Properties

Label 616.2.r.d.113.4
Level $616$
Weight $2$
Character 616.113
Analytic conductor $4.919$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [616,2,Mod(113,616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(616, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("616.113");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 616 = 2^{3} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 616.r (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.91878476451\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} + 7 x^{13} + 31 x^{12} + x^{11} + 487 x^{10} + 402 x^{9} + 1095 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 113.4
Root \(-1.97859 - 1.43753i\) of defining polynomial
Character \(\chi\) \(=\) 616.113
Dual form 616.2.r.d.169.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.768256 + 2.36445i) q^{3} +(1.50334 + 1.09224i) q^{5} +(0.309017 - 0.951057i) q^{7} +(-2.57335 + 1.86964i) q^{9} +(2.66041 + 1.98046i) q^{11} +(-5.08555 + 3.69487i) q^{13} +(-1.42760 + 4.39369i) q^{15} +(4.30386 + 3.12693i) q^{17} +(-2.26664 - 6.97601i) q^{19} +2.48613 q^{21} +2.03148 q^{23} +(-0.478044 - 1.47127i) q^{25} +(-0.363706 - 0.264248i) q^{27} +(-1.23552 + 3.80255i) q^{29} +(4.99042 - 3.62575i) q^{31} +(-2.63882 + 7.81190i) q^{33} +(1.50334 - 1.09224i) q^{35} +(-3.03530 + 9.34170i) q^{37} +(-12.6433 - 9.18591i) q^{39} +(-3.72176 - 11.4544i) q^{41} -4.70559 q^{43} -5.91071 q^{45} +(-0.0441697 - 0.135940i) q^{47} +(-0.809017 - 0.587785i) q^{49} +(-4.08701 + 12.5785i) q^{51} +(-6.22136 + 4.52008i) q^{53} +(1.83636 + 5.88311i) q^{55} +(14.7531 - 10.7187i) q^{57} +(1.51314 - 4.65696i) q^{59} +(7.92048 + 5.75456i) q^{61} +(0.982930 + 3.02515i) q^{63} -11.6810 q^{65} +3.97261 q^{67} +(1.56069 + 4.80332i) q^{69} +(-0.0826955 - 0.0600818i) q^{71} +(4.32558 - 13.3128i) q^{73} +(3.11147 - 2.26062i) q^{75} +(2.70564 - 1.91820i) q^{77} +(4.13711 - 3.00579i) q^{79} +(-2.60341 + 8.01247i) q^{81} +(-7.67093 - 5.57326i) q^{83} +(3.05479 + 9.40169i) q^{85} -9.94014 q^{87} +14.2422 q^{89} +(1.94251 + 5.97842i) q^{91} +(12.4068 + 9.01408i) q^{93} +(4.21195 - 12.9630i) q^{95} +(1.14934 - 0.835042i) q^{97} +(-10.5489 - 0.122391i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - q^{3} + 6 q^{5} - 4 q^{7} - q^{9} - 2 q^{11} + 4 q^{13} + 22 q^{15} - 6 q^{17} - 10 q^{19} + 4 q^{21} + 14 q^{23} + 8 q^{25} + 29 q^{27} - 4 q^{29} - 8 q^{31} - 51 q^{33} + 6 q^{35} + 11 q^{37}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/616\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(309\) \(353\) \(463\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.768256 + 2.36445i 0.443553 + 1.36511i 0.884063 + 0.467367i \(0.154797\pi\)
−0.440511 + 0.897747i \(0.645203\pi\)
\(4\) 0 0
\(5\) 1.50334 + 1.09224i 0.672314 + 0.488465i 0.870799 0.491639i \(-0.163602\pi\)
−0.198485 + 0.980104i \(0.563602\pi\)
\(6\) 0 0
\(7\) 0.309017 0.951057i 0.116797 0.359466i
\(8\) 0 0
\(9\) −2.57335 + 1.86964i −0.857782 + 0.623215i
\(10\) 0 0
\(11\) 2.66041 + 1.98046i 0.802143 + 0.597131i
\(12\) 0 0
\(13\) −5.08555 + 3.69487i −1.41048 + 1.02477i −0.417224 + 0.908804i \(0.636997\pi\)
−0.993253 + 0.115967i \(0.963003\pi\)
\(14\) 0 0
\(15\) −1.42760 + 4.39369i −0.368604 + 1.13445i
\(16\) 0 0
\(17\) 4.30386 + 3.12693i 1.04384 + 0.758393i 0.971031 0.238953i \(-0.0768042\pi\)
0.0728074 + 0.997346i \(0.476804\pi\)
\(18\) 0 0
\(19\) −2.26664 6.97601i −0.520004 1.60041i −0.773989 0.633199i \(-0.781741\pi\)
0.253985 0.967208i \(-0.418259\pi\)
\(20\) 0 0
\(21\) 2.48613 0.542517
\(22\) 0 0
\(23\) 2.03148 0.423592 0.211796 0.977314i \(-0.432069\pi\)
0.211796 + 0.977314i \(0.432069\pi\)
\(24\) 0 0
\(25\) −0.478044 1.47127i −0.0956087 0.294253i
\(26\) 0 0
\(27\) −0.363706 0.264248i −0.0699953 0.0508546i
\(28\) 0 0
\(29\) −1.23552 + 3.80255i −0.229431 + 0.706116i 0.768380 + 0.639993i \(0.221063\pi\)
−0.997811 + 0.0661230i \(0.978937\pi\)
\(30\) 0 0
\(31\) 4.99042 3.62575i 0.896306 0.651204i −0.0412085 0.999151i \(-0.513121\pi\)
0.937515 + 0.347946i \(0.113121\pi\)
\(32\) 0 0
\(33\) −2.63882 + 7.81190i −0.459360 + 1.35988i
\(34\) 0 0
\(35\) 1.50334 1.09224i 0.254111 0.184622i
\(36\) 0 0
\(37\) −3.03530 + 9.34170i −0.499001 + 1.53577i 0.311627 + 0.950204i \(0.399126\pi\)
−0.810628 + 0.585562i \(0.800874\pi\)
\(38\) 0 0
\(39\) −12.6433 9.18591i −2.02455 1.47092i
\(40\) 0 0
\(41\) −3.72176 11.4544i −0.581242 1.78888i −0.613866 0.789411i \(-0.710386\pi\)
0.0326238 0.999468i \(-0.489614\pi\)
\(42\) 0 0
\(43\) −4.70559 −0.717596 −0.358798 0.933415i \(-0.616813\pi\)
−0.358798 + 0.933415i \(0.616813\pi\)
\(44\) 0 0
\(45\) −5.91071 −0.881117
\(46\) 0 0
\(47\) −0.0441697 0.135940i −0.00644281 0.0198289i 0.947783 0.318915i \(-0.103318\pi\)
−0.954226 + 0.299086i \(0.903318\pi\)
\(48\) 0 0
\(49\) −0.809017 0.587785i −0.115574 0.0839693i
\(50\) 0 0
\(51\) −4.08701 + 12.5785i −0.572296 + 1.76135i
\(52\) 0 0
\(53\) −6.22136 + 4.52008i −0.854570 + 0.620881i −0.926402 0.376535i \(-0.877115\pi\)
0.0718324 + 0.997417i \(0.477115\pi\)
\(54\) 0 0
\(55\) 1.83636 + 5.88311i 0.247615 + 0.793278i
\(56\) 0 0
\(57\) 14.7531 10.7187i 1.95409 1.41973i
\(58\) 0 0
\(59\) 1.51314 4.65696i 0.196994 0.606284i −0.802954 0.596041i \(-0.796739\pi\)
0.999948 0.0102431i \(-0.00326054\pi\)
\(60\) 0 0
\(61\) 7.92048 + 5.75456i 1.01411 + 0.736796i 0.965068 0.262000i \(-0.0843821\pi\)
0.0490455 + 0.998797i \(0.484382\pi\)
\(62\) 0 0
\(63\) 0.982930 + 3.02515i 0.123838 + 0.381133i
\(64\) 0 0
\(65\) −11.6810 −1.44885
\(66\) 0 0
\(67\) 3.97261 0.485331 0.242666 0.970110i \(-0.421978\pi\)
0.242666 + 0.970110i \(0.421978\pi\)
\(68\) 0 0
\(69\) 1.56069 + 4.80332i 0.187885 + 0.578251i
\(70\) 0 0
\(71\) −0.0826955 0.0600818i −0.00981415 0.00713039i 0.582867 0.812567i \(-0.301931\pi\)
−0.592682 + 0.805437i \(0.701931\pi\)
\(72\) 0 0
\(73\) 4.32558 13.3128i 0.506271 1.55814i −0.292352 0.956311i \(-0.594438\pi\)
0.798623 0.601832i \(-0.205562\pi\)
\(74\) 0 0
\(75\) 3.11147 2.26062i 0.359282 0.261034i
\(76\) 0 0
\(77\) 2.70564 1.91820i 0.308337 0.218599i
\(78\) 0 0
\(79\) 4.13711 3.00579i 0.465461 0.338177i −0.330208 0.943908i \(-0.607119\pi\)
0.795670 + 0.605731i \(0.207119\pi\)
\(80\) 0 0
\(81\) −2.60341 + 8.01247i −0.289268 + 0.890275i
\(82\) 0 0
\(83\) −7.67093 5.57326i −0.841994 0.611745i 0.0809327 0.996720i \(-0.474210\pi\)
−0.922927 + 0.384975i \(0.874210\pi\)
\(84\) 0 0
\(85\) 3.05479 + 9.40169i 0.331339 + 1.01976i
\(86\) 0 0
\(87\) −9.94014 −1.06569
\(88\) 0 0
\(89\) 14.2422 1.50967 0.754836 0.655914i \(-0.227717\pi\)
0.754836 + 0.655914i \(0.227717\pi\)
\(90\) 0 0
\(91\) 1.94251 + 5.97842i 0.203630 + 0.626708i
\(92\) 0 0
\(93\) 12.4068 + 9.01408i 1.28653 + 0.934717i
\(94\) 0 0
\(95\) 4.21195 12.9630i 0.432137 1.32998i
\(96\) 0 0
\(97\) 1.14934 0.835042i 0.116697 0.0847857i −0.527906 0.849303i \(-0.677023\pi\)
0.644603 + 0.764517i \(0.277023\pi\)
\(98\) 0 0
\(99\) −10.5489 0.122391i −1.06021 0.0123008i
\(100\) 0 0
\(101\) 9.89133 7.18647i 0.984224 0.715081i 0.0255753 0.999673i \(-0.491858\pi\)
0.958649 + 0.284592i \(0.0918582\pi\)
\(102\) 0 0
\(103\) 0.0977572 0.300866i 0.00963231 0.0296452i −0.946125 0.323802i \(-0.895039\pi\)
0.955757 + 0.294157i \(0.0950388\pi\)
\(104\) 0 0
\(105\) 3.73749 + 2.71545i 0.364742 + 0.265001i
\(106\) 0 0
\(107\) −4.79866 14.7688i −0.463904 1.42775i −0.860355 0.509695i \(-0.829758\pi\)
0.396451 0.918056i \(-0.370242\pi\)
\(108\) 0 0
\(109\) −0.981379 −0.0939991 −0.0469995 0.998895i \(-0.514966\pi\)
−0.0469995 + 0.998895i \(0.514966\pi\)
\(110\) 0 0
\(111\) −24.4199 −2.31783
\(112\) 0 0
\(113\) 3.09296 + 9.51915i 0.290961 + 0.895486i 0.984548 + 0.175114i \(0.0560293\pi\)
−0.693587 + 0.720373i \(0.743971\pi\)
\(114\) 0 0
\(115\) 3.05400 + 2.21886i 0.284787 + 0.206910i
\(116\) 0 0
\(117\) 6.17878 19.0163i 0.571228 1.75806i
\(118\) 0 0
\(119\) 4.30386 3.12693i 0.394534 0.286646i
\(120\) 0 0
\(121\) 3.15555 + 10.5377i 0.286868 + 0.957970i
\(122\) 0 0
\(123\) 24.2241 17.5998i 2.18421 1.58692i
\(124\) 0 0
\(125\) 3.75944 11.5704i 0.336254 1.03488i
\(126\) 0 0
\(127\) 9.70891 + 7.05394i 0.861527 + 0.625936i 0.928300 0.371832i \(-0.121270\pi\)
−0.0667732 + 0.997768i \(0.521270\pi\)
\(128\) 0 0
\(129\) −3.61510 11.1261i −0.318292 0.979601i
\(130\) 0 0
\(131\) 19.5613 1.70908 0.854538 0.519388i \(-0.173840\pi\)
0.854538 + 0.519388i \(0.173840\pi\)
\(132\) 0 0
\(133\) −7.33501 −0.636026
\(134\) 0 0
\(135\) −0.258152 0.794509i −0.0222182 0.0683804i
\(136\) 0 0
\(137\) −1.64110 1.19233i −0.140209 0.101868i 0.515470 0.856908i \(-0.327617\pi\)
−0.655679 + 0.755040i \(0.727617\pi\)
\(138\) 0 0
\(139\) −2.76573 + 8.51205i −0.234586 + 0.721983i 0.762590 + 0.646883i \(0.223928\pi\)
−0.997176 + 0.0751000i \(0.976072\pi\)
\(140\) 0 0
\(141\) 0.287490 0.208874i 0.0242111 0.0175904i
\(142\) 0 0
\(143\) −20.8472 0.241874i −1.74333 0.0202265i
\(144\) 0 0
\(145\) −6.01071 + 4.36704i −0.499163 + 0.362663i
\(146\) 0 0
\(147\) 0.768256 2.36445i 0.0633647 0.195016i
\(148\) 0 0
\(149\) −5.26071 3.82213i −0.430974 0.313121i 0.351064 0.936351i \(-0.385820\pi\)
−0.782038 + 0.623231i \(0.785820\pi\)
\(150\) 0 0
\(151\) −1.98127 6.09771i −0.161233 0.496225i 0.837506 0.546428i \(-0.184013\pi\)
−0.998739 + 0.0502037i \(0.984013\pi\)
\(152\) 0 0
\(153\) −16.9216 −1.36803
\(154\) 0 0
\(155\) 11.4625 0.920689
\(156\) 0 0
\(157\) −0.728782 2.24296i −0.0581632 0.179008i 0.917754 0.397149i \(-0.130001\pi\)
−0.975917 + 0.218142i \(0.930001\pi\)
\(158\) 0 0
\(159\) −15.4671 11.2375i −1.22662 0.891192i
\(160\) 0 0
\(161\) 0.627760 1.93205i 0.0494745 0.152267i
\(162\) 0 0
\(163\) 6.68530 4.85715i 0.523633 0.380441i −0.294338 0.955701i \(-0.595099\pi\)
0.817971 + 0.575260i \(0.195099\pi\)
\(164\) 0 0
\(165\) −12.4995 + 8.86171i −0.973086 + 0.689883i
\(166\) 0 0
\(167\) −3.52447 + 2.56068i −0.272732 + 0.198151i −0.715741 0.698366i \(-0.753911\pi\)
0.443009 + 0.896517i \(0.353911\pi\)
\(168\) 0 0
\(169\) 8.19353 25.2171i 0.630271 1.93978i
\(170\) 0 0
\(171\) 18.8755 + 13.7139i 1.44345 + 1.04873i
\(172\) 0 0
\(173\) −1.32705 4.08424i −0.100894 0.310519i 0.887851 0.460131i \(-0.152197\pi\)
−0.988745 + 0.149612i \(0.952197\pi\)
\(174\) 0 0
\(175\) −1.54698 −0.116941
\(176\) 0 0
\(177\) 12.1736 0.915025
\(178\) 0 0
\(179\) 2.40082 + 7.38898i 0.179446 + 0.552278i 0.999809 0.0195656i \(-0.00622833\pi\)
−0.820363 + 0.571844i \(0.806228\pi\)
\(180\) 0 0
\(181\) −13.4859 9.79808i −1.00240 0.728285i −0.0397974 0.999208i \(-0.512671\pi\)
−0.962601 + 0.270923i \(0.912671\pi\)
\(182\) 0 0
\(183\) −7.52141 + 23.1485i −0.555999 + 1.71119i
\(184\) 0 0
\(185\) −14.7665 + 10.7285i −1.08565 + 0.788773i
\(186\) 0 0
\(187\) 5.25724 + 16.8425i 0.384448 + 1.23165i
\(188\) 0 0
\(189\) −0.363706 + 0.264248i −0.0264557 + 0.0192212i
\(190\) 0 0
\(191\) −1.18897 + 3.65928i −0.0860310 + 0.264776i −0.984813 0.173620i \(-0.944453\pi\)
0.898782 + 0.438397i \(0.144453\pi\)
\(192\) 0 0
\(193\) 8.14829 + 5.92008i 0.586527 + 0.426137i 0.841071 0.540924i \(-0.181926\pi\)
−0.254544 + 0.967061i \(0.581926\pi\)
\(194\) 0 0
\(195\) −8.97398 27.6191i −0.642640 1.97784i
\(196\) 0 0
\(197\) −5.76160 −0.410497 −0.205249 0.978710i \(-0.565800\pi\)
−0.205249 + 0.978710i \(0.565800\pi\)
\(198\) 0 0
\(199\) 11.7863 0.835509 0.417754 0.908560i \(-0.362817\pi\)
0.417754 + 0.908560i \(0.362817\pi\)
\(200\) 0 0
\(201\) 3.05198 + 9.39302i 0.215270 + 0.662533i
\(202\) 0 0
\(203\) 3.23465 + 2.35011i 0.227028 + 0.164945i
\(204\) 0 0
\(205\) 6.91589 21.2849i 0.483027 1.48660i
\(206\) 0 0
\(207\) −5.22769 + 3.79814i −0.363349 + 0.263989i
\(208\) 0 0
\(209\) 7.78552 23.0480i 0.538536 1.59427i
\(210\) 0 0
\(211\) −0.205646 + 0.149411i −0.0141573 + 0.0102859i −0.594841 0.803843i \(-0.702785\pi\)
0.580684 + 0.814129i \(0.302785\pi\)
\(212\) 0 0
\(213\) 0.0785290 0.241687i 0.00538072 0.0165601i
\(214\) 0 0
\(215\) −7.07410 5.13964i −0.482450 0.350520i
\(216\) 0 0
\(217\) −1.90617 5.86659i −0.129399 0.398250i
\(218\) 0 0
\(219\) 34.8005 2.35160
\(220\) 0 0
\(221\) −33.4411 −2.24949
\(222\) 0 0
\(223\) −5.92655 18.2400i −0.396871 1.22144i −0.927495 0.373836i \(-0.878042\pi\)
0.530624 0.847607i \(-0.321958\pi\)
\(224\) 0 0
\(225\) 3.98092 + 2.89231i 0.265395 + 0.192820i
\(226\) 0 0
\(227\) 1.32844 4.08853i 0.0881720 0.271365i −0.897242 0.441539i \(-0.854433\pi\)
0.985414 + 0.170173i \(0.0544328\pi\)
\(228\) 0 0
\(229\) −10.6837 + 7.76215i −0.705998 + 0.512937i −0.881880 0.471474i \(-0.843722\pi\)
0.175882 + 0.984411i \(0.443722\pi\)
\(230\) 0 0
\(231\) 6.61411 + 4.92368i 0.435177 + 0.323954i
\(232\) 0 0
\(233\) −8.41998 + 6.11747i −0.551611 + 0.400769i −0.828379 0.560168i \(-0.810737\pi\)
0.276768 + 0.960937i \(0.410737\pi\)
\(234\) 0 0
\(235\) 0.0820775 0.252608i 0.00535414 0.0164784i
\(236\) 0 0
\(237\) 10.2854 + 7.47277i 0.668108 + 0.485409i
\(238\) 0 0
\(239\) −6.75164 20.7794i −0.436727 1.34411i −0.891306 0.453402i \(-0.850210\pi\)
0.454579 0.890706i \(-0.349790\pi\)
\(240\) 0 0
\(241\) −28.9328 −1.86372 −0.931861 0.362815i \(-0.881816\pi\)
−0.931861 + 0.362815i \(0.881816\pi\)
\(242\) 0 0
\(243\) −22.2939 −1.43015
\(244\) 0 0
\(245\) −0.574225 1.76728i −0.0366859 0.112907i
\(246\) 0 0
\(247\) 37.3026 + 27.1019i 2.37350 + 1.72445i
\(248\) 0 0
\(249\) 7.28444 22.4192i 0.461633 1.42076i
\(250\) 0 0
\(251\) 3.48686 2.53335i 0.220089 0.159904i −0.472278 0.881450i \(-0.656568\pi\)
0.692367 + 0.721546i \(0.256568\pi\)
\(252\) 0 0
\(253\) 5.40455 + 4.02326i 0.339781 + 0.252940i
\(254\) 0 0
\(255\) −19.8829 + 14.4458i −1.24512 + 0.904631i
\(256\) 0 0
\(257\) −2.75175 + 8.46903i −0.171650 + 0.528283i −0.999465 0.0327179i \(-0.989584\pi\)
0.827815 + 0.561001i \(0.189584\pi\)
\(258\) 0 0
\(259\) 7.94653 + 5.77349i 0.493773 + 0.358747i
\(260\) 0 0
\(261\) −3.92999 12.0953i −0.243260 0.748679i
\(262\) 0 0
\(263\) −0.672809 −0.0414872 −0.0207436 0.999785i \(-0.506603\pi\)
−0.0207436 + 0.999785i \(0.506603\pi\)
\(264\) 0 0
\(265\) −14.2898 −0.877818
\(266\) 0 0
\(267\) 10.9417 + 33.6750i 0.669619 + 2.06087i
\(268\) 0 0
\(269\) −1.15241 0.837272i −0.0702634 0.0510494i 0.552099 0.833779i \(-0.313827\pi\)
−0.622362 + 0.782729i \(0.713827\pi\)
\(270\) 0 0
\(271\) −8.59531 + 26.4537i −0.522128 + 1.60695i 0.247798 + 0.968812i \(0.420293\pi\)
−0.769926 + 0.638133i \(0.779707\pi\)
\(272\) 0 0
\(273\) −12.6433 + 9.18591i −0.765208 + 0.555956i
\(274\) 0 0
\(275\) 1.64200 4.86092i 0.0990161 0.293124i
\(276\) 0 0
\(277\) 3.32383 2.41491i 0.199710 0.145098i −0.483436 0.875380i \(-0.660611\pi\)
0.683146 + 0.730282i \(0.260611\pi\)
\(278\) 0 0
\(279\) −6.06321 + 18.6606i −0.362995 + 1.11718i
\(280\) 0 0
\(281\) −9.00204 6.54037i −0.537017 0.390166i 0.285959 0.958242i \(-0.407688\pi\)
−0.822976 + 0.568076i \(0.807688\pi\)
\(282\) 0 0
\(283\) 4.72864 + 14.5533i 0.281088 + 0.865101i 0.987544 + 0.157344i \(0.0502930\pi\)
−0.706456 + 0.707757i \(0.749707\pi\)
\(284\) 0 0
\(285\) 33.8863 2.00725
\(286\) 0 0
\(287\) −12.0439 −0.710928
\(288\) 0 0
\(289\) 3.49217 + 10.7478i 0.205422 + 0.632223i
\(290\) 0 0
\(291\) 2.85740 + 2.07602i 0.167504 + 0.121698i
\(292\) 0 0
\(293\) −7.46261 + 22.9675i −0.435970 + 1.34178i 0.456119 + 0.889919i \(0.349239\pi\)
−0.892089 + 0.451859i \(0.850761\pi\)
\(294\) 0 0
\(295\) 7.36128 5.34828i 0.428590 0.311389i
\(296\) 0 0
\(297\) −0.444274 1.42331i −0.0257794 0.0825890i
\(298\) 0 0
\(299\) −10.3312 + 7.50603i −0.597467 + 0.434085i
\(300\) 0 0
\(301\) −1.45411 + 4.47528i −0.0838134 + 0.257951i
\(302\) 0 0
\(303\) 24.5911 + 17.8665i 1.41272 + 1.02640i
\(304\) 0 0
\(305\) 5.62180 + 17.3021i 0.321903 + 0.990717i
\(306\) 0 0
\(307\) 13.8792 0.792126 0.396063 0.918223i \(-0.370376\pi\)
0.396063 + 0.918223i \(0.370376\pi\)
\(308\) 0 0
\(309\) 0.786484 0.0447415
\(310\) 0 0
\(311\) −0.852395 2.62340i −0.0483349 0.148759i 0.923976 0.382450i \(-0.124920\pi\)
−0.972311 + 0.233691i \(0.924920\pi\)
\(312\) 0 0
\(313\) 10.7197 + 7.78830i 0.605912 + 0.440221i 0.847972 0.530040i \(-0.177823\pi\)
−0.242061 + 0.970261i \(0.577823\pi\)
\(314\) 0 0
\(315\) −1.82651 + 5.62142i −0.102912 + 0.316731i
\(316\) 0 0
\(317\) 8.47338 6.15627i 0.475912 0.345771i −0.323829 0.946116i \(-0.604970\pi\)
0.799741 + 0.600345i \(0.204970\pi\)
\(318\) 0 0
\(319\) −10.8178 + 7.66944i −0.605681 + 0.429406i
\(320\) 0 0
\(321\) 31.2334 22.6924i 1.74328 1.26657i
\(322\) 0 0
\(323\) 12.0582 37.1114i 0.670938 2.06493i
\(324\) 0 0
\(325\) 7.86725 + 5.71589i 0.436396 + 0.317060i
\(326\) 0 0
\(327\) −0.753950 2.32042i −0.0416935 0.128320i
\(328\) 0 0
\(329\) −0.142936 −0.00788033
\(330\) 0 0
\(331\) −25.0809 −1.37857 −0.689286 0.724490i \(-0.742075\pi\)
−0.689286 + 0.724490i \(0.742075\pi\)
\(332\) 0 0
\(333\) −9.65478 29.7144i −0.529079 1.62834i
\(334\) 0 0
\(335\) 5.97218 + 4.33904i 0.326295 + 0.237067i
\(336\) 0 0
\(337\) −5.56934 + 17.1407i −0.303382 + 0.933712i 0.676895 + 0.736080i \(0.263325\pi\)
−0.980276 + 0.197632i \(0.936675\pi\)
\(338\) 0 0
\(339\) −20.1314 + 14.6263i −1.09338 + 0.794391i
\(340\) 0 0
\(341\) 20.4572 + 0.237350i 1.10782 + 0.0128532i
\(342\) 0 0
\(343\) −0.809017 + 0.587785i −0.0436828 + 0.0317374i
\(344\) 0 0
\(345\) −2.90013 + 8.92567i −0.156138 + 0.480542i
\(346\) 0 0
\(347\) −12.1956 8.86063i −0.654695 0.475664i 0.210172 0.977664i \(-0.432597\pi\)
−0.864867 + 0.502001i \(0.832597\pi\)
\(348\) 0 0
\(349\) −1.31797 4.05631i −0.0705495 0.217129i 0.909565 0.415562i \(-0.136415\pi\)
−0.980115 + 0.198433i \(0.936415\pi\)
\(350\) 0 0
\(351\) 2.82601 0.150841
\(352\) 0 0
\(353\) −6.01751 −0.320280 −0.160140 0.987094i \(-0.551195\pi\)
−0.160140 + 0.987094i \(0.551195\pi\)
\(354\) 0 0
\(355\) −0.0586956 0.180647i −0.00311524 0.00958773i
\(356\) 0 0
\(357\) 10.6999 + 7.77396i 0.566301 + 0.411441i
\(358\) 0 0
\(359\) −0.817594 + 2.51629i −0.0431509 + 0.132805i −0.970311 0.241860i \(-0.922242\pi\)
0.927160 + 0.374665i \(0.122242\pi\)
\(360\) 0 0
\(361\) −28.1558 + 20.4564i −1.48188 + 1.07665i
\(362\) 0 0
\(363\) −22.4915 + 15.5568i −1.18050 + 0.816518i
\(364\) 0 0
\(365\) 21.0436 15.2890i 1.10147 0.800265i
\(366\) 0 0
\(367\) 7.33138 22.5637i 0.382695 1.17781i −0.555444 0.831554i \(-0.687452\pi\)
0.938139 0.346259i \(-0.112548\pi\)
\(368\) 0 0
\(369\) 30.9931 + 22.5178i 1.61343 + 1.17223i
\(370\) 0 0
\(371\) 2.37635 + 7.31365i 0.123374 + 0.379706i
\(372\) 0 0
\(373\) 1.58576 0.0821076 0.0410538 0.999157i \(-0.486928\pi\)
0.0410538 + 0.999157i \(0.486928\pi\)
\(374\) 0 0
\(375\) 30.2457 1.56188
\(376\) 0 0
\(377\) −7.76661 23.9032i −0.400001 1.23108i
\(378\) 0 0
\(379\) 3.71774 + 2.70110i 0.190968 + 0.138746i 0.679161 0.733989i \(-0.262344\pi\)
−0.488193 + 0.872736i \(0.662344\pi\)
\(380\) 0 0
\(381\) −9.21974 + 28.3754i −0.472342 + 1.45372i
\(382\) 0 0
\(383\) −19.3061 + 14.0267i −0.986495 + 0.716730i −0.959151 0.282896i \(-0.908705\pi\)
−0.0273442 + 0.999626i \(0.508705\pi\)
\(384\) 0 0
\(385\) 6.16264 + 0.0715005i 0.314077 + 0.00364400i
\(386\) 0 0
\(387\) 12.1091 8.79779i 0.615541 0.447217i
\(388\) 0 0
\(389\) 2.89749 8.91757i 0.146909 0.452139i −0.850343 0.526229i \(-0.823605\pi\)
0.997252 + 0.0740905i \(0.0236054\pi\)
\(390\) 0 0
\(391\) 8.74318 + 6.35229i 0.442162 + 0.321249i
\(392\) 0 0
\(393\) 15.0281 + 46.2516i 0.758066 + 2.33309i
\(394\) 0 0
\(395\) 9.50252 0.478124
\(396\) 0 0
\(397\) −17.6151 −0.884075 −0.442037 0.896997i \(-0.645744\pi\)
−0.442037 + 0.896997i \(0.645744\pi\)
\(398\) 0 0
\(399\) −5.63517 17.3433i −0.282111 0.868249i
\(400\) 0 0
\(401\) −1.20316 0.874147i −0.0600829 0.0436528i 0.557338 0.830285i \(-0.311823\pi\)
−0.617421 + 0.786633i \(0.711823\pi\)
\(402\) 0 0
\(403\) −11.9823 + 36.8779i −0.596883 + 1.83702i
\(404\) 0 0
\(405\) −12.6654 + 9.20192i −0.629346 + 0.457247i
\(406\) 0 0
\(407\) −26.5760 + 18.8414i −1.31732 + 0.933936i
\(408\) 0 0
\(409\) −7.47926 + 5.43400i −0.369826 + 0.268694i −0.757139 0.653254i \(-0.773403\pi\)
0.387313 + 0.921948i \(0.373403\pi\)
\(410\) 0 0
\(411\) 1.55842 4.79632i 0.0768711 0.236585i
\(412\) 0 0
\(413\) −3.96145 2.87816i −0.194930 0.141625i
\(414\) 0 0
\(415\) −5.44468 16.7570i −0.267269 0.822569i
\(416\) 0 0
\(417\) −22.2511 −1.08964
\(418\) 0 0
\(419\) −10.2513 −0.500810 −0.250405 0.968141i \(-0.580564\pi\)
−0.250405 + 0.968141i \(0.580564\pi\)
\(420\) 0 0
\(421\) −6.63979 20.4352i −0.323604 0.995949i −0.972067 0.234704i \(-0.924588\pi\)
0.648463 0.761246i \(-0.275412\pi\)
\(422\) 0 0
\(423\) 0.367824 + 0.267240i 0.0178842 + 0.0129936i
\(424\) 0 0
\(425\) 2.54312 7.82693i 0.123360 0.379662i
\(426\) 0 0
\(427\) 7.92048 5.75456i 0.383299 0.278483i
\(428\) 0 0
\(429\) −15.4441 49.4779i −0.745646 2.38881i
\(430\) 0 0
\(431\) −24.0434 + 17.4686i −1.15813 + 0.841431i −0.989540 0.144256i \(-0.953921\pi\)
−0.168589 + 0.985686i \(0.553921\pi\)
\(432\) 0 0
\(433\) −2.49337 + 7.67380i −0.119824 + 0.368779i −0.992923 0.118764i \(-0.962107\pi\)
0.873099 + 0.487543i \(0.162107\pi\)
\(434\) 0 0
\(435\) −14.9434 10.8570i −0.716481 0.520554i
\(436\) 0 0
\(437\) −4.60463 14.1716i −0.220269 0.677920i
\(438\) 0 0
\(439\) −39.2659 −1.87406 −0.937030 0.349248i \(-0.886437\pi\)
−0.937030 + 0.349248i \(0.886437\pi\)
\(440\) 0 0
\(441\) 3.18083 0.151468
\(442\) 0 0
\(443\) −6.03892 18.5859i −0.286918 0.883042i −0.985817 0.167822i \(-0.946327\pi\)
0.698900 0.715220i \(-0.253673\pi\)
\(444\) 0 0
\(445\) 21.4109 + 15.5559i 1.01497 + 0.737421i
\(446\) 0 0
\(447\) 4.99565 15.3750i 0.236286 0.727214i
\(448\) 0 0
\(449\) −9.02781 + 6.55909i −0.426049 + 0.309542i −0.780067 0.625696i \(-0.784815\pi\)
0.354018 + 0.935238i \(0.384815\pi\)
\(450\) 0 0
\(451\) 12.7836 37.8442i 0.601956 1.78201i
\(452\) 0 0
\(453\) 12.8956 9.36920i 0.605888 0.440204i
\(454\) 0 0
\(455\) −3.60962 + 11.1093i −0.169222 + 0.520811i
\(456\) 0 0
\(457\) −7.17118 5.21017i −0.335454 0.243721i 0.407288 0.913300i \(-0.366475\pi\)
−0.742741 + 0.669579i \(0.766475\pi\)
\(458\) 0 0
\(459\) −0.739053 2.27457i −0.0344960 0.106168i
\(460\) 0 0
\(461\) 41.2827 1.92273 0.961363 0.275284i \(-0.0887720\pi\)
0.961363 + 0.275284i \(0.0887720\pi\)
\(462\) 0 0
\(463\) 5.00452 0.232580 0.116290 0.993215i \(-0.462900\pi\)
0.116290 + 0.993215i \(0.462900\pi\)
\(464\) 0 0
\(465\) 8.80612 + 27.1025i 0.408374 + 1.25685i
\(466\) 0 0
\(467\) −13.2945 9.65904i −0.615197 0.446967i 0.236043 0.971743i \(-0.424149\pi\)
−0.851241 + 0.524776i \(0.824149\pi\)
\(468\) 0 0
\(469\) 1.22760 3.77817i 0.0566855 0.174460i
\(470\) 0 0
\(471\) 4.74347 3.44634i 0.218568 0.158799i
\(472\) 0 0
\(473\) −12.5188 9.31924i −0.575615 0.428499i
\(474\) 0 0
\(475\) −9.18002 + 6.66968i −0.421208 + 0.306026i
\(476\) 0 0
\(477\) 7.55876 23.2635i 0.346092 1.06516i
\(478\) 0 0
\(479\) −23.3765 16.9840i −1.06810 0.776018i −0.0925284 0.995710i \(-0.529495\pi\)
−0.975569 + 0.219692i \(0.929495\pi\)
\(480\) 0 0
\(481\) −19.0802 58.7227i −0.869980 2.67752i
\(482\) 0 0
\(483\) 5.05051 0.229806
\(484\) 0 0
\(485\) 2.63991 0.119872
\(486\) 0 0
\(487\) 2.32603 + 7.15879i 0.105403 + 0.324396i 0.989825 0.142292i \(-0.0454472\pi\)
−0.884422 + 0.466688i \(0.845447\pi\)
\(488\) 0 0
\(489\) 16.6205 + 12.0755i 0.751605 + 0.546073i
\(490\) 0 0
\(491\) 5.55887 17.1084i 0.250868 0.772093i −0.743747 0.668461i \(-0.766954\pi\)
0.994616 0.103632i \(-0.0330465\pi\)
\(492\) 0 0
\(493\) −17.2079 + 12.5022i −0.775003 + 0.563073i
\(494\) 0 0
\(495\) −15.7249 11.7059i −0.706782 0.526143i
\(496\) 0 0
\(497\) −0.0826955 + 0.0600818i −0.00370940 + 0.00269504i
\(498\) 0 0
\(499\) −6.37964 + 19.6345i −0.285592 + 0.878962i 0.700629 + 0.713526i \(0.252903\pi\)
−0.986221 + 0.165436i \(0.947097\pi\)
\(500\) 0 0
\(501\) −8.76228 6.36617i −0.391470 0.284420i
\(502\) 0 0
\(503\) −3.68481 11.3407i −0.164297 0.505656i 0.834686 0.550726i \(-0.185649\pi\)
−0.998984 + 0.0450700i \(0.985649\pi\)
\(504\) 0 0
\(505\) 22.7194 1.01100
\(506\) 0 0
\(507\) 65.9192 2.92757
\(508\) 0 0
\(509\) −9.95912 30.6510i −0.441430 1.35858i −0.886351 0.463013i \(-0.846768\pi\)
0.444921 0.895570i \(-0.353232\pi\)
\(510\) 0 0
\(511\) −11.3245 8.22775i −0.500967 0.363974i
\(512\) 0 0
\(513\) −1.01901 + 3.13618i −0.0449902 + 0.138466i
\(514\) 0 0
\(515\) 0.475580 0.345529i 0.0209566 0.0152258i
\(516\) 0 0
\(517\) 0.151715 0.449133i 0.00667243 0.0197529i
\(518\) 0 0
\(519\) 8.63745 6.27547i 0.379142 0.275463i
\(520\) 0 0
\(521\) 11.9314 36.7210i 0.522723 1.60878i −0.246051 0.969257i \(-0.579133\pi\)
0.768774 0.639520i \(-0.220867\pi\)
\(522\) 0 0
\(523\) 12.1295 + 8.81257i 0.530384 + 0.385347i 0.820502 0.571644i \(-0.193694\pi\)
−0.290117 + 0.956991i \(0.593694\pi\)
\(524\) 0 0
\(525\) −1.18848 3.65776i −0.0518694 0.159638i
\(526\) 0 0
\(527\) 32.8155 1.42947
\(528\) 0 0
\(529\) −18.8731 −0.820570
\(530\) 0 0
\(531\) 4.81303 + 14.8130i 0.208868 + 0.642829i
\(532\) 0 0
\(533\) 61.2497 + 44.5005i 2.65302 + 1.92753i
\(534\) 0 0
\(535\) 8.91702 27.4438i 0.385516 1.18650i
\(536\) 0 0
\(537\) −15.6264 + 11.3532i −0.674329 + 0.489929i
\(538\) 0 0
\(539\) −0.988230 3.16598i −0.0425661 0.136368i
\(540\) 0 0
\(541\) −8.73119 + 6.34358i −0.375383 + 0.272732i −0.759440 0.650578i \(-0.774527\pi\)
0.384056 + 0.923310i \(0.374527\pi\)
\(542\) 0 0
\(543\) 12.8064 39.4141i 0.549576 1.69142i
\(544\) 0 0
\(545\) −1.47535 1.07190i −0.0631969 0.0459152i
\(546\) 0 0
\(547\) 6.65797 + 20.4911i 0.284674 + 0.876137i 0.986496 + 0.163785i \(0.0523703\pi\)
−0.701822 + 0.712353i \(0.747630\pi\)
\(548\) 0 0
\(549\) −31.1411 −1.32907
\(550\) 0 0
\(551\) 29.3272 1.24938
\(552\) 0 0
\(553\) −1.58024 4.86347i −0.0671985 0.206816i
\(554\) 0 0
\(555\) −36.7113 26.6723i −1.55831 1.13218i
\(556\) 0 0
\(557\) −4.99317 + 15.3674i −0.211567 + 0.651138i 0.787812 + 0.615916i \(0.211214\pi\)
−0.999380 + 0.0352220i \(0.988786\pi\)
\(558\) 0 0
\(559\) 23.9305 17.3865i 1.01215 0.735372i
\(560\) 0 0
\(561\) −35.7844 + 25.3699i −1.51082 + 1.07112i
\(562\) 0 0
\(563\) −1.01463 + 0.737174i −0.0427617 + 0.0310682i −0.608961 0.793200i \(-0.708413\pi\)
0.566199 + 0.824269i \(0.308413\pi\)
\(564\) 0 0
\(565\) −5.74743 + 17.6888i −0.241796 + 0.744172i
\(566\) 0 0
\(567\) 6.81582 + 4.95198i 0.286237 + 0.207964i
\(568\) 0 0
\(569\) 9.56512 + 29.4384i 0.400991 + 1.23412i 0.924197 + 0.381916i \(0.124736\pi\)
−0.523206 + 0.852206i \(0.675264\pi\)
\(570\) 0 0
\(571\) 9.43699 0.394926 0.197463 0.980310i \(-0.436730\pi\)
0.197463 + 0.980310i \(0.436730\pi\)
\(572\) 0 0
\(573\) −9.56561 −0.399609
\(574\) 0 0
\(575\) −0.971134 2.98884i −0.0404991 0.124643i
\(576\) 0 0
\(577\) 23.9914 + 17.4308i 0.998776 + 0.725653i 0.961825 0.273664i \(-0.0882356\pi\)
0.0369506 + 0.999317i \(0.488236\pi\)
\(578\) 0 0
\(579\) −7.73775 + 23.8143i −0.321570 + 0.989690i
\(580\) 0 0
\(581\) −7.67093 + 5.57326i −0.318244 + 0.231218i
\(582\) 0 0
\(583\) −25.5032 0.295895i −1.05624 0.0122547i
\(584\) 0 0
\(585\) 30.0592 21.8393i 1.24279 0.902943i
\(586\) 0 0
\(587\) 10.0865 31.0429i 0.416313 1.28128i −0.494759 0.869030i \(-0.664744\pi\)
0.911071 0.412249i \(-0.135256\pi\)
\(588\) 0 0
\(589\) −36.6048 26.5950i −1.50827 1.09583i
\(590\) 0 0
\(591\) −4.42638 13.6230i −0.182077 0.560376i
\(592\) 0 0
\(593\) 32.5670 1.33737 0.668684 0.743547i \(-0.266858\pi\)
0.668684 + 0.743547i \(0.266858\pi\)
\(594\) 0 0
\(595\) 9.88552 0.405267
\(596\) 0 0
\(597\) 9.05489 + 27.8681i 0.370592 + 1.14057i
\(598\) 0 0
\(599\) 7.23079 + 5.25348i 0.295442 + 0.214651i 0.725625 0.688091i \(-0.241551\pi\)
−0.430183 + 0.902742i \(0.641551\pi\)
\(600\) 0 0
\(601\) 7.83327 24.1083i 0.319526 0.983399i −0.654326 0.756213i \(-0.727047\pi\)
0.973851 0.227186i \(-0.0729525\pi\)
\(602\) 0 0
\(603\) −10.2229 + 7.42737i −0.416308 + 0.302466i
\(604\) 0 0
\(605\) −6.76581 + 19.2883i −0.275069 + 0.784181i
\(606\) 0 0
\(607\) −6.26471 + 4.55158i −0.254277 + 0.184743i −0.707620 0.706593i \(-0.750231\pi\)
0.453343 + 0.891336i \(0.350231\pi\)
\(608\) 0 0
\(609\) −3.07167 + 9.45363i −0.124470 + 0.383081i
\(610\) 0 0
\(611\) 0.726908 + 0.528130i 0.0294076 + 0.0213658i
\(612\) 0 0
\(613\) −0.691197 2.12729i −0.0279172 0.0859203i 0.936127 0.351662i \(-0.114383\pi\)
−0.964044 + 0.265741i \(0.914383\pi\)
\(614\) 0 0
\(615\) 55.6403 2.24363
\(616\) 0 0
\(617\) −18.7427 −0.754551 −0.377275 0.926101i \(-0.623139\pi\)
−0.377275 + 0.926101i \(0.623139\pi\)
\(618\) 0 0
\(619\) 12.0980 + 37.2338i 0.486260 + 1.49655i 0.830148 + 0.557543i \(0.188256\pi\)
−0.343888 + 0.939011i \(0.611744\pi\)
\(620\) 0 0
\(621\) −0.738860 0.536813i −0.0296494 0.0215416i
\(622\) 0 0
\(623\) 4.40108 13.5451i 0.176326 0.542675i
\(624\) 0 0
\(625\) 12.0317 8.74151i 0.481266 0.349660i
\(626\) 0 0
\(627\) 60.4772 + 0.701672i 2.41523 + 0.0280221i
\(628\) 0 0
\(629\) −42.2744 + 30.7141i −1.68559 + 1.22465i
\(630\) 0 0
\(631\) 13.9126 42.8186i 0.553852 1.70458i −0.145102 0.989417i \(-0.546351\pi\)
0.698955 0.715166i \(-0.253649\pi\)
\(632\) 0 0
\(633\) −0.511263 0.371454i −0.0203209 0.0147640i
\(634\) 0 0
\(635\) 6.89120 + 21.2089i 0.273469 + 0.841651i
\(636\) 0 0
\(637\) 6.28608 0.249064
\(638\) 0 0
\(639\) 0.325136 0.0128622
\(640\) 0 0
\(641\) −1.28520 3.95543i −0.0507623 0.156230i 0.922462 0.386088i \(-0.126174\pi\)
−0.973224 + 0.229858i \(0.926174\pi\)
\(642\) 0 0
\(643\) −15.9966 11.6222i −0.630842 0.458334i 0.225850 0.974162i \(-0.427484\pi\)
−0.856692 + 0.515828i \(0.827484\pi\)
\(644\) 0 0
\(645\) 6.71768 20.6749i 0.264509 0.814073i
\(646\) 0 0
\(647\) −24.4564 + 17.7686i −0.961480 + 0.698556i −0.953494 0.301412i \(-0.902542\pi\)
−0.00798632 + 0.999968i \(0.502542\pi\)
\(648\) 0 0
\(649\) 13.2485 9.39270i 0.520049 0.368696i
\(650\) 0 0
\(651\) 12.4068 9.01408i 0.486262 0.353290i
\(652\) 0 0
\(653\) −13.9380 + 42.8968i −0.545437 + 1.67868i 0.174513 + 0.984655i \(0.444165\pi\)
−0.719950 + 0.694026i \(0.755835\pi\)
\(654\) 0 0
\(655\) 29.4072 + 21.3656i 1.14904 + 0.834824i
\(656\) 0 0
\(657\) 13.7589 + 42.3457i 0.536788 + 1.65206i
\(658\) 0 0
\(659\) −40.2148 −1.56655 −0.783273 0.621678i \(-0.786451\pi\)
−0.783273 + 0.621678i \(0.786451\pi\)
\(660\) 0 0
\(661\) 18.8542 0.733343 0.366672 0.930350i \(-0.380497\pi\)
0.366672 + 0.930350i \(0.380497\pi\)
\(662\) 0 0
\(663\) −25.6913 79.0696i −0.997767 3.07081i
\(664\) 0 0
\(665\) −11.0270 8.01160i −0.427609 0.310676i
\(666\) 0 0
\(667\) −2.50994 + 7.72479i −0.0971852 + 0.299105i
\(668\) 0 0
\(669\) 38.5745 28.0260i 1.49138 1.08355i
\(670\) 0 0
\(671\) 9.67502 + 30.9957i 0.373500 + 1.19658i
\(672\) 0 0
\(673\) −30.6219 + 22.2481i −1.18039 + 0.857602i −0.992215 0.124534i \(-0.960257\pi\)
−0.188173 + 0.982136i \(0.560257\pi\)
\(674\) 0 0
\(675\) −0.214912 + 0.661431i −0.00827197 + 0.0254585i
\(676\) 0 0
\(677\) 18.3326 + 13.3194i 0.704579 + 0.511907i 0.881420 0.472333i \(-0.156588\pi\)
−0.176841 + 0.984239i \(0.556588\pi\)
\(678\) 0 0
\(679\) −0.439008 1.35113i −0.0168476 0.0518515i
\(680\) 0 0
\(681\) 10.6877 0.409554
\(682\) 0 0
\(683\) −24.2740 −0.928818 −0.464409 0.885621i \(-0.653733\pi\)
−0.464409 + 0.885621i \(0.653733\pi\)
\(684\) 0 0
\(685\) −1.16482 3.58496i −0.0445056 0.136974i
\(686\) 0 0
\(687\) −26.5610 19.2977i −1.01337 0.736253i
\(688\) 0 0
\(689\) 14.9379 45.9742i 0.569089 1.75148i
\(690\) 0 0
\(691\) −1.83268 + 1.33152i −0.0697182 + 0.0506533i −0.622098 0.782939i \(-0.713720\pi\)
0.552380 + 0.833592i \(0.313720\pi\)
\(692\) 0 0
\(693\) −3.37619 + 9.99479i −0.128251 + 0.379671i
\(694\) 0 0
\(695\) −13.4550 + 9.77566i −0.510379 + 0.370812i
\(696\) 0 0
\(697\) 19.7993 60.9358i 0.749950 2.30811i
\(698\) 0 0
\(699\) −20.9331 15.2088i −0.791764 0.575250i
\(700\) 0 0
\(701\) 3.24984 + 10.0020i 0.122745 + 0.377769i 0.993483 0.113977i \(-0.0363589\pi\)
−0.870739 + 0.491746i \(0.836359\pi\)
\(702\) 0 0
\(703\) 72.0478 2.71733
\(704\) 0 0
\(705\) 0.660336 0.0248697
\(706\) 0 0
\(707\) −3.77815 11.6280i −0.142092 0.437314i
\(708\) 0 0
\(709\) −30.2759 21.9968i −1.13704 0.826105i −0.150333 0.988635i \(-0.548035\pi\)
−0.986704 + 0.162530i \(0.948035\pi\)
\(710\) 0 0
\(711\) −5.02646 + 15.4699i −0.188507 + 0.580165i
\(712\) 0 0
\(713\) 10.1379 7.36563i 0.379668 0.275845i
\(714\) 0 0
\(715\) −31.0762 23.1337i −1.16218 0.865152i
\(716\) 0 0
\(717\) 43.9448 31.9278i 1.64115 1.19237i
\(718\) 0 0
\(719\) −7.73655 + 23.8107i −0.288525 + 0.887988i 0.696795 + 0.717270i \(0.254609\pi\)
−0.985320 + 0.170718i \(0.945391\pi\)
\(720\) 0 0
\(721\) −0.255932 0.185945i −0.00953140 0.00692497i
\(722\) 0 0
\(723\) −22.2277 68.4100i −0.826659 2.54419i
\(724\) 0 0
\(725\) 6.18521 0.229713
\(726\) 0 0
\(727\) −25.0023 −0.927284 −0.463642 0.886023i \(-0.653458\pi\)
−0.463642 + 0.886023i \(0.653458\pi\)
\(728\) 0 0
\(729\) −9.31715 28.6752i −0.345080 1.06205i
\(730\) 0 0
\(731\) −20.2522 14.7141i −0.749054 0.544220i
\(732\) 0 0
\(733\) 1.33492 4.10846i 0.0493064 0.151749i −0.923372 0.383907i \(-0.874578\pi\)
0.972678 + 0.232157i \(0.0745784\pi\)
\(734\) 0 0
\(735\) 3.73749 2.71545i 0.137860 0.100161i
\(736\) 0 0
\(737\) 10.5688 + 7.86760i 0.389305 + 0.289807i
\(738\) 0 0
\(739\) −10.2192 + 7.42468i −0.375919 + 0.273121i −0.759661 0.650319i \(-0.774635\pi\)
0.383742 + 0.923440i \(0.374635\pi\)
\(740\) 0 0
\(741\) −35.4231 + 109.021i −1.30130 + 4.00499i
\(742\) 0 0
\(743\) −2.81947 2.04847i −0.103436 0.0751510i 0.534865 0.844938i \(-0.320363\pi\)
−0.638301 + 0.769787i \(0.720363\pi\)
\(744\) 0 0
\(745\) −3.73395 11.4919i −0.136801 0.421031i
\(746\) 0 0
\(747\) 30.1600 1.10350
\(748\) 0 0
\(749\) −15.5288 −0.567410
\(750\) 0 0
\(751\) 14.6943 + 45.2244i 0.536202 + 1.65026i 0.741036 + 0.671465i \(0.234335\pi\)
−0.204834 + 0.978797i \(0.565665\pi\)
\(752\) 0 0
\(753\) 8.66878 + 6.29824i 0.315908 + 0.229521i
\(754\) 0 0
\(755\) 3.68165 11.3309i 0.133989 0.412375i
\(756\) 0 0
\(757\) 37.9690 27.5861i 1.38001 1.00263i 0.383127 0.923696i \(-0.374847\pi\)
0.996880 0.0789381i \(-0.0251529\pi\)
\(758\) 0 0
\(759\) −5.36070 + 15.8697i −0.194581 + 0.576033i
\(760\) 0 0
\(761\) 11.8043 8.57629i 0.427904 0.310890i −0.352906 0.935659i \(-0.614807\pi\)
0.780810 + 0.624768i \(0.214807\pi\)
\(762\) 0 0
\(763\) −0.303263 + 0.933347i −0.0109789 + 0.0337894i
\(764\) 0 0
\(765\) −25.4389 18.4824i −0.919744 0.668233i
\(766\) 0 0
\(767\) 9.51170 + 29.2740i 0.343448 + 1.05702i
\(768\) 0 0
\(769\) −4.34485 −0.156679 −0.0783397 0.996927i \(-0.524962\pi\)
−0.0783397 + 0.996927i \(0.524962\pi\)
\(770\) 0 0
\(771\) −22.1386 −0.797303
\(772\) 0 0
\(773\) 9.08036 + 27.9465i 0.326598 + 1.00517i 0.970714 + 0.240238i \(0.0772253\pi\)
−0.644116 + 0.764928i \(0.722775\pi\)
\(774\) 0 0
\(775\) −7.72009 5.60897i −0.277314 0.201480i
\(776\) 0 0
\(777\) −7.54615 + 23.2247i −0.270717 + 0.833180i
\(778\) 0 0
\(779\) −71.4702 + 51.9261i −2.56069 + 1.86045i
\(780\) 0 0
\(781\) −0.101014 0.323617i −0.00361457 0.0115799i
\(782\) 0 0
\(783\) 1.45419 1.05653i 0.0519683 0.0377572i
\(784\) 0 0
\(785\) 1.35425 4.16794i 0.0483351 0.148760i
\(786\) 0 0
\(787\) −40.7033 29.5727i −1.45092 1.05415i −0.985616 0.168999i \(-0.945947\pi\)
−0.465299 0.885153i \(-0.654053\pi\)
\(788\) 0 0
\(789\) −0.516889 1.59082i −0.0184017 0.0566348i
\(790\) 0 0
\(791\) 10.0090 0.355880
\(792\) 0 0
\(793\) −61.5423 −2.18543
\(794\) 0 0
\(795\) −10.9782 33.7876i −0.389358 1.19832i
\(796\) 0 0
\(797\) 32.8148 + 23.8414i 1.16236 + 0.844505i 0.990075 0.140542i \(-0.0448846\pi\)
0.172286 + 0.985047i \(0.444885\pi\)
\(798\) 0 0
\(799\) 0.234977 0.723184i 0.00831288 0.0255844i
\(800\) 0 0
\(801\) −36.6501 + 26.6279i −1.29497 + 0.940850i
\(802\) 0 0
\(803\) 37.8733 26.8508i 1.33652 0.947543i
\(804\) 0 0
\(805\) 3.05400 2.21886i 0.107639 0.0782045i
\(806\) 0 0
\(807\) 1.09434 3.36804i 0.0385227 0.118561i
\(808\) 0 0
\(809\) 15.5784 + 11.3184i 0.547709 + 0.397934i 0.826940 0.562290i \(-0.190080\pi\)
−0.279231 + 0.960224i \(0.590080\pi\)
\(810\) 0 0
\(811\) 1.25343 + 3.85767i 0.0440140 + 0.135461i 0.970649 0.240502i \(-0.0773120\pi\)
−0.926635 + 0.375963i \(0.877312\pi\)
\(812\) 0 0
\(813\) −69.1517 −2.42526
\(814\) 0 0
\(815\) 15.3554 0.537878
\(816\) 0 0
\(817\) 10.6659 + 32.8263i 0.373153 + 1.14845i
\(818\) 0 0
\(819\) −16.1763 11.7527i −0.565244 0.410674i
\(820\) 0 0
\(821\) 0.571685 1.75947i 0.0199519 0.0614058i −0.940585 0.339559i \(-0.889722\pi\)
0.960537 + 0.278153i \(0.0897222\pi\)
\(822\) 0 0
\(823\) 18.0171 13.0902i 0.628037 0.456296i −0.227682 0.973735i \(-0.573115\pi\)
0.855720 + 0.517440i \(0.173115\pi\)
\(824\) 0 0
\(825\) 12.7549 + 0.147985i 0.444067 + 0.00515218i
\(826\) 0 0
\(827\) 30.7192 22.3188i 1.06821 0.776100i 0.0926203 0.995701i \(-0.470476\pi\)
0.975590 + 0.219602i \(0.0704757\pi\)
\(828\) 0 0
\(829\) −16.6820 + 51.3418i −0.579388 + 1.78317i 0.0413368 + 0.999145i \(0.486838\pi\)
−0.620725 + 0.784028i \(0.713162\pi\)
\(830\) 0 0
\(831\) 8.26347 + 6.00376i 0.286657 + 0.208268i
\(832\) 0 0
\(833\) −1.64393 5.05949i −0.0569587 0.175301i
\(834\) 0 0
\(835\) −8.09535 −0.280151
\(836\) 0 0
\(837\) −2.77315 −0.0958539
\(838\) 0 0
\(839\) −3.15489 9.70975i −0.108919 0.335218i 0.881711 0.471789i \(-0.156392\pi\)
−0.990630 + 0.136571i \(0.956392\pi\)
\(840\) 0 0
\(841\) 10.5286 + 7.64948i 0.363055 + 0.263775i
\(842\) 0 0
\(843\) 8.54848 26.3095i 0.294425 0.906148i
\(844\) 0 0
\(845\) 39.8608 28.9605i 1.37125 0.996273i
\(846\) 0 0
\(847\) 10.9970 + 0.255215i 0.377863 + 0.00876930i
\(848\) 0 0
\(849\) −30.7776 + 22.3612i −1.05628 + 0.767436i
\(850\) 0 0
\(851\) −6.16614 + 18.9774i −0.211373 + 0.650538i
\(852\) 0 0
\(853\) 8.64513 + 6.28105i 0.296004 + 0.215059i 0.725868 0.687834i \(-0.241439\pi\)
−0.429864 + 0.902894i \(0.641439\pi\)
\(854\) 0 0
\(855\) 13.3975 + 41.2332i 0.458184 + 1.41015i
\(856\) 0 0
\(857\) −1.03083 −0.0352124 −0.0176062 0.999845i \(-0.505605\pi\)
−0.0176062 + 0.999845i \(0.505605\pi\)
\(858\) 0 0
\(859\) −9.74857 −0.332617 −0.166309 0.986074i \(-0.553185\pi\)
−0.166309 + 0.986074i \(0.553185\pi\)
\(860\) 0 0
\(861\) −9.25278 28.4771i −0.315334 0.970498i
\(862\) 0 0
\(863\) 2.45885 + 1.78646i 0.0837001 + 0.0608117i 0.628848 0.777528i \(-0.283527\pi\)
−0.545148 + 0.838340i \(0.683527\pi\)
\(864\) 0 0
\(865\) 2.46596 7.58945i 0.0838452 0.258049i
\(866\) 0 0
\(867\) −22.7297 + 16.5141i −0.771942 + 0.560849i
\(868\) 0 0
\(869\) 16.9593 + 0.196766i 0.575303 + 0.00667481i
\(870\) 0 0
\(871\) −20.2029 + 14.6783i −0.684549 + 0.497354i
\(872\) 0 0
\(873\) −1.39641 + 4.29770i −0.0472613 + 0.145455i
\(874\) 0 0
\(875\) −9.84234 7.15088i −0.332732 0.241744i
\(876\) 0 0
\(877\) −6.57322 20.2303i −0.221962 0.683128i −0.998586 0.0531637i \(-0.983069\pi\)
0.776624 0.629964i \(-0.216931\pi\)
\(878\) 0 0
\(879\) −60.0387 −2.02506
\(880\) 0 0
\(881\) 36.0834 1.21568 0.607840 0.794059i \(-0.292036\pi\)
0.607840 + 0.794059i \(0.292036\pi\)
\(882\) 0 0
\(883\) 2.80942 + 8.64650i 0.0945445 + 0.290978i 0.987135 0.159891i \(-0.0511142\pi\)
−0.892590 + 0.450869i \(0.851114\pi\)
\(884\) 0 0
\(885\) 18.3011 + 13.2965i 0.615184 + 0.446957i
\(886\) 0 0
\(887\) 10.7401 33.0545i 0.360616 1.10986i −0.592064 0.805891i \(-0.701687\pi\)
0.952681 0.303972i \(-0.0983131\pi\)
\(888\) 0 0
\(889\) 9.70891 7.05394i 0.325626 0.236581i
\(890\) 0 0
\(891\) −22.7945 + 16.1605i −0.763645 + 0.541397i
\(892\) 0 0
\(893\) −0.848205 + 0.616257i −0.0283841 + 0.0206223i
\(894\) 0 0
\(895\) −4.46128 + 13.7304i −0.149124 + 0.458957i
\(896\) 0 0
\(897\) −25.6846 18.6609i −0.857583 0.623071i
\(898\) 0 0
\(899\) 7.62133 + 23.4560i 0.254186 + 0.782303i
\(900\) 0 0
\(901\) −40.9099 −1.36290
\(902\) 0 0
\(903\) −11.6987 −0.389308
\(904\) 0 0
\(905\) −9.57203 29.4597i −0.318185 0.979272i
\(906\) 0 0
\(907\) 5.62375 + 4.08589i 0.186733 + 0.135670i 0.677224 0.735776i \(-0.263183\pi\)
−0.490491 + 0.871446i \(0.663183\pi\)
\(908\) 0 0
\(909\) −12.0177 + 36.9865i −0.398600 + 1.22677i
\(910\) 0 0
\(911\) −3.07901 + 2.23703i −0.102012 + 0.0741161i −0.637622 0.770349i \(-0.720082\pi\)
0.535610 + 0.844466i \(0.320082\pi\)
\(912\) 0 0
\(913\) −9.37019 30.0191i −0.310108 0.993488i
\(914\) 0 0
\(915\) −36.5910 + 26.5849i −1.20966 + 0.878870i
\(916\) 0 0
\(917\) 6.04477 18.6039i 0.199616 0.614354i
\(918\) 0 0
\(919\) 38.8532 + 28.2285i 1.28165 + 0.931171i 0.999601 0.0282295i \(-0.00898692\pi\)
0.282046 + 0.959401i \(0.408987\pi\)
\(920\) 0 0
\(921\) 10.6627 + 32.8166i 0.351349 + 1.08134i
\(922\) 0 0
\(923\) 0.642546 0.0211496
\(924\) 0 0
\(925\) 15.1951 0.499613
\(926\) 0 0
\(927\) 0.310949 + 0.957003i 0.0102129 + 0.0314321i
\(928\) 0 0
\(929\) 4.95356 + 3.59897i 0.162521 + 0.118078i 0.666073 0.745886i \(-0.267974\pi\)
−0.503552 + 0.863965i \(0.667974\pi\)
\(930\) 0 0
\(931\) −2.26664 + 6.97601i −0.0742863 + 0.228630i
\(932\) 0 0
\(933\) 5.54804 4.03089i 0.181635 0.131965i
\(934\) 0 0
\(935\) −10.4927 + 31.0622i −0.343147 + 1.01584i
\(936\) 0 0
\(937\) 32.2497 23.4308i 1.05355 0.765450i 0.0806672 0.996741i \(-0.474295\pi\)
0.972885 + 0.231291i \(0.0742949\pi\)
\(938\) 0 0
\(939\) −10.1796 + 31.3295i −0.332198 + 1.02240i
\(940\) 0 0
\(941\) −0.638752 0.464081i −0.0208227 0.0151286i 0.577325 0.816514i \(-0.304096\pi\)
−0.598148 + 0.801386i \(0.704096\pi\)
\(942\) 0 0
\(943\) −7.56067 23.2694i −0.246209 0.757754i
\(944\) 0 0
\(945\) −0.835396 −0.0271754
\(946\) 0 0
\(947\) 32.7556 1.06441 0.532206 0.846615i \(-0.321363\pi\)
0.532206 + 0.846615i \(0.321363\pi\)
\(948\) 0 0
\(949\) 27.1910 + 83.6852i 0.882656 + 2.71654i
\(950\) 0 0
\(951\) 21.0659 + 15.3053i 0.683109 + 0.496308i
\(952\) 0 0
\(953\) −0.989526 + 3.04545i −0.0320539 + 0.0986518i −0.965803 0.259275i \(-0.916516\pi\)
0.933750 + 0.357927i \(0.116516\pi\)
\(954\) 0 0
\(955\) −5.78424 + 4.20250i −0.187174 + 0.135990i
\(956\) 0 0
\(957\) −26.4448 19.6861i −0.854840 0.636360i
\(958\) 0 0
\(959\) −1.64110 + 1.19233i −0.0529940 + 0.0385024i
\(960\) 0 0
\(961\) 2.17869 6.70532i 0.0702803 0.216301i
\(962\) 0 0
\(963\) 39.9610 + 29.0333i 1.28772 + 0.935587i
\(964\) 0 0
\(965\) 5.78350 + 17.7998i 0.186177 + 0.572995i
\(966\) 0 0
\(967\) −46.4013 −1.49217 −0.746083 0.665853i \(-0.768068\pi\)
−0.746083 + 0.665853i \(0.768068\pi\)
\(968\) 0 0
\(969\) 97.0118 3.11647
\(970\) 0 0
\(971\) 15.2213 + 46.8463i 0.488474 + 1.50337i 0.826885 + 0.562371i \(0.190111\pi\)
−0.338411 + 0.940999i \(0.609889\pi\)
\(972\) 0 0
\(973\) 7.24078 + 5.26074i 0.232129 + 0.168651i
\(974\) 0 0
\(975\) −7.47086 + 22.9930i −0.239259 + 0.736364i
\(976\) 0 0
\(977\) 17.5794 12.7722i 0.562414 0.408618i −0.269927 0.962881i \(-0.587000\pi\)
0.832342 + 0.554263i \(0.187000\pi\)
\(978\) 0 0
\(979\) 37.8901 + 28.2061i 1.21097 + 0.901472i
\(980\) 0 0
\(981\) 2.52543 1.83483i 0.0806307 0.0585816i
\(982\) 0 0
\(983\) 3.10432 9.55410i 0.0990123 0.304729i −0.889266 0.457390i \(-0.848784\pi\)
0.988279 + 0.152661i \(0.0487844\pi\)
\(984\) 0 0
\(985\) −8.66165 6.29305i −0.275983 0.200513i
\(986\) 0 0
\(987\) −0.109812 0.337965i −0.00349534 0.0107575i
\(988\) 0 0
\(989\) −9.55930 −0.303968
\(990\) 0 0
\(991\) 15.7681 0.500889 0.250444 0.968131i \(-0.419423\pi\)
0.250444 + 0.968131i \(0.419423\pi\)
\(992\) 0 0
\(993\) −19.2685 59.3025i −0.611469 1.88191i
\(994\) 0 0
\(995\) 17.7188 + 12.8735i 0.561724 + 0.408117i
\(996\) 0 0
\(997\) −6.45712 + 19.8730i −0.204499 + 0.629384i 0.795234 + 0.606302i \(0.207348\pi\)
−0.999734 + 0.0230817i \(0.992652\pi\)
\(998\) 0 0
\(999\) 3.57248 2.59556i 0.113028 0.0821199i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 616.2.r.d.113.4 16
11.2 odd 10 6776.2.a.bk.1.7 8
11.4 even 5 inner 616.2.r.d.169.4 yes 16
11.9 even 5 6776.2.a.bl.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
616.2.r.d.113.4 16 1.1 even 1 trivial
616.2.r.d.169.4 yes 16 11.4 even 5 inner
6776.2.a.bk.1.7 8 11.2 odd 10
6776.2.a.bl.1.7 8 11.9 even 5