Properties

Label 616.4.a.i.1.5
Level $616$
Weight $4$
Character 616.1
Self dual yes
Analytic conductor $36.345$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [616,4,Mod(1,616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(616, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("616.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 616 = 2^{3} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 616.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.3451765635\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 47x^{4} + 10x^{3} + 612x^{2} + 240x - 1440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-3.68968\) of defining polynomial
Character \(\chi\) \(=\) 616.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.73933 q^{3} +19.7791 q^{5} +7.00000 q^{7} -13.0174 q^{9} -11.0000 q^{11} -19.4047 q^{13} +73.9605 q^{15} +70.8148 q^{17} +18.1735 q^{19} +26.1753 q^{21} +150.203 q^{23} +266.213 q^{25} -149.638 q^{27} +36.1152 q^{29} +312.071 q^{31} -41.1326 q^{33} +138.454 q^{35} -341.208 q^{37} -72.5606 q^{39} +181.399 q^{41} +334.357 q^{43} -257.473 q^{45} -255.999 q^{47} +49.0000 q^{49} +264.800 q^{51} -674.234 q^{53} -217.570 q^{55} +67.9566 q^{57} +396.486 q^{59} +495.662 q^{61} -91.1220 q^{63} -383.808 q^{65} -820.499 q^{67} +561.660 q^{69} -259.971 q^{71} +362.323 q^{73} +995.456 q^{75} -77.0000 q^{77} -39.4291 q^{79} -208.076 q^{81} +649.668 q^{83} +1400.65 q^{85} +135.047 q^{87} -386.836 q^{89} -135.833 q^{91} +1166.94 q^{93} +359.455 q^{95} +336.297 q^{97} +143.192 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{5} + 42 q^{7} + 60 q^{9} - 66 q^{11} - 6 q^{13} + 126 q^{15} - 14 q^{17} + 80 q^{19} + 254 q^{23} + 220 q^{25} + 90 q^{27} + 132 q^{29} - 52 q^{31} + 14 q^{35} - 518 q^{37} + 332 q^{39} + 486 q^{41}+ \cdots - 660 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.73933 0.719634 0.359817 0.933023i \(-0.382839\pi\)
0.359817 + 0.933023i \(0.382839\pi\)
\(4\) 0 0
\(5\) 19.7791 1.76910 0.884548 0.466449i \(-0.154467\pi\)
0.884548 + 0.466449i \(0.154467\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) −13.0174 −0.482127
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) −19.4047 −0.413992 −0.206996 0.978342i \(-0.566369\pi\)
−0.206996 + 0.978342i \(0.566369\pi\)
\(14\) 0 0
\(15\) 73.9605 1.27310
\(16\) 0 0
\(17\) 70.8148 1.01030 0.505151 0.863031i \(-0.331437\pi\)
0.505151 + 0.863031i \(0.331437\pi\)
\(18\) 0 0
\(19\) 18.1735 0.219436 0.109718 0.993963i \(-0.465005\pi\)
0.109718 + 0.993963i \(0.465005\pi\)
\(20\) 0 0
\(21\) 26.1753 0.271996
\(22\) 0 0
\(23\) 150.203 1.36172 0.680860 0.732413i \(-0.261606\pi\)
0.680860 + 0.732413i \(0.261606\pi\)
\(24\) 0 0
\(25\) 266.213 2.12970
\(26\) 0 0
\(27\) −149.638 −1.06659
\(28\) 0 0
\(29\) 36.1152 0.231256 0.115628 0.993293i \(-0.463112\pi\)
0.115628 + 0.993293i \(0.463112\pi\)
\(30\) 0 0
\(31\) 312.071 1.80805 0.904026 0.427477i \(-0.140598\pi\)
0.904026 + 0.427477i \(0.140598\pi\)
\(32\) 0 0
\(33\) −41.1326 −0.216978
\(34\) 0 0
\(35\) 138.454 0.668656
\(36\) 0 0
\(37\) −341.208 −1.51606 −0.758031 0.652219i \(-0.773838\pi\)
−0.758031 + 0.652219i \(0.773838\pi\)
\(38\) 0 0
\(39\) −72.5606 −0.297923
\(40\) 0 0
\(41\) 181.399 0.690968 0.345484 0.938425i \(-0.387715\pi\)
0.345484 + 0.938425i \(0.387715\pi\)
\(42\) 0 0
\(43\) 334.357 1.18579 0.592894 0.805280i \(-0.297985\pi\)
0.592894 + 0.805280i \(0.297985\pi\)
\(44\) 0 0
\(45\) −257.473 −0.852930
\(46\) 0 0
\(47\) −255.999 −0.794497 −0.397248 0.917711i \(-0.630035\pi\)
−0.397248 + 0.917711i \(0.630035\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 264.800 0.727047
\(52\) 0 0
\(53\) −674.234 −1.74742 −0.873710 0.486448i \(-0.838292\pi\)
−0.873710 + 0.486448i \(0.838292\pi\)
\(54\) 0 0
\(55\) −217.570 −0.533403
\(56\) 0 0
\(57\) 67.9566 0.157913
\(58\) 0 0
\(59\) 396.486 0.874883 0.437442 0.899247i \(-0.355885\pi\)
0.437442 + 0.899247i \(0.355885\pi\)
\(60\) 0 0
\(61\) 495.662 1.04038 0.520189 0.854051i \(-0.325862\pi\)
0.520189 + 0.854051i \(0.325862\pi\)
\(62\) 0 0
\(63\) −91.1220 −0.182227
\(64\) 0 0
\(65\) −383.808 −0.732392
\(66\) 0 0
\(67\) −820.499 −1.49612 −0.748059 0.663632i \(-0.769014\pi\)
−0.748059 + 0.663632i \(0.769014\pi\)
\(68\) 0 0
\(69\) 561.660 0.979940
\(70\) 0 0
\(71\) −259.971 −0.434547 −0.217274 0.976111i \(-0.569716\pi\)
−0.217274 + 0.976111i \(0.569716\pi\)
\(72\) 0 0
\(73\) 362.323 0.580914 0.290457 0.956888i \(-0.406193\pi\)
0.290457 + 0.956888i \(0.406193\pi\)
\(74\) 0 0
\(75\) 995.456 1.53261
\(76\) 0 0
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) −39.4291 −0.0561535 −0.0280767 0.999606i \(-0.508938\pi\)
−0.0280767 + 0.999606i \(0.508938\pi\)
\(80\) 0 0
\(81\) −208.076 −0.285426
\(82\) 0 0
\(83\) 649.668 0.859160 0.429580 0.903029i \(-0.358662\pi\)
0.429580 + 0.903029i \(0.358662\pi\)
\(84\) 0 0
\(85\) 1400.65 1.78732
\(86\) 0 0
\(87\) 135.047 0.166420
\(88\) 0 0
\(89\) −386.836 −0.460725 −0.230363 0.973105i \(-0.573991\pi\)
−0.230363 + 0.973105i \(0.573991\pi\)
\(90\) 0 0
\(91\) −135.833 −0.156474
\(92\) 0 0
\(93\) 1166.94 1.30114
\(94\) 0 0
\(95\) 359.455 0.388203
\(96\) 0 0
\(97\) 336.297 0.352019 0.176009 0.984389i \(-0.443681\pi\)
0.176009 + 0.984389i \(0.443681\pi\)
\(98\) 0 0
\(99\) 143.192 0.145367
\(100\) 0 0
\(101\) 590.589 0.581840 0.290920 0.956747i \(-0.406039\pi\)
0.290920 + 0.956747i \(0.406039\pi\)
\(102\) 0 0
\(103\) 698.936 0.668623 0.334312 0.942463i \(-0.391496\pi\)
0.334312 + 0.942463i \(0.391496\pi\)
\(104\) 0 0
\(105\) 517.724 0.481187
\(106\) 0 0
\(107\) 489.378 0.442149 0.221075 0.975257i \(-0.429044\pi\)
0.221075 + 0.975257i \(0.429044\pi\)
\(108\) 0 0
\(109\) −2146.51 −1.88623 −0.943113 0.332474i \(-0.892117\pi\)
−0.943113 + 0.332474i \(0.892117\pi\)
\(110\) 0 0
\(111\) −1275.89 −1.09101
\(112\) 0 0
\(113\) −1657.61 −1.37996 −0.689978 0.723830i \(-0.742380\pi\)
−0.689978 + 0.723830i \(0.742380\pi\)
\(114\) 0 0
\(115\) 2970.89 2.40901
\(116\) 0 0
\(117\) 252.600 0.199597
\(118\) 0 0
\(119\) 495.704 0.381858
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 678.308 0.497244
\(124\) 0 0
\(125\) 2793.06 1.99855
\(126\) 0 0
\(127\) 110.623 0.0772929 0.0386464 0.999253i \(-0.487695\pi\)
0.0386464 + 0.999253i \(0.487695\pi\)
\(128\) 0 0
\(129\) 1250.27 0.853333
\(130\) 0 0
\(131\) −2789.56 −1.86050 −0.930249 0.366930i \(-0.880409\pi\)
−0.930249 + 0.366930i \(0.880409\pi\)
\(132\) 0 0
\(133\) 127.214 0.0829390
\(134\) 0 0
\(135\) −2959.71 −1.88690
\(136\) 0 0
\(137\) 253.276 0.157948 0.0789739 0.996877i \(-0.474836\pi\)
0.0789739 + 0.996877i \(0.474836\pi\)
\(138\) 0 0
\(139\) 1417.34 0.864873 0.432437 0.901664i \(-0.357654\pi\)
0.432437 + 0.901664i \(0.357654\pi\)
\(140\) 0 0
\(141\) −957.265 −0.571747
\(142\) 0 0
\(143\) 213.452 0.124823
\(144\) 0 0
\(145\) 714.326 0.409114
\(146\) 0 0
\(147\) 183.227 0.102805
\(148\) 0 0
\(149\) −2943.98 −1.61866 −0.809329 0.587355i \(-0.800169\pi\)
−0.809329 + 0.587355i \(0.800169\pi\)
\(150\) 0 0
\(151\) 1090.43 0.587668 0.293834 0.955856i \(-0.405069\pi\)
0.293834 + 0.955856i \(0.405069\pi\)
\(152\) 0 0
\(153\) −921.827 −0.487094
\(154\) 0 0
\(155\) 6172.48 3.19862
\(156\) 0 0
\(157\) 1219.91 0.620126 0.310063 0.950716i \(-0.399650\pi\)
0.310063 + 0.950716i \(0.399650\pi\)
\(158\) 0 0
\(159\) −2521.18 −1.25750
\(160\) 0 0
\(161\) 1051.42 0.514682
\(162\) 0 0
\(163\) −57.0393 −0.0274090 −0.0137045 0.999906i \(-0.504362\pi\)
−0.0137045 + 0.999906i \(0.504362\pi\)
\(164\) 0 0
\(165\) −813.566 −0.383855
\(166\) 0 0
\(167\) 2091.75 0.969249 0.484625 0.874722i \(-0.338956\pi\)
0.484625 + 0.874722i \(0.338956\pi\)
\(168\) 0 0
\(169\) −1820.46 −0.828610
\(170\) 0 0
\(171\) −236.572 −0.105796
\(172\) 0 0
\(173\) −333.342 −0.146495 −0.0732473 0.997314i \(-0.523336\pi\)
−0.0732473 + 0.997314i \(0.523336\pi\)
\(174\) 0 0
\(175\) 1863.49 0.804952
\(176\) 0 0
\(177\) 1482.59 0.629596
\(178\) 0 0
\(179\) 648.025 0.270590 0.135295 0.990805i \(-0.456802\pi\)
0.135295 + 0.990805i \(0.456802\pi\)
\(180\) 0 0
\(181\) −3579.98 −1.47015 −0.735077 0.677984i \(-0.762854\pi\)
−0.735077 + 0.677984i \(0.762854\pi\)
\(182\) 0 0
\(183\) 1853.44 0.748691
\(184\) 0 0
\(185\) −6748.79 −2.68206
\(186\) 0 0
\(187\) −778.963 −0.304617
\(188\) 0 0
\(189\) −1047.47 −0.403133
\(190\) 0 0
\(191\) −1058.90 −0.401148 −0.200574 0.979679i \(-0.564281\pi\)
−0.200574 + 0.979679i \(0.564281\pi\)
\(192\) 0 0
\(193\) −1106.19 −0.412566 −0.206283 0.978492i \(-0.566137\pi\)
−0.206283 + 0.978492i \(0.566137\pi\)
\(194\) 0 0
\(195\) −1435.18 −0.527054
\(196\) 0 0
\(197\) −2183.49 −0.789681 −0.394841 0.918750i \(-0.629200\pi\)
−0.394841 + 0.918750i \(0.629200\pi\)
\(198\) 0 0
\(199\) −275.244 −0.0980479 −0.0490239 0.998798i \(-0.515611\pi\)
−0.0490239 + 0.998798i \(0.515611\pi\)
\(200\) 0 0
\(201\) −3068.11 −1.07666
\(202\) 0 0
\(203\) 252.807 0.0874066
\(204\) 0 0
\(205\) 3587.90 1.22239
\(206\) 0 0
\(207\) −1955.26 −0.656523
\(208\) 0 0
\(209\) −199.908 −0.0661624
\(210\) 0 0
\(211\) −184.206 −0.0601006 −0.0300503 0.999548i \(-0.509567\pi\)
−0.0300503 + 0.999548i \(0.509567\pi\)
\(212\) 0 0
\(213\) −972.116 −0.312715
\(214\) 0 0
\(215\) 6613.27 2.09777
\(216\) 0 0
\(217\) 2184.50 0.683380
\(218\) 0 0
\(219\) 1354.85 0.418046
\(220\) 0 0
\(221\) −1374.14 −0.418257
\(222\) 0 0
\(223\) −762.855 −0.229079 −0.114539 0.993419i \(-0.536539\pi\)
−0.114539 + 0.993419i \(0.536539\pi\)
\(224\) 0 0
\(225\) −3465.41 −1.02679
\(226\) 0 0
\(227\) 5280.62 1.54399 0.771997 0.635626i \(-0.219258\pi\)
0.771997 + 0.635626i \(0.219258\pi\)
\(228\) 0 0
\(229\) 5266.64 1.51978 0.759890 0.650052i \(-0.225253\pi\)
0.759890 + 0.650052i \(0.225253\pi\)
\(230\) 0 0
\(231\) −287.928 −0.0820099
\(232\) 0 0
\(233\) −6792.89 −1.90994 −0.954972 0.296695i \(-0.904116\pi\)
−0.954972 + 0.296695i \(0.904116\pi\)
\(234\) 0 0
\(235\) −5063.44 −1.40554
\(236\) 0 0
\(237\) −147.438 −0.0404099
\(238\) 0 0
\(239\) 6317.30 1.70976 0.854879 0.518828i \(-0.173631\pi\)
0.854879 + 0.518828i \(0.173631\pi\)
\(240\) 0 0
\(241\) 1271.42 0.339831 0.169915 0.985459i \(-0.445651\pi\)
0.169915 + 0.985459i \(0.445651\pi\)
\(242\) 0 0
\(243\) 3262.17 0.861187
\(244\) 0 0
\(245\) 969.176 0.252728
\(246\) 0 0
\(247\) −352.651 −0.0908448
\(248\) 0 0
\(249\) 2429.32 0.618281
\(250\) 0 0
\(251\) −760.172 −0.191162 −0.0955810 0.995422i \(-0.530471\pi\)
−0.0955810 + 0.995422i \(0.530471\pi\)
\(252\) 0 0
\(253\) −1652.24 −0.410574
\(254\) 0 0
\(255\) 5237.50 1.28622
\(256\) 0 0
\(257\) −1133.67 −0.275160 −0.137580 0.990491i \(-0.543932\pi\)
−0.137580 + 0.990491i \(0.543932\pi\)
\(258\) 0 0
\(259\) −2388.46 −0.573018
\(260\) 0 0
\(261\) −470.127 −0.111495
\(262\) 0 0
\(263\) −7535.49 −1.76676 −0.883381 0.468656i \(-0.844739\pi\)
−0.883381 + 0.468656i \(0.844739\pi\)
\(264\) 0 0
\(265\) −13335.7 −3.09135
\(266\) 0 0
\(267\) −1446.51 −0.331554
\(268\) 0 0
\(269\) −6111.16 −1.38514 −0.692572 0.721349i \(-0.743523\pi\)
−0.692572 + 0.721349i \(0.743523\pi\)
\(270\) 0 0
\(271\) 3162.44 0.708872 0.354436 0.935080i \(-0.384673\pi\)
0.354436 + 0.935080i \(0.384673\pi\)
\(272\) 0 0
\(273\) −507.924 −0.112604
\(274\) 0 0
\(275\) −2928.34 −0.642129
\(276\) 0 0
\(277\) 2078.80 0.450914 0.225457 0.974253i \(-0.427612\pi\)
0.225457 + 0.974253i \(0.427612\pi\)
\(278\) 0 0
\(279\) −4062.36 −0.871711
\(280\) 0 0
\(281\) −8558.16 −1.81686 −0.908429 0.418040i \(-0.862717\pi\)
−0.908429 + 0.418040i \(0.862717\pi\)
\(282\) 0 0
\(283\) 383.249 0.0805011 0.0402505 0.999190i \(-0.487184\pi\)
0.0402505 + 0.999190i \(0.487184\pi\)
\(284\) 0 0
\(285\) 1344.12 0.279364
\(286\) 0 0
\(287\) 1269.79 0.261161
\(288\) 0 0
\(289\) 101.739 0.0207082
\(290\) 0 0
\(291\) 1257.52 0.253324
\(292\) 0 0
\(293\) −3728.36 −0.743389 −0.371695 0.928355i \(-0.621223\pi\)
−0.371695 + 0.928355i \(0.621223\pi\)
\(294\) 0 0
\(295\) 7842.14 1.54775
\(296\) 0 0
\(297\) 1646.02 0.321589
\(298\) 0 0
\(299\) −2914.65 −0.563742
\(300\) 0 0
\(301\) 2340.50 0.448186
\(302\) 0 0
\(303\) 2208.41 0.418712
\(304\) 0 0
\(305\) 9803.75 1.84053
\(306\) 0 0
\(307\) −7148.19 −1.32889 −0.664444 0.747338i \(-0.731332\pi\)
−0.664444 + 0.747338i \(0.731332\pi\)
\(308\) 0 0
\(309\) 2613.55 0.481164
\(310\) 0 0
\(311\) −5641.46 −1.02861 −0.514305 0.857607i \(-0.671950\pi\)
−0.514305 + 0.857607i \(0.671950\pi\)
\(312\) 0 0
\(313\) 9533.22 1.72156 0.860781 0.508975i \(-0.169975\pi\)
0.860781 + 0.508975i \(0.169975\pi\)
\(314\) 0 0
\(315\) −1802.31 −0.322377
\(316\) 0 0
\(317\) −3133.29 −0.555153 −0.277576 0.960704i \(-0.589531\pi\)
−0.277576 + 0.960704i \(0.589531\pi\)
\(318\) 0 0
\(319\) −397.267 −0.0697263
\(320\) 0 0
\(321\) 1829.95 0.318186
\(322\) 0 0
\(323\) 1286.95 0.221696
\(324\) 0 0
\(325\) −5165.78 −0.881680
\(326\) 0 0
\(327\) −8026.51 −1.35739
\(328\) 0 0
\(329\) −1792.00 −0.300292
\(330\) 0 0
\(331\) −11538.6 −1.91608 −0.958038 0.286640i \(-0.907462\pi\)
−0.958038 + 0.286640i \(0.907462\pi\)
\(332\) 0 0
\(333\) 4441.66 0.730935
\(334\) 0 0
\(335\) −16228.7 −2.64678
\(336\) 0 0
\(337\) −2167.24 −0.350318 −0.175159 0.984540i \(-0.556044\pi\)
−0.175159 + 0.984540i \(0.556044\pi\)
\(338\) 0 0
\(339\) −6198.35 −0.993063
\(340\) 0 0
\(341\) −3432.78 −0.545148
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) 11109.1 1.73361
\(346\) 0 0
\(347\) −620.740 −0.0960318 −0.0480159 0.998847i \(-0.515290\pi\)
−0.0480159 + 0.998847i \(0.515290\pi\)
\(348\) 0 0
\(349\) −156.193 −0.0239564 −0.0119782 0.999928i \(-0.503813\pi\)
−0.0119782 + 0.999928i \(0.503813\pi\)
\(350\) 0 0
\(351\) 2903.69 0.441560
\(352\) 0 0
\(353\) 2174.30 0.327836 0.163918 0.986474i \(-0.447587\pi\)
0.163918 + 0.986474i \(0.447587\pi\)
\(354\) 0 0
\(355\) −5141.99 −0.768756
\(356\) 0 0
\(357\) 1853.60 0.274798
\(358\) 0 0
\(359\) 5993.02 0.881058 0.440529 0.897738i \(-0.354791\pi\)
0.440529 + 0.897738i \(0.354791\pi\)
\(360\) 0 0
\(361\) −6528.72 −0.951848
\(362\) 0 0
\(363\) 452.459 0.0654213
\(364\) 0 0
\(365\) 7166.43 1.02769
\(366\) 0 0
\(367\) −10822.6 −1.53934 −0.769669 0.638443i \(-0.779579\pi\)
−0.769669 + 0.638443i \(0.779579\pi\)
\(368\) 0 0
\(369\) −2361.34 −0.333134
\(370\) 0 0
\(371\) −4719.64 −0.660462
\(372\) 0 0
\(373\) 11115.4 1.54298 0.771491 0.636240i \(-0.219511\pi\)
0.771491 + 0.636240i \(0.219511\pi\)
\(374\) 0 0
\(375\) 10444.2 1.43823
\(376\) 0 0
\(377\) −700.805 −0.0957382
\(378\) 0 0
\(379\) −11919.0 −1.61540 −0.807702 0.589591i \(-0.799289\pi\)
−0.807702 + 0.589591i \(0.799289\pi\)
\(380\) 0 0
\(381\) 413.655 0.0556226
\(382\) 0 0
\(383\) 3655.90 0.487749 0.243875 0.969807i \(-0.421581\pi\)
0.243875 + 0.969807i \(0.421581\pi\)
\(384\) 0 0
\(385\) −1522.99 −0.201607
\(386\) 0 0
\(387\) −4352.47 −0.571701
\(388\) 0 0
\(389\) 4389.79 0.572162 0.286081 0.958205i \(-0.407647\pi\)
0.286081 + 0.958205i \(0.407647\pi\)
\(390\) 0 0
\(391\) 10636.6 1.37575
\(392\) 0 0
\(393\) −10431.1 −1.33888
\(394\) 0 0
\(395\) −779.873 −0.0993409
\(396\) 0 0
\(397\) −7234.62 −0.914598 −0.457299 0.889313i \(-0.651183\pi\)
−0.457299 + 0.889313i \(0.651183\pi\)
\(398\) 0 0
\(399\) 475.696 0.0596857
\(400\) 0 0
\(401\) 14345.9 1.78653 0.893266 0.449528i \(-0.148408\pi\)
0.893266 + 0.449528i \(0.148408\pi\)
\(402\) 0 0
\(403\) −6055.65 −0.748520
\(404\) 0 0
\(405\) −4115.55 −0.504946
\(406\) 0 0
\(407\) 3753.29 0.457110
\(408\) 0 0
\(409\) −15651.9 −1.89227 −0.946135 0.323773i \(-0.895048\pi\)
−0.946135 + 0.323773i \(0.895048\pi\)
\(410\) 0 0
\(411\) 947.082 0.113665
\(412\) 0 0
\(413\) 2775.40 0.330675
\(414\) 0 0
\(415\) 12849.8 1.51994
\(416\) 0 0
\(417\) 5299.91 0.622392
\(418\) 0 0
\(419\) −7162.22 −0.835077 −0.417538 0.908659i \(-0.637107\pi\)
−0.417538 + 0.908659i \(0.637107\pi\)
\(420\) 0 0
\(421\) −5125.05 −0.593301 −0.296651 0.954986i \(-0.595870\pi\)
−0.296651 + 0.954986i \(0.595870\pi\)
\(422\) 0 0
\(423\) 3332.45 0.383048
\(424\) 0 0
\(425\) 18851.8 2.15164
\(426\) 0 0
\(427\) 3469.64 0.393226
\(428\) 0 0
\(429\) 798.166 0.0898271
\(430\) 0 0
\(431\) 15125.2 1.69038 0.845192 0.534463i \(-0.179486\pi\)
0.845192 + 0.534463i \(0.179486\pi\)
\(432\) 0 0
\(433\) −9009.60 −0.999940 −0.499970 0.866043i \(-0.666656\pi\)
−0.499970 + 0.866043i \(0.666656\pi\)
\(434\) 0 0
\(435\) 2671.10 0.294413
\(436\) 0 0
\(437\) 2729.72 0.298810
\(438\) 0 0
\(439\) 8544.58 0.928954 0.464477 0.885585i \(-0.346242\pi\)
0.464477 + 0.885585i \(0.346242\pi\)
\(440\) 0 0
\(441\) −637.854 −0.0688753
\(442\) 0 0
\(443\) 6815.43 0.730950 0.365475 0.930821i \(-0.380907\pi\)
0.365475 + 0.930821i \(0.380907\pi\)
\(444\) 0 0
\(445\) −7651.27 −0.815068
\(446\) 0 0
\(447\) −11008.5 −1.16484
\(448\) 0 0
\(449\) 10587.3 1.11279 0.556397 0.830917i \(-0.312184\pi\)
0.556397 + 0.830917i \(0.312184\pi\)
\(450\) 0 0
\(451\) −1995.38 −0.208335
\(452\) 0 0
\(453\) 4077.47 0.422906
\(454\) 0 0
\(455\) −2686.65 −0.276818
\(456\) 0 0
\(457\) −7189.63 −0.735923 −0.367962 0.929841i \(-0.619944\pi\)
−0.367962 + 0.929841i \(0.619944\pi\)
\(458\) 0 0
\(459\) −10596.6 −1.07758
\(460\) 0 0
\(461\) 12715.2 1.28461 0.642304 0.766450i \(-0.277979\pi\)
0.642304 + 0.766450i \(0.277979\pi\)
\(462\) 0 0
\(463\) −2900.83 −0.291173 −0.145586 0.989346i \(-0.546507\pi\)
−0.145586 + 0.989346i \(0.546507\pi\)
\(464\) 0 0
\(465\) 23080.9 2.30183
\(466\) 0 0
\(467\) 5640.30 0.558891 0.279445 0.960162i \(-0.409849\pi\)
0.279445 + 0.960162i \(0.409849\pi\)
\(468\) 0 0
\(469\) −5743.49 −0.565480
\(470\) 0 0
\(471\) 4561.66 0.446263
\(472\) 0 0
\(473\) −3677.92 −0.357529
\(474\) 0 0
\(475\) 4838.01 0.467333
\(476\) 0 0
\(477\) 8776.80 0.842478
\(478\) 0 0
\(479\) 7611.96 0.726095 0.363047 0.931771i \(-0.381736\pi\)
0.363047 + 0.931771i \(0.381736\pi\)
\(480\) 0 0
\(481\) 6621.05 0.627638
\(482\) 0 0
\(483\) 3931.62 0.370383
\(484\) 0 0
\(485\) 6651.65 0.622755
\(486\) 0 0
\(487\) −1984.97 −0.184698 −0.0923488 0.995727i \(-0.529437\pi\)
−0.0923488 + 0.995727i \(0.529437\pi\)
\(488\) 0 0
\(489\) −213.288 −0.0197244
\(490\) 0 0
\(491\) 7934.81 0.729313 0.364657 0.931142i \(-0.381186\pi\)
0.364657 + 0.931142i \(0.381186\pi\)
\(492\) 0 0
\(493\) 2557.49 0.233638
\(494\) 0 0
\(495\) 2832.20 0.257168
\(496\) 0 0
\(497\) −1819.80 −0.164243
\(498\) 0 0
\(499\) −13405.5 −1.20263 −0.601313 0.799013i \(-0.705356\pi\)
−0.601313 + 0.799013i \(0.705356\pi\)
\(500\) 0 0
\(501\) 7821.74 0.697505
\(502\) 0 0
\(503\) 9355.38 0.829296 0.414648 0.909982i \(-0.363905\pi\)
0.414648 + 0.909982i \(0.363905\pi\)
\(504\) 0 0
\(505\) 11681.3 1.02933
\(506\) 0 0
\(507\) −6807.28 −0.596296
\(508\) 0 0
\(509\) 22230.5 1.93585 0.967927 0.251233i \(-0.0808361\pi\)
0.967927 + 0.251233i \(0.0808361\pi\)
\(510\) 0 0
\(511\) 2536.26 0.219565
\(512\) 0 0
\(513\) −2719.45 −0.234048
\(514\) 0 0
\(515\) 13824.3 1.18286
\(516\) 0 0
\(517\) 2815.99 0.239550
\(518\) 0 0
\(519\) −1246.48 −0.105422
\(520\) 0 0
\(521\) −15130.6 −1.27233 −0.636165 0.771553i \(-0.719480\pi\)
−0.636165 + 0.771553i \(0.719480\pi\)
\(522\) 0 0
\(523\) 20491.1 1.71322 0.856610 0.515964i \(-0.172566\pi\)
0.856610 + 0.515964i \(0.172566\pi\)
\(524\) 0 0
\(525\) 6968.20 0.579270
\(526\) 0 0
\(527\) 22099.3 1.82668
\(528\) 0 0
\(529\) 10394.1 0.854283
\(530\) 0 0
\(531\) −5161.23 −0.421805
\(532\) 0 0
\(533\) −3519.99 −0.286055
\(534\) 0 0
\(535\) 9679.46 0.782205
\(536\) 0 0
\(537\) 2423.18 0.194726
\(538\) 0 0
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) 16251.4 1.29150 0.645752 0.763547i \(-0.276544\pi\)
0.645752 + 0.763547i \(0.276544\pi\)
\(542\) 0 0
\(543\) −13386.7 −1.05797
\(544\) 0 0
\(545\) −42456.1 −3.33691
\(546\) 0 0
\(547\) −17652.3 −1.37981 −0.689906 0.723899i \(-0.742348\pi\)
−0.689906 + 0.723899i \(0.742348\pi\)
\(548\) 0 0
\(549\) −6452.25 −0.501594
\(550\) 0 0
\(551\) 656.339 0.0507459
\(552\) 0 0
\(553\) −276.004 −0.0212240
\(554\) 0 0
\(555\) −25235.9 −1.93010
\(556\) 0 0
\(557\) −14086.4 −1.07156 −0.535782 0.844356i \(-0.679983\pi\)
−0.535782 + 0.844356i \(0.679983\pi\)
\(558\) 0 0
\(559\) −6488.09 −0.490907
\(560\) 0 0
\(561\) −2912.80 −0.219213
\(562\) 0 0
\(563\) −9787.92 −0.732702 −0.366351 0.930477i \(-0.619393\pi\)
−0.366351 + 0.930477i \(0.619393\pi\)
\(564\) 0 0
\(565\) −32786.1 −2.44127
\(566\) 0 0
\(567\) −1456.53 −0.107881
\(568\) 0 0
\(569\) 24992.9 1.84140 0.920700 0.390270i \(-0.127618\pi\)
0.920700 + 0.390270i \(0.127618\pi\)
\(570\) 0 0
\(571\) −14480.8 −1.06130 −0.530649 0.847592i \(-0.678052\pi\)
−0.530649 + 0.847592i \(0.678052\pi\)
\(572\) 0 0
\(573\) −3959.57 −0.288679
\(574\) 0 0
\(575\) 39986.1 2.90006
\(576\) 0 0
\(577\) 2348.23 0.169425 0.0847125 0.996405i \(-0.473003\pi\)
0.0847125 + 0.996405i \(0.473003\pi\)
\(578\) 0 0
\(579\) −4136.40 −0.296896
\(580\) 0 0
\(581\) 4547.67 0.324732
\(582\) 0 0
\(583\) 7416.58 0.526867
\(584\) 0 0
\(585\) 4996.19 0.353106
\(586\) 0 0
\(587\) −9755.88 −0.685977 −0.342988 0.939340i \(-0.611439\pi\)
−0.342988 + 0.939340i \(0.611439\pi\)
\(588\) 0 0
\(589\) 5671.42 0.396752
\(590\) 0 0
\(591\) −8164.78 −0.568281
\(592\) 0 0
\(593\) 12901.1 0.893396 0.446698 0.894685i \(-0.352600\pi\)
0.446698 + 0.894685i \(0.352600\pi\)
\(594\) 0 0
\(595\) 9804.57 0.675543
\(596\) 0 0
\(597\) −1029.23 −0.0705586
\(598\) 0 0
\(599\) −13063.4 −0.891082 −0.445541 0.895262i \(-0.646989\pi\)
−0.445541 + 0.895262i \(0.646989\pi\)
\(600\) 0 0
\(601\) −18806.4 −1.27642 −0.638212 0.769861i \(-0.720326\pi\)
−0.638212 + 0.769861i \(0.720326\pi\)
\(602\) 0 0
\(603\) 10680.8 0.721319
\(604\) 0 0
\(605\) 2393.27 0.160827
\(606\) 0 0
\(607\) −10192.9 −0.681573 −0.340787 0.940141i \(-0.610693\pi\)
−0.340787 + 0.940141i \(0.610693\pi\)
\(608\) 0 0
\(609\) 945.326 0.0629007
\(610\) 0 0
\(611\) 4967.59 0.328915
\(612\) 0 0
\(613\) −8546.34 −0.563105 −0.281553 0.959546i \(-0.590849\pi\)
−0.281553 + 0.959546i \(0.590849\pi\)
\(614\) 0 0
\(615\) 13416.3 0.879672
\(616\) 0 0
\(617\) −83.9771 −0.00547940 −0.00273970 0.999996i \(-0.500872\pi\)
−0.00273970 + 0.999996i \(0.500872\pi\)
\(618\) 0 0
\(619\) 1254.82 0.0814786 0.0407393 0.999170i \(-0.487029\pi\)
0.0407393 + 0.999170i \(0.487029\pi\)
\(620\) 0 0
\(621\) −22476.2 −1.45240
\(622\) 0 0
\(623\) −2707.85 −0.174138
\(624\) 0 0
\(625\) 21967.6 1.40593
\(626\) 0 0
\(627\) −747.522 −0.0476127
\(628\) 0 0
\(629\) −24162.6 −1.53168
\(630\) 0 0
\(631\) −10941.6 −0.690300 −0.345150 0.938547i \(-0.612172\pi\)
−0.345150 + 0.938547i \(0.612172\pi\)
\(632\) 0 0
\(633\) −688.805 −0.0432504
\(634\) 0 0
\(635\) 2188.02 0.136739
\(636\) 0 0
\(637\) −950.831 −0.0591418
\(638\) 0 0
\(639\) 3384.15 0.209507
\(640\) 0 0
\(641\) 10785.4 0.664585 0.332293 0.943176i \(-0.392178\pi\)
0.332293 + 0.943176i \(0.392178\pi\)
\(642\) 0 0
\(643\) 9787.54 0.600285 0.300142 0.953894i \(-0.402966\pi\)
0.300142 + 0.953894i \(0.402966\pi\)
\(644\) 0 0
\(645\) 24729.2 1.50963
\(646\) 0 0
\(647\) 11154.8 0.677808 0.338904 0.940821i \(-0.389944\pi\)
0.338904 + 0.940821i \(0.389944\pi\)
\(648\) 0 0
\(649\) −4361.35 −0.263787
\(650\) 0 0
\(651\) 8168.55 0.491783
\(652\) 0 0
\(653\) 11300.3 0.677202 0.338601 0.940930i \(-0.390046\pi\)
0.338601 + 0.940930i \(0.390046\pi\)
\(654\) 0 0
\(655\) −55175.0 −3.29140
\(656\) 0 0
\(657\) −4716.52 −0.280075
\(658\) 0 0
\(659\) −9671.17 −0.571677 −0.285839 0.958278i \(-0.592272\pi\)
−0.285839 + 0.958278i \(0.592272\pi\)
\(660\) 0 0
\(661\) 1455.20 0.0856290 0.0428145 0.999083i \(-0.486368\pi\)
0.0428145 + 0.999083i \(0.486368\pi\)
\(662\) 0 0
\(663\) −5138.36 −0.300992
\(664\) 0 0
\(665\) 2516.19 0.146727
\(666\) 0 0
\(667\) 5424.63 0.314906
\(668\) 0 0
\(669\) −2852.56 −0.164853
\(670\) 0 0
\(671\) −5452.28 −0.313686
\(672\) 0 0
\(673\) 13180.6 0.754943 0.377472 0.926021i \(-0.376794\pi\)
0.377472 + 0.926021i \(0.376794\pi\)
\(674\) 0 0
\(675\) −39835.6 −2.27152
\(676\) 0 0
\(677\) −22201.2 −1.26036 −0.630180 0.776449i \(-0.717019\pi\)
−0.630180 + 0.776449i \(0.717019\pi\)
\(678\) 0 0
\(679\) 2354.08 0.133051
\(680\) 0 0
\(681\) 19745.9 1.11111
\(682\) 0 0
\(683\) −17792.8 −0.996813 −0.498406 0.866944i \(-0.666081\pi\)
−0.498406 + 0.866944i \(0.666081\pi\)
\(684\) 0 0
\(685\) 5009.57 0.279425
\(686\) 0 0
\(687\) 19693.7 1.09368
\(688\) 0 0
\(689\) 13083.3 0.723418
\(690\) 0 0
\(691\) −4729.48 −0.260373 −0.130187 0.991490i \(-0.541558\pi\)
−0.130187 + 0.991490i \(0.541558\pi\)
\(692\) 0 0
\(693\) 1002.34 0.0549435
\(694\) 0 0
\(695\) 28033.8 1.53004
\(696\) 0 0
\(697\) 12845.7 0.698086
\(698\) 0 0
\(699\) −25400.8 −1.37446
\(700\) 0 0
\(701\) 21835.4 1.17648 0.588241 0.808686i \(-0.299821\pi\)
0.588241 + 0.808686i \(0.299821\pi\)
\(702\) 0 0
\(703\) −6200.94 −0.332678
\(704\) 0 0
\(705\) −18933.8 −1.01147
\(706\) 0 0
\(707\) 4134.13 0.219915
\(708\) 0 0
\(709\) −26123.5 −1.38376 −0.691881 0.722011i \(-0.743218\pi\)
−0.691881 + 0.722011i \(0.743218\pi\)
\(710\) 0 0
\(711\) 513.266 0.0270731
\(712\) 0 0
\(713\) 46874.1 2.46206
\(714\) 0 0
\(715\) 4221.89 0.220825
\(716\) 0 0
\(717\) 23622.4 1.23040
\(718\) 0 0
\(719\) −6644.44 −0.344640 −0.172320 0.985041i \(-0.555126\pi\)
−0.172320 + 0.985041i \(0.555126\pi\)
\(720\) 0 0
\(721\) 4892.55 0.252716
\(722\) 0 0
\(723\) 4754.25 0.244554
\(724\) 0 0
\(725\) 9614.33 0.492507
\(726\) 0 0
\(727\) 36976.7 1.88637 0.943185 0.332268i \(-0.107814\pi\)
0.943185 + 0.332268i \(0.107814\pi\)
\(728\) 0 0
\(729\) 17816.4 0.905165
\(730\) 0 0
\(731\) 23677.4 1.19800
\(732\) 0 0
\(733\) 2768.13 0.139486 0.0697430 0.997565i \(-0.477782\pi\)
0.0697430 + 0.997565i \(0.477782\pi\)
\(734\) 0 0
\(735\) 3624.07 0.181872
\(736\) 0 0
\(737\) 9025.49 0.451097
\(738\) 0 0
\(739\) −16615.1 −0.827059 −0.413529 0.910491i \(-0.635704\pi\)
−0.413529 + 0.910491i \(0.635704\pi\)
\(740\) 0 0
\(741\) −1318.68 −0.0653750
\(742\) 0 0
\(743\) −9526.59 −0.470386 −0.235193 0.971949i \(-0.575572\pi\)
−0.235193 + 0.971949i \(0.575572\pi\)
\(744\) 0 0
\(745\) −58229.2 −2.86356
\(746\) 0 0
\(747\) −8457.01 −0.414225
\(748\) 0 0
\(749\) 3425.65 0.167117
\(750\) 0 0
\(751\) −108.237 −0.00525914 −0.00262957 0.999997i \(-0.500837\pi\)
−0.00262957 + 0.999997i \(0.500837\pi\)
\(752\) 0 0
\(753\) −2842.53 −0.137567
\(754\) 0 0
\(755\) 21567.7 1.03964
\(756\) 0 0
\(757\) 6511.07 0.312614 0.156307 0.987709i \(-0.450041\pi\)
0.156307 + 0.987709i \(0.450041\pi\)
\(758\) 0 0
\(759\) −6178.26 −0.295463
\(760\) 0 0
\(761\) 7693.24 0.366465 0.183232 0.983070i \(-0.441344\pi\)
0.183232 + 0.983070i \(0.441344\pi\)
\(762\) 0 0
\(763\) −15025.6 −0.712926
\(764\) 0 0
\(765\) −18232.9 −0.861716
\(766\) 0 0
\(767\) −7693.70 −0.362195
\(768\) 0 0
\(769\) 15859.2 0.743690 0.371845 0.928295i \(-0.378725\pi\)
0.371845 + 0.928295i \(0.378725\pi\)
\(770\) 0 0
\(771\) −4239.14 −0.198014
\(772\) 0 0
\(773\) 15798.8 0.735115 0.367558 0.930001i \(-0.380194\pi\)
0.367558 + 0.930001i \(0.380194\pi\)
\(774\) 0 0
\(775\) 83077.3 3.85061
\(776\) 0 0
\(777\) −8931.22 −0.412363
\(778\) 0 0
\(779\) 3296.64 0.151623
\(780\) 0 0
\(781\) 2859.68 0.131021
\(782\) 0 0
\(783\) −5404.22 −0.246655
\(784\) 0 0
\(785\) 24128.8 1.09706
\(786\) 0 0
\(787\) −14535.5 −0.658365 −0.329182 0.944266i \(-0.606773\pi\)
−0.329182 + 0.944266i \(0.606773\pi\)
\(788\) 0 0
\(789\) −28177.7 −1.27142
\(790\) 0 0
\(791\) −11603.3 −0.521574
\(792\) 0 0
\(793\) −9618.18 −0.430708
\(794\) 0 0
\(795\) −49866.7 −2.22464
\(796\) 0 0
\(797\) −5259.27 −0.233743 −0.116871 0.993147i \(-0.537287\pi\)
−0.116871 + 0.993147i \(0.537287\pi\)
\(798\) 0 0
\(799\) −18128.5 −0.802681
\(800\) 0 0
\(801\) 5035.62 0.222128
\(802\) 0 0
\(803\) −3985.56 −0.175152
\(804\) 0 0
\(805\) 20796.2 0.910522
\(806\) 0 0
\(807\) −22851.6 −0.996796
\(808\) 0 0
\(809\) 24785.4 1.07714 0.538570 0.842581i \(-0.318965\pi\)
0.538570 + 0.842581i \(0.318965\pi\)
\(810\) 0 0
\(811\) −33695.3 −1.45894 −0.729471 0.684012i \(-0.760234\pi\)
−0.729471 + 0.684012i \(0.760234\pi\)
\(812\) 0 0
\(813\) 11825.4 0.510128
\(814\) 0 0
\(815\) −1128.19 −0.0484891
\(816\) 0 0
\(817\) 6076.42 0.260205
\(818\) 0 0
\(819\) 1768.20 0.0754406
\(820\) 0 0
\(821\) 25640.1 1.08994 0.544972 0.838454i \(-0.316540\pi\)
0.544972 + 0.838454i \(0.316540\pi\)
\(822\) 0 0
\(823\) 8504.28 0.360195 0.180097 0.983649i \(-0.442359\pi\)
0.180097 + 0.983649i \(0.442359\pi\)
\(824\) 0 0
\(825\) −10950.0 −0.462098
\(826\) 0 0
\(827\) 18345.0 0.771365 0.385682 0.922632i \(-0.373966\pi\)
0.385682 + 0.922632i \(0.373966\pi\)
\(828\) 0 0
\(829\) 2469.13 0.103446 0.0517228 0.998661i \(-0.483529\pi\)
0.0517228 + 0.998661i \(0.483529\pi\)
\(830\) 0 0
\(831\) 7773.33 0.324493
\(832\) 0 0
\(833\) 3469.93 0.144329
\(834\) 0 0
\(835\) 41373.0 1.71470
\(836\) 0 0
\(837\) −46697.8 −1.92845
\(838\) 0 0
\(839\) −16861.3 −0.693824 −0.346912 0.937898i \(-0.612770\pi\)
−0.346912 + 0.937898i \(0.612770\pi\)
\(840\) 0 0
\(841\) −23084.7 −0.946521
\(842\) 0 0
\(843\) −32001.7 −1.30747
\(844\) 0 0
\(845\) −36007.0 −1.46589
\(846\) 0 0
\(847\) 847.000 0.0343604
\(848\) 0 0
\(849\) 1433.09 0.0579313
\(850\) 0 0
\(851\) −51250.6 −2.06445
\(852\) 0 0
\(853\) 7865.78 0.315732 0.157866 0.987461i \(-0.449539\pi\)
0.157866 + 0.987461i \(0.449539\pi\)
\(854\) 0 0
\(855\) −4679.18 −0.187163
\(856\) 0 0
\(857\) 6288.35 0.250649 0.125324 0.992116i \(-0.460003\pi\)
0.125324 + 0.992116i \(0.460003\pi\)
\(858\) 0 0
\(859\) 34023.0 1.35140 0.675698 0.737179i \(-0.263842\pi\)
0.675698 + 0.737179i \(0.263842\pi\)
\(860\) 0 0
\(861\) 4748.16 0.187941
\(862\) 0 0
\(863\) −19584.8 −0.772509 −0.386255 0.922392i \(-0.626231\pi\)
−0.386255 + 0.922392i \(0.626231\pi\)
\(864\) 0 0
\(865\) −6593.21 −0.259163
\(866\) 0 0
\(867\) 380.437 0.0149023
\(868\) 0 0
\(869\) 433.721 0.0169309
\(870\) 0 0
\(871\) 15921.6 0.619381
\(872\) 0 0
\(873\) −4377.73 −0.169718
\(874\) 0 0
\(875\) 19551.4 0.755382
\(876\) 0 0
\(877\) −20098.0 −0.773844 −0.386922 0.922113i \(-0.626462\pi\)
−0.386922 + 0.922113i \(0.626462\pi\)
\(878\) 0 0
\(879\) −13941.5 −0.534968
\(880\) 0 0
\(881\) −10876.4 −0.415930 −0.207965 0.978136i \(-0.566684\pi\)
−0.207965 + 0.978136i \(0.566684\pi\)
\(882\) 0 0
\(883\) 19724.9 0.751751 0.375875 0.926670i \(-0.377342\pi\)
0.375875 + 0.926670i \(0.377342\pi\)
\(884\) 0 0
\(885\) 29324.3 1.11382
\(886\) 0 0
\(887\) −39575.2 −1.49809 −0.749045 0.662519i \(-0.769488\pi\)
−0.749045 + 0.662519i \(0.769488\pi\)
\(888\) 0 0
\(889\) 774.360 0.0292140
\(890\) 0 0
\(891\) 2288.83 0.0860592
\(892\) 0 0
\(893\) −4652.40 −0.174341
\(894\) 0 0
\(895\) 12817.4 0.478701
\(896\) 0 0
\(897\) −10898.8 −0.405688
\(898\) 0 0
\(899\) 11270.5 0.418123
\(900\) 0 0
\(901\) −47745.8 −1.76542
\(902\) 0 0
\(903\) 8751.88 0.322530
\(904\) 0 0
\(905\) −70808.8 −2.60084
\(906\) 0 0
\(907\) 14301.8 0.523578 0.261789 0.965125i \(-0.415688\pi\)
0.261789 + 0.965125i \(0.415688\pi\)
\(908\) 0 0
\(909\) −7687.96 −0.280521
\(910\) 0 0
\(911\) −16663.3 −0.606016 −0.303008 0.952988i \(-0.597991\pi\)
−0.303008 + 0.952988i \(0.597991\pi\)
\(912\) 0 0
\(913\) −7146.35 −0.259047
\(914\) 0 0
\(915\) 36659.4 1.32451
\(916\) 0 0
\(917\) −19526.9 −0.703202
\(918\) 0 0
\(919\) −32690.6 −1.17341 −0.586705 0.809800i \(-0.699575\pi\)
−0.586705 + 0.809800i \(0.699575\pi\)
\(920\) 0 0
\(921\) −26729.4 −0.956313
\(922\) 0 0
\(923\) 5044.66 0.179899
\(924\) 0 0
\(925\) −90834.0 −3.22876
\(926\) 0 0
\(927\) −9098.36 −0.322362
\(928\) 0 0
\(929\) −22269.0 −0.786463 −0.393231 0.919440i \(-0.628643\pi\)
−0.393231 + 0.919440i \(0.628643\pi\)
\(930\) 0 0
\(931\) 890.500 0.0313480
\(932\) 0 0
\(933\) −21095.3 −0.740222
\(934\) 0 0
\(935\) −15407.2 −0.538897
\(936\) 0 0
\(937\) −56186.9 −1.95896 −0.979480 0.201543i \(-0.935404\pi\)
−0.979480 + 0.201543i \(0.935404\pi\)
\(938\) 0 0
\(939\) 35647.8 1.23889
\(940\) 0 0
\(941\) 27795.0 0.962901 0.481451 0.876473i \(-0.340110\pi\)
0.481451 + 0.876473i \(0.340110\pi\)
\(942\) 0 0
\(943\) 27246.7 0.940905
\(944\) 0 0
\(945\) −20718.0 −0.713181
\(946\) 0 0
\(947\) −39834.1 −1.36688 −0.683440 0.730007i \(-0.739517\pi\)
−0.683440 + 0.730007i \(0.739517\pi\)
\(948\) 0 0
\(949\) −7030.78 −0.240494
\(950\) 0 0
\(951\) −11716.4 −0.399506
\(952\) 0 0
\(953\) 6560.61 0.223000 0.111500 0.993764i \(-0.464434\pi\)
0.111500 + 0.993764i \(0.464434\pi\)
\(954\) 0 0
\(955\) −20944.1 −0.709669
\(956\) 0 0
\(957\) −1485.51 −0.0501774
\(958\) 0 0
\(959\) 1772.93 0.0596986
\(960\) 0 0
\(961\) 67597.4 2.26905
\(962\) 0 0
\(963\) −6370.45 −0.213172
\(964\) 0 0
\(965\) −21879.4 −0.729868
\(966\) 0 0
\(967\) 4283.37 0.142444 0.0712222 0.997460i \(-0.477310\pi\)
0.0712222 + 0.997460i \(0.477310\pi\)
\(968\) 0 0
\(969\) 4812.33 0.159540
\(970\) 0 0
\(971\) 50140.4 1.65714 0.828569 0.559887i \(-0.189155\pi\)
0.828569 + 0.559887i \(0.189155\pi\)
\(972\) 0 0
\(973\) 9921.40 0.326891
\(974\) 0 0
\(975\) −19316.5 −0.634487
\(976\) 0 0
\(977\) 16287.5 0.533352 0.266676 0.963786i \(-0.414075\pi\)
0.266676 + 0.963786i \(0.414075\pi\)
\(978\) 0 0
\(979\) 4255.20 0.138914
\(980\) 0 0
\(981\) 27942.1 0.909400
\(982\) 0 0
\(983\) −50147.5 −1.62712 −0.813560 0.581482i \(-0.802473\pi\)
−0.813560 + 0.581482i \(0.802473\pi\)
\(984\) 0 0
\(985\) −43187.5 −1.39702
\(986\) 0 0
\(987\) −6700.86 −0.216100
\(988\) 0 0
\(989\) 50221.5 1.61471
\(990\) 0 0
\(991\) 14908.0 0.477870 0.238935 0.971036i \(-0.423202\pi\)
0.238935 + 0.971036i \(0.423202\pi\)
\(992\) 0 0
\(993\) −43146.8 −1.37887
\(994\) 0 0
\(995\) −5444.08 −0.173456
\(996\) 0 0
\(997\) 20565.1 0.653263 0.326631 0.945152i \(-0.394086\pi\)
0.326631 + 0.945152i \(0.394086\pi\)
\(998\) 0 0
\(999\) 51057.8 1.61701
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 616.4.a.i.1.5 6
4.3 odd 2 1232.4.a.bb.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
616.4.a.i.1.5 6 1.1 even 1 trivial
1232.4.a.bb.1.2 6 4.3 odd 2