Properties

Label 2028.2.i.a
Level 20282028
Weight 22
Character orbit 2028.i
Analytic conductor 16.19416.194
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2028,2,Mod(529,2028)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2028, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2028.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2028=223132 2028 = 2^{2} \cdot 3 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2028.i (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 16.193661529916.1936615299
Analytic rank: 11
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 156)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ61)q32q54ζ6q7ζ6q9+(6ζ6+6)q11+(2ζ6+2)q152ζ6q17+4q21+(8ζ68)q23q25+6q99+O(q100) q + (\zeta_{6} - 1) q^{3} - 2 q^{5} - 4 \zeta_{6} q^{7} - \zeta_{6} q^{9} + ( - 6 \zeta_{6} + 6) q^{11} + ( - 2 \zeta_{6} + 2) q^{15} - 2 \zeta_{6} q^{17} + 4 q^{21} + (8 \zeta_{6} - 8) q^{23} - q^{25} + \cdots - 6 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq34q54q7q9+6q11+2q152q17+8q218q232q25+2q272q29+16q31+6q33+8q358q372q418q43+2q45+12q99+O(q100) 2 q - q^{3} - 4 q^{5} - 4 q^{7} - q^{9} + 6 q^{11} + 2 q^{15} - 2 q^{17} + 8 q^{21} - 8 q^{23} - 2 q^{25} + 2 q^{27} - 2 q^{29} + 16 q^{31} + 6 q^{33} + 8 q^{35} - 8 q^{37} - 2 q^{41} - 8 q^{43} + 2 q^{45}+ \cdots - 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2028Z)×\left(\mathbb{Z}/2028\mathbb{Z}\right)^\times.

nn 677677 10151015 18611861
χ(n)\chi(n) 11 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
529.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −0.500000 + 0.866025i 0 −2.00000 0 −2.00000 3.46410i 0 −0.500000 0.866025i 0
2005.1 0 −0.500000 0.866025i 0 −2.00000 0 −2.00000 + 3.46410i 0 −0.500000 + 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2028.2.i.a 2
13.b even 2 1 2028.2.i.d 2
13.c even 3 1 2028.2.a.d 1
13.c even 3 1 inner 2028.2.i.a 2
13.d odd 4 2 2028.2.q.e 4
13.e even 6 1 2028.2.a.f 1
13.e even 6 1 2028.2.i.d 2
13.f odd 12 2 156.2.b.b 2
13.f odd 12 2 2028.2.q.e 4
39.h odd 6 1 6084.2.a.d 1
39.i odd 6 1 6084.2.a.n 1
39.k even 12 2 468.2.b.c 2
52.i odd 6 1 8112.2.a.l 1
52.j odd 6 1 8112.2.a.d 1
52.l even 12 2 624.2.c.d 2
65.o even 12 2 3900.2.j.b 2
65.s odd 12 2 3900.2.c.a 2
65.t even 12 2 3900.2.j.e 2
91.bc even 12 2 7644.2.e.b 2
104.u even 12 2 2496.2.c.i 2
104.x odd 12 2 2496.2.c.b 2
156.v odd 12 2 1872.2.c.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.2.b.b 2 13.f odd 12 2
468.2.b.c 2 39.k even 12 2
624.2.c.d 2 52.l even 12 2
1872.2.c.h 2 156.v odd 12 2
2028.2.a.d 1 13.c even 3 1
2028.2.a.f 1 13.e even 6 1
2028.2.i.a 2 1.a even 1 1 trivial
2028.2.i.a 2 13.c even 3 1 inner
2028.2.i.d 2 13.b even 2 1
2028.2.i.d 2 13.e even 6 1
2028.2.q.e 4 13.d odd 4 2
2028.2.q.e 4 13.f odd 12 2
2496.2.c.b 2 104.x odd 12 2
2496.2.c.i 2 104.u even 12 2
3900.2.c.a 2 65.s odd 12 2
3900.2.j.b 2 65.o even 12 2
3900.2.j.e 2 65.t even 12 2
6084.2.a.d 1 39.h odd 6 1
6084.2.a.n 1 39.i odd 6 1
7644.2.e.b 2 91.bc even 12 2
8112.2.a.d 1 52.j odd 6 1
8112.2.a.l 1 52.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2028,[χ])S_{2}^{\mathrm{new}}(2028, [\chi]):

T5+2 T_{5} + 2 Copy content Toggle raw display
T72+4T7+16 T_{7}^{2} + 4T_{7} + 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
55 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
77 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
1111 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
2929 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
3131 (T8)2 (T - 8)^{2} Copy content Toggle raw display
3737 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
4141 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
4343 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
4747 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
5353 (T6)2 (T - 6)^{2} Copy content Toggle raw display
5959 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
6161 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
6767 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
7171 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
7373 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 (T+14)2 (T + 14)^{2} Copy content Toggle raw display
8989 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
9797 T2+12T+144 T^{2} + 12T + 144 Copy content Toggle raw display
show more
show less