\) 0 0
\(441\) −2.58774 −0.123226
\(442\) 0 0
\(443\) 9.69641 0.460690 0.230345 0.973109i \(-0.426015\pi\)
0.230345 + 0.973109i \(0.426015\pi\)
\(444\) 0 0
\(445\) 7.37041 0.349391
\(446\) 0 0
\(447\) 12.7717 0.604081
\(448\) 0 0
\(449\) −6.04737 −0.285393 −0.142697 0.989766i \(-0.545577\pi\)
−0.142697 + 0.989766i \(0.545577\pi\)
\(450\) 0 0
\(451\) −9.74378 −0.458817
\(452\) 0 0
\(453\) −3.09770 −0.145542
\(454\) 0 0
\(455\) 1.43171 0.0671194
\(456\) 0 0
\(457\) −12.0389 −0.563156 −0.281578 0.959538i \(-0.590858\pi\)
−0.281578 + 0.959538i \(0.590858\pi\)
\(458\) 0 0
\(459\) −25.7438 −1.20162
\(460\) 0 0
\(461\) 19.7563 0.920141 0.460070 0.887882i \(-0.347824\pi\)
0.460070 + 0.887882i \(0.347824\pi\)
\(462\) 0 0
\(463\) 41.4263 1.92524 0.962621 0.270853i \(-0.0873056\pi\)
0.962621 + 0.270853i \(0.0873056\pi\)
\(464\) 0 0
\(465\) −0.654560 −0.0303545
\(466\) 0 0
\(467\) −5.77866 −0.267405 −0.133702 0.991022i \(-0.542687\pi\)
−0.133702 + 0.991022i \(0.542687\pi\)
\(468\) 0 0
\(469\) −14.7632 −0.681702
\(470\) 0 0
\(471\) −0.0223989 −0.00103209
\(472\) 0 0
\(473\) 8.45963 0.388974
\(474\) 0 0
\(475\) −22.6894 −1.04106
\(476\) 0 0
\(477\) −16.7159 −0.765366
\(478\) 0 0
\(479\) −27.9472 −1.27694 −0.638470 0.769647i \(-0.720432\pi\)
−0.638470 + 0.769647i \(0.720432\pi\)
\(480\) 0 0
\(481\) 9.59622 0.437550
\(482\) 0 0
\(483\) 4.04737 0.184162
\(484\) 0 0
\(485\) −11.2926 −0.512772
\(486\) 0 0
\(487\) 15.2229 0.689813 0.344907 0.938637i \(-0.387911\pi\)
0.344907 + 0.938637i \(0.387911\pi\)
\(488\) 0 0
\(489\) 1.21438 0.0549160
\(490\) 0 0
\(491\) 25.8216 1.16531 0.582655 0.812719i \(-0.302014\pi\)
0.582655 + 0.812719i \(0.302014\pi\)
\(492\) 0 0
\(493\) −46.3510 −2.08754
\(494\) 0 0
\(495\) −1.66152 −0.0746798
\(496\) 0 0
\(497\) 10.1560 0.455560
\(498\) 0 0
\(499\) 0.972075 0.0435161 0.0217580 0.999763i \(-0.493074\pi\)
0.0217580 + 0.999763i \(0.493074\pi\)
\(500\) 0 0
\(501\) −6.88037 −0.307392
\(502\) 0 0
\(503\) −12.9193 −0.576041 −0.288021 0.957624i \(-0.592997\pi\)
−0.288021 + 0.957624i \(0.592997\pi\)
\(504\) 0 0
\(505\) −10.6461 −0.473744
\(506\) 0 0
\(507\) −5.15452 −0.228920
\(508\) 0 0
\(509\) −19.5055 −0.864565 −0.432283 0.901738i \(-0.642292\pi\)
−0.432283 + 0.901738i \(0.642292\pi\)
\(510\) 0 0
\(511\) −9.28415 −0.410706
\(512\) 0 0
\(513\) −17.7438 −0.783407
\(514\) 0 0
\(515\) 9.81355 0.432437
\(516\) 0 0
\(517\) 4.71585 0.207403
\(518\) 0 0
\(519\) 10.6461 0.467311
\(520\) 0 0
\(521\) −1.88286 −0.0824895 −0.0412448 0.999149i \(-0.513132\pi\)
−0.0412448 + 0.999149i \(0.513132\pi\)
\(522\) 0 0
\(523\) 23.8260 1.04184 0.520920 0.853606i \(-0.325589\pi\)
0.520920 + 0.853606i \(0.325589\pi\)
\(524\) 0 0
\(525\) −2.94567 −0.128559
\(526\) 0 0
\(527\) −11.3928 −0.496279
\(528\) 0 0
\(529\) 16.7353 0.727622
\(530\) 0 0
\(531\) −15.3355 −0.665505
\(532\) 0 0
\(533\) −21.7268 −0.941093
\(534\) 0 0
\(535\) −10.0389 −0.434019
\(536\) 0 0
\(537\) −7.34544 −0.316979
\(538\) 0 0
\(539\) 1.00000 0.0430730
\(540\) 0 0
\(541\) −24.0389 −1.03351 −0.516756 0.856132i \(-0.672861\pi\)
−0.516756 + 0.856132i \(0.672861\pi\)
\(542\) 0 0
\(543\) −3.89981 −0.167357
\(544\) 0 0
\(545\) −5.89134 −0.252357
\(546\) 0 0
\(547\) −25.4317 −1.08738 −0.543691 0.839286i \(-0.682973\pi\)
−0.543691 + 0.839286i \(0.682973\pi\)
\(548\) 0 0
\(549\) 28.0434 1.19686
\(550\) 0 0
\(551\) −31.9472 −1.36100
\(552\) 0 0
\(553\) −7.17548 −0.305133
\(554\) 0 0
\(555\) 1.77419 0.0753103
\(556\) 0 0
\(557\) −6.91926 −0.293178 −0.146589 0.989197i \(-0.546830\pi\)
−0.146589 + 0.989197i \(0.546830\pi\)
\(558\) 0 0
\(559\) 18.8634 0.797837
\(560\) 0 0
\(561\) 4.60719 0.194516
\(562\) 0 0
\(563\) −8.33848 −0.351425 −0.175713 0.984442i \(-0.556223\pi\)
−0.175713 + 0.984442i \(0.556223\pi\)
\(564\) 0 0
\(565\) −7.27567 −0.306090
\(566\) 0 0
\(567\) 5.45963 0.229283
\(568\) 0 0
\(569\) 38.7019 1.62247 0.811235 0.584721i \(-0.198796\pi\)
0.811235 + 0.584721i \(0.198796\pi\)
\(570\) 0 0
\(571\) 1.13659 0.0475648 0.0237824 0.999717i \(-0.492429\pi\)
0.0237824 + 0.999717i \(0.492429\pi\)
\(572\) 0 0
\(573\) 14.2258 0.594292
\(574\) 0 0
\(575\) −28.9193 −1.20602
\(576\) 0 0
\(577\) −29.3176 −1.22051 −0.610254 0.792206i \(-0.708933\pi\)
−0.610254 + 0.792206i \(0.708933\pi\)
\(578\) 0 0
\(579\) 5.50148 0.228634
\(580\) 0 0
\(581\) −2.22982 −0.0925083
\(582\) 0 0
\(583\) 6.45963 0.267531
\(584\) 0 0
\(585\) −3.70488 −0.153178
\(586\) 0 0
\(587\) 12.3774 0.510869 0.255434 0.966826i \(-0.417782\pi\)
0.255434 + 0.966826i \(0.417782\pi\)
\(588\) 0 0
\(589\) −7.85244 −0.323554
\(590\) 0 0
\(591\) 1.28415 0.0528228
\(592\) 0 0
\(593\) −37.0668 −1.52215 −0.761076 0.648663i \(-0.775329\pi\)
−0.761076 + 0.648663i \(0.775329\pi\)
\(594\) 0 0
\(595\) 4.60719 0.188876
\(596\) 0 0
\(597\) −7.83549 −0.320685
\(598\) 0 0
\(599\) 1.59622 0.0652197 0.0326099 0.999468i \(-0.489618\pi\)
0.0326099 + 0.999468i \(0.489618\pi\)
\(600\) 0 0
\(601\) −23.3230 −0.951367 −0.475683 0.879617i \(-0.657799\pi\)
−0.475683 + 0.879617i \(0.657799\pi\)
\(602\) 0 0
\(603\) 38.2034 1.55576
\(604\) 0 0
\(605\) 0.642074 0.0261040
\(606\) 0 0
\(607\) 9.74378 0.395488 0.197744 0.980254i \(-0.436639\pi\)
0.197744 + 0.980254i \(0.436639\pi\)
\(608\) 0 0
\(609\) −4.14756 −0.168068
\(610\) 0 0
\(611\) 10.5155 0.425411
\(612\) 0 0
\(613\) 16.4207 0.663227 0.331614 0.943415i \(-0.392407\pi\)
0.331614 + 0.943415i \(0.392407\pi\)
\(614\) 0 0
\(615\) −4.01696 −0.161979
\(616\) 0 0
\(617\) 15.3789 0.619131 0.309565 0.950878i \(-0.399816\pi\)
0.309565 + 0.950878i \(0.399816\pi\)
\(618\) 0 0
\(619\) 35.9651 1.44556 0.722780 0.691078i \(-0.242864\pi\)
0.722780 + 0.691078i \(0.242864\pi\)
\(620\) 0 0
\(621\) −22.6157 −0.907535
\(622\) 0 0
\(623\) 11.4791 0.459900
\(624\) 0 0
\(625\) 18.9861 0.759443
\(626\) 0 0
\(627\) 3.17548 0.126817
\(628\) 0 0
\(629\) 30.8804 1.23128
\(630\) 0 0
\(631\) −31.9946 −1.27368 −0.636842 0.770995i \(-0.719759\pi\)
−0.636842 + 0.770995i \(0.719759\pi\)
\(632\) 0 0
\(633\) −13.3370 −0.530097
\(634\) 0 0
\(635\) 10.6630 0.423150
\(636\) 0 0
\(637\) 2.22982 0.0883485
\(638\) 0 0
\(639\) −26.2812 −1.03967
\(640\) 0 0
\(641\) −2.10019 −0.0829524 −0.0414762 0.999139i \(-0.513206\pi\)
−0.0414762 + 0.999139i \(0.513206\pi\)
\(642\) 0 0
\(643\) 43.3829 1.71085 0.855427 0.517923i \(-0.173295\pi\)
0.855427 + 0.517923i \(0.173295\pi\)
\(644\) 0 0
\(645\) 3.48755 0.137322
\(646\) 0 0
\(647\) −21.2757 −0.836433 −0.418216 0.908347i \(-0.637345\pi\)
−0.418216 + 0.908347i \(0.637345\pi\)
\(648\) 0 0
\(649\) 5.92622 0.232625
\(650\) 0 0
\(651\) −1.01945 −0.0399553
\(652\) 0 0
\(653\) −17.2926 −0.676713 −0.338356 0.941018i \(-0.609871\pi\)
−0.338356 + 0.941018i \(0.609871\pi\)
\(654\) 0 0
\(655\) −6.95815 −0.271878
\(656\) 0 0
\(657\) 24.0250 0.937303
\(658\) 0 0
\(659\) −29.0668 −1.13228 −0.566141 0.824308i \(-0.691564\pi\)
−0.566141 + 0.824308i \(0.691564\pi\)
\(660\) 0 0
\(661\) 40.8316 1.58816 0.794082 0.607811i \(-0.207952\pi\)
0.794082 + 0.607811i \(0.207952\pi\)
\(662\) 0 0
\(663\) 10.2732 0.398977
\(664\) 0 0
\(665\) 3.17548 0.123140
\(666\) 0 0
\(667\) −40.7189 −1.57664
\(668\) 0 0
\(669\) −4.80212 −0.185661
\(670\) 0 0
\(671\) −10.8370 −0.418358
\(672\) 0 0
\(673\) −11.4487 −0.441313 −0.220657 0.975352i \(-0.570820\pi\)
−0.220657 + 0.975352i \(0.570820\pi\)
\(674\) 0 0
\(675\) 16.4596 0.633531
\(676\) 0 0
\(677\) −23.8091 −0.915057 −0.457529 0.889195i \(-0.651265\pi\)
−0.457529 + 0.889195i \(0.651265\pi\)
\(678\) 0 0
\(679\) −17.5877 −0.674956
\(680\) 0 0
\(681\) −9.13659 −0.350115
\(682\) 0 0
\(683\) −2.64608 −0.101250 −0.0506248 0.998718i \(-0.516121\pi\)
−0.0506248 + 0.998718i \(0.516121\pi\)
\(684\) 0 0
\(685\) −1.11419 −0.0425710
\(686\) 0 0
\(687\) −11.2757 −0.430194
\(688\) 0 0
\(689\) 14.4038 0.548740
\(690\) 0 0
\(691\) 20.2772 0.771381 0.385690 0.922628i \(-0.373963\pi\)
0.385690 + 0.922628i \(0.373963\pi\)
\(692\) 0 0
\(693\) −2.58774 −0.0983002
\(694\) 0 0
\(695\) −9.96111 −0.377846
\(696\) 0 0
\(697\) −69.9163 −2.64827
\(698\) 0 0
\(699\) 16.3649 0.618977
\(700\) 0 0
\(701\) −39.2313 −1.48175 −0.740873 0.671645i \(-0.765588\pi\)
−0.740873 + 0.671645i \(0.765588\pi\)
\(702\) 0 0
\(703\) 21.2841 0.802747
\(704\) 0 0
\(705\) 1.94415 0.0732209
\(706\) 0 0
\(707\) −16.5808 −0.623584
\(708\) 0 0
\(709\) −12.1560 −0.456530 −0.228265 0.973599i \(-0.573305\pi\)
−0.228265 + 0.973599i \(0.573305\pi\)
\(710\) 0 0
\(711\) 18.5683 0.696365
\(712\) 0 0
\(713\) −10.0085 −0.374820
\(714\) 0 0
\(715\) 1.43171 0.0535427
\(716\) 0 0
\(717\) 6.64608 0.248202
\(718\) 0 0
\(719\) 19.4093 0.723845 0.361922 0.932208i \(-0.382120\pi\)
0.361922 + 0.932208i \(0.382120\pi\)
\(720\) 0 0
\(721\) 15.2841 0.569211
\(722\) 0 0
\(723\) 4.07779 0.151655
\(724\) 0 0
\(725\) 29.6351 1.10062
\(726\) 0 0
\(727\) −49.7772 −1.84614 −0.923068 0.384638i \(-0.874326\pi\)
−0.923068 + 0.384638i \(0.874326\pi\)
\(728\) 0 0
\(729\) −7.21733 −0.267308
\(730\) 0 0
\(731\) 60.7019 2.24514
\(732\) 0 0
\(733\) −19.3664 −0.715314 −0.357657 0.933853i \(-0.616424\pi\)
−0.357657 + 0.933853i \(0.616424\pi\)
\(734\) 0 0
\(735\) 0.412259 0.0152064
\(736\) 0 0
\(737\) −14.7632 −0.543810
\(738\) 0 0
\(739\) 33.2313 1.22243 0.611217 0.791463i \(-0.290680\pi\)
0.611217 + 0.791463i \(0.290680\pi\)
\(740\) 0 0
\(741\) 7.08074 0.260117
\(742\) 0 0
\(743\) −21.2144 −0.778280 −0.389140 0.921179i \(-0.627228\pi\)
−0.389140 + 0.921179i \(0.627228\pi\)
\(744\) 0 0
\(745\) 12.7717 0.467919
\(746\) 0 0
\(747\) 5.77018 0.211120
\(748\) 0 0
\(749\) −15.6351 −0.571295
\(750\) 0 0
\(751\) 15.1281 0.552033 0.276016 0.961153i \(-0.410986\pi\)
0.276016 + 0.961153i \(0.410986\pi\)
\(752\) 0 0
\(753\) 2.45115 0.0893250
\(754\) 0 0
\(755\) −3.09770 −0.112737
\(756\) 0 0
\(757\) 18.4596 0.670927 0.335463 0.942053i \(-0.391107\pi\)
0.335463 + 0.942053i \(0.391107\pi\)
\(758\) 0 0
\(759\) 4.04737 0.146910
\(760\) 0 0
\(761\) −27.5653 −0.999243 −0.499621 0.866244i \(-0.666528\pi\)
−0.499621 + 0.866244i \(0.666528\pi\)
\(762\) 0 0
\(763\) −9.17548 −0.332175
\(764\) 0 0
\(765\) −11.9222 −0.431048
\(766\) 0 0
\(767\) 13.2144 0.477143
\(768\) 0 0
\(769\) −27.5653 −0.994032 −0.497016 0.867741i \(-0.665571\pi\)
−0.497016 + 0.867741i \(0.665571\pi\)
\(770\) 0 0
\(771\) −6.28120 −0.226212
\(772\) 0 0
\(773\) 39.3355 1.41480 0.707400 0.706813i \(-0.249868\pi\)
0.707400 + 0.706813i \(0.249868\pi\)
\(774\) 0 0
\(775\) 7.28415 0.261654
\(776\) 0 0
\(777\) 2.76322 0.0991301
\(778\) 0 0
\(779\) −48.1895 −1.72657
\(780\) 0 0
\(781\) 10.1560 0.363412
\(782\) 0 0
\(783\) 23.1755 0.828224
\(784\) 0 0
\(785\) −0.0223989 −0.000799451 0
\(786\) 0 0
\(787\) −13.6226 −0.485594 −0.242797 0.970077i \(-0.578065\pi\)
−0.242797 + 0.970077i \(0.578065\pi\)
\(788\) 0 0
\(789\) −1.30912 −0.0466059
\(790\) 0 0
\(791\) −11.3315 −0.402902
\(792\) 0 0
\(793\) −24.1645 −0.858107
\(794\) 0 0
\(795\) 2.66304 0.0944482
\(796\) 0 0
\(797\) −24.9541 −0.883921 −0.441961 0.897034i \(-0.645717\pi\)
−0.441961 + 0.897034i \(0.645717\pi\)
\(798\) 0 0
\(799\) 33.8385 1.19712
\(800\) 0 0
\(801\) −29.7049 −1.04957
\(802\) 0 0
\(803\) −9.28415 −0.327630
\(804\) 0 0
\(805\) 4.04737 0.142651
\(806\) 0 0
\(807\) 11.3400 0.399187
\(808\) 0 0
\(809\) 5.08074 0.178629 0.0893146 0.996003i \(-0.471532\pi\)
0.0893146 + 0.996003i \(0.471532\pi\)
\(810\) 0 0
\(811\) 14.3774 0.504858 0.252429 0.967615i \(-0.418771\pi\)
0.252429 + 0.967615i \(0.418771\pi\)
\(812\) 0 0
\(813\) 7.70488 0.270222
\(814\) 0 0
\(815\) 1.21438 0.0425378
\(816\) 0 0
\(817\) 41.8385 1.46374
\(818\) 0 0
\(819\) −5.77018 −0.201627
\(820\) 0 0
\(821\) 6.45963 0.225443 0.112721 0.993627i \(-0.464043\pi\)
0.112721 + 0.993627i \(0.464043\pi\)
\(822\) 0 0
\(823\) 49.1142 1.71201 0.856007 0.516965i \(-0.172938\pi\)
0.856007 + 0.516965i \(0.172938\pi\)
\(824\) 0 0
\(825\) −2.94567 −0.102555
\(826\) 0 0
\(827\) −31.4876 −1.09493 −0.547465 0.836829i \(-0.684407\pi\)
−0.547465 + 0.836829i \(0.684407\pi\)
\(828\) 0 0
\(829\) 39.9123 1.38621 0.693106 0.720836i \(-0.256242\pi\)
0.693106 + 0.720836i \(0.256242\pi\)
\(830\) 0 0
\(831\) −3.75770 −0.130353
\(832\) 0 0
\(833\) 7.17548 0.248616
\(834\) 0 0
\(835\) −6.88037 −0.238105
\(836\) 0 0
\(837\) 5.69641 0.196897
\(838\) 0 0
\(839\) 42.3844 1.46327 0.731636 0.681695i \(-0.238757\pi\)
0.731636 + 0.681695i \(0.238757\pi\)
\(840\) 0 0
\(841\) 12.7268 0.438856
\(842\) 0 0
\(843\) 15.2453 0.525074
\(844\) 0 0
\(845\) −5.15452 −0.177321
\(846\) 0 0
\(847\) 1.00000 0.0343604
\(848\) 0 0
\(849\) −9.91631 −0.340327
\(850\) 0 0
\(851\) 27.1281 0.929940
\(852\) 0 0
\(853\) 32.0514 1.09742 0.548709 0.836013i \(-0.315119\pi\)
0.548709 + 0.836013i \(0.315119\pi\)
\(854\) 0 0
\(855\) −8.21733 −0.281027
\(856\) 0 0
\(857\) −52.4846 −1.79284 −0.896420 0.443206i \(-0.853841\pi\)
−0.896420 + 0.443206i \(0.853841\pi\)
\(858\) 0 0
\(859\) −2.53341 −0.0864388 −0.0432194 0.999066i \(-0.513761\pi\)
−0.0432194 + 0.999066i \(0.513761\pi\)
\(860\) 0 0
\(861\) −6.25622 −0.213211
\(862\) 0 0
\(863\) 18.7328 0.637672 0.318836 0.947810i \(-0.396708\pi\)
0.318836 + 0.947810i \(0.396708\pi\)
\(864\) 0 0
\(865\) 10.6461 0.361978
\(866\) 0 0
\(867\) 22.1435 0.752034
\(868\) 0 0
\(869\) −7.17548 −0.243412
\(870\) 0 0
\(871\) −32.9193 −1.11543
\(872\) 0 0
\(873\) 45.5125 1.54037
\(874\) 0 0
\(875\) −6.15604 −0.208112
\(876\) 0 0
\(877\) −8.35097 −0.281992 −0.140996 0.990010i \(-0.545030\pi\)
−0.140996 + 0.990010i \(0.545030\pi\)
\(878\) 0 0
\(879\) 0.0169556 0.000571897 0
\(880\) 0 0
\(881\) 16.5987 0.559225 0.279612 0.960113i \(-0.409794\pi\)
0.279612 + 0.960113i \(0.409794\pi\)
\(882\) 0 0
\(883\) 26.6461 0.896712 0.448356 0.893855i \(-0.352010\pi\)
0.448356 + 0.893855i \(0.352010\pi\)
\(884\) 0 0
\(885\) 2.44314 0.0821251
\(886\) 0 0
\(887\) −12.1476 −0.407875 −0.203938 0.978984i \(-0.565374\pi\)
−0.203938 + 0.978984i \(0.565374\pi\)
\(888\) 0 0
\(889\) 16.6072 0.556987
\(890\) 0 0
\(891\) 5.45963 0.182904
\(892\) 0 0
\(893\) 23.3230 0.780476
\(894\) 0 0
\(895\) −7.34544 −0.245531
\(896\) 0 0
\(897\) 9.02489 0.301332
\(898\) 0 0
\(899\) 10.2562 0.342064
\(900\) 0 0
\(901\) 46.3510 1.54417
\(902\) 0 0
\(903\) 5.43171 0.180756
\(904\) 0 0
\(905\) −3.89981 −0.129634
\(906\) 0 0
\(907\) −44.9442 −1.49235 −0.746174 0.665751i \(-0.768111\pi\)
−0.746174 + 0.665751i \(0.768111\pi\)
\(908\) 0 0
\(909\) 42.9068 1.42313
\(910\) 0 0
\(911\) −14.1336 −0.468268 −0.234134 0.972204i \(-0.575225\pi\)
−0.234134 + 0.972204i \(0.575225\pi\)
\(912\) 0 0
\(913\) −2.22982 −0.0737961
\(914\) 0 0
\(915\) −4.46765 −0.147696
\(916\) 0 0
\(917\) −10.8370 −0.357869
\(918\) 0 0
\(919\) −25.2144 −0.831746 −0.415873 0.909423i \(-0.636524\pi\)
−0.415873 + 0.909423i \(0.636524\pi\)
\(920\) 0 0
\(921\) −5.64903 −0.186142
\(922\) 0 0
\(923\) 22.6461 0.745405
\(924\) 0 0
\(925\) −19.7438 −0.649171
\(926\) 0 0
\(927\) −39.5514 −1.29904
\(928\) 0 0
\(929\) 29.0279 0.952375 0.476188 0.879344i \(-0.342018\pi\)
0.476188 + 0.879344i \(0.342018\pi\)
\(930\) 0 0
\(931\) 4.94567 0.162088
\(932\) 0 0
\(933\) 7.72986 0.253064
\(934\) 0 0
\(935\) 4.60719 0.150671
\(936\) 0 0
\(937\) 41.0838 1.34215 0.671074 0.741390i \(-0.265833\pi\)
0.671074 + 0.741390i \(0.265833\pi\)
\(938\) 0 0
\(939\) −0.629587 −0.0205458
\(940\) 0 0
\(941\) −38.6197 −1.25897 −0.629483 0.777014i \(-0.716733\pi\)
−0.629483 + 0.777014i \(0.716733\pi\)
\(942\) 0 0
\(943\) −61.4208 −2.00014
\(944\) 0 0
\(945\) −2.30359 −0.0749359
\(946\) 0 0
\(947\) 28.7493 0.934227 0.467113 0.884197i \(-0.345294\pi\)
0.467113 + 0.884197i \(0.345294\pi\)
\(948\) 0 0
\(949\) −20.7019 −0.672013
\(950\) 0 0
\(951\) −11.9776 −0.388400
\(952\) 0 0
\(953\) −16.0389 −0.519551 −0.259775 0.965669i \(-0.583649\pi\)
−0.259775 + 0.965669i \(0.583649\pi\)
\(954\) 0 0
\(955\) 14.2258 0.460336
\(956\) 0 0
\(957\) −4.14756 −0.134072
\(958\) 0 0
\(959\) −1.73530 −0.0560357
\(960\) 0 0
\(961\) −28.4791 −0.918680
\(962\) 0 0
\(963\) 40.4596 1.30379
\(964\) 0 0
\(965\) 5.50148 0.177099
\(966\) 0 0
\(967\) 4.82452 0.155146 0.0775730 0.996987i \(-0.475283\pi\)
0.0775730 + 0.996987i \(0.475283\pi\)
\(968\) 0 0
\(969\) 22.7856 0.731980
\(970\) 0 0
\(971\) 18.3161 0.587791 0.293895 0.955838i \(-0.405048\pi\)
0.293895 + 0.955838i \(0.405048\pi\)
\(972\) 0 0
\(973\) −15.5140 −0.497355
\(974\) 0 0
\(975\) −6.56829 −0.210354
\(976\) 0 0
\(977\) 38.0474 1.21724 0.608622 0.793461i \(-0.291723\pi\)
0.608622 + 0.793461i \(0.291723\pi\)
\(978\) 0 0
\(979\) 11.4791 0.366873
\(980\) 0 0
\(981\) 23.7438 0.758080
\(982\) 0 0
\(983\) −17.3704 −0.554030 −0.277015 0.960866i \(-0.589345\pi\)
−0.277015 + 0.960866i \(0.589345\pi\)
\(984\) 0 0
\(985\) 1.28415 0.0409163
\(986\) 0 0
\(987\) 3.02792 0.0963799
\(988\) 0 0
\(989\) 53.3261 1.69567
\(990\) 0 0
\(991\) 25.1616 0.799283 0.399642 0.916671i \(-0.369135\pi\)
0.399642 + 0.916671i \(0.369135\pi\)
\(992\) 0 0
\(993\) 2.20885 0.0700958
\(994\) 0 0
\(995\) −7.83549 −0.248402
\(996\) 0 0
\(997\) −58.8540 −1.86392 −0.931962 0.362557i \(-0.881904\pi\)
−0.931962 + 0.362557i \(0.881904\pi\)
\(998\) 0 0
\(999\) −15.4402 −0.488506
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 616.2.a.g.1.2 3
3.2 odd 2 5544.2.a.bj.1.2 3
4.3 odd 2 1232.2.a.q.1.2 3
7.6 odd 2 4312.2.a.w.1.2 3
8.3 odd 2 4928.2.a.bz.1.2 3
8.5 even 2 4928.2.a.bw.1.2 3
11.10 odd 2 6776.2.a.y.1.2 3
28.27 even 2 8624.2.a.cm.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
616.2.a.g.1.2 3 1.1 even 1 trivial
1232.2.a.q.1.2 3 4.3 odd 2
4312.2.a.w.1.2 3 7.6 odd 2
4928.2.a.bw.1.2 3 8.5 even 2
4928.2.a.bz.1.2 3 8.3 odd 2
5544.2.a.bj.1.2 3 3.2 odd 2
6776.2.a.y.1.2 3 11.10 odd 2
8624.2.a.cm.1.2 3 28.27 even 2