Properties

Label 624.3.ba.b.385.2
Level $624$
Weight $3$
Character 624.385
Analytic conductor $17.003$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,3,Mod(385,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.385");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 624.ba (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.0027684961\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.1579585536.10
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 4x^{6} + 28x^{5} - 38x^{4} + 8x^{3} + 200x^{2} - 352x + 484 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 385.2
Root \(0.252411 + 1.79004i\) of defining polynomial
Character \(\chi\) \(=\) 624.385
Dual form 624.3.ba.b.577.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{3} +(1.58008 + 1.58008i) q^{5} +(-3.96400 + 3.96400i) q^{7} +3.00000 q^{9} +(10.0345 - 10.0345i) q^{11} +(-5.41846 + 11.8170i) q^{13} +(-2.73677 - 2.73677i) q^{15} +6.40175i q^{17} +(-7.73551 - 7.73551i) q^{19} +(6.86585 - 6.86585i) q^{21} +34.8297i q^{23} -20.0067i q^{25} -5.19615 q^{27} +8.25124 q^{29} +(-13.8633 - 13.8633i) q^{31} +(-17.3803 + 17.3803i) q^{33} -12.5269 q^{35} +(-37.2522 + 37.2522i) q^{37} +(9.38504 - 20.4676i) q^{39} +(-28.7020 - 28.7020i) q^{41} +42.7195i q^{43} +(4.74023 + 4.74023i) q^{45} +(-37.5964 + 37.5964i) q^{47} +17.5734i q^{49} -11.0882i q^{51} -96.7934 q^{53} +31.7107 q^{55} +(13.3983 + 13.3983i) q^{57} +(-37.8935 + 37.8935i) q^{59} +91.2864 q^{61} +(-11.8920 + 11.8920i) q^{63} +(-27.2333 + 10.1101i) q^{65} +(42.4500 + 42.4500i) q^{67} -60.3268i q^{69} +(-29.8579 - 29.8579i) q^{71} +(-10.9949 + 10.9949i) q^{73} +34.6526i q^{75} +79.5538i q^{77} -102.031 q^{79} +9.00000 q^{81} +(85.2758 + 85.2758i) q^{83} +(-10.1153 + 10.1153i) q^{85} -14.2916 q^{87} +(-63.8510 + 63.8510i) q^{89} +(-25.3636 - 68.3212i) q^{91} +(24.0119 + 24.0119i) q^{93} -24.4454i q^{95} +(-58.7023 - 58.7023i) q^{97} +(30.1036 - 30.1036i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 20 q^{5} - 8 q^{7} + 24 q^{9} + 20 q^{11} + 8 q^{13} - 12 q^{15} + 40 q^{19} - 48 q^{21} + 56 q^{29} - 32 q^{31} - 36 q^{33} - 104 q^{35} - 16 q^{37} - 24 q^{39} - 116 q^{41} - 60 q^{45} - 100 q^{47}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.73205 −0.577350
\(4\) 0 0
\(5\) 1.58008 + 1.58008i 0.316015 + 0.316015i 0.847234 0.531219i \(-0.178266\pi\)
−0.531219 + 0.847234i \(0.678266\pi\)
\(6\) 0 0
\(7\) −3.96400 + 3.96400i −0.566286 + 0.566286i −0.931086 0.364800i \(-0.881137\pi\)
0.364800 + 0.931086i \(0.381137\pi\)
\(8\) 0 0
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) 10.0345 10.0345i 0.912230 0.912230i −0.0842172 0.996447i \(-0.526839\pi\)
0.996447 + 0.0842172i \(0.0268389\pi\)
\(12\) 0 0
\(13\) −5.41846 + 11.8170i −0.416804 + 0.908996i
\(14\) 0 0
\(15\) −2.73677 2.73677i −0.182452 0.182452i
\(16\) 0 0
\(17\) 6.40175i 0.376574i 0.982114 + 0.188287i \(0.0602934\pi\)
−0.982114 + 0.188287i \(0.939707\pi\)
\(18\) 0 0
\(19\) −7.73551 7.73551i −0.407132 0.407132i 0.473605 0.880737i \(-0.342952\pi\)
−0.880737 + 0.473605i \(0.842952\pi\)
\(20\) 0 0
\(21\) 6.86585 6.86585i 0.326945 0.326945i
\(22\) 0 0
\(23\) 34.8297i 1.51434i 0.653221 + 0.757168i \(0.273417\pi\)
−0.653221 + 0.757168i \(0.726583\pi\)
\(24\) 0 0
\(25\) 20.0067i 0.800269i
\(26\) 0 0
\(27\) −5.19615 −0.192450
\(28\) 0 0
\(29\) 8.25124 0.284526 0.142263 0.989829i \(-0.454562\pi\)
0.142263 + 0.989829i \(0.454562\pi\)
\(30\) 0 0
\(31\) −13.8633 13.8633i −0.447202 0.447202i 0.447221 0.894423i \(-0.352414\pi\)
−0.894423 + 0.447221i \(0.852414\pi\)
\(32\) 0 0
\(33\) −17.3803 + 17.3803i −0.526676 + 0.526676i
\(34\) 0 0
\(35\) −12.5269 −0.357910
\(36\) 0 0
\(37\) −37.2522 + 37.2522i −1.00682 + 1.00682i −0.00683875 + 0.999977i \(0.502177\pi\)
−0.999977 + 0.00683875i \(0.997823\pi\)
\(38\) 0 0
\(39\) 9.38504 20.4676i 0.240642 0.524809i
\(40\) 0 0
\(41\) −28.7020 28.7020i −0.700050 0.700050i 0.264371 0.964421i \(-0.414836\pi\)
−0.964421 + 0.264371i \(0.914836\pi\)
\(42\) 0 0
\(43\) 42.7195i 0.993477i 0.867900 + 0.496739i \(0.165469\pi\)
−0.867900 + 0.496739i \(0.834531\pi\)
\(44\) 0 0
\(45\) 4.74023 + 4.74023i 0.105338 + 0.105338i
\(46\) 0 0
\(47\) −37.5964 + 37.5964i −0.799924 + 0.799924i −0.983083 0.183159i \(-0.941368\pi\)
0.183159 + 0.983083i \(0.441368\pi\)
\(48\) 0 0
\(49\) 17.5734i 0.358641i
\(50\) 0 0
\(51\) 11.0882i 0.217415i
\(52\) 0 0
\(53\) −96.7934 −1.82629 −0.913145 0.407635i \(-0.866354\pi\)
−0.913145 + 0.407635i \(0.866354\pi\)
\(54\) 0 0
\(55\) 31.7107 0.576558
\(56\) 0 0
\(57\) 13.3983 + 13.3983i 0.235058 + 0.235058i
\(58\) 0 0
\(59\) −37.8935 + 37.8935i −0.642262 + 0.642262i −0.951111 0.308849i \(-0.900056\pi\)
0.308849 + 0.951111i \(0.400056\pi\)
\(60\) 0 0
\(61\) 91.2864 1.49650 0.748249 0.663418i \(-0.230895\pi\)
0.748249 + 0.663418i \(0.230895\pi\)
\(62\) 0 0
\(63\) −11.8920 + 11.8920i −0.188762 + 0.188762i
\(64\) 0 0
\(65\) −27.2333 + 10.1101i −0.418973 + 0.155540i
\(66\) 0 0
\(67\) 42.4500 + 42.4500i 0.633581 + 0.633581i 0.948964 0.315383i \(-0.102133\pi\)
−0.315383 + 0.948964i \(0.602133\pi\)
\(68\) 0 0
\(69\) 60.3268i 0.874302i
\(70\) 0 0
\(71\) −29.8579 29.8579i −0.420534 0.420534i 0.464853 0.885388i \(-0.346107\pi\)
−0.885388 + 0.464853i \(0.846107\pi\)
\(72\) 0 0
\(73\) −10.9949 + 10.9949i −0.150615 + 0.150615i −0.778393 0.627777i \(-0.783965\pi\)
0.627777 + 0.778393i \(0.283965\pi\)
\(74\) 0 0
\(75\) 34.6526i 0.462035i
\(76\) 0 0
\(77\) 79.5538i 1.03317i
\(78\) 0 0
\(79\) −102.031 −1.29153 −0.645764 0.763537i \(-0.723461\pi\)
−0.645764 + 0.763537i \(0.723461\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 85.2758 + 85.2758i 1.02742 + 1.02742i 0.999613 + 0.0278064i \(0.00885219\pi\)
0.0278064 + 0.999613i \(0.491148\pi\)
\(84\) 0 0
\(85\) −10.1153 + 10.1153i −0.119003 + 0.119003i
\(86\) 0 0
\(87\) −14.2916 −0.164271
\(88\) 0 0
\(89\) −63.8510 + 63.8510i −0.717427 + 0.717427i −0.968078 0.250651i \(-0.919355\pi\)
0.250651 + 0.968078i \(0.419355\pi\)
\(90\) 0 0
\(91\) −25.3636 68.3212i −0.278721 0.750782i
\(92\) 0 0
\(93\) 24.0119 + 24.0119i 0.258192 + 0.258192i
\(94\) 0 0
\(95\) 24.4454i 0.257320i
\(96\) 0 0
\(97\) −58.7023 58.7023i −0.605178 0.605178i 0.336504 0.941682i \(-0.390755\pi\)
−0.941682 + 0.336504i \(0.890755\pi\)
\(98\) 0 0
\(99\) 30.1036 30.1036i 0.304077 0.304077i
\(100\) 0 0
\(101\) 130.126i 1.28837i 0.764869 + 0.644186i \(0.222804\pi\)
−0.764869 + 0.644186i \(0.777196\pi\)
\(102\) 0 0
\(103\) 27.9217i 0.271085i −0.990772 0.135542i \(-0.956722\pi\)
0.990772 0.135542i \(-0.0432777\pi\)
\(104\) 0 0
\(105\) 21.6971 0.206640
\(106\) 0 0
\(107\) −166.168 −1.55297 −0.776486 0.630134i \(-0.783000\pi\)
−0.776486 + 0.630134i \(0.783000\pi\)
\(108\) 0 0
\(109\) −4.56393 4.56393i −0.0418709 0.0418709i 0.685861 0.727732i \(-0.259426\pi\)
−0.727732 + 0.685861i \(0.759426\pi\)
\(110\) 0 0
\(111\) 64.5226 64.5226i 0.581285 0.581285i
\(112\) 0 0
\(113\) −60.7525 −0.537633 −0.268817 0.963191i \(-0.586633\pi\)
−0.268817 + 0.963191i \(0.586633\pi\)
\(114\) 0 0
\(115\) −55.0336 + 55.0336i −0.478553 + 0.478553i
\(116\) 0 0
\(117\) −16.2554 + 35.4509i −0.138935 + 0.302999i
\(118\) 0 0
\(119\) −25.3765 25.3765i −0.213248 0.213248i
\(120\) 0 0
\(121\) 80.3837i 0.664328i
\(122\) 0 0
\(123\) 49.7134 + 49.7134i 0.404174 + 0.404174i
\(124\) 0 0
\(125\) 71.1141 71.1141i 0.568913 0.568913i
\(126\) 0 0
\(127\) 130.207i 1.02525i −0.858613 0.512624i \(-0.828673\pi\)
0.858613 0.512624i \(-0.171327\pi\)
\(128\) 0 0
\(129\) 73.9924i 0.573584i
\(130\) 0 0
\(131\) −135.531 −1.03459 −0.517293 0.855809i \(-0.673060\pi\)
−0.517293 + 0.855809i \(0.673060\pi\)
\(132\) 0 0
\(133\) 61.3271 0.461106
\(134\) 0 0
\(135\) −8.21032 8.21032i −0.0608172 0.0608172i
\(136\) 0 0
\(137\) 135.519 135.519i 0.989190 0.989190i −0.0107526 0.999942i \(-0.503423\pi\)
0.999942 + 0.0107526i \(0.00342272\pi\)
\(138\) 0 0
\(139\) 244.006 1.75544 0.877720 0.479174i \(-0.159064\pi\)
0.877720 + 0.479174i \(0.159064\pi\)
\(140\) 0 0
\(141\) 65.1189 65.1189i 0.461836 0.461836i
\(142\) 0 0
\(143\) 64.2059 + 172.949i 0.448992 + 1.20944i
\(144\) 0 0
\(145\) 13.0376 + 13.0376i 0.0899145 + 0.0899145i
\(146\) 0 0
\(147\) 30.4380i 0.207061i
\(148\) 0 0
\(149\) 174.887 + 174.887i 1.17374 + 1.17374i 0.981312 + 0.192425i \(0.0616351\pi\)
0.192425 + 0.981312i \(0.438365\pi\)
\(150\) 0 0
\(151\) 38.1095 38.1095i 0.252381 0.252381i −0.569565 0.821946i \(-0.692888\pi\)
0.821946 + 0.569565i \(0.192888\pi\)
\(152\) 0 0
\(153\) 19.2053i 0.125525i
\(154\) 0 0
\(155\) 43.8101i 0.282646i
\(156\) 0 0
\(157\) 150.359 0.957699 0.478849 0.877897i \(-0.341054\pi\)
0.478849 + 0.877897i \(0.341054\pi\)
\(158\) 0 0
\(159\) 167.651 1.05441
\(160\) 0 0
\(161\) −138.065 138.065i −0.857547 0.857547i
\(162\) 0 0
\(163\) 167.544 167.544i 1.02788 1.02788i 0.0282759 0.999600i \(-0.490998\pi\)
0.999600 0.0282759i \(-0.00900169\pi\)
\(164\) 0 0
\(165\) −54.9245 −0.332876
\(166\) 0 0
\(167\) 33.7608 33.7608i 0.202160 0.202160i −0.598765 0.800925i \(-0.704342\pi\)
0.800925 + 0.598765i \(0.204342\pi\)
\(168\) 0 0
\(169\) −110.281 128.059i −0.652548 0.757747i
\(170\) 0 0
\(171\) −23.2065 23.2065i −0.135711 0.135711i
\(172\) 0 0
\(173\) 150.230i 0.868383i 0.900821 + 0.434191i \(0.142966\pi\)
−0.900821 + 0.434191i \(0.857034\pi\)
\(174\) 0 0
\(175\) 79.3066 + 79.3066i 0.453181 + 0.453181i
\(176\) 0 0
\(177\) 65.6334 65.6334i 0.370810 0.370810i
\(178\) 0 0
\(179\) 247.106i 1.38048i −0.723582 0.690239i \(-0.757505\pi\)
0.723582 0.690239i \(-0.242495\pi\)
\(180\) 0 0
\(181\) 111.674i 0.616986i −0.951227 0.308493i \(-0.900175\pi\)
0.951227 0.308493i \(-0.0998247\pi\)
\(182\) 0 0
\(183\) −158.113 −0.864004
\(184\) 0 0
\(185\) −117.723 −0.636338
\(186\) 0 0
\(187\) 64.2386 + 64.2386i 0.343522 + 0.343522i
\(188\) 0 0
\(189\) 20.5976 20.5976i 0.108982 0.108982i
\(190\) 0 0
\(191\) 64.6991 0.338739 0.169369 0.985553i \(-0.445827\pi\)
0.169369 + 0.985553i \(0.445827\pi\)
\(192\) 0 0
\(193\) 97.0986 97.0986i 0.503102 0.503102i −0.409299 0.912400i \(-0.634227\pi\)
0.912400 + 0.409299i \(0.134227\pi\)
\(194\) 0 0
\(195\) 47.1694 17.5112i 0.241894 0.0898012i
\(196\) 0 0
\(197\) 48.8725 + 48.8725i 0.248084 + 0.248084i 0.820184 0.572100i \(-0.193871\pi\)
−0.572100 + 0.820184i \(0.693871\pi\)
\(198\) 0 0
\(199\) 139.570i 0.701358i 0.936496 + 0.350679i \(0.114049\pi\)
−0.936496 + 0.350679i \(0.885951\pi\)
\(200\) 0 0
\(201\) −73.5255 73.5255i −0.365798 0.365798i
\(202\) 0 0
\(203\) −32.7079 + 32.7079i −0.161123 + 0.161123i
\(204\) 0 0
\(205\) 90.7029i 0.442453i
\(206\) 0 0
\(207\) 104.489i 0.504778i
\(208\) 0 0
\(209\) −155.244 −0.742796
\(210\) 0 0
\(211\) −52.9556 −0.250975 −0.125487 0.992095i \(-0.540049\pi\)
−0.125487 + 0.992095i \(0.540049\pi\)
\(212\) 0 0
\(213\) 51.7154 + 51.7154i 0.242796 + 0.242796i
\(214\) 0 0
\(215\) −67.5001 + 67.5001i −0.313954 + 0.313954i
\(216\) 0 0
\(217\) 109.908 0.506489
\(218\) 0 0
\(219\) 19.0438 19.0438i 0.0869578 0.0869578i
\(220\) 0 0
\(221\) −75.6492 34.6876i −0.342304 0.156958i
\(222\) 0 0
\(223\) −70.4483 70.4483i −0.315912 0.315912i 0.531283 0.847195i \(-0.321710\pi\)
−0.847195 + 0.531283i \(0.821710\pi\)
\(224\) 0 0
\(225\) 60.0201i 0.266756i
\(226\) 0 0
\(227\) 95.0195 + 95.0195i 0.418588 + 0.418588i 0.884717 0.466129i \(-0.154352\pi\)
−0.466129 + 0.884717i \(0.654352\pi\)
\(228\) 0 0
\(229\) 66.9011 66.9011i 0.292144 0.292144i −0.545782 0.837927i \(-0.683767\pi\)
0.837927 + 0.545782i \(0.183767\pi\)
\(230\) 0 0
\(231\) 137.791i 0.596499i
\(232\) 0 0
\(233\) 81.9200i 0.351588i 0.984427 + 0.175794i \(0.0562493\pi\)
−0.984427 + 0.175794i \(0.943751\pi\)
\(234\) 0 0
\(235\) −118.811 −0.505577
\(236\) 0 0
\(237\) 176.722 0.745664
\(238\) 0 0
\(239\) −5.12005 5.12005i −0.0214228 0.0214228i 0.696314 0.717737i \(-0.254822\pi\)
−0.717737 + 0.696314i \(0.754822\pi\)
\(240\) 0 0
\(241\) −152.203 + 152.203i −0.631546 + 0.631546i −0.948456 0.316910i \(-0.897355\pi\)
0.316910 + 0.948456i \(0.397355\pi\)
\(242\) 0 0
\(243\) −15.5885 −0.0641500
\(244\) 0 0
\(245\) −27.7673 + 27.7673i −0.113336 + 0.113336i
\(246\) 0 0
\(247\) 133.325 49.4956i 0.539776 0.200387i
\(248\) 0 0
\(249\) −147.702 147.702i −0.593181 0.593181i
\(250\) 0 0
\(251\) 221.877i 0.883974i 0.897022 + 0.441987i \(0.145726\pi\)
−0.897022 + 0.441987i \(0.854274\pi\)
\(252\) 0 0
\(253\) 349.500 + 349.500i 1.38142 + 1.38142i
\(254\) 0 0
\(255\) 17.5201 17.5201i 0.0687064 0.0687064i
\(256\) 0 0
\(257\) 15.0363i 0.0585068i −0.999572 0.0292534i \(-0.990687\pi\)
0.999572 0.0292534i \(-0.00931298\pi\)
\(258\) 0 0
\(259\) 295.335i 1.14029i
\(260\) 0 0
\(261\) 24.7537 0.0948419
\(262\) 0 0
\(263\) 105.723 0.401990 0.200995 0.979592i \(-0.435582\pi\)
0.200995 + 0.979592i \(0.435582\pi\)
\(264\) 0 0
\(265\) −152.941 152.941i −0.577136 0.577136i
\(266\) 0 0
\(267\) 110.593 110.593i 0.414207 0.414207i
\(268\) 0 0
\(269\) 168.740 0.627286 0.313643 0.949541i \(-0.398451\pi\)
0.313643 + 0.949541i \(0.398451\pi\)
\(270\) 0 0
\(271\) 52.4787 52.4787i 0.193648 0.193648i −0.603622 0.797271i \(-0.706276\pi\)
0.797271 + 0.603622i \(0.206276\pi\)
\(272\) 0 0
\(273\) 43.9311 + 118.336i 0.160920 + 0.433464i
\(274\) 0 0
\(275\) −200.758 200.758i −0.730029 0.730029i
\(276\) 0 0
\(277\) 153.018i 0.552412i 0.961098 + 0.276206i \(0.0890772\pi\)
−0.961098 + 0.276206i \(0.910923\pi\)
\(278\) 0 0
\(279\) −41.5898 41.5898i −0.149067 0.149067i
\(280\) 0 0
\(281\) 37.8887 37.8887i 0.134835 0.134835i −0.636468 0.771303i \(-0.719605\pi\)
0.771303 + 0.636468i \(0.219605\pi\)
\(282\) 0 0
\(283\) 34.7222i 0.122693i 0.998117 + 0.0613467i \(0.0195395\pi\)
−0.998117 + 0.0613467i \(0.980460\pi\)
\(284\) 0 0
\(285\) 42.3407i 0.148564i
\(286\) 0 0
\(287\) 227.550 0.792857
\(288\) 0 0
\(289\) 248.018 0.858192
\(290\) 0 0
\(291\) 101.675 + 101.675i 0.349400 + 0.349400i
\(292\) 0 0
\(293\) 54.4668 54.4668i 0.185894 0.185894i −0.608025 0.793918i \(-0.708038\pi\)
0.793918 + 0.608025i \(0.208038\pi\)
\(294\) 0 0
\(295\) −119.749 −0.405929
\(296\) 0 0
\(297\) −52.1410 + 52.1410i −0.175559 + 0.175559i
\(298\) 0 0
\(299\) −411.581 188.723i −1.37652 0.631182i
\(300\) 0 0
\(301\) −169.340 169.340i −0.562592 0.562592i
\(302\) 0 0
\(303\) 225.384i 0.743842i
\(304\) 0 0
\(305\) 144.240 + 144.240i 0.472916 + 0.472916i
\(306\) 0 0
\(307\) −223.385 + 223.385i −0.727639 + 0.727639i −0.970149 0.242510i \(-0.922029\pi\)
0.242510 + 0.970149i \(0.422029\pi\)
\(308\) 0 0
\(309\) 48.3619i 0.156511i
\(310\) 0 0
\(311\) 516.479i 1.66070i 0.557240 + 0.830352i \(0.311860\pi\)
−0.557240 + 0.830352i \(0.688140\pi\)
\(312\) 0 0
\(313\) −149.235 −0.476788 −0.238394 0.971169i \(-0.576621\pi\)
−0.238394 + 0.971169i \(0.576621\pi\)
\(314\) 0 0
\(315\) −37.5806 −0.119303
\(316\) 0 0
\(317\) −188.163 188.163i −0.593574 0.593574i 0.345021 0.938595i \(-0.387872\pi\)
−0.938595 + 0.345021i \(0.887872\pi\)
\(318\) 0 0
\(319\) 82.7974 82.7974i 0.259553 0.259553i
\(320\) 0 0
\(321\) 287.811 0.896609
\(322\) 0 0
\(323\) 49.5208 49.5208i 0.153315 0.153315i
\(324\) 0 0
\(325\) 236.418 + 108.406i 0.727441 + 0.333555i
\(326\) 0 0
\(327\) 7.90495 + 7.90495i 0.0241742 + 0.0241742i
\(328\) 0 0
\(329\) 298.065i 0.905972i
\(330\) 0 0
\(331\) 133.749 + 133.749i 0.404074 + 0.404074i 0.879666 0.475592i \(-0.157766\pi\)
−0.475592 + 0.879666i \(0.657766\pi\)
\(332\) 0 0
\(333\) −111.757 + 111.757i −0.335605 + 0.335605i
\(334\) 0 0
\(335\) 134.148i 0.400443i
\(336\) 0 0
\(337\) 202.419i 0.600651i −0.953837 0.300325i \(-0.902905\pi\)
0.953837 0.300325i \(-0.0970952\pi\)
\(338\) 0 0
\(339\) 105.226 0.310403
\(340\) 0 0
\(341\) −278.223 −0.815903
\(342\) 0 0
\(343\) −263.897 263.897i −0.769379 0.769379i
\(344\) 0 0
\(345\) 95.3210 95.3210i 0.276293 0.276293i
\(346\) 0 0
\(347\) −190.870 −0.550059 −0.275029 0.961436i \(-0.588688\pi\)
−0.275029 + 0.961436i \(0.588688\pi\)
\(348\) 0 0
\(349\) −472.034 + 472.034i −1.35253 + 1.35253i −0.469713 + 0.882819i \(0.655643\pi\)
−0.882819 + 0.469713i \(0.844357\pi\)
\(350\) 0 0
\(351\) 28.1551 61.4027i 0.0802140 0.174936i
\(352\) 0 0
\(353\) −298.499 298.499i −0.845606 0.845606i 0.143975 0.989581i \(-0.454012\pi\)
−0.989581 + 0.143975i \(0.954012\pi\)
\(354\) 0 0
\(355\) 94.3556i 0.265791i
\(356\) 0 0
\(357\) 43.9535 + 43.9535i 0.123119 + 0.123119i
\(358\) 0 0
\(359\) 86.3614 86.3614i 0.240561 0.240561i −0.576521 0.817082i \(-0.695590\pi\)
0.817082 + 0.576521i \(0.195590\pi\)
\(360\) 0 0
\(361\) 241.324i 0.668487i
\(362\) 0 0
\(363\) 139.229i 0.383550i
\(364\) 0 0
\(365\) −34.7456 −0.0951935
\(366\) 0 0
\(367\) 54.1950 0.147670 0.0738352 0.997270i \(-0.476476\pi\)
0.0738352 + 0.997270i \(0.476476\pi\)
\(368\) 0 0
\(369\) −86.1061 86.1061i −0.233350 0.233350i
\(370\) 0 0
\(371\) 383.689 383.689i 1.03420 1.03420i
\(372\) 0 0
\(373\) −17.9362 −0.0480862 −0.0240431 0.999711i \(-0.507654\pi\)
−0.0240431 + 0.999711i \(0.507654\pi\)
\(374\) 0 0
\(375\) −123.173 + 123.173i −0.328462 + 0.328462i
\(376\) 0 0
\(377\) −44.7090 + 97.5045i −0.118592 + 0.258633i
\(378\) 0 0
\(379\) 281.565 + 281.565i 0.742916 + 0.742916i 0.973138 0.230222i \(-0.0739453\pi\)
−0.230222 + 0.973138i \(0.573945\pi\)
\(380\) 0 0
\(381\) 225.524i 0.591927i
\(382\) 0 0
\(383\) 244.827 + 244.827i 0.639236 + 0.639236i 0.950367 0.311131i \(-0.100708\pi\)
−0.311131 + 0.950367i \(0.600708\pi\)
\(384\) 0 0
\(385\) −125.701 + 125.701i −0.326496 + 0.326496i
\(386\) 0 0
\(387\) 128.159i 0.331159i
\(388\) 0 0
\(389\) 582.261i 1.49681i 0.663240 + 0.748407i \(0.269181\pi\)
−0.663240 + 0.748407i \(0.730819\pi\)
\(390\) 0 0
\(391\) −222.971 −0.570259
\(392\) 0 0
\(393\) 234.746 0.597318
\(394\) 0 0
\(395\) −161.216 161.216i −0.408143 0.408143i
\(396\) 0 0
\(397\) 372.060 372.060i 0.937179 0.937179i −0.0609613 0.998140i \(-0.519417\pi\)
0.998140 + 0.0609613i \(0.0194166\pi\)
\(398\) 0 0
\(399\) −106.222 −0.266220
\(400\) 0 0
\(401\) −380.251 + 380.251i −0.948258 + 0.948258i −0.998726 0.0504677i \(-0.983929\pi\)
0.0504677 + 0.998726i \(0.483929\pi\)
\(402\) 0 0
\(403\) 238.939 88.7040i 0.592901 0.220109i
\(404\) 0 0
\(405\) 14.2207 + 14.2207i 0.0351128 + 0.0351128i
\(406\) 0 0
\(407\) 747.616i 1.83689i
\(408\) 0 0
\(409\) 58.5825 + 58.5825i 0.143233 + 0.143233i 0.775087 0.631854i \(-0.217706\pi\)
−0.631854 + 0.775087i \(0.717706\pi\)
\(410\) 0 0
\(411\) −234.726 + 234.726i −0.571109 + 0.571109i
\(412\) 0 0
\(413\) 300.420i 0.727408i
\(414\) 0 0
\(415\) 269.485i 0.649361i
\(416\) 0 0
\(417\) −422.631 −1.01350
\(418\) 0 0
\(419\) 451.990 1.07874 0.539368 0.842070i \(-0.318663\pi\)
0.539368 + 0.842070i \(0.318663\pi\)
\(420\) 0 0
\(421\) 54.5548 + 54.5548i 0.129584 + 0.129584i 0.768924 0.639340i \(-0.220792\pi\)
−0.639340 + 0.768924i \(0.720792\pi\)
\(422\) 0 0
\(423\) −112.789 + 112.789i −0.266641 + 0.266641i
\(424\) 0 0
\(425\) 128.078 0.301360
\(426\) 0 0
\(427\) −361.859 + 361.859i −0.847446 + 0.847446i
\(428\) 0 0
\(429\) −111.208 299.557i −0.259226 0.698268i
\(430\) 0 0
\(431\) −422.858 422.858i −0.981110 0.981110i 0.0187153 0.999825i \(-0.494042\pi\)
−0.999825 + 0.0187153i \(0.994042\pi\)
\(432\) 0 0
\(433\) 621.635i 1.43565i 0.696225 + 0.717824i \(0.254862\pi\)
−0.696225 + 0.717824i \(0.745138\pi\)
\(434\) 0 0
\(435\) −22.5818 22.5818i −0.0519121 0.0519121i
\(436\) 0 0
\(437\) 269.425 269.425i 0.616534 0.616534i
\(438\) 0 0
\(439\) 416.992i 0.949868i 0.880021 + 0.474934i \(0.157528\pi\)
−0.880021 + 0.474934i \(0.842472\pi\)
\(440\) 0 0
\(441\) 52.7202i 0.119547i
\(442\) 0 0
\(443\) −581.904 −1.31355 −0.656776 0.754086i \(-0.728080\pi\)
−0.656776 + 0.754086i \(0.728080\pi\)
\(444\) 0 0
\(445\) −201.779 −0.453436
\(446\) 0 0
\(447\) −302.913 302.913i −0.677657 0.677657i
\(448\) 0 0
\(449\) −66.7587 + 66.7587i −0.148683 + 0.148683i −0.777530 0.628846i \(-0.783527\pi\)
0.628846 + 0.777530i \(0.283527\pi\)
\(450\) 0 0
\(451\) −576.023 −1.27721
\(452\) 0 0
\(453\) −66.0077 + 66.0077i −0.145712 + 0.145712i
\(454\) 0 0
\(455\) 67.8762 148.029i 0.149179 0.325339i
\(456\) 0 0
\(457\) −103.815 103.815i −0.227167 0.227167i 0.584341 0.811508i \(-0.301353\pi\)
−0.811508 + 0.584341i \(0.801353\pi\)
\(458\) 0 0
\(459\) 33.2645i 0.0724716i
\(460\) 0 0
\(461\) −203.938 203.938i −0.442381 0.442381i 0.450430 0.892812i \(-0.351271\pi\)
−0.892812 + 0.450430i \(0.851271\pi\)
\(462\) 0 0
\(463\) 481.370 481.370i 1.03968 1.03968i 0.0404953 0.999180i \(-0.487106\pi\)
0.999180 0.0404953i \(-0.0128936\pi\)
\(464\) 0 0
\(465\) 75.8812i 0.163185i
\(466\) 0 0
\(467\) 7.71730i 0.0165253i −0.999966 0.00826263i \(-0.997370\pi\)
0.999966 0.00826263i \(-0.00263011\pi\)
\(468\) 0 0
\(469\) −336.543 −0.717576
\(470\) 0 0
\(471\) −260.429 −0.552928
\(472\) 0 0
\(473\) 428.670 + 428.670i 0.906280 + 0.906280i
\(474\) 0 0
\(475\) −154.762 + 154.762i −0.325815 + 0.325815i
\(476\) 0 0
\(477\) −290.380 −0.608763
\(478\) 0 0
\(479\) −24.7867 + 24.7867i −0.0517467 + 0.0517467i −0.732507 0.680760i \(-0.761650\pi\)
0.680760 + 0.732507i \(0.261650\pi\)
\(480\) 0 0
\(481\) −238.358 642.056i −0.495546 1.33484i
\(482\) 0 0
\(483\) 239.136 + 239.136i 0.495105 + 0.495105i
\(484\) 0 0
\(485\) 185.508i 0.382491i
\(486\) 0 0
\(487\) −245.469 245.469i −0.504044 0.504044i 0.408648 0.912692i \(-0.366000\pi\)
−0.912692 + 0.408648i \(0.866000\pi\)
\(488\) 0 0
\(489\) −290.194 + 290.194i −0.593444 + 0.593444i
\(490\) 0 0
\(491\) 25.3996i 0.0517304i 0.999665 + 0.0258652i \(0.00823406\pi\)
−0.999665 + 0.0258652i \(0.991766\pi\)
\(492\) 0 0
\(493\) 52.8224i 0.107145i
\(494\) 0 0
\(495\) 95.1320 0.192186
\(496\) 0 0
\(497\) 236.714 0.476285
\(498\) 0 0
\(499\) 328.094 + 328.094i 0.657502 + 0.657502i 0.954788 0.297286i \(-0.0960816\pi\)
−0.297286 + 0.954788i \(0.596082\pi\)
\(500\) 0 0
\(501\) −58.4753 + 58.4753i −0.116717 + 0.116717i
\(502\) 0 0
\(503\) 399.152 0.793543 0.396771 0.917918i \(-0.370131\pi\)
0.396771 + 0.917918i \(0.370131\pi\)
\(504\) 0 0
\(505\) −205.608 + 205.608i −0.407145 + 0.407145i
\(506\) 0 0
\(507\) 191.012 + 221.805i 0.376749 + 0.437486i
\(508\) 0 0
\(509\) 655.020 + 655.020i 1.28688 + 1.28688i 0.936674 + 0.350203i \(0.113887\pi\)
0.350203 + 0.936674i \(0.386113\pi\)
\(510\) 0 0
\(511\) 87.1678i 0.170583i
\(512\) 0 0
\(513\) 40.1949 + 40.1949i 0.0783526 + 0.0783526i
\(514\) 0 0
\(515\) 44.1185 44.1185i 0.0856670 0.0856670i
\(516\) 0 0
\(517\) 754.525i 1.45943i
\(518\) 0 0
\(519\) 260.206i 0.501361i
\(520\) 0 0
\(521\) 287.758 0.552318 0.276159 0.961112i \(-0.410938\pi\)
0.276159 + 0.961112i \(0.410938\pi\)
\(522\) 0 0
\(523\) 148.325 0.283604 0.141802 0.989895i \(-0.454710\pi\)
0.141802 + 0.989895i \(0.454710\pi\)
\(524\) 0 0
\(525\) −137.363 137.363i −0.261644 0.261644i
\(526\) 0 0
\(527\) 88.7492 88.7492i 0.168405 0.168405i
\(528\) 0 0
\(529\) −684.108 −1.29321
\(530\) 0 0
\(531\) −113.680 + 113.680i −0.214087 + 0.214087i
\(532\) 0 0
\(533\) 494.692 183.650i 0.928127 0.344559i
\(534\) 0 0
\(535\) −262.558 262.558i −0.490763 0.490763i
\(536\) 0 0
\(537\) 427.999i 0.797019i
\(538\) 0 0
\(539\) 176.341 + 176.341i 0.327163 + 0.327163i
\(540\) 0 0
\(541\) −378.819 + 378.819i −0.700221 + 0.700221i −0.964458 0.264237i \(-0.914880\pi\)
0.264237 + 0.964458i \(0.414880\pi\)
\(542\) 0 0
\(543\) 193.426i 0.356217i
\(544\) 0 0
\(545\) 14.4227i 0.0264637i
\(546\) 0 0
\(547\) −63.2197 −0.115575 −0.0577876 0.998329i \(-0.518405\pi\)
−0.0577876 + 0.998329i \(0.518405\pi\)
\(548\) 0 0
\(549\) 273.859 0.498833
\(550\) 0 0
\(551\) −63.8276 63.8276i −0.115839 0.115839i
\(552\) 0 0
\(553\) 404.450 404.450i 0.731374 0.731374i
\(554\) 0 0
\(555\) 203.901 0.367390
\(556\) 0 0
\(557\) 599.495 599.495i 1.07629 1.07629i 0.0794543 0.996839i \(-0.474682\pi\)
0.996839 0.0794543i \(-0.0253178\pi\)
\(558\) 0 0
\(559\) −504.815 231.474i −0.903067 0.414086i
\(560\) 0 0
\(561\) −111.264 111.264i −0.198332 0.198332i
\(562\) 0 0
\(563\) 79.3967i 0.141024i −0.997511 0.0705122i \(-0.977537\pi\)
0.997511 0.0705122i \(-0.0224634\pi\)
\(564\) 0 0
\(565\) −95.9937 95.9937i −0.169900 0.169900i
\(566\) 0 0
\(567\) −35.6760 + 35.6760i −0.0629207 + 0.0629207i
\(568\) 0 0
\(569\) 27.2834i 0.0479497i −0.999713 0.0239748i \(-0.992368\pi\)
0.999713 0.0239748i \(-0.00763216\pi\)
\(570\) 0 0
\(571\) 73.0650i 0.127960i −0.997951 0.0639799i \(-0.979621\pi\)
0.997951 0.0639799i \(-0.0203793\pi\)
\(572\) 0 0
\(573\) −112.062 −0.195571
\(574\) 0 0
\(575\) 696.828 1.21187
\(576\) 0 0
\(577\) 172.432 + 172.432i 0.298841 + 0.298841i 0.840560 0.541719i \(-0.182226\pi\)
−0.541719 + 0.840560i \(0.682226\pi\)
\(578\) 0 0
\(579\) −168.180 + 168.180i −0.290466 + 0.290466i
\(580\) 0 0
\(581\) −676.067 −1.16363
\(582\) 0 0
\(583\) −971.276 + 971.276i −1.66600 + 1.66600i
\(584\) 0 0
\(585\) −81.6998 + 30.3303i −0.139658 + 0.0518467i
\(586\) 0 0
\(587\) −766.322 766.322i −1.30549 1.30549i −0.924635 0.380854i \(-0.875630\pi\)
−0.380854 0.924635i \(-0.624370\pi\)
\(588\) 0 0
\(589\) 214.479i 0.364141i
\(590\) 0 0
\(591\) −84.6496 84.6496i −0.143231 0.143231i
\(592\) 0 0
\(593\) 120.360 120.360i 0.202969 0.202969i −0.598302 0.801271i \(-0.704158\pi\)
0.801271 + 0.598302i \(0.204158\pi\)
\(594\) 0 0
\(595\) 80.1938i 0.134779i
\(596\) 0 0
\(597\) 241.743i 0.404929i
\(598\) 0 0
\(599\) −323.635 −0.540292 −0.270146 0.962819i \(-0.587072\pi\)
−0.270146 + 0.962819i \(0.587072\pi\)
\(600\) 0 0
\(601\) 1108.97 1.84521 0.922607 0.385742i \(-0.126054\pi\)
0.922607 + 0.385742i \(0.126054\pi\)
\(602\) 0 0
\(603\) 127.350 + 127.350i 0.211194 + 0.211194i
\(604\) 0 0
\(605\) 127.012 127.012i 0.209938 0.209938i
\(606\) 0 0
\(607\) 196.769 0.324167 0.162084 0.986777i \(-0.448179\pi\)
0.162084 + 0.986777i \(0.448179\pi\)
\(608\) 0 0
\(609\) 56.6518 56.6518i 0.0930243 0.0930243i
\(610\) 0 0
\(611\) −240.561 647.990i −0.393716 1.06054i
\(612\) 0 0
\(613\) −702.697 702.697i −1.14633 1.14633i −0.987270 0.159055i \(-0.949155\pi\)
−0.159055 0.987270i \(-0.550845\pi\)
\(614\) 0 0
\(615\) 157.102i 0.255450i
\(616\) 0 0
\(617\) −305.273 305.273i −0.494771 0.494771i 0.415035 0.909805i \(-0.363769\pi\)
−0.909805 + 0.415035i \(0.863769\pi\)
\(618\) 0 0
\(619\) −97.1707 + 97.1707i −0.156980 + 0.156980i −0.781227 0.624247i \(-0.785406\pi\)
0.624247 + 0.781227i \(0.285406\pi\)
\(620\) 0 0
\(621\) 180.980i 0.291434i
\(622\) 0 0
\(623\) 506.211i 0.812538i
\(624\) 0 0
\(625\) −275.436 −0.440698
\(626\) 0 0
\(627\) 268.891 0.428854
\(628\) 0 0
\(629\) −238.479 238.479i −0.379140 0.379140i
\(630\) 0 0
\(631\) 368.719 368.719i 0.584341 0.584341i −0.351752 0.936093i \(-0.614414\pi\)
0.936093 + 0.351752i \(0.114414\pi\)
\(632\) 0 0
\(633\) 91.7219 0.144900
\(634\) 0 0
\(635\) 205.736 205.736i 0.323994 0.323994i
\(636\) 0 0
\(637\) −207.664 95.2206i −0.326003 0.149483i
\(638\) 0 0
\(639\) −89.5738 89.5738i −0.140178 0.140178i
\(640\) 0 0
\(641\) 779.737i 1.21644i 0.793769 + 0.608219i \(0.208116\pi\)
−0.793769 + 0.608219i \(0.791884\pi\)
\(642\) 0 0
\(643\) 719.483 + 719.483i 1.11895 + 1.11895i 0.991896 + 0.127051i \(0.0405512\pi\)
0.127051 + 0.991896i \(0.459449\pi\)
\(644\) 0 0
\(645\) 116.914 116.914i 0.181262 0.181262i
\(646\) 0 0
\(647\) 313.980i 0.485286i 0.970116 + 0.242643i \(0.0780144\pi\)
−0.970116 + 0.242643i \(0.921986\pi\)
\(648\) 0 0
\(649\) 760.487i 1.17178i
\(650\) 0 0
\(651\) −190.366 −0.292421
\(652\) 0 0
\(653\) −280.037 −0.428847 −0.214424 0.976741i \(-0.568787\pi\)
−0.214424 + 0.976741i \(0.568787\pi\)
\(654\) 0 0
\(655\) −214.149 214.149i −0.326945 0.326945i
\(656\) 0 0
\(657\) −32.9848 + 32.9848i −0.0502051 + 0.0502051i
\(658\) 0 0
\(659\) 1021.28 1.54974 0.774871 0.632119i \(-0.217815\pi\)
0.774871 + 0.632119i \(0.217815\pi\)
\(660\) 0 0
\(661\) 638.747 638.747i 0.966334 0.966334i −0.0331178 0.999451i \(-0.510544\pi\)
0.999451 + 0.0331178i \(0.0105436\pi\)
\(662\) 0 0
\(663\) 131.028 + 60.0807i 0.197629 + 0.0906195i
\(664\) 0 0
\(665\) 96.9016 + 96.9016i 0.145717 + 0.145717i
\(666\) 0 0
\(667\) 287.388i 0.430867i
\(668\) 0 0
\(669\) 122.020 + 122.020i 0.182392 + 0.182392i
\(670\) 0 0
\(671\) 916.016 916.016i 1.36515 1.36515i
\(672\) 0 0
\(673\) 236.547i 0.351482i 0.984436 + 0.175741i \(0.0562320\pi\)
−0.984436 + 0.175741i \(0.943768\pi\)
\(674\) 0 0
\(675\) 103.958i 0.154012i
\(676\) 0 0
\(677\) −788.423 −1.16458 −0.582292 0.812980i \(-0.697844\pi\)
−0.582292 + 0.812980i \(0.697844\pi\)
\(678\) 0 0
\(679\) 465.392 0.685408
\(680\) 0 0
\(681\) −164.579 164.579i −0.241672 0.241672i
\(682\) 0 0
\(683\) 278.551 278.551i 0.407834 0.407834i −0.473149 0.880983i \(-0.656883\pi\)
0.880983 + 0.473149i \(0.156883\pi\)
\(684\) 0 0
\(685\) 428.261 0.625198
\(686\) 0 0
\(687\) −115.876 + 115.876i −0.168670 + 0.168670i
\(688\) 0 0
\(689\) 524.471 1143.80i 0.761206 1.66009i
\(690\) 0 0
\(691\) 64.4993 + 64.4993i 0.0933420 + 0.0933420i 0.752236 0.658894i \(-0.228975\pi\)
−0.658894 + 0.752236i \(0.728975\pi\)
\(692\) 0 0
\(693\) 238.661i 0.344389i
\(694\) 0 0
\(695\) 385.549 + 385.549i 0.554746 + 0.554746i
\(696\) 0 0
\(697\) 183.743 183.743i 0.263620 0.263620i
\(698\) 0 0
\(699\) 141.890i 0.202989i
\(700\) 0 0
\(701\) 136.339i 0.194493i 0.995260 + 0.0972463i \(0.0310035\pi\)
−0.995260 + 0.0972463i \(0.968997\pi\)
\(702\) 0 0
\(703\) 576.329 0.819814
\(704\) 0 0
\(705\) 205.786 0.291895
\(706\) 0 0
\(707\) −515.818 515.818i −0.729587 0.729587i
\(708\) 0 0
\(709\) 789.276 789.276i 1.11322 1.11322i 0.120513 0.992712i \(-0.461546\pi\)
0.992712 0.120513i \(-0.0384540\pi\)
\(710\) 0 0
\(711\) −306.092 −0.430509
\(712\) 0 0
\(713\) 482.854 482.854i 0.677214 0.677214i
\(714\) 0 0
\(715\) −171.823 + 374.723i −0.240312 + 0.524089i
\(716\) 0 0
\(717\) 8.86818 + 8.86818i 0.0123685 + 0.0123685i
\(718\) 0 0
\(719\) 949.863i 1.32109i 0.750787 + 0.660544i \(0.229674\pi\)
−0.750787 + 0.660544i \(0.770326\pi\)
\(720\) 0 0
\(721\) 110.682 + 110.682i 0.153512 + 0.153512i
\(722\) 0 0
\(723\) 263.623 263.623i 0.364623 0.364623i
\(724\) 0 0
\(725\) 165.080i 0.227697i
\(726\) 0 0
\(727\) 195.690i 0.269175i 0.990902 + 0.134588i \(0.0429710\pi\)
−0.990902 + 0.134588i \(0.957029\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) −273.480 −0.374117
\(732\) 0 0
\(733\) −373.535 373.535i −0.509597 0.509597i 0.404806 0.914403i \(-0.367339\pi\)
−0.914403 + 0.404806i \(0.867339\pi\)
\(734\) 0 0
\(735\) 48.0944 48.0944i 0.0654345 0.0654345i
\(736\) 0 0
\(737\) 851.931 1.15594
\(738\) 0 0
\(739\) 868.098 868.098i 1.17469 1.17469i 0.193615 0.981078i \(-0.437979\pi\)
0.981078 0.193615i \(-0.0620211\pi\)
\(740\) 0 0
\(741\) −230.925 + 85.7289i −0.311640 + 0.115694i
\(742\) 0 0
\(743\) 744.696 + 744.696i 1.00228 + 1.00228i 0.999997 + 0.00228459i \(0.000727208\pi\)
0.00228459 + 0.999997i \(0.499273\pi\)
\(744\) 0 0
\(745\) 552.669i 0.741837i
\(746\) 0 0
\(747\) 255.828 + 255.828i 0.342473 + 0.342473i
\(748\) 0 0
\(749\) 658.690 658.690i 0.879426 0.879426i
\(750\) 0 0
\(751\) 267.175i 0.355760i −0.984052 0.177880i \(-0.943076\pi\)
0.984052 0.177880i \(-0.0569238\pi\)
\(752\) 0 0
\(753\) 384.303i 0.510362i
\(754\) 0 0
\(755\) 120.432 0.159513
\(756\) 0 0
\(757\) −421.716 −0.557088 −0.278544 0.960423i \(-0.589852\pi\)
−0.278544 + 0.960423i \(0.589852\pi\)
\(758\) 0 0
\(759\) −605.351 605.351i −0.797565 0.797565i
\(760\) 0 0
\(761\) 937.965 937.965i 1.23254 1.23254i 0.269558 0.962984i \(-0.413122\pi\)
0.962984 0.269558i \(-0.0868776\pi\)
\(762\) 0 0
\(763\) 36.1828 0.0474218
\(764\) 0 0
\(765\) −30.3458 + 30.3458i −0.0396677 + 0.0396677i
\(766\) 0 0
\(767\) −242.461 653.109i −0.316116 0.851512i
\(768\) 0 0
\(769\) 749.082 + 749.082i 0.974098 + 0.974098i 0.999673 0.0255747i \(-0.00814156\pi\)
−0.0255747 + 0.999673i \(0.508142\pi\)
\(770\) 0 0
\(771\) 26.0436i 0.0337789i
\(772\) 0 0
\(773\) 292.773 + 292.773i 0.378749 + 0.378749i 0.870651 0.491902i \(-0.163698\pi\)
−0.491902 + 0.870651i \(0.663698\pi\)
\(774\) 0 0
\(775\) −277.358 + 277.358i −0.357882 + 0.357882i
\(776\) 0 0
\(777\) 511.536i 0.658347i
\(778\) 0 0
\(779\) 444.050i 0.570025i
\(780\) 0 0
\(781\) −599.221 −0.767248
\(782\) 0 0
\(783\) −42.8747 −0.0547570
\(784\) 0 0
\(785\) 237.578 + 237.578i 0.302648 + 0.302648i
\(786\) 0 0
\(787\) 992.205 992.205i 1.26074 1.26074i 0.310010 0.950733i \(-0.399668\pi\)
0.950733 0.310010i \(-0.100332\pi\)
\(788\) 0 0
\(789\) −183.118 −0.232089
\(790\) 0 0
\(791\) 240.823 240.823i 0.304454 0.304454i
\(792\) 0 0
\(793\) −494.631 + 1078.73i −0.623747 + 1.36031i
\(794\) 0 0
\(795\) 264.902 + 264.902i 0.333209 + 0.333209i
\(796\) 0 0
\(797\) 96.6901i 0.121318i −0.998159 0.0606588i \(-0.980680\pi\)
0.998159 0.0606588i \(-0.0193202\pi\)
\(798\) 0 0
\(799\) −240.683 240.683i −0.301230 0.301230i
\(800\) 0 0
\(801\) −191.553 + 191.553i −0.239142 + 0.239142i
\(802\) 0 0
\(803\) 220.658i 0.274792i
\(804\) 0 0
\(805\) 436.307i 0.541996i
\(806\) 0 0
\(807\) −292.266 −0.362163
\(808\) 0 0
\(809\) −800.289 −0.989233 −0.494616 0.869111i \(-0.664691\pi\)
−0.494616 + 0.869111i \(0.664691\pi\)
\(810\) 0 0
\(811\) −1015.91 1015.91i −1.25267 1.25267i −0.954520 0.298147i \(-0.903631\pi\)
−0.298147 0.954520i \(-0.596369\pi\)
\(812\) 0 0
\(813\) −90.8958 + 90.8958i −0.111803 + 0.111803i
\(814\) 0 0
\(815\) 529.464 0.649649
\(816\) 0 0
\(817\) 330.457 330.457i 0.404476 0.404476i
\(818\) 0 0
\(819\) −76.0909 204.964i −0.0929071 0.250261i
\(820\) 0 0
\(821\) −515.901 515.901i −0.628381 0.628381i 0.319280 0.947661i \(-0.396559\pi\)
−0.947661 + 0.319280i \(0.896559\pi\)
\(822\) 0 0
\(823\) 563.080i 0.684179i −0.939667 0.342090i \(-0.888865\pi\)
0.939667 0.342090i \(-0.111135\pi\)
\(824\) 0 0
\(825\) 347.723 + 347.723i 0.421483 + 0.421483i
\(826\) 0 0
\(827\) 129.875 129.875i 0.157044 0.157044i −0.624212 0.781255i \(-0.714580\pi\)
0.781255 + 0.624212i \(0.214580\pi\)
\(828\) 0 0
\(829\) 1140.27i 1.37548i −0.725957 0.687740i \(-0.758603\pi\)
0.725957 0.687740i \(-0.241397\pi\)
\(830\) 0 0
\(831\) 265.035i 0.318935i
\(832\) 0 0
\(833\) −112.500 −0.135055
\(834\) 0 0
\(835\) 106.689 0.127771
\(836\) 0 0
\(837\) 72.0356 + 72.0356i 0.0860641 + 0.0860641i
\(838\) 0 0
\(839\) −373.307 + 373.307i −0.444942 + 0.444942i −0.893669 0.448727i \(-0.851878\pi\)
0.448727 + 0.893669i \(0.351878\pi\)
\(840\) 0 0
\(841\) −772.917 −0.919045
\(842\) 0 0
\(843\) −65.6252 + 65.6252i −0.0778473 + 0.0778473i
\(844\) 0 0
\(845\) 28.0916 376.595i 0.0332445 0.445675i
\(846\) 0 0
\(847\) 318.641 + 318.641i 0.376200 + 0.376200i
\(848\) 0 0
\(849\) 60.1406i 0.0708370i
\(850\) 0 0
\(851\) −1297.48 1297.48i −1.52466 1.52466i
\(852\) 0 0
\(853\) −65.1164 + 65.1164i −0.0763381 + 0.0763381i −0.744245 0.667907i \(-0.767190\pi\)
0.667907 + 0.744245i \(0.267190\pi\)
\(854\) 0 0
\(855\) 73.3362i 0.0857733i
\(856\) 0 0
\(857\) 98.7570i 0.115236i −0.998339 0.0576178i \(-0.981650\pi\)
0.998339 0.0576178i \(-0.0183505\pi\)
\(858\) 0 0
\(859\) −959.271 −1.11673 −0.558365 0.829595i \(-0.688571\pi\)
−0.558365 + 0.829595i \(0.688571\pi\)
\(860\) 0 0
\(861\) −394.128 −0.457756
\(862\) 0 0
\(863\) 30.4807 + 30.4807i 0.0353194 + 0.0353194i 0.724546 0.689227i \(-0.242050\pi\)
−0.689227 + 0.724546i \(0.742050\pi\)
\(864\) 0 0
\(865\) −237.375 + 237.375i −0.274422 + 0.274422i
\(866\) 0 0
\(867\) −429.579 −0.495478
\(868\) 0 0
\(869\) −1023.83 + 1023.83i −1.17817 + 1.17817i
\(870\) 0 0
\(871\) −731.642 + 271.616i −0.840003 + 0.311844i
\(872\) 0 0
\(873\) −176.107 176.107i −0.201726 0.201726i
\(874\) 0 0
\(875\) 563.793i 0.644334i
\(876\) 0 0
\(877\) 66.1101 + 66.1101i 0.0753821 + 0.0753821i 0.743793 0.668410i \(-0.233025\pi\)
−0.668410 + 0.743793i \(0.733025\pi\)
\(878\) 0 0
\(879\) −94.3393 + 94.3393i −0.107326 + 0.107326i
\(880\) 0 0
\(881\) 825.315i 0.936794i 0.883518 + 0.468397i \(0.155168\pi\)
−0.883518 + 0.468397i \(0.844832\pi\)
\(882\) 0 0
\(883\) 1501.16i 1.70007i 0.526724 + 0.850037i \(0.323420\pi\)
−0.526724 + 0.850037i \(0.676580\pi\)
\(884\) 0 0
\(885\) 207.412 0.234363
\(886\) 0 0
\(887\) 122.414 0.138009 0.0690045 0.997616i \(-0.478018\pi\)
0.0690045 + 0.997616i \(0.478018\pi\)
\(888\) 0 0
\(889\) 516.139 + 516.139i 0.580584 + 0.580584i
\(890\) 0 0
\(891\) 90.3108 90.3108i 0.101359 0.101359i
\(892\) 0 0
\(893\) 581.655 0.651349
\(894\) 0 0
\(895\) 390.446 390.446i 0.436252 0.436252i
\(896\) 0 0
\(897\) 712.879 + 326.878i 0.794737 + 0.364413i
\(898\) 0 0
\(899\) −114.389 114.389i −0.127240 0.127240i
\(900\) 0 0
\(901\) 619.647i 0.687732i
\(902\) 0 0
\(903\) 293.306 + 293.306i 0.324813 + 0.324813i
\(904\) 0 0
\(905\) 176.454 176.454i 0.194977 0.194977i
\(906\) 0 0
\(907\) 976.517i 1.07665i 0.842739 + 0.538323i \(0.180942\pi\)
−0.842739 + 0.538323i \(0.819058\pi\)
\(908\) 0 0
\(909\) 390.377i 0.429457i
\(910\) 0 0
\(911\) 1291.48 1.41765 0.708825 0.705384i \(-0.249225\pi\)
0.708825 + 0.705384i \(0.249225\pi\)
\(912\) 0 0
\(913\) 1711.41 1.87449
\(914\) 0 0
\(915\) −249.830 249.830i −0.273038 0.273038i
\(916\) 0 0
\(917\) 537.244 537.244i 0.585871 0.585871i
\(918\) 0 0
\(919\) −1651.58 −1.79715 −0.898575 0.438819i \(-0.855397\pi\)
−0.898575 + 0.438819i \(0.855397\pi\)
\(920\) 0 0
\(921\) 386.914 386.914i 0.420103 0.420103i
\(922\) 0 0
\(923\) 514.614 191.046i 0.557544 0.206983i
\(924\) 0 0
\(925\) 745.293 + 745.293i 0.805723 + 0.805723i
\(926\) 0 0
\(927\) 83.7652i 0.0903616i
\(928\) 0 0
\(929\) 644.310 + 644.310i 0.693552 + 0.693552i 0.963012 0.269460i \(-0.0868451\pi\)
−0.269460 + 0.963012i \(0.586845\pi\)
\(930\) 0 0
\(931\) 135.939 135.939i 0.146014 0.146014i
\(932\) 0 0
\(933\) 894.567i 0.958807i
\(934\) 0 0
\(935\) 203.004i 0.217116i
\(936\) 0 0
\(937\) −939.846 −1.00304 −0.501519 0.865147i \(-0.667225\pi\)
−0.501519 + 0.865147i \(0.667225\pi\)
\(938\) 0 0
\(939\) 258.482 0.275273
\(940\) 0 0
\(941\) −767.549 767.549i −0.815674 0.815674i 0.169804 0.985478i \(-0.445687\pi\)
−0.985478 + 0.169804i \(0.945687\pi\)
\(942\) 0 0
\(943\) 999.684 999.684i 1.06011 1.06011i
\(944\) 0 0
\(945\) 65.0914 0.0688798
\(946\) 0 0
\(947\) 518.599 518.599i 0.547623 0.547623i −0.378130 0.925753i \(-0.623433\pi\)
0.925753 + 0.378130i \(0.123433\pi\)
\(948\) 0 0
\(949\) −70.3509 189.502i −0.0741316 0.199686i
\(950\) 0 0
\(951\) 325.908 + 325.908i 0.342700 + 0.342700i
\(952\) 0 0
\(953\) 1429.04i 1.49952i 0.661709 + 0.749761i \(0.269831\pi\)
−0.661709 + 0.749761i \(0.730169\pi\)
\(954\) 0 0
\(955\) 102.230 + 102.230i 0.107047 + 0.107047i
\(956\) 0 0
\(957\) −143.409 + 143.409i −0.149853 + 0.149853i
\(958\) 0 0
\(959\) 1074.39i 1.12033i
\(960\) 0 0
\(961\) 576.620i 0.600020i
\(962\) 0 0
\(963\) −498.504 −0.517657
\(964\) 0 0
\(965\) 306.847 0.317976
\(966\) 0 0
\(967\) −507.433 507.433i −0.524749 0.524749i 0.394253 0.919002i \(-0.371003\pi\)
−0.919002 + 0.394253i \(0.871003\pi\)
\(968\) 0 0
\(969\) −85.7725 + 85.7725i −0.0885165 + 0.0885165i
\(970\) 0 0
\(971\) −832.781 −0.857652 −0.428826 0.903387i \(-0.641073\pi\)
−0.428826 + 0.903387i \(0.641073\pi\)
\(972\) 0 0
\(973\) −967.241 + 967.241i −0.994081 + 0.994081i
\(974\) 0 0
\(975\) −409.489 187.764i −0.419988 0.192578i
\(976\) 0 0
\(977\) −562.185 562.185i −0.575419 0.575419i 0.358219 0.933638i \(-0.383384\pi\)
−0.933638 + 0.358219i \(0.883384\pi\)
\(978\) 0 0
\(979\) 1281.43i 1.30892i
\(980\) 0 0
\(981\) −13.6918 13.6918i −0.0139570 0.0139570i
\(982\) 0 0
\(983\) −351.787 + 351.787i −0.357870 + 0.357870i −0.863027 0.505157i \(-0.831435\pi\)
0.505157 + 0.863027i \(0.331435\pi\)
\(984\) 0 0
\(985\) 154.445i 0.156797i
\(986\) 0 0
\(987\) 516.263i 0.523063i
\(988\) 0 0
\(989\) −1487.91 −1.50446
\(990\) 0 0
\(991\) −96.6030 −0.0974803 −0.0487401 0.998811i \(-0.515521\pi\)
−0.0487401 + 0.998811i \(0.515521\pi\)
\(992\) 0 0
\(993\) −231.659 231.659i −0.233292 0.233292i
\(994\) 0 0
\(995\) −220.532 + 220.532i −0.221640 + 0.221640i
\(996\) 0 0
\(997\) −1290.54 −1.29443 −0.647213 0.762309i \(-0.724065\pi\)
−0.647213 + 0.762309i \(0.724065\pi\)
\(998\) 0 0
\(999\) 193.568 193.568i 0.193762 0.193762i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.3.ba.b.385.2 8
4.3 odd 2 39.3.g.a.34.2 yes 8
12.11 even 2 117.3.j.b.73.3 8
13.5 odd 4 inner 624.3.ba.b.577.2 8
52.31 even 4 39.3.g.a.31.2 8
156.83 odd 4 117.3.j.b.109.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.3.g.a.31.2 8 52.31 even 4
39.3.g.a.34.2 yes 8 4.3 odd 2
117.3.j.b.73.3 8 12.11 even 2
117.3.j.b.109.3 8 156.83 odd 4
624.3.ba.b.385.2 8 1.1 even 1 trivial
624.3.ba.b.577.2 8 13.5 odd 4 inner