Properties

Label 616.4.a.d.1.2
Level $616$
Weight $4$
Character 616.1
Self dual yes
Analytic conductor $36.345$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [616,4,Mod(1,616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(616, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("616.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 616 = 2^{3} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 616.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.3451765635\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 616.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.70820 q^{3} +0.763932 q^{5} -7.00000 q^{7} +5.58359 q^{9} -11.0000 q^{11} -60.6525 q^{13} +4.36068 q^{15} +36.2229 q^{17} +47.7082 q^{19} -39.9574 q^{21} -186.387 q^{23} -124.416 q^{25} -122.249 q^{27} +27.2523 q^{29} +156.079 q^{31} -62.7902 q^{33} -5.34752 q^{35} -302.721 q^{37} -346.217 q^{39} -73.2724 q^{41} -43.9675 q^{43} +4.26548 q^{45} -112.197 q^{47} +49.0000 q^{49} +206.768 q^{51} +264.249 q^{53} -8.40325 q^{55} +272.328 q^{57} -339.872 q^{59} -557.459 q^{61} -39.0851 q^{63} -46.3344 q^{65} +926.906 q^{67} -1063.93 q^{69} -78.7601 q^{71} -668.689 q^{73} -710.194 q^{75} +77.0000 q^{77} -1218.72 q^{79} -848.580 q^{81} +1006.86 q^{83} +27.6718 q^{85} +155.562 q^{87} +1146.42 q^{89} +424.567 q^{91} +890.930 q^{93} +36.4458 q^{95} +657.299 q^{97} -61.4195 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 6 q^{5} - 14 q^{7} + 38 q^{9} - 22 q^{11} - 90 q^{13} - 36 q^{15} + 144 q^{17} + 82 q^{19} + 14 q^{21} - 176 q^{23} - 222 q^{25} - 164 q^{27} + 296 q^{29} - 144 q^{31} + 22 q^{33} - 42 q^{35}+ \cdots - 418 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.70820 1.09854 0.549272 0.835644i \(-0.314905\pi\)
0.549272 + 0.835644i \(0.314905\pi\)
\(4\) 0 0
\(5\) 0.763932 0.0683282 0.0341641 0.999416i \(-0.489123\pi\)
0.0341641 + 0.999416i \(0.489123\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 5.58359 0.206800
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) −60.6525 −1.29400 −0.646999 0.762491i \(-0.723976\pi\)
−0.646999 + 0.762491i \(0.723976\pi\)
\(14\) 0 0
\(15\) 4.36068 0.0750615
\(16\) 0 0
\(17\) 36.2229 0.516785 0.258393 0.966040i \(-0.416807\pi\)
0.258393 + 0.966040i \(0.416807\pi\)
\(18\) 0 0
\(19\) 47.7082 0.576053 0.288027 0.957622i \(-0.407001\pi\)
0.288027 + 0.957622i \(0.407001\pi\)
\(20\) 0 0
\(21\) −39.9574 −0.415211
\(22\) 0 0
\(23\) −186.387 −1.68976 −0.844878 0.534960i \(-0.820327\pi\)
−0.844878 + 0.534960i \(0.820327\pi\)
\(24\) 0 0
\(25\) −124.416 −0.995331
\(26\) 0 0
\(27\) −122.249 −0.871366
\(28\) 0 0
\(29\) 27.2523 0.174504 0.0872522 0.996186i \(-0.472191\pi\)
0.0872522 + 0.996186i \(0.472191\pi\)
\(30\) 0 0
\(31\) 156.079 0.904278 0.452139 0.891948i \(-0.350661\pi\)
0.452139 + 0.891948i \(0.350661\pi\)
\(32\) 0 0
\(33\) −62.7902 −0.331224
\(34\) 0 0
\(35\) −5.34752 −0.0258256
\(36\) 0 0
\(37\) −302.721 −1.34506 −0.672528 0.740072i \(-0.734792\pi\)
−0.672528 + 0.740072i \(0.734792\pi\)
\(38\) 0 0
\(39\) −346.217 −1.42151
\(40\) 0 0
\(41\) −73.2724 −0.279103 −0.139552 0.990215i \(-0.544566\pi\)
−0.139552 + 0.990215i \(0.544566\pi\)
\(42\) 0 0
\(43\) −43.9675 −0.155930 −0.0779649 0.996956i \(-0.524842\pi\)
−0.0779649 + 0.996956i \(0.524842\pi\)
\(44\) 0 0
\(45\) 4.26548 0.0141302
\(46\) 0 0
\(47\) −112.197 −0.348203 −0.174102 0.984728i \(-0.555702\pi\)
−0.174102 + 0.984728i \(0.555702\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 206.768 0.567711
\(52\) 0 0
\(53\) 264.249 0.684857 0.342429 0.939544i \(-0.388751\pi\)
0.342429 + 0.939544i \(0.388751\pi\)
\(54\) 0 0
\(55\) −8.40325 −0.0206017
\(56\) 0 0
\(57\) 272.328 0.632820
\(58\) 0 0
\(59\) −339.872 −0.749959 −0.374980 0.927033i \(-0.622350\pi\)
−0.374980 + 0.927033i \(0.622350\pi\)
\(60\) 0 0
\(61\) −557.459 −1.17009 −0.585044 0.811002i \(-0.698923\pi\)
−0.585044 + 0.811002i \(0.698923\pi\)
\(62\) 0 0
\(63\) −39.0851 −0.0781629
\(64\) 0 0
\(65\) −46.3344 −0.0884165
\(66\) 0 0
\(67\) 926.906 1.69014 0.845071 0.534654i \(-0.179558\pi\)
0.845071 + 0.534654i \(0.179558\pi\)
\(68\) 0 0
\(69\) −1063.93 −1.85627
\(70\) 0 0
\(71\) −78.7601 −0.131649 −0.0658247 0.997831i \(-0.520968\pi\)
−0.0658247 + 0.997831i \(0.520968\pi\)
\(72\) 0 0
\(73\) −668.689 −1.07211 −0.536056 0.844183i \(-0.680086\pi\)
−0.536056 + 0.844183i \(0.680086\pi\)
\(74\) 0 0
\(75\) −710.194 −1.09342
\(76\) 0 0
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) −1218.72 −1.73565 −0.867824 0.496872i \(-0.834482\pi\)
−0.867824 + 0.496872i \(0.834482\pi\)
\(80\) 0 0
\(81\) −848.580 −1.16403
\(82\) 0 0
\(83\) 1006.86 1.33153 0.665764 0.746162i \(-0.268106\pi\)
0.665764 + 0.746162i \(0.268106\pi\)
\(84\) 0 0
\(85\) 27.6718 0.0353110
\(86\) 0 0
\(87\) 155.562 0.191701
\(88\) 0 0
\(89\) 1146.42 1.36540 0.682699 0.730700i \(-0.260806\pi\)
0.682699 + 0.730700i \(0.260806\pi\)
\(90\) 0 0
\(91\) 424.567 0.489085
\(92\) 0 0
\(93\) 890.930 0.993389
\(94\) 0 0
\(95\) 36.4458 0.0393607
\(96\) 0 0
\(97\) 657.299 0.688027 0.344013 0.938965i \(-0.388213\pi\)
0.344013 + 0.938965i \(0.388213\pi\)
\(98\) 0 0
\(99\) −61.4195 −0.0623525
\(100\) 0 0
\(101\) 398.306 0.392405 0.196202 0.980563i \(-0.437139\pi\)
0.196202 + 0.980563i \(0.437139\pi\)
\(102\) 0 0
\(103\) 1927.16 1.84358 0.921791 0.387687i \(-0.126726\pi\)
0.921791 + 0.387687i \(0.126726\pi\)
\(104\) 0 0
\(105\) −30.5248 −0.0283706
\(106\) 0 0
\(107\) −1783.72 −1.61158 −0.805788 0.592204i \(-0.798258\pi\)
−0.805788 + 0.592204i \(0.798258\pi\)
\(108\) 0 0
\(109\) −172.570 −0.151644 −0.0758219 0.997121i \(-0.524158\pi\)
−0.0758219 + 0.997121i \(0.524158\pi\)
\(110\) 0 0
\(111\) −1728.00 −1.47760
\(112\) 0 0
\(113\) 50.1502 0.0417498 0.0208749 0.999782i \(-0.493355\pi\)
0.0208749 + 0.999782i \(0.493355\pi\)
\(114\) 0 0
\(115\) −142.387 −0.115458
\(116\) 0 0
\(117\) −338.659 −0.267598
\(118\) 0 0
\(119\) −253.560 −0.195326
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) −418.254 −0.306607
\(124\) 0 0
\(125\) −190.537 −0.136337
\(126\) 0 0
\(127\) −2143.92 −1.49797 −0.748986 0.662586i \(-0.769459\pi\)
−0.748986 + 0.662586i \(0.769459\pi\)
\(128\) 0 0
\(129\) −250.975 −0.171296
\(130\) 0 0
\(131\) −1351.35 −0.901281 −0.450640 0.892706i \(-0.648804\pi\)
−0.450640 + 0.892706i \(0.648804\pi\)
\(132\) 0 0
\(133\) −333.957 −0.217728
\(134\) 0 0
\(135\) −93.3901 −0.0595388
\(136\) 0 0
\(137\) 1732.64 1.08051 0.540253 0.841503i \(-0.318329\pi\)
0.540253 + 0.841503i \(0.318329\pi\)
\(138\) 0 0
\(139\) −2803.08 −1.71046 −0.855231 0.518248i \(-0.826585\pi\)
−0.855231 + 0.518248i \(0.826585\pi\)
\(140\) 0 0
\(141\) −640.441 −0.382517
\(142\) 0 0
\(143\) 667.177 0.390155
\(144\) 0 0
\(145\) 20.8189 0.0119236
\(146\) 0 0
\(147\) 279.702 0.156935
\(148\) 0 0
\(149\) −170.271 −0.0936183 −0.0468091 0.998904i \(-0.514905\pi\)
−0.0468091 + 0.998904i \(0.514905\pi\)
\(150\) 0 0
\(151\) −1685.42 −0.908327 −0.454163 0.890918i \(-0.650062\pi\)
−0.454163 + 0.890918i \(0.650062\pi\)
\(152\) 0 0
\(153\) 202.254 0.106871
\(154\) 0 0
\(155\) 119.234 0.0617876
\(156\) 0 0
\(157\) 663.459 0.337260 0.168630 0.985679i \(-0.446066\pi\)
0.168630 + 0.985679i \(0.446066\pi\)
\(158\) 0 0
\(159\) 1508.39 0.752346
\(160\) 0 0
\(161\) 1304.71 0.638668
\(162\) 0 0
\(163\) −334.906 −0.160931 −0.0804657 0.996757i \(-0.525641\pi\)
−0.0804657 + 0.996757i \(0.525641\pi\)
\(164\) 0 0
\(165\) −47.9675 −0.0226319
\(166\) 0 0
\(167\) −1724.13 −0.798903 −0.399452 0.916754i \(-0.630799\pi\)
−0.399452 + 0.916754i \(0.630799\pi\)
\(168\) 0 0
\(169\) 1481.72 0.674430
\(170\) 0 0
\(171\) 266.383 0.119128
\(172\) 0 0
\(173\) 119.044 0.0523166 0.0261583 0.999658i \(-0.491673\pi\)
0.0261583 + 0.999658i \(0.491673\pi\)
\(174\) 0 0
\(175\) 870.915 0.376200
\(176\) 0 0
\(177\) −1940.06 −0.823864
\(178\) 0 0
\(179\) −4589.64 −1.91646 −0.958229 0.286001i \(-0.907674\pi\)
−0.958229 + 0.286001i \(0.907674\pi\)
\(180\) 0 0
\(181\) 2645.91 1.08657 0.543285 0.839548i \(-0.317180\pi\)
0.543285 + 0.839548i \(0.317180\pi\)
\(182\) 0 0
\(183\) −3182.09 −1.28539
\(184\) 0 0
\(185\) −231.259 −0.0919052
\(186\) 0 0
\(187\) −398.452 −0.155817
\(188\) 0 0
\(189\) 855.745 0.329345
\(190\) 0 0
\(191\) 794.404 0.300948 0.150474 0.988614i \(-0.451920\pi\)
0.150474 + 0.988614i \(0.451920\pi\)
\(192\) 0 0
\(193\) 4888.02 1.82305 0.911523 0.411250i \(-0.134908\pi\)
0.911523 + 0.411250i \(0.134908\pi\)
\(194\) 0 0
\(195\) −264.486 −0.0971294
\(196\) 0 0
\(197\) −2962.03 −1.07125 −0.535624 0.844457i \(-0.679923\pi\)
−0.535624 + 0.844457i \(0.679923\pi\)
\(198\) 0 0
\(199\) 1649.76 0.587679 0.293840 0.955855i \(-0.405067\pi\)
0.293840 + 0.955855i \(0.405067\pi\)
\(200\) 0 0
\(201\) 5290.97 1.85670
\(202\) 0 0
\(203\) −190.766 −0.0659565
\(204\) 0 0
\(205\) −55.9752 −0.0190706
\(206\) 0 0
\(207\) −1040.71 −0.349441
\(208\) 0 0
\(209\) −524.790 −0.173687
\(210\) 0 0
\(211\) 3304.44 1.07814 0.539069 0.842262i \(-0.318776\pi\)
0.539069 + 0.842262i \(0.318776\pi\)
\(212\) 0 0
\(213\) −449.579 −0.144623
\(214\) 0 0
\(215\) −33.5882 −0.0106544
\(216\) 0 0
\(217\) −1092.55 −0.341785
\(218\) 0 0
\(219\) −3817.01 −1.17776
\(220\) 0 0
\(221\) −2197.01 −0.668719
\(222\) 0 0
\(223\) −998.421 −0.299817 −0.149909 0.988700i \(-0.547898\pi\)
−0.149909 + 0.988700i \(0.547898\pi\)
\(224\) 0 0
\(225\) −694.690 −0.205834
\(226\) 0 0
\(227\) 3490.81 1.02067 0.510337 0.859974i \(-0.329521\pi\)
0.510337 + 0.859974i \(0.329521\pi\)
\(228\) 0 0
\(229\) 1228.13 0.354398 0.177199 0.984175i \(-0.443296\pi\)
0.177199 + 0.984175i \(0.443296\pi\)
\(230\) 0 0
\(231\) 439.532 0.125191
\(232\) 0 0
\(233\) 4361.81 1.22640 0.613201 0.789927i \(-0.289882\pi\)
0.613201 + 0.789927i \(0.289882\pi\)
\(234\) 0 0
\(235\) −85.7106 −0.0237921
\(236\) 0 0
\(237\) −6956.67 −1.90669
\(238\) 0 0
\(239\) 2804.52 0.759034 0.379517 0.925185i \(-0.376090\pi\)
0.379517 + 0.925185i \(0.376090\pi\)
\(240\) 0 0
\(241\) 4410.82 1.17895 0.589473 0.807788i \(-0.299336\pi\)
0.589473 + 0.807788i \(0.299336\pi\)
\(242\) 0 0
\(243\) −1543.14 −0.407377
\(244\) 0 0
\(245\) 37.4327 0.00976117
\(246\) 0 0
\(247\) −2893.62 −0.745412
\(248\) 0 0
\(249\) 5747.34 1.46274
\(250\) 0 0
\(251\) −183.800 −0.0462204 −0.0231102 0.999733i \(-0.507357\pi\)
−0.0231102 + 0.999733i \(0.507357\pi\)
\(252\) 0 0
\(253\) 2050.26 0.509480
\(254\) 0 0
\(255\) 157.957 0.0387907
\(256\) 0 0
\(257\) 3718.53 0.902550 0.451275 0.892385i \(-0.350969\pi\)
0.451275 + 0.892385i \(0.350969\pi\)
\(258\) 0 0
\(259\) 2119.05 0.508384
\(260\) 0 0
\(261\) 152.166 0.0360875
\(262\) 0 0
\(263\) −2361.30 −0.553627 −0.276813 0.960924i \(-0.589278\pi\)
−0.276813 + 0.960924i \(0.589278\pi\)
\(264\) 0 0
\(265\) 201.868 0.0467950
\(266\) 0 0
\(267\) 6544.00 1.49995
\(268\) 0 0
\(269\) 2676.42 0.606633 0.303317 0.952890i \(-0.401906\pi\)
0.303317 + 0.952890i \(0.401906\pi\)
\(270\) 0 0
\(271\) −4672.14 −1.04728 −0.523639 0.851940i \(-0.675426\pi\)
−0.523639 + 0.851940i \(0.675426\pi\)
\(272\) 0 0
\(273\) 2423.52 0.537282
\(274\) 0 0
\(275\) 1368.58 0.300104
\(276\) 0 0
\(277\) 8630.05 1.87195 0.935974 0.352070i \(-0.114522\pi\)
0.935974 + 0.352070i \(0.114522\pi\)
\(278\) 0 0
\(279\) 871.481 0.187004
\(280\) 0 0
\(281\) −1533.41 −0.325536 −0.162768 0.986664i \(-0.552042\pi\)
−0.162768 + 0.986664i \(0.552042\pi\)
\(282\) 0 0
\(283\) −3075.10 −0.645921 −0.322961 0.946412i \(-0.604678\pi\)
−0.322961 + 0.946412i \(0.604678\pi\)
\(284\) 0 0
\(285\) 208.040 0.0432394
\(286\) 0 0
\(287\) 512.907 0.105491
\(288\) 0 0
\(289\) −3600.90 −0.732933
\(290\) 0 0
\(291\) 3752.00 0.755828
\(292\) 0 0
\(293\) −6705.90 −1.33707 −0.668537 0.743679i \(-0.733079\pi\)
−0.668537 + 0.743679i \(0.733079\pi\)
\(294\) 0 0
\(295\) −259.639 −0.0512433
\(296\) 0 0
\(297\) 1344.74 0.262727
\(298\) 0 0
\(299\) 11304.8 2.18654
\(300\) 0 0
\(301\) 307.772 0.0589359
\(302\) 0 0
\(303\) 2273.61 0.431074
\(304\) 0 0
\(305\) −425.861 −0.0799499
\(306\) 0 0
\(307\) 8182.05 1.52109 0.760544 0.649286i \(-0.224932\pi\)
0.760544 + 0.649286i \(0.224932\pi\)
\(308\) 0 0
\(309\) 11000.6 2.02526
\(310\) 0 0
\(311\) −6563.79 −1.19678 −0.598389 0.801205i \(-0.704192\pi\)
−0.598389 + 0.801205i \(0.704192\pi\)
\(312\) 0 0
\(313\) 6609.11 1.19351 0.596755 0.802423i \(-0.296456\pi\)
0.596755 + 0.802423i \(0.296456\pi\)
\(314\) 0 0
\(315\) −29.8584 −0.00534073
\(316\) 0 0
\(317\) 3777.95 0.669371 0.334686 0.942330i \(-0.391370\pi\)
0.334686 + 0.942330i \(0.391370\pi\)
\(318\) 0 0
\(319\) −299.776 −0.0526151
\(320\) 0 0
\(321\) −10181.8 −1.77039
\(322\) 0 0
\(323\) 1728.13 0.297696
\(324\) 0 0
\(325\) 7546.16 1.28796
\(326\) 0 0
\(327\) −985.063 −0.166587
\(328\) 0 0
\(329\) 785.376 0.131608
\(330\) 0 0
\(331\) 1059.15 0.175879 0.0879397 0.996126i \(-0.471972\pi\)
0.0879397 + 0.996126i \(0.471972\pi\)
\(332\) 0 0
\(333\) −1690.27 −0.278157
\(334\) 0 0
\(335\) 708.093 0.115484
\(336\) 0 0
\(337\) −583.077 −0.0942500 −0.0471250 0.998889i \(-0.515006\pi\)
−0.0471250 + 0.998889i \(0.515006\pi\)
\(338\) 0 0
\(339\) 286.268 0.0458641
\(340\) 0 0
\(341\) −1716.87 −0.272650
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −812.774 −0.126836
\(346\) 0 0
\(347\) 993.813 0.153748 0.0768742 0.997041i \(-0.475506\pi\)
0.0768742 + 0.997041i \(0.475506\pi\)
\(348\) 0 0
\(349\) −6624.74 −1.01609 −0.508043 0.861332i \(-0.669631\pi\)
−0.508043 + 0.861332i \(0.669631\pi\)
\(350\) 0 0
\(351\) 7414.72 1.12755
\(352\) 0 0
\(353\) −1136.14 −0.171305 −0.0856524 0.996325i \(-0.527297\pi\)
−0.0856524 + 0.996325i \(0.527297\pi\)
\(354\) 0 0
\(355\) −60.1674 −0.00899536
\(356\) 0 0
\(357\) −1447.37 −0.214575
\(358\) 0 0
\(359\) 5362.89 0.788419 0.394210 0.919021i \(-0.371018\pi\)
0.394210 + 0.919021i \(0.371018\pi\)
\(360\) 0 0
\(361\) −4582.93 −0.668163
\(362\) 0 0
\(363\) 690.693 0.0998677
\(364\) 0 0
\(365\) −510.833 −0.0732554
\(366\) 0 0
\(367\) 11782.1 1.67581 0.837904 0.545818i \(-0.183781\pi\)
0.837904 + 0.545818i \(0.183781\pi\)
\(368\) 0 0
\(369\) −409.123 −0.0577185
\(370\) 0 0
\(371\) −1849.74 −0.258852
\(372\) 0 0
\(373\) −5670.15 −0.787103 −0.393551 0.919303i \(-0.628754\pi\)
−0.393551 + 0.919303i \(0.628754\pi\)
\(374\) 0 0
\(375\) −1087.63 −0.149773
\(376\) 0 0
\(377\) −1652.92 −0.225808
\(378\) 0 0
\(379\) 4988.40 0.676087 0.338043 0.941131i \(-0.390235\pi\)
0.338043 + 0.941131i \(0.390235\pi\)
\(380\) 0 0
\(381\) −12237.9 −1.64559
\(382\) 0 0
\(383\) −6793.64 −0.906368 −0.453184 0.891417i \(-0.649712\pi\)
−0.453184 + 0.891417i \(0.649712\pi\)
\(384\) 0 0
\(385\) 58.8228 0.00778672
\(386\) 0 0
\(387\) −245.496 −0.0322462
\(388\) 0 0
\(389\) 6302.89 0.821515 0.410757 0.911745i \(-0.365264\pi\)
0.410757 + 0.911745i \(0.365264\pi\)
\(390\) 0 0
\(391\) −6751.48 −0.873240
\(392\) 0 0
\(393\) −7713.77 −0.990097
\(394\) 0 0
\(395\) −931.016 −0.118594
\(396\) 0 0
\(397\) 2970.47 0.375525 0.187762 0.982214i \(-0.439876\pi\)
0.187762 + 0.982214i \(0.439876\pi\)
\(398\) 0 0
\(399\) −1906.30 −0.239184
\(400\) 0 0
\(401\) 11810.8 1.47084 0.735418 0.677614i \(-0.236986\pi\)
0.735418 + 0.677614i \(0.236986\pi\)
\(402\) 0 0
\(403\) −9466.57 −1.17013
\(404\) 0 0
\(405\) −648.258 −0.0795363
\(406\) 0 0
\(407\) 3329.93 0.405550
\(408\) 0 0
\(409\) −6050.63 −0.731502 −0.365751 0.930713i \(-0.619188\pi\)
−0.365751 + 0.930713i \(0.619188\pi\)
\(410\) 0 0
\(411\) 9890.25 1.18698
\(412\) 0 0
\(413\) 2379.11 0.283458
\(414\) 0 0
\(415\) 769.170 0.0909809
\(416\) 0 0
\(417\) −16000.6 −1.87902
\(418\) 0 0
\(419\) −979.679 −0.114225 −0.0571127 0.998368i \(-0.518189\pi\)
−0.0571127 + 0.998368i \(0.518189\pi\)
\(420\) 0 0
\(421\) −4273.53 −0.494725 −0.247363 0.968923i \(-0.579564\pi\)
−0.247363 + 0.968923i \(0.579564\pi\)
\(422\) 0 0
\(423\) −626.460 −0.0720083
\(424\) 0 0
\(425\) −4506.72 −0.514372
\(426\) 0 0
\(427\) 3902.21 0.442251
\(428\) 0 0
\(429\) 3808.38 0.428603
\(430\) 0 0
\(431\) −11923.4 −1.33255 −0.666277 0.745704i \(-0.732113\pi\)
−0.666277 + 0.745704i \(0.732113\pi\)
\(432\) 0 0
\(433\) 2942.85 0.326615 0.163308 0.986575i \(-0.447784\pi\)
0.163308 + 0.986575i \(0.447784\pi\)
\(434\) 0 0
\(435\) 118.839 0.0130986
\(436\) 0 0
\(437\) −8892.19 −0.973389
\(438\) 0 0
\(439\) 9664.14 1.05067 0.525335 0.850895i \(-0.323940\pi\)
0.525335 + 0.850895i \(0.323940\pi\)
\(440\) 0 0
\(441\) 273.596 0.0295428
\(442\) 0 0
\(443\) −6781.33 −0.727293 −0.363647 0.931537i \(-0.618468\pi\)
−0.363647 + 0.931537i \(0.618468\pi\)
\(444\) 0 0
\(445\) 875.788 0.0932951
\(446\) 0 0
\(447\) −971.940 −0.102844
\(448\) 0 0
\(449\) −8117.32 −0.853184 −0.426592 0.904444i \(-0.640286\pi\)
−0.426592 + 0.904444i \(0.640286\pi\)
\(450\) 0 0
\(451\) 805.997 0.0841528
\(452\) 0 0
\(453\) −9620.71 −0.997837
\(454\) 0 0
\(455\) 324.341 0.0334183
\(456\) 0 0
\(457\) 12449.4 1.27431 0.637153 0.770737i \(-0.280112\pi\)
0.637153 + 0.770737i \(0.280112\pi\)
\(458\) 0 0
\(459\) −4428.22 −0.450309
\(460\) 0 0
\(461\) −12149.6 −1.22746 −0.613732 0.789514i \(-0.710333\pi\)
−0.613732 + 0.789514i \(0.710333\pi\)
\(462\) 0 0
\(463\) −15806.0 −1.58654 −0.793269 0.608871i \(-0.791623\pi\)
−0.793269 + 0.608871i \(0.791623\pi\)
\(464\) 0 0
\(465\) 680.610 0.0678764
\(466\) 0 0
\(467\) 5659.39 0.560783 0.280391 0.959886i \(-0.409536\pi\)
0.280391 + 0.959886i \(0.409536\pi\)
\(468\) 0 0
\(469\) −6488.34 −0.638814
\(470\) 0 0
\(471\) 3787.16 0.370495
\(472\) 0 0
\(473\) 483.642 0.0470146
\(474\) 0 0
\(475\) −5935.68 −0.573364
\(476\) 0 0
\(477\) 1475.46 0.141628
\(478\) 0 0
\(479\) −16251.4 −1.55020 −0.775101 0.631837i \(-0.782301\pi\)
−0.775101 + 0.631837i \(0.782301\pi\)
\(480\) 0 0
\(481\) 18360.8 1.74050
\(482\) 0 0
\(483\) 7447.54 0.701605
\(484\) 0 0
\(485\) 502.132 0.0470116
\(486\) 0 0
\(487\) −18908.5 −1.75939 −0.879696 0.475536i \(-0.842254\pi\)
−0.879696 + 0.475536i \(0.842254\pi\)
\(488\) 0 0
\(489\) −1911.71 −0.176790
\(490\) 0 0
\(491\) −46.7115 −0.00429340 −0.00214670 0.999998i \(-0.500683\pi\)
−0.00214670 + 0.999998i \(0.500683\pi\)
\(492\) 0 0
\(493\) 987.159 0.0901813
\(494\) 0 0
\(495\) −46.9203 −0.00426043
\(496\) 0 0
\(497\) 551.321 0.0497588
\(498\) 0 0
\(499\) 15520.5 1.39237 0.696183 0.717864i \(-0.254880\pi\)
0.696183 + 0.717864i \(0.254880\pi\)
\(500\) 0 0
\(501\) −9841.66 −0.877631
\(502\) 0 0
\(503\) −12124.3 −1.07474 −0.537369 0.843347i \(-0.680582\pi\)
−0.537369 + 0.843347i \(0.680582\pi\)
\(504\) 0 0
\(505\) 304.278 0.0268123
\(506\) 0 0
\(507\) 8457.98 0.740891
\(508\) 0 0
\(509\) −21982.8 −1.91429 −0.957143 0.289616i \(-0.906473\pi\)
−0.957143 + 0.289616i \(0.906473\pi\)
\(510\) 0 0
\(511\) 4680.82 0.405220
\(512\) 0 0
\(513\) −5832.29 −0.501953
\(514\) 0 0
\(515\) 1472.22 0.125969
\(516\) 0 0
\(517\) 1234.16 0.104987
\(518\) 0 0
\(519\) 679.529 0.0574721
\(520\) 0 0
\(521\) −20822.5 −1.75096 −0.875479 0.483257i \(-0.839454\pi\)
−0.875479 + 0.483257i \(0.839454\pi\)
\(522\) 0 0
\(523\) −9380.10 −0.784251 −0.392125 0.919912i \(-0.628260\pi\)
−0.392125 + 0.919912i \(0.628260\pi\)
\(524\) 0 0
\(525\) 4971.36 0.413272
\(526\) 0 0
\(527\) 5653.63 0.467317
\(528\) 0 0
\(529\) 22573.1 1.85527
\(530\) 0 0
\(531\) −1897.71 −0.155091
\(532\) 0 0
\(533\) 4444.15 0.361159
\(534\) 0 0
\(535\) −1362.64 −0.110116
\(536\) 0 0
\(537\) −26198.6 −2.10531
\(538\) 0 0
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) −1561.29 −0.124076 −0.0620382 0.998074i \(-0.519760\pi\)
−0.0620382 + 0.998074i \(0.519760\pi\)
\(542\) 0 0
\(543\) 15103.4 1.19365
\(544\) 0 0
\(545\) −131.832 −0.0103615
\(546\) 0 0
\(547\) 13736.3 1.07372 0.536859 0.843672i \(-0.319611\pi\)
0.536859 + 0.843672i \(0.319611\pi\)
\(548\) 0 0
\(549\) −3112.62 −0.241974
\(550\) 0 0
\(551\) 1300.16 0.100524
\(552\) 0 0
\(553\) 8531.01 0.656013
\(554\) 0 0
\(555\) −1320.07 −0.100962
\(556\) 0 0
\(557\) 15896.8 1.20928 0.604639 0.796499i \(-0.293317\pi\)
0.604639 + 0.796499i \(0.293317\pi\)
\(558\) 0 0
\(559\) 2666.74 0.201773
\(560\) 0 0
\(561\) −2274.45 −0.171171
\(562\) 0 0
\(563\) −3750.20 −0.280732 −0.140366 0.990100i \(-0.544828\pi\)
−0.140366 + 0.990100i \(0.544828\pi\)
\(564\) 0 0
\(565\) 38.3113 0.00285269
\(566\) 0 0
\(567\) 5940.06 0.439963
\(568\) 0 0
\(569\) 6212.45 0.457714 0.228857 0.973460i \(-0.426501\pi\)
0.228857 + 0.973460i \(0.426501\pi\)
\(570\) 0 0
\(571\) −9826.17 −0.720162 −0.360081 0.932921i \(-0.617251\pi\)
−0.360081 + 0.932921i \(0.617251\pi\)
\(572\) 0 0
\(573\) 4534.62 0.330605
\(574\) 0 0
\(575\) 23189.6 1.68187
\(576\) 0 0
\(577\) −16223.1 −1.17050 −0.585248 0.810854i \(-0.699003\pi\)
−0.585248 + 0.810854i \(0.699003\pi\)
\(578\) 0 0
\(579\) 27901.8 2.00270
\(580\) 0 0
\(581\) −7048.00 −0.503271
\(582\) 0 0
\(583\) −2906.74 −0.206492
\(584\) 0 0
\(585\) −258.712 −0.0182845
\(586\) 0 0
\(587\) −6898.95 −0.485094 −0.242547 0.970140i \(-0.577983\pi\)
−0.242547 + 0.970140i \(0.577983\pi\)
\(588\) 0 0
\(589\) 7446.25 0.520912
\(590\) 0 0
\(591\) −16907.9 −1.17681
\(592\) 0 0
\(593\) −17914.3 −1.24056 −0.620282 0.784379i \(-0.712982\pi\)
−0.620282 + 0.784379i \(0.712982\pi\)
\(594\) 0 0
\(595\) −193.703 −0.0133463
\(596\) 0 0
\(597\) 9417.15 0.645592
\(598\) 0 0
\(599\) −26256.9 −1.79103 −0.895517 0.445027i \(-0.853194\pi\)
−0.895517 + 0.445027i \(0.853194\pi\)
\(600\) 0 0
\(601\) −25416.8 −1.72508 −0.862538 0.505991i \(-0.831127\pi\)
−0.862538 + 0.505991i \(0.831127\pi\)
\(602\) 0 0
\(603\) 5175.46 0.349521
\(604\) 0 0
\(605\) 92.4358 0.00621165
\(606\) 0 0
\(607\) −11099.0 −0.742166 −0.371083 0.928600i \(-0.621013\pi\)
−0.371083 + 0.928600i \(0.621013\pi\)
\(608\) 0 0
\(609\) −1088.93 −0.0724561
\(610\) 0 0
\(611\) 6805.00 0.450574
\(612\) 0 0
\(613\) −8870.82 −0.584484 −0.292242 0.956344i \(-0.594401\pi\)
−0.292242 + 0.956344i \(0.594401\pi\)
\(614\) 0 0
\(615\) −319.518 −0.0209499
\(616\) 0 0
\(617\) −5428.99 −0.354235 −0.177117 0.984190i \(-0.556677\pi\)
−0.177117 + 0.984190i \(0.556677\pi\)
\(618\) 0 0
\(619\) 20949.9 1.36033 0.680167 0.733058i \(-0.261907\pi\)
0.680167 + 0.733058i \(0.261907\pi\)
\(620\) 0 0
\(621\) 22785.7 1.47239
\(622\) 0 0
\(623\) −8024.95 −0.516072
\(624\) 0 0
\(625\) 15406.5 0.986016
\(626\) 0 0
\(627\) −2995.61 −0.190802
\(628\) 0 0
\(629\) −10965.4 −0.695105
\(630\) 0 0
\(631\) 21743.8 1.37180 0.685900 0.727696i \(-0.259409\pi\)
0.685900 + 0.727696i \(0.259409\pi\)
\(632\) 0 0
\(633\) 18862.4 1.18438
\(634\) 0 0
\(635\) −1637.81 −0.102354
\(636\) 0 0
\(637\) −2971.97 −0.184857
\(638\) 0 0
\(639\) −439.764 −0.0272250
\(640\) 0 0
\(641\) −16087.6 −0.991299 −0.495650 0.868523i \(-0.665070\pi\)
−0.495650 + 0.868523i \(0.665070\pi\)
\(642\) 0 0
\(643\) −17284.9 −1.06011 −0.530055 0.847963i \(-0.677829\pi\)
−0.530055 + 0.847963i \(0.677829\pi\)
\(644\) 0 0
\(645\) −191.728 −0.0117043
\(646\) 0 0
\(647\) −18965.9 −1.15244 −0.576220 0.817295i \(-0.695473\pi\)
−0.576220 + 0.817295i \(0.695473\pi\)
\(648\) 0 0
\(649\) 3738.60 0.226121
\(650\) 0 0
\(651\) −6236.51 −0.375466
\(652\) 0 0
\(653\) 24866.7 1.49021 0.745105 0.666947i \(-0.232399\pi\)
0.745105 + 0.666947i \(0.232399\pi\)
\(654\) 0 0
\(655\) −1032.34 −0.0615829
\(656\) 0 0
\(657\) −3733.69 −0.221712
\(658\) 0 0
\(659\) −4941.55 −0.292102 −0.146051 0.989277i \(-0.546656\pi\)
−0.146051 + 0.989277i \(0.546656\pi\)
\(660\) 0 0
\(661\) −13734.2 −0.808166 −0.404083 0.914722i \(-0.632409\pi\)
−0.404083 + 0.914722i \(0.632409\pi\)
\(662\) 0 0
\(663\) −12541.0 −0.734617
\(664\) 0 0
\(665\) −255.121 −0.0148769
\(666\) 0 0
\(667\) −5079.48 −0.294870
\(668\) 0 0
\(669\) −5699.19 −0.329362
\(670\) 0 0
\(671\) 6132.05 0.352795
\(672\) 0 0
\(673\) 10123.4 0.579833 0.289916 0.957052i \(-0.406373\pi\)
0.289916 + 0.957052i \(0.406373\pi\)
\(674\) 0 0
\(675\) 15209.8 0.867298
\(676\) 0 0
\(677\) 20357.5 1.15569 0.577845 0.816147i \(-0.303894\pi\)
0.577845 + 0.816147i \(0.303894\pi\)
\(678\) 0 0
\(679\) −4601.09 −0.260050
\(680\) 0 0
\(681\) 19926.2 1.12126
\(682\) 0 0
\(683\) −32651.4 −1.82924 −0.914620 0.404314i \(-0.867510\pi\)
−0.914620 + 0.404314i \(0.867510\pi\)
\(684\) 0 0
\(685\) 1323.62 0.0738289
\(686\) 0 0
\(687\) 7010.42 0.389322
\(688\) 0 0
\(689\) −16027.4 −0.886203
\(690\) 0 0
\(691\) 24765.5 1.36342 0.681711 0.731621i \(-0.261236\pi\)
0.681711 + 0.731621i \(0.261236\pi\)
\(692\) 0 0
\(693\) 429.937 0.0235670
\(694\) 0 0
\(695\) −2141.36 −0.116873
\(696\) 0 0
\(697\) −2654.14 −0.144236
\(698\) 0 0
\(699\) 24898.1 1.34726
\(700\) 0 0
\(701\) −7358.42 −0.396467 −0.198234 0.980155i \(-0.563520\pi\)
−0.198234 + 0.980155i \(0.563520\pi\)
\(702\) 0 0
\(703\) −14442.3 −0.774824
\(704\) 0 0
\(705\) −489.253 −0.0261367
\(706\) 0 0
\(707\) −2788.14 −0.148315
\(708\) 0 0
\(709\) 27601.6 1.46206 0.731030 0.682345i \(-0.239040\pi\)
0.731030 + 0.682345i \(0.239040\pi\)
\(710\) 0 0
\(711\) −6804.81 −0.358931
\(712\) 0 0
\(713\) −29091.1 −1.52801
\(714\) 0 0
\(715\) 509.678 0.0266586
\(716\) 0 0
\(717\) 16008.8 0.833832
\(718\) 0 0
\(719\) −16126.4 −0.836459 −0.418229 0.908341i \(-0.637349\pi\)
−0.418229 + 0.908341i \(0.637349\pi\)
\(720\) 0 0
\(721\) −13490.1 −0.696809
\(722\) 0 0
\(723\) 25177.9 1.29512
\(724\) 0 0
\(725\) −3390.64 −0.173690
\(726\) 0 0
\(727\) −5873.33 −0.299628 −0.149814 0.988714i \(-0.547868\pi\)
−0.149814 + 0.988714i \(0.547868\pi\)
\(728\) 0 0
\(729\) 14103.1 0.716512
\(730\) 0 0
\(731\) −1592.63 −0.0805821
\(732\) 0 0
\(733\) −20612.5 −1.03866 −0.519332 0.854573i \(-0.673819\pi\)
−0.519332 + 0.854573i \(0.673819\pi\)
\(734\) 0 0
\(735\) 213.673 0.0107231
\(736\) 0 0
\(737\) −10196.0 −0.509597
\(738\) 0 0
\(739\) 5091.41 0.253438 0.126719 0.991939i \(-0.459555\pi\)
0.126719 + 0.991939i \(0.459555\pi\)
\(740\) 0 0
\(741\) −16517.4 −0.818868
\(742\) 0 0
\(743\) 20493.0 1.01186 0.505931 0.862574i \(-0.331149\pi\)
0.505931 + 0.862574i \(0.331149\pi\)
\(744\) 0 0
\(745\) −130.075 −0.00639677
\(746\) 0 0
\(747\) 5621.88 0.275360
\(748\) 0 0
\(749\) 12486.0 0.609119
\(750\) 0 0
\(751\) 2488.12 0.120896 0.0604479 0.998171i \(-0.480747\pi\)
0.0604479 + 0.998171i \(0.480747\pi\)
\(752\) 0 0
\(753\) −1049.17 −0.0507752
\(754\) 0 0
\(755\) −1287.54 −0.0620643
\(756\) 0 0
\(757\) 7386.41 0.354642 0.177321 0.984153i \(-0.443257\pi\)
0.177321 + 0.984153i \(0.443257\pi\)
\(758\) 0 0
\(759\) 11703.3 0.559687
\(760\) 0 0
\(761\) −22577.9 −1.07549 −0.537746 0.843107i \(-0.680724\pi\)
−0.537746 + 0.843107i \(0.680724\pi\)
\(762\) 0 0
\(763\) 1207.99 0.0573160
\(764\) 0 0
\(765\) 154.508 0.00730230
\(766\) 0 0
\(767\) 20614.1 0.970446
\(768\) 0 0
\(769\) −23886.7 −1.12012 −0.560062 0.828451i \(-0.689223\pi\)
−0.560062 + 0.828451i \(0.689223\pi\)
\(770\) 0 0
\(771\) 21226.1 0.991492
\(772\) 0 0
\(773\) 5087.32 0.236712 0.118356 0.992971i \(-0.462238\pi\)
0.118356 + 0.992971i \(0.462238\pi\)
\(774\) 0 0
\(775\) −19418.8 −0.900056
\(776\) 0 0
\(777\) 12096.0 0.558482
\(778\) 0 0
\(779\) −3495.70 −0.160778
\(780\) 0 0
\(781\) 866.361 0.0396938
\(782\) 0 0
\(783\) −3331.58 −0.152057
\(784\) 0 0
\(785\) 506.838 0.0230443
\(786\) 0 0
\(787\) 3776.28 0.171042 0.0855209 0.996336i \(-0.472745\pi\)
0.0855209 + 0.996336i \(0.472745\pi\)
\(788\) 0 0
\(789\) −13478.8 −0.608184
\(790\) 0 0
\(791\) −351.051 −0.0157800
\(792\) 0 0
\(793\) 33811.3 1.51409
\(794\) 0 0
\(795\) 1152.31 0.0514064
\(796\) 0 0
\(797\) 1500.95 0.0667083 0.0333542 0.999444i \(-0.489381\pi\)
0.0333542 + 0.999444i \(0.489381\pi\)
\(798\) 0 0
\(799\) −4064.09 −0.179946
\(800\) 0 0
\(801\) 6401.15 0.282364
\(802\) 0 0
\(803\) 7355.58 0.323254
\(804\) 0 0
\(805\) 996.709 0.0436390
\(806\) 0 0
\(807\) 15277.6 0.666413
\(808\) 0 0
\(809\) 3940.35 0.171243 0.0856213 0.996328i \(-0.472712\pi\)
0.0856213 + 0.996328i \(0.472712\pi\)
\(810\) 0 0
\(811\) 17138.0 0.742044 0.371022 0.928624i \(-0.379008\pi\)
0.371022 + 0.928624i \(0.379008\pi\)
\(812\) 0 0
\(813\) −26669.5 −1.15048
\(814\) 0 0
\(815\) −255.845 −0.0109961
\(816\) 0 0
\(817\) −2097.61 −0.0898238
\(818\) 0 0
\(819\) 2370.61 0.101143
\(820\) 0 0
\(821\) −6162.19 −0.261951 −0.130976 0.991386i \(-0.541811\pi\)
−0.130976 + 0.991386i \(0.541811\pi\)
\(822\) 0 0
\(823\) −44961.7 −1.90433 −0.952166 0.305581i \(-0.901149\pi\)
−0.952166 + 0.305581i \(0.901149\pi\)
\(824\) 0 0
\(825\) 7812.14 0.329677
\(826\) 0 0
\(827\) −23796.0 −1.00057 −0.500283 0.865862i \(-0.666771\pi\)
−0.500283 + 0.865862i \(0.666771\pi\)
\(828\) 0 0
\(829\) 5578.25 0.233704 0.116852 0.993149i \(-0.462720\pi\)
0.116852 + 0.993149i \(0.462720\pi\)
\(830\) 0 0
\(831\) 49262.1 2.05642
\(832\) 0 0
\(833\) 1774.92 0.0738264
\(834\) 0 0
\(835\) −1317.11 −0.0545876
\(836\) 0 0
\(837\) −19080.5 −0.787956
\(838\) 0 0
\(839\) 1184.55 0.0487427 0.0243713 0.999703i \(-0.492242\pi\)
0.0243713 + 0.999703i \(0.492242\pi\)
\(840\) 0 0
\(841\) −23646.3 −0.969548
\(842\) 0 0
\(843\) −8753.03 −0.357616
\(844\) 0 0
\(845\) 1131.94 0.0460826
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 0 0
\(849\) −17553.3 −0.709573
\(850\) 0 0
\(851\) 56423.3 2.27282
\(852\) 0 0
\(853\) −3979.23 −0.159726 −0.0798630 0.996806i \(-0.525448\pi\)
−0.0798630 + 0.996806i \(0.525448\pi\)
\(854\) 0 0
\(855\) 203.499 0.00813977
\(856\) 0 0
\(857\) −23815.6 −0.949271 −0.474636 0.880182i \(-0.657420\pi\)
−0.474636 + 0.880182i \(0.657420\pi\)
\(858\) 0 0
\(859\) 41886.5 1.66374 0.831869 0.554973i \(-0.187271\pi\)
0.831869 + 0.554973i \(0.187271\pi\)
\(860\) 0 0
\(861\) 2927.78 0.115887
\(862\) 0 0
\(863\) −8287.00 −0.326875 −0.163437 0.986554i \(-0.552258\pi\)
−0.163437 + 0.986554i \(0.552258\pi\)
\(864\) 0 0
\(865\) 90.9417 0.00357469
\(866\) 0 0
\(867\) −20554.7 −0.805160
\(868\) 0 0
\(869\) 13405.9 0.523317
\(870\) 0 0
\(871\) −56219.1 −2.18704
\(872\) 0 0
\(873\) 3670.09 0.142284
\(874\) 0 0
\(875\) 1333.76 0.0515307
\(876\) 0 0
\(877\) 32181.9 1.23912 0.619559 0.784950i \(-0.287311\pi\)
0.619559 + 0.784950i \(0.287311\pi\)
\(878\) 0 0
\(879\) −38278.6 −1.46884
\(880\) 0 0
\(881\) 26654.6 1.01932 0.509658 0.860377i \(-0.329772\pi\)
0.509658 + 0.860377i \(0.329772\pi\)
\(882\) 0 0
\(883\) 8951.70 0.341165 0.170582 0.985343i \(-0.445435\pi\)
0.170582 + 0.985343i \(0.445435\pi\)
\(884\) 0 0
\(885\) −1482.07 −0.0562931
\(886\) 0 0
\(887\) 6233.31 0.235957 0.117979 0.993016i \(-0.462359\pi\)
0.117979 + 0.993016i \(0.462359\pi\)
\(888\) 0 0
\(889\) 15007.5 0.566180
\(890\) 0 0
\(891\) 9334.39 0.350969
\(892\) 0 0
\(893\) −5352.70 −0.200584
\(894\) 0 0
\(895\) −3506.18 −0.130948
\(896\) 0 0
\(897\) 64530.3 2.40201
\(898\) 0 0
\(899\) 4253.51 0.157801
\(900\) 0 0
\(901\) 9571.88 0.353924
\(902\) 0 0
\(903\) 1756.83 0.0647437
\(904\) 0 0
\(905\) 2021.30 0.0742434
\(906\) 0 0
\(907\) 15545.4 0.569104 0.284552 0.958661i \(-0.408155\pi\)
0.284552 + 0.958661i \(0.408155\pi\)
\(908\) 0 0
\(909\) 2223.98 0.0811492
\(910\) 0 0
\(911\) −12274.7 −0.446409 −0.223205 0.974772i \(-0.571652\pi\)
−0.223205 + 0.974772i \(0.571652\pi\)
\(912\) 0 0
\(913\) −11075.4 −0.401471
\(914\) 0 0
\(915\) −2430.90 −0.0878285
\(916\) 0 0
\(917\) 9459.43 0.340652
\(918\) 0 0
\(919\) 12058.6 0.432836 0.216418 0.976301i \(-0.430563\pi\)
0.216418 + 0.976301i \(0.430563\pi\)
\(920\) 0 0
\(921\) 46704.8 1.67098
\(922\) 0 0
\(923\) 4776.99 0.170354
\(924\) 0 0
\(925\) 37663.5 1.33878
\(926\) 0 0
\(927\) 10760.5 0.381252
\(928\) 0 0
\(929\) −29126.1 −1.02863 −0.514315 0.857601i \(-0.671954\pi\)
−0.514315 + 0.857601i \(0.671954\pi\)
\(930\) 0 0
\(931\) 2337.70 0.0822933
\(932\) 0 0
\(933\) −37467.4 −1.31471
\(934\) 0 0
\(935\) −304.390 −0.0106467
\(936\) 0 0
\(937\) −21291.5 −0.742331 −0.371165 0.928567i \(-0.621042\pi\)
−0.371165 + 0.928567i \(0.621042\pi\)
\(938\) 0 0
\(939\) 37726.1 1.31112
\(940\) 0 0
\(941\) 33899.2 1.17437 0.587184 0.809453i \(-0.300236\pi\)
0.587184 + 0.809453i \(0.300236\pi\)
\(942\) 0 0
\(943\) 13657.0 0.471616
\(944\) 0 0
\(945\) 653.731 0.0225036
\(946\) 0 0
\(947\) 3661.41 0.125639 0.0628194 0.998025i \(-0.479991\pi\)
0.0628194 + 0.998025i \(0.479991\pi\)
\(948\) 0 0
\(949\) 40557.6 1.38731
\(950\) 0 0
\(951\) 21565.3 0.735334
\(952\) 0 0
\(953\) −6827.41 −0.232069 −0.116034 0.993245i \(-0.537018\pi\)
−0.116034 + 0.993245i \(0.537018\pi\)
\(954\) 0 0
\(955\) 606.871 0.0205632
\(956\) 0 0
\(957\) −1711.18 −0.0578000
\(958\) 0 0
\(959\) −12128.5 −0.408393
\(960\) 0 0
\(961\) −5430.37 −0.182282
\(962\) 0 0
\(963\) −9959.56 −0.333274
\(964\) 0 0
\(965\) 3734.12 0.124565
\(966\) 0 0
\(967\) 18184.0 0.604714 0.302357 0.953195i \(-0.402226\pi\)
0.302357 + 0.953195i \(0.402226\pi\)
\(968\) 0 0
\(969\) 9864.52 0.327032
\(970\) 0 0
\(971\) −25014.6 −0.826731 −0.413366 0.910565i \(-0.635647\pi\)
−0.413366 + 0.910565i \(0.635647\pi\)
\(972\) 0 0
\(973\) 19621.6 0.646494
\(974\) 0 0
\(975\) 43075.0 1.41488
\(976\) 0 0
\(977\) −35342.1 −1.15731 −0.578656 0.815572i \(-0.696423\pi\)
−0.578656 + 0.815572i \(0.696423\pi\)
\(978\) 0 0
\(979\) −12610.6 −0.411683
\(980\) 0 0
\(981\) −963.559 −0.0313599
\(982\) 0 0
\(983\) −10482.2 −0.340114 −0.170057 0.985434i \(-0.554395\pi\)
−0.170057 + 0.985434i \(0.554395\pi\)
\(984\) 0 0
\(985\) −2262.79 −0.0731964
\(986\) 0 0
\(987\) 4483.09 0.144578
\(988\) 0 0
\(989\) 8194.97 0.263483
\(990\) 0 0
\(991\) −12086.9 −0.387440 −0.193720 0.981057i \(-0.562055\pi\)
−0.193720 + 0.981057i \(0.562055\pi\)
\(992\) 0 0
\(993\) 6045.84 0.193211
\(994\) 0 0
\(995\) 1260.30 0.0401550
\(996\) 0 0
\(997\) 25242.6 0.801847 0.400924 0.916111i \(-0.368689\pi\)
0.400924 + 0.916111i \(0.368689\pi\)
\(998\) 0 0
\(999\) 37007.5 1.17204
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 616.4.a.d.1.2 2
4.3 odd 2 1232.4.a.l.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
616.4.a.d.1.2 2 1.1 even 1 trivial
1232.4.a.l.1.1 2 4.3 odd 2