Properties

Label 624.2.c.d
Level 624624
Weight 22
Character orbit 624.c
Analytic conductor 4.9834.983
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,2,Mod(337,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 624=24313 624 = 2^{4} \cdot 3 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 624.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.982665086134.98266508613
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 156)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2i\beta = 2i. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq3+βq52βq7+q9+3βq11+(β+3)q13βq152q17+2βq21+8q23+q25q27+2q29+4βq313βq33++3βq99+O(q100) q - q^{3} + \beta q^{5} - 2 \beta q^{7} + q^{9} + 3 \beta q^{11} + ( - \beta + 3) q^{13} - \beta q^{15} - 2 q^{17} + 2 \beta q^{21} + 8 q^{23} + q^{25} - q^{27} + 2 q^{29} + 4 \beta q^{31} - 3 \beta q^{33} + \cdots + 3 \beta q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q3+2q9+6q134q17+16q23+2q252q27+4q29+16q356q39+16q4318q49+4q51+12q5324q55+4q61+8q6516q69+16q91+O(q100) 2 q - 2 q^{3} + 2 q^{9} + 6 q^{13} - 4 q^{17} + 16 q^{23} + 2 q^{25} - 2 q^{27} + 4 q^{29} + 16 q^{35} - 6 q^{39} + 16 q^{43} - 18 q^{49} + 4 q^{51} + 12 q^{53} - 24 q^{55} + 4 q^{61} + 8 q^{65} - 16 q^{69}+ \cdots - 16 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/624Z)×\left(\mathbb{Z}/624\mathbb{Z}\right)^\times.

nn 7979 145145 209209 469469
χ(n)\chi(n) 11 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
337.1
1.00000i
1.00000i
0 −1.00000 0 2.00000i 0 4.00000i 0 1.00000 0
337.2 0 −1.00000 0 2.00000i 0 4.00000i 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 624.2.c.d 2
3.b odd 2 1 1872.2.c.h 2
4.b odd 2 1 156.2.b.b 2
8.b even 2 1 2496.2.c.i 2
8.d odd 2 1 2496.2.c.b 2
12.b even 2 1 468.2.b.c 2
13.b even 2 1 inner 624.2.c.d 2
13.d odd 4 1 8112.2.a.d 1
13.d odd 4 1 8112.2.a.l 1
20.d odd 2 1 3900.2.c.a 2
20.e even 4 1 3900.2.j.b 2
20.e even 4 1 3900.2.j.e 2
28.d even 2 1 7644.2.e.b 2
39.d odd 2 1 1872.2.c.h 2
52.b odd 2 1 156.2.b.b 2
52.f even 4 1 2028.2.a.d 1
52.f even 4 1 2028.2.a.f 1
52.i odd 6 2 2028.2.q.e 4
52.j odd 6 2 2028.2.q.e 4
52.l even 12 2 2028.2.i.a 2
52.l even 12 2 2028.2.i.d 2
104.e even 2 1 2496.2.c.i 2
104.h odd 2 1 2496.2.c.b 2
156.h even 2 1 468.2.b.c 2
156.l odd 4 1 6084.2.a.d 1
156.l odd 4 1 6084.2.a.n 1
260.g odd 2 1 3900.2.c.a 2
260.p even 4 1 3900.2.j.b 2
260.p even 4 1 3900.2.j.e 2
364.h even 2 1 7644.2.e.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.2.b.b 2 4.b odd 2 1
156.2.b.b 2 52.b odd 2 1
468.2.b.c 2 12.b even 2 1
468.2.b.c 2 156.h even 2 1
624.2.c.d 2 1.a even 1 1 trivial
624.2.c.d 2 13.b even 2 1 inner
1872.2.c.h 2 3.b odd 2 1
1872.2.c.h 2 39.d odd 2 1
2028.2.a.d 1 52.f even 4 1
2028.2.a.f 1 52.f even 4 1
2028.2.i.a 2 52.l even 12 2
2028.2.i.d 2 52.l even 12 2
2028.2.q.e 4 52.i odd 6 2
2028.2.q.e 4 52.j odd 6 2
2496.2.c.b 2 8.d odd 2 1
2496.2.c.b 2 104.h odd 2 1
2496.2.c.i 2 8.b even 2 1
2496.2.c.i 2 104.e even 2 1
3900.2.c.a 2 20.d odd 2 1
3900.2.c.a 2 260.g odd 2 1
3900.2.j.b 2 20.e even 4 1
3900.2.j.b 2 260.p even 4 1
3900.2.j.e 2 20.e even 4 1
3900.2.j.e 2 260.p even 4 1
6084.2.a.d 1 156.l odd 4 1
6084.2.a.n 1 156.l odd 4 1
7644.2.e.b 2 28.d even 2 1
7644.2.e.b 2 364.h even 2 1
8112.2.a.d 1 13.d odd 4 1
8112.2.a.l 1 13.d odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(624,[χ])S_{2}^{\mathrm{new}}(624, [\chi]):

T52+4 T_{5}^{2} + 4 Copy content Toggle raw display
T72+16 T_{7}^{2} + 16 Copy content Toggle raw display
T112+36 T_{11}^{2} + 36 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
55 T2+4 T^{2} + 4 Copy content Toggle raw display
77 T2+16 T^{2} + 16 Copy content Toggle raw display
1111 T2+36 T^{2} + 36 Copy content Toggle raw display
1313 T26T+13 T^{2} - 6T + 13 Copy content Toggle raw display
1717 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 (T8)2 (T - 8)^{2} Copy content Toggle raw display
2929 (T2)2 (T - 2)^{2} Copy content Toggle raw display
3131 T2+64 T^{2} + 64 Copy content Toggle raw display
3737 T2+64 T^{2} + 64 Copy content Toggle raw display
4141 T2+4 T^{2} + 4 Copy content Toggle raw display
4343 (T8)2 (T - 8)^{2} Copy content Toggle raw display
4747 T2+36 T^{2} + 36 Copy content Toggle raw display
5353 (T6)2 (T - 6)^{2} Copy content Toggle raw display
5959 T2+4 T^{2} + 4 Copy content Toggle raw display
6161 (T2)2 (T - 2)^{2} Copy content Toggle raw display
6767 T2+16 T^{2} + 16 Copy content Toggle raw display
7171 T2+36 T^{2} + 36 Copy content Toggle raw display
7373 T2+16 T^{2} + 16 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2+196 T^{2} + 196 Copy content Toggle raw display
8989 T2+36 T^{2} + 36 Copy content Toggle raw display
9797 T2+144 T^{2} + 144 Copy content Toggle raw display
show more
show less