Properties

Label 39.3.g.a.34.2
Level $39$
Weight $3$
Character 39.34
Analytic conductor $1.063$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [39,3,Mod(31,39)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(39, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("39.31");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 39.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.06267303101\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.1579585536.10
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 4x^{6} + 28x^{5} - 38x^{4} + 8x^{3} + 200x^{2} - 352x + 484 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 34.2
Root \(1.11361 + 1.42401i\) of defining polynomial
Character \(\chi\) \(=\) 39.34
Dual form 39.3.g.a.31.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.676424 - 0.676424i) q^{2} +1.73205 q^{3} -3.08490i q^{4} +(1.58008 + 1.58008i) q^{5} +(-1.17160 - 1.17160i) q^{6} +(3.96400 - 3.96400i) q^{7} +(-4.79240 + 4.79240i) q^{8} +3.00000 q^{9} -2.13761i q^{10} +(-10.0345 + 10.0345i) q^{11} -5.34320i q^{12} +(-5.41846 + 11.8170i) q^{13} -5.36270 q^{14} +(2.73677 + 2.73677i) q^{15} -5.85621 q^{16} +6.40175i q^{17} +(-2.02927 - 2.02927i) q^{18} +(7.73551 + 7.73551i) q^{19} +(4.87438 - 4.87438i) q^{20} +(6.86585 - 6.86585i) q^{21} +13.5752 q^{22} -34.8297i q^{23} +(-8.30068 + 8.30068i) q^{24} -20.0067i q^{25} +(11.6585 - 4.32810i) q^{26} +5.19615 q^{27} +(-12.2285 - 12.2285i) q^{28} +8.25124 q^{29} -3.70244i q^{30} +(13.8633 + 13.8633i) q^{31} +(23.1309 + 23.1309i) q^{32} +(-17.3803 + 17.3803i) q^{33} +(4.33030 - 4.33030i) q^{34} +12.5269 q^{35} -9.25470i q^{36} +(-37.2522 + 37.2522i) q^{37} -10.4650i q^{38} +(-9.38504 + 20.4676i) q^{39} -15.1447 q^{40} +(-28.7020 - 28.7020i) q^{41} -9.28846 q^{42} -42.7195i q^{43} +(30.9555 + 30.9555i) q^{44} +(4.74023 + 4.74023i) q^{45} +(-23.5597 + 23.5597i) q^{46} +(37.5964 - 37.5964i) q^{47} -10.1432 q^{48} +17.5734i q^{49} +(-13.5330 + 13.5330i) q^{50} +11.0882i q^{51} +(36.4541 + 16.7154i) q^{52} -96.7934 q^{53} +(-3.51480 - 3.51480i) q^{54} -31.7107 q^{55} +37.9942i q^{56} +(13.3983 + 13.3983i) q^{57} +(-5.58134 - 5.58134i) q^{58} +(37.8935 - 37.8935i) q^{59} +(8.44267 - 8.44267i) q^{60} +91.2864 q^{61} -18.7549i q^{62} +(11.8920 - 11.8920i) q^{63} -7.86776i q^{64} +(-27.2333 + 10.1101i) q^{65} +23.5129 q^{66} +(-42.4500 - 42.4500i) q^{67} +19.7488 q^{68} -60.3268i q^{69} +(-8.47347 - 8.47347i) q^{70} +(29.8579 + 29.8579i) q^{71} +(-14.3772 + 14.3772i) q^{72} +(-10.9949 + 10.9949i) q^{73} +50.3966 q^{74} -34.6526i q^{75} +(23.8633 - 23.8633i) q^{76} +79.5538i q^{77} +(20.1930 - 7.49649i) q^{78} +102.031 q^{79} +(-9.25326 - 9.25326i) q^{80} +9.00000 q^{81} +38.8295i q^{82} +(-85.2758 - 85.2758i) q^{83} +(-21.1805 - 21.1805i) q^{84} +(-10.1153 + 10.1153i) q^{85} +(-28.8965 + 28.8965i) q^{86} +14.2916 q^{87} -96.1790i q^{88} +(-63.8510 + 63.8510i) q^{89} -6.41282i q^{90} +(25.3636 + 68.3212i) q^{91} -107.446 q^{92} +(24.0119 + 24.0119i) q^{93} -50.8623 q^{94} +24.4454i q^{95} +(40.0639 + 40.0639i) q^{96} +(-58.7023 - 58.7023i) q^{97} +(11.8871 - 11.8871i) q^{98} +(-30.1036 + 30.1036i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 20 q^{5} + 8 q^{7} - 24 q^{8} + 24 q^{9} - 20 q^{11} + 8 q^{13} - 16 q^{14} + 12 q^{15} + 56 q^{16} + 12 q^{18} - 40 q^{19} + 44 q^{20} - 48 q^{21} - 128 q^{22} + 36 q^{24} - 32 q^{26} + 32 q^{28}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/39\mathbb{Z}\right)^\times\).

\(n\) \(14\) \(28\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.676424 0.676424i −0.338212 0.338212i 0.517482 0.855694i \(-0.326869\pi\)
−0.855694 + 0.517482i \(0.826869\pi\)
\(3\) 1.73205 0.577350
\(4\) 3.08490i 0.771225i
\(5\) 1.58008 + 1.58008i 0.316015 + 0.316015i 0.847234 0.531219i \(-0.178266\pi\)
−0.531219 + 0.847234i \(0.678266\pi\)
\(6\) −1.17160 1.17160i −0.195267 0.195267i
\(7\) 3.96400 3.96400i 0.566286 0.566286i −0.364800 0.931086i \(-0.618863\pi\)
0.931086 + 0.364800i \(0.118863\pi\)
\(8\) −4.79240 + 4.79240i −0.599050 + 0.599050i
\(9\) 3.00000 0.333333
\(10\) 2.13761i 0.213761i
\(11\) −10.0345 + 10.0345i −0.912230 + 0.912230i −0.996447 0.0842172i \(-0.973161\pi\)
0.0842172 + 0.996447i \(0.473161\pi\)
\(12\) 5.34320i 0.445267i
\(13\) −5.41846 + 11.8170i −0.416804 + 0.908996i
\(14\) −5.36270 −0.383050
\(15\) 2.73677 + 2.73677i 0.182452 + 0.182452i
\(16\) −5.85621 −0.366013
\(17\) 6.40175i 0.376574i 0.982114 + 0.188287i \(0.0602934\pi\)
−0.982114 + 0.188287i \(0.939707\pi\)
\(18\) −2.02927 2.02927i −0.112737 0.112737i
\(19\) 7.73551 + 7.73551i 0.407132 + 0.407132i 0.880737 0.473605i \(-0.157048\pi\)
−0.473605 + 0.880737i \(0.657048\pi\)
\(20\) 4.87438 4.87438i 0.243719 0.243719i
\(21\) 6.86585 6.86585i 0.326945 0.326945i
\(22\) 13.5752 0.617055
\(23\) 34.8297i 1.51434i −0.653221 0.757168i \(-0.726583\pi\)
0.653221 0.757168i \(-0.273417\pi\)
\(24\) −8.30068 + 8.30068i −0.345862 + 0.345862i
\(25\) 20.0067i 0.800269i
\(26\) 11.6585 4.32810i 0.448402 0.166465i
\(27\) 5.19615 0.192450
\(28\) −12.2285 12.2285i −0.436734 0.436734i
\(29\) 8.25124 0.284526 0.142263 0.989829i \(-0.454562\pi\)
0.142263 + 0.989829i \(0.454562\pi\)
\(30\) 3.70244i 0.123415i
\(31\) 13.8633 + 13.8633i 0.447202 + 0.447202i 0.894423 0.447221i \(-0.147586\pi\)
−0.447221 + 0.894423i \(0.647586\pi\)
\(32\) 23.1309 + 23.1309i 0.722840 + 0.722840i
\(33\) −17.3803 + 17.3803i −0.526676 + 0.526676i
\(34\) 4.33030 4.33030i 0.127362 0.127362i
\(35\) 12.5269 0.357910
\(36\) 9.25470i 0.257075i
\(37\) −37.2522 + 37.2522i −1.00682 + 1.00682i −0.00683875 + 0.999977i \(0.502177\pi\)
−0.999977 + 0.00683875i \(0.997823\pi\)
\(38\) 10.4650i 0.275394i
\(39\) −9.38504 + 20.4676i −0.240642 + 0.524809i
\(40\) −15.1447 −0.378618
\(41\) −28.7020 28.7020i −0.700050 0.700050i 0.264371 0.964421i \(-0.414836\pi\)
−0.964421 + 0.264371i \(0.914836\pi\)
\(42\) −9.28846 −0.221154
\(43\) 42.7195i 0.993477i −0.867900 0.496739i \(-0.834531\pi\)
0.867900 0.496739i \(-0.165469\pi\)
\(44\) 30.9555 + 30.9555i 0.703535 + 0.703535i
\(45\) 4.74023 + 4.74023i 0.105338 + 0.105338i
\(46\) −23.5597 + 23.5597i −0.512167 + 0.512167i
\(47\) 37.5964 37.5964i 0.799924 0.799924i −0.183159 0.983083i \(-0.558632\pi\)
0.983083 + 0.183159i \(0.0586323\pi\)
\(48\) −10.1432 −0.211318
\(49\) 17.5734i 0.358641i
\(50\) −13.5330 + 13.5330i −0.270661 + 0.270661i
\(51\) 11.0882i 0.217415i
\(52\) 36.4541 + 16.7154i 0.701041 + 0.321450i
\(53\) −96.7934 −1.82629 −0.913145 0.407635i \(-0.866354\pi\)
−0.913145 + 0.407635i \(0.866354\pi\)
\(54\) −3.51480 3.51480i −0.0650890 0.0650890i
\(55\) −31.7107 −0.576558
\(56\) 37.9942i 0.678467i
\(57\) 13.3983 + 13.3983i 0.235058 + 0.235058i
\(58\) −5.58134 5.58134i −0.0962300 0.0962300i
\(59\) 37.8935 37.8935i 0.642262 0.642262i −0.308849 0.951111i \(-0.599944\pi\)
0.951111 + 0.308849i \(0.0999437\pi\)
\(60\) 8.44267 8.44267i 0.140711 0.140711i
\(61\) 91.2864 1.49650 0.748249 0.663418i \(-0.230895\pi\)
0.748249 + 0.663418i \(0.230895\pi\)
\(62\) 18.7549i 0.302499i
\(63\) 11.8920 11.8920i 0.188762 0.188762i
\(64\) 7.86776i 0.122934i
\(65\) −27.2333 + 10.1101i −0.418973 + 0.155540i
\(66\) 23.5129 0.356257
\(67\) −42.4500 42.4500i −0.633581 0.633581i 0.315383 0.948964i \(-0.397867\pi\)
−0.948964 + 0.315383i \(0.897867\pi\)
\(68\) 19.7488 0.290423
\(69\) 60.3268i 0.874302i
\(70\) −8.47347 8.47347i −0.121050 0.121050i
\(71\) 29.8579 + 29.8579i 0.420534 + 0.420534i 0.885388 0.464853i \(-0.153893\pi\)
−0.464853 + 0.885388i \(0.653893\pi\)
\(72\) −14.3772 + 14.3772i −0.199683 + 0.199683i
\(73\) −10.9949 + 10.9949i −0.150615 + 0.150615i −0.778393 0.627777i \(-0.783965\pi\)
0.627777 + 0.778393i \(0.283965\pi\)
\(74\) 50.3966 0.681035
\(75\) 34.6526i 0.462035i
\(76\) 23.8633 23.8633i 0.313990 0.313990i
\(77\) 79.5538i 1.03317i
\(78\) 20.1930 7.49649i 0.258885 0.0961088i
\(79\) 102.031 1.29153 0.645764 0.763537i \(-0.276539\pi\)
0.645764 + 0.763537i \(0.276539\pi\)
\(80\) −9.25326 9.25326i −0.115666 0.115666i
\(81\) 9.00000 0.111111
\(82\) 38.8295i 0.473531i
\(83\) −85.2758 85.2758i −1.02742 1.02742i −0.999613 0.0278064i \(-0.991148\pi\)
−0.0278064 0.999613i \(-0.508852\pi\)
\(84\) −21.1805 21.1805i −0.252148 0.252148i
\(85\) −10.1153 + 10.1153i −0.119003 + 0.119003i
\(86\) −28.8965 + 28.8965i −0.336006 + 0.336006i
\(87\) 14.2916 0.164271
\(88\) 96.1790i 1.09294i
\(89\) −63.8510 + 63.8510i −0.717427 + 0.717427i −0.968078 0.250651i \(-0.919355\pi\)
0.250651 + 0.968078i \(0.419355\pi\)
\(90\) 6.41282i 0.0712535i
\(91\) 25.3636 + 68.3212i 0.278721 + 0.750782i
\(92\) −107.446 −1.16789
\(93\) 24.0119 + 24.0119i 0.258192 + 0.258192i
\(94\) −50.8623 −0.541088
\(95\) 24.4454i 0.257320i
\(96\) 40.0639 + 40.0639i 0.417332 + 0.417332i
\(97\) −58.7023 58.7023i −0.605178 0.605178i 0.336504 0.941682i \(-0.390755\pi\)
−0.941682 + 0.336504i \(0.890755\pi\)
\(98\) 11.8871 11.8871i 0.121297 0.121297i
\(99\) −30.1036 + 30.1036i −0.304077 + 0.304077i
\(100\) −61.7187 −0.617187
\(101\) 130.126i 1.28837i 0.764869 + 0.644186i \(0.222804\pi\)
−0.764869 + 0.644186i \(0.777196\pi\)
\(102\) 7.50030 7.50030i 0.0735324 0.0735324i
\(103\) 27.9217i 0.271085i 0.990772 + 0.135542i \(0.0432777\pi\)
−0.990772 + 0.135542i \(0.956722\pi\)
\(104\) −30.6641 82.5990i −0.294847 0.794221i
\(105\) 21.6971 0.206640
\(106\) 65.4734 + 65.4734i 0.617674 + 0.617674i
\(107\) 166.168 1.55297 0.776486 0.630134i \(-0.217000\pi\)
0.776486 + 0.630134i \(0.217000\pi\)
\(108\) 16.0296i 0.148422i
\(109\) −4.56393 4.56393i −0.0418709 0.0418709i 0.685861 0.727732i \(-0.259426\pi\)
−0.727732 + 0.685861i \(0.759426\pi\)
\(110\) 21.4499 + 21.4499i 0.194999 + 0.194999i
\(111\) −64.5226 + 64.5226i −0.581285 + 0.581285i
\(112\) −23.2140 + 23.2140i −0.207268 + 0.207268i
\(113\) −60.7525 −0.537633 −0.268817 0.963191i \(-0.586633\pi\)
−0.268817 + 0.963191i \(0.586633\pi\)
\(114\) 18.1259i 0.158999i
\(115\) 55.0336 55.0336i 0.478553 0.478553i
\(116\) 25.4543i 0.219433i
\(117\) −16.2554 + 35.4509i −0.138935 + 0.302999i
\(118\) −51.2641 −0.434442
\(119\) 25.3765 + 25.3765i 0.213248 + 0.213248i
\(120\) −26.2314 −0.218595
\(121\) 80.3837i 0.664328i
\(122\) −61.7484 61.7484i −0.506134 0.506134i
\(123\) −49.7134 49.7134i −0.404174 0.404174i
\(124\) 42.7668 42.7668i 0.344893 0.344893i
\(125\) 71.1141 71.1141i 0.568913 0.568913i
\(126\) −16.0881 −0.127683
\(127\) 130.207i 1.02525i 0.858613 + 0.512624i \(0.171327\pi\)
−0.858613 + 0.512624i \(0.828673\pi\)
\(128\) 87.2016 87.2016i 0.681262 0.681262i
\(129\) 73.9924i 0.573584i
\(130\) 25.2600 + 11.5825i 0.194308 + 0.0890963i
\(131\) 135.531 1.03459 0.517293 0.855809i \(-0.326940\pi\)
0.517293 + 0.855809i \(0.326940\pi\)
\(132\) 53.6165 + 53.6165i 0.406186 + 0.406186i
\(133\) 61.3271 0.461106
\(134\) 57.4284i 0.428570i
\(135\) 8.21032 + 8.21032i 0.0608172 + 0.0608172i
\(136\) −30.6797 30.6797i −0.225586 0.225586i
\(137\) 135.519 135.519i 0.989190 0.989190i −0.0107526 0.999942i \(-0.503423\pi\)
0.999942 + 0.0107526i \(0.00342272\pi\)
\(138\) −40.8065 + 40.8065i −0.295700 + 0.295700i
\(139\) −244.006 −1.75544 −0.877720 0.479174i \(-0.840936\pi\)
−0.877720 + 0.479174i \(0.840936\pi\)
\(140\) 38.6441i 0.276029i
\(141\) 65.1189 65.1189i 0.461836 0.461836i
\(142\) 40.3933i 0.284460i
\(143\) −64.2059 172.949i −0.448992 1.20944i
\(144\) −17.5686 −0.122004
\(145\) 13.0376 + 13.0376i 0.0899145 + 0.0899145i
\(146\) 14.8745 0.101880
\(147\) 30.4380i 0.207061i
\(148\) 114.919 + 114.919i 0.776481 + 0.776481i
\(149\) 174.887 + 174.887i 1.17374 + 1.17374i 0.981312 + 0.192425i \(0.0616351\pi\)
0.192425 + 0.981312i \(0.438365\pi\)
\(150\) −23.4399 + 23.4399i −0.156266 + 0.156266i
\(151\) −38.1095 + 38.1095i −0.252381 + 0.252381i −0.821946 0.569565i \(-0.807112\pi\)
0.569565 + 0.821946i \(0.307112\pi\)
\(152\) −74.1433 −0.487785
\(153\) 19.2053i 0.125525i
\(154\) 53.8121 53.8121i 0.349429 0.349429i
\(155\) 43.8101i 0.282646i
\(156\) 63.1404 + 28.9519i 0.404746 + 0.185589i
\(157\) 150.359 0.957699 0.478849 0.877897i \(-0.341054\pi\)
0.478849 + 0.877897i \(0.341054\pi\)
\(158\) −69.0161 69.0161i −0.436810 0.436810i
\(159\) −167.651 −1.05441
\(160\) 73.0971i 0.456857i
\(161\) −138.065 138.065i −0.857547 0.857547i
\(162\) −6.08782 6.08782i −0.0375791 0.0375791i
\(163\) −167.544 + 167.544i −1.02788 + 1.02788i −0.0282759 + 0.999600i \(0.509002\pi\)
−0.999600 + 0.0282759i \(0.990998\pi\)
\(164\) −88.5429 + 88.5429i −0.539896 + 0.539896i
\(165\) −54.9245 −0.332876
\(166\) 115.365i 0.694972i
\(167\) −33.7608 + 33.7608i −0.202160 + 0.202160i −0.800925 0.598765i \(-0.795658\pi\)
0.598765 + 0.800925i \(0.295658\pi\)
\(168\) 65.8078i 0.391713i
\(169\) −110.281 128.059i −0.652548 0.757747i
\(170\) 13.6844 0.0804966
\(171\) 23.2065 + 23.2065i 0.135711 + 0.135711i
\(172\) −131.785 −0.766195
\(173\) 150.230i 0.868383i 0.900821 + 0.434191i \(0.142966\pi\)
−0.900821 + 0.434191i \(0.857034\pi\)
\(174\) −9.66717 9.66717i −0.0555584 0.0555584i
\(175\) −79.3066 79.3066i −0.453181 0.453181i
\(176\) 58.7643 58.7643i 0.333888 0.333888i
\(177\) 65.6334 65.6334i 0.370810 0.370810i
\(178\) 86.3808 0.485285
\(179\) 247.106i 1.38048i 0.723582 + 0.690239i \(0.242495\pi\)
−0.723582 + 0.690239i \(0.757505\pi\)
\(180\) 14.6231 14.6231i 0.0812396 0.0812396i
\(181\) 111.674i 0.616986i −0.951227 0.308493i \(-0.900175\pi\)
0.951227 0.308493i \(-0.0998247\pi\)
\(182\) 29.0575 63.3707i 0.159657 0.348191i
\(183\) 158.113 0.864004
\(184\) 166.918 + 166.918i 0.907162 + 0.907162i
\(185\) −117.723 −0.636338
\(186\) 32.4845i 0.174648i
\(187\) −64.2386 64.2386i −0.343522 0.343522i
\(188\) −115.981 115.981i −0.616921 0.616921i
\(189\) 20.5976 20.5976i 0.108982 0.108982i
\(190\) 16.5355 16.5355i 0.0870288 0.0870288i
\(191\) −64.6991 −0.338739 −0.169369 0.985553i \(-0.554173\pi\)
−0.169369 + 0.985553i \(0.554173\pi\)
\(192\) 13.6274i 0.0709759i
\(193\) 97.0986 97.0986i 0.503102 0.503102i −0.409299 0.912400i \(-0.634227\pi\)
0.912400 + 0.409299i \(0.134227\pi\)
\(194\) 79.4153i 0.409357i
\(195\) −47.1694 + 17.5112i −0.241894 + 0.0898012i
\(196\) 54.2121 0.276593
\(197\) 48.8725 + 48.8725i 0.248084 + 0.248084i 0.820184 0.572100i \(-0.193871\pi\)
−0.572100 + 0.820184i \(0.693871\pi\)
\(198\) 40.7256 0.205685
\(199\) 139.570i 0.701358i −0.936496 0.350679i \(-0.885951\pi\)
0.936496 0.350679i \(-0.114049\pi\)
\(200\) 95.8802 + 95.8802i 0.479401 + 0.479401i
\(201\) −73.5255 73.5255i −0.365798 0.365798i
\(202\) 88.0201 88.0201i 0.435743 0.435743i
\(203\) 32.7079 32.7079i 0.161123 0.161123i
\(204\) 34.2059 0.167676
\(205\) 90.7029i 0.442453i
\(206\) 18.8869 18.8869i 0.0916842 0.0916842i
\(207\) 104.489i 0.504778i
\(208\) 31.7316 69.2025i 0.152556 0.332704i
\(209\) −155.244 −0.742796
\(210\) −14.6765 14.6765i −0.0698880 0.0698880i
\(211\) 52.9556 0.250975 0.125487 0.992095i \(-0.459951\pi\)
0.125487 + 0.992095i \(0.459951\pi\)
\(212\) 298.598i 1.40848i
\(213\) 51.7154 + 51.7154i 0.242796 + 0.242796i
\(214\) −112.400 112.400i −0.525234 0.525234i
\(215\) 67.5001 67.5001i 0.313954 0.313954i
\(216\) −24.9020 + 24.9020i −0.115287 + 0.115287i
\(217\) 109.908 0.506489
\(218\) 6.17430i 0.0283225i
\(219\) −19.0438 + 19.0438i −0.0869578 + 0.0869578i
\(220\) 97.8242i 0.444656i
\(221\) −75.6492 34.6876i −0.342304 0.156958i
\(222\) 87.2894 0.393195
\(223\) 70.4483 + 70.4483i 0.315912 + 0.315912i 0.847195 0.531283i \(-0.178290\pi\)
−0.531283 + 0.847195i \(0.678290\pi\)
\(224\) 183.382 0.818668
\(225\) 60.0201i 0.266756i
\(226\) 41.0945 + 41.0945i 0.181834 + 0.181834i
\(227\) −95.0195 95.0195i −0.418588 0.418588i 0.466129 0.884717i \(-0.345648\pi\)
−0.884717 + 0.466129i \(0.845648\pi\)
\(228\) 41.3324 41.3324i 0.181282 0.181282i
\(229\) 66.9011 66.9011i 0.292144 0.292144i −0.545782 0.837927i \(-0.683767\pi\)
0.837927 + 0.545782i \(0.183767\pi\)
\(230\) −74.4522 −0.323705
\(231\) 137.791i 0.596499i
\(232\) −39.5433 + 39.5433i −0.170445 + 0.170445i
\(233\) 81.9200i 0.351588i 0.984427 + 0.175794i \(0.0562493\pi\)
−0.984427 + 0.175794i \(0.943751\pi\)
\(234\) 34.9754 12.9843i 0.149467 0.0554884i
\(235\) 118.811 0.505577
\(236\) −116.898 116.898i −0.495329 0.495329i
\(237\) 176.722 0.745664
\(238\) 34.3306i 0.144246i
\(239\) 5.12005 + 5.12005i 0.0214228 + 0.0214228i 0.717737 0.696314i \(-0.245178\pi\)
−0.696314 + 0.717737i \(0.745178\pi\)
\(240\) −16.0271 16.0271i −0.0667796 0.0667796i
\(241\) −152.203 + 152.203i −0.631546 + 0.631546i −0.948456 0.316910i \(-0.897355\pi\)
0.316910 + 0.948456i \(0.397355\pi\)
\(242\) −54.3735 + 54.3735i −0.224684 + 0.224684i
\(243\) 15.5885 0.0641500
\(244\) 281.609i 1.15414i
\(245\) −27.7673 + 27.7673i −0.113336 + 0.113336i
\(246\) 67.2547i 0.273393i
\(247\) −133.325 + 49.4956i −0.539776 + 0.200387i
\(248\) −132.877 −0.535793
\(249\) −147.702 147.702i −0.593181 0.593181i
\(250\) −96.2066 −0.384826
\(251\) 221.877i 0.883974i −0.897022 0.441987i \(-0.854274\pi\)
0.897022 0.441987i \(-0.145726\pi\)
\(252\) −36.6856 36.6856i −0.145578 0.145578i
\(253\) 349.500 + 349.500i 1.38142 + 1.38142i
\(254\) 88.0749 88.0749i 0.346751 0.346751i
\(255\) −17.5201 + 17.5201i −0.0687064 + 0.0687064i
\(256\) −149.442 −0.583756
\(257\) 15.0363i 0.0585068i −0.999572 0.0292534i \(-0.990687\pi\)
0.999572 0.0292534i \(-0.00931298\pi\)
\(258\) −50.0503 + 50.0503i −0.193993 + 0.193993i
\(259\) 295.335i 1.14029i
\(260\) 31.1887 + 84.0119i 0.119956 + 0.323123i
\(261\) 24.7537 0.0948419
\(262\) −91.6763 91.6763i −0.349909 0.349909i
\(263\) −105.723 −0.401990 −0.200995 0.979592i \(-0.564418\pi\)
−0.200995 + 0.979592i \(0.564418\pi\)
\(264\) 166.587i 0.631011i
\(265\) −152.941 152.941i −0.577136 0.577136i
\(266\) −41.4832 41.4832i −0.155952 0.155952i
\(267\) −110.593 + 110.593i −0.414207 + 0.414207i
\(268\) −130.954 + 130.954i −0.488634 + 0.488634i
\(269\) 168.740 0.627286 0.313643 0.949541i \(-0.398451\pi\)
0.313643 + 0.949541i \(0.398451\pi\)
\(270\) 11.1073i 0.0411382i
\(271\) −52.4787 + 52.4787i −0.193648 + 0.193648i −0.797271 0.603622i \(-0.793724\pi\)
0.603622 + 0.797271i \(0.293724\pi\)
\(272\) 37.4900i 0.137831i
\(273\) 43.9311 + 118.336i 0.160920 + 0.433464i
\(274\) −183.337 −0.669112
\(275\) 200.758 + 200.758i 0.730029 + 0.730029i
\(276\) −186.102 −0.674283
\(277\) 153.018i 0.552412i 0.961098 + 0.276206i \(0.0890772\pi\)
−0.961098 + 0.276206i \(0.910923\pi\)
\(278\) 165.052 + 165.052i 0.593711 + 0.593711i
\(279\) 41.5898 + 41.5898i 0.149067 + 0.149067i
\(280\) −60.0337 + 60.0337i −0.214406 + 0.214406i
\(281\) 37.8887 37.8887i 0.134835 0.134835i −0.636468 0.771303i \(-0.719605\pi\)
0.771303 + 0.636468i \(0.219605\pi\)
\(282\) −88.0961 −0.312397
\(283\) 34.7222i 0.122693i −0.998117 0.0613467i \(-0.980460\pi\)
0.998117 0.0613467i \(-0.0195395\pi\)
\(284\) 92.1087 92.1087i 0.324326 0.324326i
\(285\) 42.3407i 0.148564i
\(286\) −73.5567 + 160.418i −0.257191 + 0.560901i
\(287\) −227.550 −0.792857
\(288\) 69.3926 + 69.3926i 0.240947 + 0.240947i
\(289\) 248.018 0.858192
\(290\) 17.6379i 0.0608203i
\(291\) −101.675 101.675i −0.349400 0.349400i
\(292\) 33.9182 + 33.9182i 0.116158 + 0.116158i
\(293\) 54.4668 54.4668i 0.185894 0.185894i −0.608025 0.793918i \(-0.708038\pi\)
0.793918 + 0.608025i \(0.208038\pi\)
\(294\) 20.5890 20.5890i 0.0700306 0.0700306i
\(295\) 119.749 0.405929
\(296\) 357.055i 1.20627i
\(297\) −52.1410 + 52.1410i −0.175559 + 0.175559i
\(298\) 236.595i 0.793944i
\(299\) 411.581 + 188.723i 1.37652 + 0.631182i
\(300\) −106.900 −0.356333
\(301\) −169.340 169.340i −0.562592 0.562592i
\(302\) 51.5565 0.170717
\(303\) 225.384i 0.743842i
\(304\) −45.3007 45.3007i −0.149016 0.149016i
\(305\) 144.240 + 144.240i 0.472916 + 0.472916i
\(306\) 12.9909 12.9909i 0.0424539 0.0424539i
\(307\) 223.385 223.385i 0.727639 0.727639i −0.242510 0.970149i \(-0.577971\pi\)
0.970149 + 0.242510i \(0.0779707\pi\)
\(308\) 245.416 0.796804
\(309\) 48.3619i 0.156511i
\(310\) 29.6342 29.6342i 0.0955942 0.0955942i
\(311\) 516.479i 1.66070i −0.557240 0.830352i \(-0.688140\pi\)
0.557240 0.830352i \(-0.311860\pi\)
\(312\) −53.1118 143.066i −0.170230 0.458544i
\(313\) −149.235 −0.476788 −0.238394 0.971169i \(-0.576621\pi\)
−0.238394 + 0.971169i \(0.576621\pi\)
\(314\) −101.706 101.706i −0.323905 0.323905i
\(315\) 37.5806 0.119303
\(316\) 314.754i 0.996058i
\(317\) −188.163 188.163i −0.593574 0.593574i 0.345021 0.938595i \(-0.387872\pi\)
−0.938595 + 0.345021i \(0.887872\pi\)
\(318\) 113.403 + 113.403i 0.356614 + 0.356614i
\(319\) −82.7974 + 82.7974i −0.259553 + 0.259553i
\(320\) 12.4317 12.4317i 0.0388490 0.0388490i
\(321\) 287.811 0.896609
\(322\) 186.781i 0.580066i
\(323\) −49.5208 + 49.5208i −0.153315 + 0.153315i
\(324\) 27.7641i 0.0856917i
\(325\) 236.418 + 108.406i 0.727441 + 0.333555i
\(326\) 226.661 0.695281
\(327\) −7.90495 7.90495i −0.0241742 0.0241742i
\(328\) 275.103 0.838730
\(329\) 298.065i 0.905972i
\(330\) 37.1523 + 37.1523i 0.112583 + 0.112583i
\(331\) −133.749 133.749i −0.404074 0.404074i 0.475592 0.879666i \(-0.342234\pi\)
−0.879666 + 0.475592i \(0.842234\pi\)
\(332\) −263.067 + 263.067i −0.792372 + 0.792372i
\(333\) −111.757 + 111.757i −0.335605 + 0.335605i
\(334\) 45.6732 0.136746
\(335\) 134.148i 0.400443i
\(336\) −40.2078 + 40.2078i −0.119666 + 0.119666i
\(337\) 202.419i 0.600651i −0.953837 0.300325i \(-0.902905\pi\)
0.953837 0.300325i \(-0.0970952\pi\)
\(338\) −12.0259 + 161.219i −0.0355796 + 0.476979i
\(339\) −105.226 −0.310403
\(340\) 31.2046 + 31.2046i 0.0917781 + 0.0917781i
\(341\) −278.223 −0.815903
\(342\) 31.3949i 0.0917980i
\(343\) 263.897 + 263.897i 0.769379 + 0.769379i
\(344\) 204.729 + 204.729i 0.595143 + 0.595143i
\(345\) 95.3210 95.3210i 0.276293 0.276293i
\(346\) 101.619 101.619i 0.293698 0.293698i
\(347\) 190.870 0.550059 0.275029 0.961436i \(-0.411312\pi\)
0.275029 + 0.961436i \(0.411312\pi\)
\(348\) 44.0881i 0.126690i
\(349\) −472.034 + 472.034i −1.35253 + 1.35253i −0.469713 + 0.882819i \(0.655643\pi\)
−0.882819 + 0.469713i \(0.844357\pi\)
\(350\) 107.290i 0.306543i
\(351\) −28.1551 + 61.4027i −0.0802140 + 0.174936i
\(352\) −464.215 −1.31879
\(353\) −298.499 298.499i −0.845606 0.845606i 0.143975 0.989581i \(-0.454012\pi\)
−0.989581 + 0.143975i \(0.954012\pi\)
\(354\) −88.7921 −0.250825
\(355\) 94.3556i 0.265791i
\(356\) 196.974 + 196.974i 0.553298 + 0.553298i
\(357\) 43.9535 + 43.9535i 0.123119 + 0.123119i
\(358\) 167.148 167.148i 0.466894 0.466894i
\(359\) −86.3614 + 86.3614i −0.240561 + 0.240561i −0.817082 0.576521i \(-0.804410\pi\)
0.576521 + 0.817082i \(0.304410\pi\)
\(360\) −45.4342 −0.126206
\(361\) 241.324i 0.668487i
\(362\) −75.5394 + 75.5394i −0.208672 + 0.208672i
\(363\) 139.229i 0.383550i
\(364\) 210.764 78.2443i 0.579022 0.214957i
\(365\) −34.7456 −0.0951935
\(366\) −106.951 106.951i −0.292217 0.292217i
\(367\) −54.1950 −0.147670 −0.0738352 0.997270i \(-0.523524\pi\)
−0.0738352 + 0.997270i \(0.523524\pi\)
\(368\) 203.970i 0.554266i
\(369\) −86.1061 86.1061i −0.233350 0.233350i
\(370\) 79.6304 + 79.6304i 0.215217 + 0.215217i
\(371\) −383.689 + 383.689i −1.03420 + 1.03420i
\(372\) 74.0743 74.0743i 0.199124 0.199124i
\(373\) −17.9362 −0.0480862 −0.0240431 0.999711i \(-0.507654\pi\)
−0.0240431 + 0.999711i \(0.507654\pi\)
\(374\) 86.9051i 0.232367i
\(375\) 123.173 123.173i 0.328462 0.328462i
\(376\) 360.354i 0.958389i
\(377\) −44.7090 + 97.5045i −0.118592 + 0.258633i
\(378\) −27.8654 −0.0737179
\(379\) −281.565 281.565i −0.742916 0.742916i 0.230222 0.973138i \(-0.426055\pi\)
−0.973138 + 0.230222i \(0.926055\pi\)
\(380\) 75.4116 0.198452
\(381\) 225.524i 0.591927i
\(382\) 43.7641 + 43.7641i 0.114566 + 0.114566i
\(383\) −244.827 244.827i −0.639236 0.639236i 0.311131 0.950367i \(-0.399292\pi\)
−0.950367 + 0.311131i \(0.899292\pi\)
\(384\) 151.038 151.038i 0.393327 0.393327i
\(385\) −125.701 + 125.701i −0.326496 + 0.326496i
\(386\) −131.360 −0.340310
\(387\) 128.159i 0.331159i
\(388\) −181.091 + 181.091i −0.466728 + 0.466728i
\(389\) 582.261i 1.49681i 0.663240 + 0.748407i \(0.269181\pi\)
−0.663240 + 0.748407i \(0.730819\pi\)
\(390\) 43.7516 + 20.0615i 0.112184 + 0.0514398i
\(391\) 222.971 0.570259
\(392\) −84.2187 84.2187i −0.214844 0.214844i
\(393\) 234.746 0.597318
\(394\) 66.1171i 0.167810i
\(395\) 161.216 + 161.216i 0.408143 + 0.408143i
\(396\) 92.8666 + 92.8666i 0.234512 + 0.234512i
\(397\) 372.060 372.060i 0.937179 0.937179i −0.0609613 0.998140i \(-0.519417\pi\)
0.998140 + 0.0609613i \(0.0194166\pi\)
\(398\) −94.4087 + 94.4087i −0.237208 + 0.237208i
\(399\) 106.222 0.266220
\(400\) 117.163i 0.292909i
\(401\) −380.251 + 380.251i −0.948258 + 0.948258i −0.998726 0.0504677i \(-0.983929\pi\)
0.0504677 + 0.998726i \(0.483929\pi\)
\(402\) 99.4689i 0.247435i
\(403\) −238.939 + 88.7040i −0.592901 + 0.220109i
\(404\) 401.424 0.993625
\(405\) 14.2207 + 14.2207i 0.0351128 + 0.0351128i
\(406\) −44.2489 −0.108987
\(407\) 747.616i 1.83689i
\(408\) −53.1389 53.1389i −0.130242 0.130242i
\(409\) 58.5825 + 58.5825i 0.143233 + 0.143233i 0.775087 0.631854i \(-0.217706\pi\)
−0.631854 + 0.775087i \(0.717706\pi\)
\(410\) −61.3537 + 61.3537i −0.149643 + 0.149643i
\(411\) 234.726 234.726i 0.571109 0.571109i
\(412\) 86.1358 0.209067
\(413\) 300.420i 0.727408i
\(414\) −70.6790 + 70.6790i −0.170722 + 0.170722i
\(415\) 269.485i 0.649361i
\(416\) −398.670 + 148.003i −0.958342 + 0.355776i
\(417\) −422.631 −1.01350
\(418\) 105.011 + 105.011i 0.251223 + 0.251223i
\(419\) −451.990 −1.07874 −0.539368 0.842070i \(-0.681337\pi\)
−0.539368 + 0.842070i \(0.681337\pi\)
\(420\) 66.9335i 0.159366i
\(421\) 54.5548 + 54.5548i 0.129584 + 0.129584i 0.768924 0.639340i \(-0.220792\pi\)
−0.639340 + 0.768924i \(0.720792\pi\)
\(422\) −35.8205 35.8205i −0.0848827 0.0848827i
\(423\) 112.789 112.789i 0.266641 0.266641i
\(424\) 463.872 463.872i 1.09404 1.09404i
\(425\) 128.078 0.301360
\(426\) 69.9632i 0.164233i
\(427\) 361.859 361.859i 0.847446 0.847446i
\(428\) 512.612i 1.19769i
\(429\) −111.208 299.557i −0.259226 0.698268i
\(430\) −91.3175 −0.212366
\(431\) 422.858 + 422.858i 0.981110 + 0.981110i 0.999825 0.0187153i \(-0.00595760\pi\)
−0.0187153 + 0.999825i \(0.505958\pi\)
\(432\) −30.4297 −0.0704392
\(433\) 621.635i 1.43565i 0.696225 + 0.717824i \(0.254862\pi\)
−0.696225 + 0.717824i \(0.745138\pi\)
\(434\) −74.3445 74.3445i −0.171301 0.171301i
\(435\) 22.5818 + 22.5818i 0.0519121 + 0.0519121i
\(436\) −14.0793 + 14.0793i −0.0322919 + 0.0322919i
\(437\) 269.425 269.425i 0.616534 0.616534i
\(438\) 25.7633 0.0588204
\(439\) 416.992i 0.949868i −0.880021 0.474934i \(-0.842472\pi\)
0.880021 0.474934i \(-0.157528\pi\)
\(440\) 151.970 151.970i 0.345387 0.345387i
\(441\) 52.7202i 0.119547i
\(442\) 27.7074 + 74.6345i 0.0626864 + 0.168856i
\(443\) 581.904 1.31355 0.656776 0.754086i \(-0.271920\pi\)
0.656776 + 0.754086i \(0.271920\pi\)
\(444\) 199.046 + 199.046i 0.448302 + 0.448302i
\(445\) −201.779 −0.453436
\(446\) 95.3060i 0.213690i
\(447\) 302.913 + 302.913i 0.677657 + 0.677657i
\(448\) −31.1878 31.1878i −0.0696157 0.0696157i
\(449\) −66.7587 + 66.7587i −0.148683 + 0.148683i −0.777530 0.628846i \(-0.783527\pi\)
0.628846 + 0.777530i \(0.283527\pi\)
\(450\) −40.5991 + 40.5991i −0.0902202 + 0.0902202i
\(451\) 576.023 1.27721
\(452\) 187.415i 0.414636i
\(453\) −66.0077 + 66.0077i −0.145712 + 0.145712i
\(454\) 128.547i 0.283143i
\(455\) −67.8762 + 148.029i −0.149179 + 0.325339i
\(456\) −128.420 −0.281623
\(457\) −103.815 103.815i −0.227167 0.227167i 0.584341 0.811508i \(-0.301353\pi\)
−0.811508 + 0.584341i \(0.801353\pi\)
\(458\) −90.5071 −0.197614
\(459\) 33.2645i 0.0724716i
\(460\) −169.773 169.773i −0.369072 0.369072i
\(461\) −203.938 203.938i −0.442381 0.442381i 0.450430 0.892812i \(-0.351271\pi\)
−0.892812 + 0.450430i \(0.851271\pi\)
\(462\) 93.2054 93.2054i 0.201743 0.201743i
\(463\) −481.370 + 481.370i −1.03968 + 1.03968i −0.0404953 + 0.999180i \(0.512894\pi\)
−0.999180 + 0.0404953i \(0.987106\pi\)
\(464\) −48.3210 −0.104140
\(465\) 75.8812i 0.163185i
\(466\) 55.4127 55.4127i 0.118911 0.118911i
\(467\) 7.71730i 0.0165253i 0.999966 + 0.00826263i \(0.00263011\pi\)
−0.999966 + 0.00826263i \(0.997370\pi\)
\(468\) 109.362 + 50.1462i 0.233680 + 0.107150i
\(469\) −336.543 −0.717576
\(470\) −80.3663 80.3663i −0.170992 0.170992i
\(471\) 260.429 0.552928
\(472\) 363.201i 0.769494i
\(473\) 428.670 + 428.670i 0.906280 + 0.906280i
\(474\) −119.539 119.539i −0.252193 0.252193i
\(475\) 154.762 154.762i 0.325815 0.325815i
\(476\) 78.2841 78.2841i 0.164462 0.164462i
\(477\) −290.380 −0.608763
\(478\) 6.92665i 0.0144909i
\(479\) 24.7867 24.7867i 0.0517467 0.0517467i −0.680760 0.732507i \(-0.738350\pi\)
0.732507 + 0.680760i \(0.238350\pi\)
\(480\) 126.608i 0.263767i
\(481\) −238.358 642.056i −0.495546 1.33484i
\(482\) 205.907 0.427193
\(483\) −239.136 239.136i −0.495105 0.495105i
\(484\) −247.976 −0.512346
\(485\) 185.508i 0.382491i
\(486\) −10.5444 10.5444i −0.0216963 0.0216963i
\(487\) 245.469 + 245.469i 0.504044 + 0.504044i 0.912692 0.408648i \(-0.134000\pi\)
−0.408648 + 0.912692i \(0.634000\pi\)
\(488\) −437.481 + 437.481i −0.896477 + 0.896477i
\(489\) −290.194 + 290.194i −0.593444 + 0.593444i
\(490\) 37.5650 0.0766632
\(491\) 25.3996i 0.0517304i −0.999665 0.0258652i \(-0.991766\pi\)
0.999665 0.0258652i \(-0.00823406\pi\)
\(492\) −153.361 + 153.361i −0.311709 + 0.311709i
\(493\) 52.8224i 0.107145i
\(494\) 123.664 + 56.7040i 0.250332 + 0.114785i
\(495\) −95.1320 −0.192186
\(496\) −81.1861 81.1861i −0.163682 0.163682i
\(497\) 236.714 0.476285
\(498\) 199.819i 0.401242i
\(499\) −328.094 328.094i −0.657502 0.657502i 0.297286 0.954788i \(-0.403918\pi\)
−0.954788 + 0.297286i \(0.903918\pi\)
\(500\) −219.380 219.380i −0.438760 0.438760i
\(501\) −58.4753 + 58.4753i −0.116717 + 0.116717i
\(502\) −150.083 + 150.083i −0.298971 + 0.298971i
\(503\) −399.152 −0.793543 −0.396771 0.917918i \(-0.629869\pi\)
−0.396771 + 0.917918i \(0.629869\pi\)
\(504\) 113.982i 0.226156i
\(505\) −205.608 + 205.608i −0.407145 + 0.407145i
\(506\) 472.820i 0.934428i
\(507\) −191.012 221.805i −0.376749 0.437486i
\(508\) 401.674 0.790697
\(509\) 655.020 + 655.020i 1.28688 + 1.28688i 0.936674 + 0.350203i \(0.113887\pi\)
0.350203 + 0.936674i \(0.386113\pi\)
\(510\) 23.7021 0.0464747
\(511\) 87.1678i 0.170583i
\(512\) −247.720 247.720i −0.483829 0.483829i
\(513\) 40.1949 + 40.1949i 0.0783526 + 0.0783526i
\(514\) −10.1709 + 10.1709i −0.0197877 + 0.0197877i
\(515\) −44.1185 + 44.1185i −0.0856670 + 0.0856670i
\(516\) −228.259 −0.442363
\(517\) 754.525i 1.45943i
\(518\) 199.772 199.772i 0.385660 0.385660i
\(519\) 260.206i 0.501361i
\(520\) 82.0610 178.964i 0.157810 0.344162i
\(521\) 287.758 0.552318 0.276159 0.961112i \(-0.410938\pi\)
0.276159 + 0.961112i \(0.410938\pi\)
\(522\) −16.7440 16.7440i −0.0320767 0.0320767i
\(523\) −148.325 −0.283604 −0.141802 0.989895i \(-0.545290\pi\)
−0.141802 + 0.989895i \(0.545290\pi\)
\(524\) 418.099i 0.797898i
\(525\) −137.363 137.363i −0.261644 0.261644i
\(526\) 71.5139 + 71.5139i 0.135958 + 0.135958i
\(527\) −88.7492 + 88.7492i −0.168405 + 0.168405i
\(528\) 101.783 101.783i 0.192770 0.192770i
\(529\) −684.108 −1.29321
\(530\) 206.906i 0.390389i
\(531\) 113.680 113.680i 0.214087 0.214087i
\(532\) 189.188i 0.355617i
\(533\) 494.692 183.650i 0.928127 0.344559i
\(534\) 149.616 0.280180
\(535\) 262.558 + 262.558i 0.490763 + 0.490763i
\(536\) 406.874 0.759094
\(537\) 427.999i 0.797019i
\(538\) −114.140 114.140i −0.212156 0.212156i
\(539\) −176.341 176.341i −0.327163 0.327163i
\(540\) 25.3280 25.3280i 0.0469037 0.0469037i
\(541\) −378.819 + 378.819i −0.700221 + 0.700221i −0.964458 0.264237i \(-0.914880\pi\)
0.264237 + 0.964458i \(0.414880\pi\)
\(542\) 70.9958 0.130989
\(543\) 193.426i 0.356217i
\(544\) −148.078 + 148.078i −0.272202 + 0.272202i
\(545\) 14.4227i 0.0264637i
\(546\) 50.3291 109.761i 0.0921779 0.201028i
\(547\) 63.2197 0.115575 0.0577876 0.998329i \(-0.481595\pi\)
0.0577876 + 0.998329i \(0.481595\pi\)
\(548\) −418.062 418.062i −0.762888 0.762888i
\(549\) 273.859 0.498833
\(550\) 271.595i 0.493810i
\(551\) 63.8276 + 63.8276i 0.115839 + 0.115839i
\(552\) 289.110 + 289.110i 0.523750 + 0.523750i
\(553\) 404.450 404.450i 0.731374 0.731374i
\(554\) 103.505 103.505i 0.186832 0.186832i
\(555\) −203.901 −0.367390
\(556\) 752.735i 1.35384i
\(557\) 599.495 599.495i 1.07629 1.07629i 0.0794543 0.996839i \(-0.474682\pi\)
0.996839 0.0794543i \(-0.0253178\pi\)
\(558\) 56.2647i 0.100833i
\(559\) 504.815 + 231.474i 0.903067 + 0.414086i
\(560\) −73.3598 −0.131000
\(561\) −111.264 111.264i −0.198332 0.198332i
\(562\) −51.2578 −0.0912060
\(563\) 79.3967i 0.141024i 0.997511 + 0.0705122i \(0.0224634\pi\)
−0.997511 + 0.0705122i \(0.977537\pi\)
\(564\) −200.885 200.885i −0.356180 0.356180i
\(565\) −95.9937 95.9937i −0.169900 0.169900i
\(566\) −23.4870 + 23.4870i −0.0414964 + 0.0414964i
\(567\) 35.6760 35.6760i 0.0629207 0.0629207i
\(568\) −286.182 −0.503842
\(569\) 27.2834i 0.0479497i −0.999713 0.0239748i \(-0.992368\pi\)
0.999713 0.0239748i \(-0.00763216\pi\)
\(570\) 28.6403 28.6403i 0.0502461 0.0502461i
\(571\) 73.0650i 0.127960i 0.997951 + 0.0639799i \(0.0203793\pi\)
−0.997951 + 0.0639799i \(0.979621\pi\)
\(572\) −533.531 + 198.069i −0.932747 + 0.346274i
\(573\) −112.062 −0.195571
\(574\) 153.920 + 153.920i 0.268154 + 0.268154i
\(575\) −696.828 −1.21187
\(576\) 23.6033i 0.0409779i
\(577\) 172.432 + 172.432i 0.298841 + 0.298841i 0.840560 0.541719i \(-0.182226\pi\)
−0.541719 + 0.840560i \(0.682226\pi\)
\(578\) −167.765 167.765i −0.290251 0.290251i
\(579\) 168.180 168.180i 0.290466 0.290466i
\(580\) 40.2197 40.2197i 0.0693443 0.0693443i
\(581\) −676.067 −1.16363
\(582\) 137.551i 0.236343i
\(583\) 971.276 971.276i 1.66600 1.66600i
\(584\) 105.384i 0.180452i
\(585\) −81.6998 + 30.3303i −0.139658 + 0.0518467i
\(586\) −73.6854 −0.125743
\(587\) 766.322 + 766.322i 1.30549 + 1.30549i 0.924635 + 0.380854i \(0.124370\pi\)
0.380854 + 0.924635i \(0.375630\pi\)
\(588\) 93.8982 0.159691
\(589\) 214.479i 0.364141i
\(590\) −81.0013 81.0013i −0.137290 0.137290i
\(591\) 84.6496 + 84.6496i 0.143231 + 0.143231i
\(592\) 218.156 218.156i 0.368507 0.368507i
\(593\) 120.360 120.360i 0.202969 0.202969i −0.598302 0.801271i \(-0.704158\pi\)
0.801271 + 0.598302i \(0.204158\pi\)
\(594\) 70.5388 0.118752
\(595\) 80.1938i 0.134779i
\(596\) 539.508 539.508i 0.905215 0.905215i
\(597\) 241.743i 0.404929i
\(598\) −150.746 406.060i −0.252084 0.679031i
\(599\) 323.635 0.540292 0.270146 0.962819i \(-0.412928\pi\)
0.270146 + 0.962819i \(0.412928\pi\)
\(600\) 166.069 + 166.069i 0.276782 + 0.276782i
\(601\) 1108.97 1.84521 0.922607 0.385742i \(-0.126054\pi\)
0.922607 + 0.385742i \(0.126054\pi\)
\(602\) 229.092i 0.380551i
\(603\) −127.350 127.350i −0.211194 0.211194i
\(604\) 117.564 + 117.564i 0.194643 + 0.194643i
\(605\) 127.012 127.012i 0.209938 0.209938i
\(606\) 152.455 152.455i 0.251576 0.251576i
\(607\) −196.769 −0.324167 −0.162084 0.986777i \(-0.551821\pi\)
−0.162084 + 0.986777i \(0.551821\pi\)
\(608\) 357.858i 0.588583i
\(609\) 56.6518 56.6518i 0.0930243 0.0930243i
\(610\) 195.134i 0.319892i
\(611\) 240.561 + 647.990i 0.393716 + 1.06054i
\(612\) 59.2463 0.0968076
\(613\) −702.697 702.697i −1.14633 1.14633i −0.987270 0.159055i \(-0.949155\pi\)
−0.159055 0.987270i \(-0.550845\pi\)
\(614\) −302.206 −0.492193
\(615\) 157.102i 0.255450i
\(616\) −381.254 381.254i −0.618918 0.618918i
\(617\) −305.273 305.273i −0.494771 0.494771i 0.415035 0.909805i \(-0.363769\pi\)
−0.909805 + 0.415035i \(0.863769\pi\)
\(618\) 32.7132 32.7132i 0.0529339 0.0529339i
\(619\) 97.1707 97.1707i 0.156980 0.156980i −0.624247 0.781227i \(-0.714594\pi\)
0.781227 + 0.624247i \(0.214594\pi\)
\(620\) 135.150 0.217983
\(621\) 180.980i 0.291434i
\(622\) −349.359 + 349.359i −0.561670 + 0.561670i
\(623\) 506.211i 0.812538i
\(624\) 54.9607 119.862i 0.0880781 0.192087i
\(625\) −275.436 −0.440698
\(626\) 100.946 + 100.946i 0.161255 + 0.161255i
\(627\) −268.891 −0.428854
\(628\) 463.842i 0.738601i
\(629\) −238.479 238.479i −0.379140 0.379140i
\(630\) −25.4204 25.4204i −0.0403499 0.0403499i
\(631\) −368.719 + 368.719i −0.584341 + 0.584341i −0.936093 0.351752i \(-0.885586\pi\)
0.351752 + 0.936093i \(0.385586\pi\)
\(632\) −488.972 + 488.972i −0.773690 + 0.773690i
\(633\) 91.7219 0.144900
\(634\) 254.556i 0.401508i
\(635\) −205.736 + 205.736i −0.323994 + 0.323994i
\(636\) 517.187i 0.813186i
\(637\) −207.664 95.2206i −0.326003 0.149483i
\(638\) 112.012 0.175568
\(639\) 89.5738 + 89.5738i 0.140178 + 0.140178i
\(640\) 275.570 0.430579
\(641\) 779.737i 1.21644i 0.793769 + 0.608219i \(0.208116\pi\)
−0.793769 + 0.608219i \(0.791884\pi\)
\(642\) −194.683 194.683i −0.303244 0.303244i
\(643\) −719.483 719.483i −1.11895 1.11895i −0.991896 0.127051i \(-0.959449\pi\)
−0.127051 0.991896i \(-0.540551\pi\)
\(644\) −425.917 + 425.917i −0.661361 + 0.661361i
\(645\) 116.914 116.914i 0.181262 0.181262i
\(646\) 66.9942 0.103706
\(647\) 313.980i 0.485286i −0.970116 0.242643i \(-0.921986\pi\)
0.970116 0.242643i \(-0.0780144\pi\)
\(648\) −43.1316 + 43.1316i −0.0665611 + 0.0665611i
\(649\) 760.487i 1.17178i
\(650\) −86.5910 233.247i −0.133217 0.358842i
\(651\) 190.366 0.292421
\(652\) 516.856 + 516.856i 0.792724 + 0.792724i
\(653\) −280.037 −0.428847 −0.214424 0.976741i \(-0.568787\pi\)
−0.214424 + 0.976741i \(0.568787\pi\)
\(654\) 10.6942i 0.0163520i
\(655\) 214.149 + 214.149i 0.326945 + 0.326945i
\(656\) 168.085 + 168.085i 0.256227 + 0.256227i
\(657\) −32.9848 + 32.9848i −0.0502051 + 0.0502051i
\(658\) −201.618 + 201.618i −0.306411 + 0.306411i
\(659\) −1021.28 −1.54974 −0.774871 0.632119i \(-0.782185\pi\)
−0.774871 + 0.632119i \(0.782185\pi\)
\(660\) 169.437i 0.256722i
\(661\) 638.747 638.747i 0.966334 0.966334i −0.0331178 0.999451i \(-0.510544\pi\)
0.999451 + 0.0331178i \(0.0105436\pi\)
\(662\) 180.942i 0.273326i
\(663\) −131.028 60.0807i −0.197629 0.0906195i
\(664\) 817.352 1.23095
\(665\) 96.9016 + 96.9016i 0.145717 + 0.145717i
\(666\) 151.190 0.227012
\(667\) 287.388i 0.430867i
\(668\) 104.149 + 104.149i 0.155911 + 0.155911i
\(669\) 122.020 + 122.020i 0.182392 + 0.182392i
\(670\) −90.7413 + 90.7413i −0.135435 + 0.135435i
\(671\) −916.016 + 916.016i −1.36515 + 1.36515i
\(672\) 317.626 0.472658
\(673\) 236.547i 0.351482i 0.984436 + 0.175741i \(0.0562320\pi\)
−0.984436 + 0.175741i \(0.943768\pi\)
\(674\) −136.921 + 136.921i −0.203147 + 0.203147i
\(675\) 103.958i 0.154012i
\(676\) −395.050 + 340.205i −0.584394 + 0.503261i
\(677\) −788.423 −1.16458 −0.582292 0.812980i \(-0.697844\pi\)
−0.582292 + 0.812980i \(0.697844\pi\)
\(678\) 71.1778 + 71.1778i 0.104982 + 0.104982i
\(679\) −465.392 −0.685408
\(680\) 96.9527i 0.142578i
\(681\) −164.579 164.579i −0.241672 0.241672i
\(682\) 188.197 + 188.197i 0.275948 + 0.275948i
\(683\) −278.551 + 278.551i −0.407834 + 0.407834i −0.880983 0.473149i \(-0.843117\pi\)
0.473149 + 0.880983i \(0.343117\pi\)
\(684\) 71.5898 71.5898i 0.104663 0.104663i
\(685\) 428.261 0.625198
\(686\) 357.013i 0.520427i
\(687\) 115.876 115.876i 0.168670 0.168670i
\(688\) 250.174i 0.363626i
\(689\) 524.471 1143.80i 0.761206 1.66009i
\(690\) −128.955 −0.186891
\(691\) −64.4993 64.4993i −0.0933420 0.0933420i 0.658894 0.752236i \(-0.271025\pi\)
−0.752236 + 0.658894i \(0.771025\pi\)
\(692\) 463.445 0.669718
\(693\) 238.661i 0.344389i
\(694\) −129.109 129.109i −0.186037 0.186037i
\(695\) −385.549 385.549i −0.554746 0.554746i
\(696\) −68.4909 + 68.4909i −0.0984065 + 0.0984065i
\(697\) 183.743 183.743i 0.263620 0.263620i
\(698\) 638.590 0.914886
\(699\) 141.890i 0.202989i
\(700\) −244.653 + 244.653i −0.349504 + 0.349504i
\(701\) 136.339i 0.194493i 0.995260 + 0.0972463i \(0.0310035\pi\)
−0.995260 + 0.0972463i \(0.968997\pi\)
\(702\) 60.5791 22.4895i 0.0862950 0.0320363i
\(703\) −576.329 −0.819814
\(704\) 78.9493 + 78.9493i 0.112144 + 0.112144i
\(705\) 205.786 0.291895
\(706\) 403.824i 0.571989i
\(707\) 515.818 + 515.818i 0.729587 + 0.729587i
\(708\) −202.473 202.473i −0.285978 0.285978i
\(709\) 789.276 789.276i 1.11322 1.11322i 0.120513 0.992712i \(-0.461546\pi\)
0.992712 0.120513i \(-0.0384540\pi\)
\(710\) 63.8245 63.8245i 0.0898936 0.0898936i
\(711\) 306.092 0.430509
\(712\) 611.999i 0.859549i
\(713\) 482.854 482.854i 0.677214 0.677214i
\(714\) 59.4624i 0.0832807i
\(715\) 171.823 374.723i 0.240312 0.524089i
\(716\) 762.296 1.06466
\(717\) 8.86818 + 8.86818i 0.0123685 + 0.0123685i
\(718\) 116.834 0.162721
\(719\) 949.863i 1.32109i −0.750787 0.660544i \(-0.770326\pi\)
0.750787 0.660544i \(-0.229674\pi\)
\(720\) −27.7598 27.7598i −0.0385552 0.0385552i
\(721\) 110.682 + 110.682i 0.153512 + 0.153512i
\(722\) −163.237 + 163.237i −0.226091 + 0.226091i
\(723\) −263.623 + 263.623i −0.364623 + 0.364623i
\(724\) −344.505 −0.475835
\(725\) 165.080i 0.227697i
\(726\) −94.1777 + 94.1777i −0.129721 + 0.129721i
\(727\) 195.690i 0.269175i −0.990902 0.134588i \(-0.957029\pi\)
0.990902 0.134588i \(-0.0429710\pi\)
\(728\) −448.975 205.870i −0.616724 0.282788i
\(729\) 27.0000 0.0370370
\(730\) 23.5028 + 23.5028i 0.0321956 + 0.0321956i
\(731\) 273.480 0.374117
\(732\) 487.762i 0.666341i
\(733\) −373.535 373.535i −0.509597 0.509597i 0.404806 0.914403i \(-0.367339\pi\)
−0.914403 + 0.404806i \(0.867339\pi\)
\(734\) 36.6588 + 36.6588i 0.0499439 + 0.0499439i
\(735\) −48.0944 + 48.0944i −0.0654345 + 0.0654345i
\(736\) 805.642 805.642i 1.09462 1.09462i
\(737\) 851.931 1.15594
\(738\) 116.489i 0.157844i
\(739\) −868.098 + 868.098i −1.17469 + 1.17469i −0.193615 + 0.981078i \(0.562021\pi\)
−0.981078 + 0.193615i \(0.937979\pi\)
\(740\) 363.162i 0.490760i
\(741\) −230.925 + 85.7289i −0.311640 + 0.115694i
\(742\) 519.073 0.699560
\(743\) −744.696 744.696i −1.00228 1.00228i −0.999997 0.00228459i \(-0.999273\pi\)
−0.00228459 0.999997i \(-0.500727\pi\)
\(744\) −230.149 −0.309340
\(745\) 552.669i 0.741837i
\(746\) 12.1325 + 12.1325i 0.0162633 + 0.0162633i
\(747\) −255.828 255.828i −0.342473 0.342473i
\(748\) −198.170 + 198.170i −0.264933 + 0.264933i
\(749\) 658.690 658.690i 0.879426 0.879426i
\(750\) −166.635 −0.222180
\(751\) 267.175i 0.355760i 0.984052 + 0.177880i \(0.0569238\pi\)
−0.984052 + 0.177880i \(0.943076\pi\)
\(752\) −220.172 + 220.172i −0.292783 + 0.292783i
\(753\) 384.303i 0.510362i
\(754\) 96.1967 35.7122i 0.127582 0.0473636i
\(755\) −120.432 −0.159513
\(756\) −63.5414 63.5414i −0.0840495 0.0840495i
\(757\) −421.716 −0.557088 −0.278544 0.960423i \(-0.589852\pi\)
−0.278544 + 0.960423i \(0.589852\pi\)
\(758\) 380.915i 0.502527i
\(759\) 605.351 + 605.351i 0.797565 + 0.797565i
\(760\) −117.152 117.152i −0.154148 0.154148i
\(761\) 937.965 937.965i 1.23254 1.23254i 0.269558 0.962984i \(-0.413122\pi\)
0.962984 0.269558i \(-0.0868776\pi\)
\(762\) 152.550 152.550i 0.200197 0.200197i
\(763\) −36.1828 −0.0474218
\(764\) 199.590i 0.261244i
\(765\) −30.3458 + 30.3458i −0.0396677 + 0.0396677i
\(766\) 331.214i 0.432395i
\(767\) 242.461 + 653.109i 0.316116 + 0.851512i
\(768\) −258.840 −0.337032
\(769\) 749.082 + 749.082i 0.974098 + 0.974098i 0.999673 0.0255747i \(-0.00814156\pi\)
−0.0255747 + 0.999673i \(0.508142\pi\)
\(770\) 170.055 0.220850
\(771\) 26.0436i 0.0337789i
\(772\) −299.539 299.539i −0.388004 0.388004i
\(773\) 292.773 + 292.773i 0.378749 + 0.378749i 0.870651 0.491902i \(-0.163698\pi\)
−0.491902 + 0.870651i \(0.663698\pi\)
\(774\) −86.6896 + 86.6896i −0.112002 + 0.112002i
\(775\) 277.358 277.358i 0.357882 0.357882i
\(776\) 562.650 0.725064
\(777\) 511.536i 0.658347i
\(778\) 393.855 393.855i 0.506241 0.506241i
\(779\) 444.050i 0.570025i
\(780\) 54.0204 + 145.513i 0.0692569 + 0.186555i
\(781\) −599.221 −0.767248
\(782\) −150.823 150.823i −0.192868 0.192868i
\(783\) 42.8747 0.0547570
\(784\) 102.913i 0.131267i
\(785\) 237.578 + 237.578i 0.302648 + 0.302648i
\(786\) −158.788 158.788i −0.202020 0.202020i
\(787\) −992.205 + 992.205i −1.26074 + 1.26074i −0.310010 + 0.950733i \(0.600332\pi\)
−0.950733 + 0.310010i \(0.899668\pi\)
\(788\) 150.767 150.767i 0.191328 0.191328i
\(789\) −183.118 −0.232089
\(790\) 218.101i 0.276078i
\(791\) −240.823 + 240.823i −0.304454 + 0.304454i
\(792\) 288.537i 0.364314i
\(793\) −494.631 + 1078.73i −0.623747 + 1.36031i
\(794\) −503.341 −0.633931
\(795\) −264.902 264.902i −0.333209 0.333209i
\(796\) −430.560 −0.540905
\(797\) 96.6901i 0.121318i −0.998159 0.0606588i \(-0.980680\pi\)
0.998159 0.0606588i \(-0.0193202\pi\)
\(798\) −71.8510 71.8510i −0.0900388 0.0900388i
\(799\) 240.683 + 240.683i 0.301230 + 0.301230i
\(800\) 462.773 462.773i 0.578466 0.578466i
\(801\) −191.553 + 191.553i −0.239142 + 0.239142i
\(802\) 514.423 0.641425
\(803\) 220.658i 0.274792i
\(804\) −226.819 + 226.819i −0.282113 + 0.282113i
\(805\) 436.307i 0.541996i
\(806\) 221.626 + 101.623i 0.274970 + 0.126083i
\(807\) 292.266 0.362163
\(808\) −623.614 623.614i −0.771799 0.771799i
\(809\) −800.289 −0.989233 −0.494616 0.869111i \(-0.664691\pi\)
−0.494616 + 0.869111i \(0.664691\pi\)
\(810\) 19.2384i 0.0237512i
\(811\) 1015.91 + 1015.91i 1.25267 + 1.25267i 0.954520 + 0.298147i \(0.0963686\pi\)
0.298147 + 0.954520i \(0.403631\pi\)
\(812\) −100.901 100.901i −0.124262 0.124262i
\(813\) −90.8958 + 90.8958i −0.111803 + 0.111803i
\(814\) −505.706 + 505.706i −0.621260 + 0.621260i
\(815\) −529.464 −0.649649
\(816\) 64.9345i 0.0795766i
\(817\) 330.457 330.457i 0.404476 0.404476i
\(818\) 79.2532i 0.0968866i
\(819\) 76.0909 + 204.964i 0.0929071 + 0.250261i
\(820\) −279.809 −0.341231
\(821\) −515.901 515.901i −0.628381 0.628381i 0.319280 0.947661i \(-0.396559\pi\)
−0.947661 + 0.319280i \(0.896559\pi\)
\(822\) −317.548 −0.386312
\(823\) 563.080i 0.684179i 0.939667 + 0.342090i \(0.111135\pi\)
−0.939667 + 0.342090i \(0.888865\pi\)
\(824\) −133.812 133.812i −0.162393 0.162393i
\(825\) 347.723 + 347.723i 0.421483 + 0.421483i
\(826\) −203.211 + 203.211i −0.246018 + 0.246018i
\(827\) −129.875 + 129.875i −0.157044 + 0.157044i −0.781255 0.624212i \(-0.785420\pi\)
0.624212 + 0.781255i \(0.285420\pi\)
\(828\) −322.338 −0.389298
\(829\) 1140.27i 1.37548i −0.725957 0.687740i \(-0.758603\pi\)
0.725957 0.687740i \(-0.241397\pi\)
\(830\) −182.286 + 182.286i −0.219622 + 0.219622i
\(831\) 265.035i 0.318935i
\(832\) 92.9730 + 42.6311i 0.111746 + 0.0512394i
\(833\) −112.500 −0.135055
\(834\) 285.878 + 285.878i 0.342779 + 0.342779i
\(835\) −106.689 −0.127771
\(836\) 478.913i 0.572863i
\(837\) 72.0356 + 72.0356i 0.0860641 + 0.0860641i
\(838\) 305.737 + 305.737i 0.364841 + 0.364841i
\(839\) 373.307 373.307i 0.444942 0.444942i −0.448727 0.893669i \(-0.648122\pi\)
0.893669 + 0.448727i \(0.148122\pi\)
\(840\) −103.981 + 103.981i −0.123787 + 0.123787i
\(841\) −772.917 −0.919045
\(842\) 73.8044i 0.0876537i
\(843\) 65.6252 65.6252i 0.0778473 0.0778473i
\(844\) 163.363i 0.193558i
\(845\) 28.0916 376.595i 0.0332445 0.445675i
\(846\) −152.587 −0.180363
\(847\) −318.641 318.641i −0.376200 0.376200i
\(848\) 566.842 0.668446
\(849\) 60.1406i 0.0708370i
\(850\) −86.6351 86.6351i −0.101924 0.101924i
\(851\) 1297.48 + 1297.48i 1.52466 + 1.52466i
\(852\) 159.537 159.537i 0.187250 0.187250i
\(853\) −65.1164 + 65.1164i −0.0763381 + 0.0763381i −0.744245 0.667907i \(-0.767190\pi\)
0.667907 + 0.744245i \(0.267190\pi\)
\(854\) −489.541 −0.573233
\(855\) 73.3362i 0.0857733i
\(856\) −796.344 + 796.344i −0.930308 + 0.930308i
\(857\) 98.7570i 0.115236i −0.998339 0.0576178i \(-0.981650\pi\)
0.998339 0.0576178i \(-0.0183505\pi\)
\(858\) −127.404 + 277.851i −0.148489 + 0.323836i
\(859\) 959.271 1.11673 0.558365 0.829595i \(-0.311429\pi\)
0.558365 + 0.829595i \(0.311429\pi\)
\(860\) −208.231 208.231i −0.242129 0.242129i
\(861\) −394.128 −0.457756
\(862\) 572.063i 0.663647i
\(863\) −30.4807 30.4807i −0.0353194 0.0353194i 0.689227 0.724546i \(-0.257950\pi\)
−0.724546 + 0.689227i \(0.757950\pi\)
\(864\) 120.192 + 120.192i 0.139111 + 0.139111i
\(865\) −237.375 + 237.375i −0.274422 + 0.274422i
\(866\) 420.489 420.489i 0.485554 0.485554i
\(867\) 429.579 0.495478
\(868\) 339.055i 0.390617i
\(869\) −1023.83 + 1023.83i −1.17817 + 1.17817i
\(870\) 30.5497i 0.0351146i
\(871\) 731.642 271.616i 0.840003 0.311844i
\(872\) 43.7443 0.0501655
\(873\) −176.107 176.107i −0.201726 0.201726i
\(874\) −364.492 −0.417039
\(875\) 563.793i 0.644334i
\(876\) 58.7481 + 58.7481i 0.0670640 + 0.0670640i
\(877\) 66.1101 + 66.1101i 0.0753821 + 0.0753821i 0.743793 0.668410i \(-0.233025\pi\)
−0.668410 + 0.743793i \(0.733025\pi\)
\(878\) −282.064 + 282.064i −0.321257 + 0.321257i
\(879\) 94.3393 94.3393i 0.107326 0.107326i
\(880\) 185.704 0.211027
\(881\) 825.315i 0.936794i 0.883518 + 0.468397i \(0.155168\pi\)
−0.883518 + 0.468397i \(0.844832\pi\)
\(882\) 35.6612 35.6612i 0.0404322 0.0404322i
\(883\) 1501.16i 1.70007i −0.526724 0.850037i \(-0.676580\pi\)
0.526724 0.850037i \(-0.323420\pi\)
\(884\) −107.008 + 233.370i −0.121050 + 0.263993i
\(885\) 207.412 0.234363
\(886\) −393.614 393.614i −0.444260 0.444260i
\(887\) −122.414 −0.138009 −0.0690045 0.997616i \(-0.521982\pi\)
−0.0690045 + 0.997616i \(0.521982\pi\)
\(888\) 618.437i 0.696438i
\(889\) 516.139 + 516.139i 0.580584 + 0.580584i
\(890\) 136.488 + 136.488i 0.153358 + 0.153358i
\(891\) −90.3108 + 90.3108i −0.101359 + 0.101359i
\(892\) 217.326 217.326i 0.243639 0.243639i
\(893\) 581.655 0.651349
\(894\) 409.795i 0.458384i
\(895\) −390.446 + 390.446i −0.436252 + 0.436252i
\(896\) 691.334i 0.771578i
\(897\) 712.879 + 326.878i 0.794737 + 0.364413i
\(898\) 90.3144 0.100573
\(899\) 114.389 + 114.389i 0.127240 + 0.127240i
\(900\) −185.156 −0.205729
\(901\) 619.647i 0.687732i
\(902\) −389.636 389.636i −0.431969 0.431969i
\(903\) −293.306 293.306i −0.324813 0.324813i
\(904\) 291.150 291.150i 0.322069 0.322069i
\(905\) 176.454 176.454i 0.194977 0.194977i
\(906\) 89.2984 0.0985633
\(907\) 976.517i 1.07665i −0.842739 0.538323i \(-0.819058\pi\)
0.842739 0.538323i \(-0.180942\pi\)
\(908\) −293.126 + 293.126i −0.322825 + 0.322825i
\(909\) 390.377i 0.429457i
\(910\) 146.044 54.2174i 0.160488 0.0595796i
\(911\) −1291.48 −1.41765 −0.708825 0.705384i \(-0.750775\pi\)
−0.708825 + 0.705384i \(0.750775\pi\)
\(912\) −78.4632 78.4632i −0.0860342 0.0860342i
\(913\) 1711.41 1.87449
\(914\) 140.446i 0.153661i
\(915\) 249.830 + 249.830i 0.273038 + 0.273038i
\(916\) −206.383 206.383i −0.225309 0.225309i
\(917\) 537.244 537.244i 0.585871 0.585871i
\(918\) 22.5009 22.5009i 0.0245108 0.0245108i
\(919\) 1651.58 1.79715 0.898575 0.438819i \(-0.144603\pi\)
0.898575 + 0.438819i \(0.144603\pi\)
\(920\) 527.486i 0.573355i
\(921\) 386.914 386.914i 0.420103 0.420103i
\(922\) 275.897i 0.299238i
\(923\) −514.614 + 191.046i −0.557544 + 0.206983i
\(924\) 425.072 0.460035
\(925\) 745.293 + 745.293i 0.805723 + 0.805723i
\(926\) 651.220 0.703262
\(927\) 83.7652i 0.0903616i
\(928\) 190.858 + 190.858i 0.205666 + 0.205666i
\(929\) 644.310 + 644.310i 0.693552 + 0.693552i 0.963012 0.269460i \(-0.0868451\pi\)
−0.269460 + 0.963012i \(0.586845\pi\)
\(930\) 51.3279 51.3279i 0.0551913 0.0551913i
\(931\) −135.939 + 135.939i −0.146014 + 0.146014i
\(932\) 252.715 0.271153
\(933\) 894.567i 0.958807i
\(934\) 5.22017 5.22017i 0.00558905 0.00558905i
\(935\) 203.004i 0.217116i
\(936\) −91.9924 247.797i −0.0982825 0.264740i
\(937\) −939.846 −1.00304 −0.501519 0.865147i \(-0.667225\pi\)
−0.501519 + 0.865147i \(0.667225\pi\)
\(938\) 227.646 + 227.646i 0.242693 + 0.242693i
\(939\) −258.482 −0.275273
\(940\) 366.519i 0.389913i
\(941\) −767.549 767.549i −0.815674 0.815674i 0.169804 0.985478i \(-0.445687\pi\)
−0.985478 + 0.169804i \(0.945687\pi\)
\(942\) −176.160 176.160i −0.187007 0.187007i
\(943\) −999.684 + 999.684i −1.06011 + 1.06011i
\(944\) −221.912 + 221.912i −0.235076 + 0.235076i
\(945\) 65.0914 0.0688798
\(946\) 579.926i 0.613030i
\(947\) −518.599 + 518.599i −0.547623 + 0.547623i −0.925753 0.378130i \(-0.876567\pi\)
0.378130 + 0.925753i \(0.376567\pi\)
\(948\) 545.171i 0.575075i
\(949\) −70.3509 189.502i −0.0741316 0.199686i
\(950\) −209.370 −0.220389
\(951\) −325.908 325.908i −0.342700 0.342700i
\(952\) −243.229 −0.255493
\(953\) 1429.04i 1.49952i 0.661709 + 0.749761i \(0.269831\pi\)
−0.661709 + 0.749761i \(0.730169\pi\)
\(954\) 196.420 + 196.420i 0.205891 + 0.205891i
\(955\) −102.230 102.230i −0.107047 0.107047i
\(956\) 15.7948 15.7948i 0.0165218 0.0165218i
\(957\) −143.409 + 143.409i −0.149853 + 0.149853i
\(958\) −33.5326 −0.0350027
\(959\) 1074.39i 1.12033i
\(960\) 21.5323 21.5323i 0.0224295 0.0224295i
\(961\) 576.620i 0.600020i
\(962\) −273.072 + 595.534i −0.283858 + 0.619058i
\(963\) 498.504 0.517657
\(964\) 469.530 + 469.530i 0.487064 + 0.487064i
\(965\) 306.847 0.317976
\(966\) 323.514i 0.334901i
\(967\) 507.433 + 507.433i 0.524749 + 0.524749i 0.919002 0.394253i \(-0.128997\pi\)
−0.394253 + 0.919002i \(0.628997\pi\)
\(968\) 385.231 + 385.231i 0.397966 + 0.397966i
\(969\) −85.7725 + 85.7725i −0.0885165 + 0.0885165i
\(970\) −125.482 + 125.482i −0.129363 + 0.129363i
\(971\) 832.781 0.857652 0.428826 0.903387i \(-0.358927\pi\)
0.428826 + 0.903387i \(0.358927\pi\)
\(972\) 48.0888i 0.0494741i
\(973\) −967.241 + 967.241i −0.994081 + 0.994081i
\(974\) 332.083i 0.340947i
\(975\) 409.489 + 187.764i 0.419988 + 0.192578i
\(976\) −534.592 −0.547738
\(977\) −562.185 562.185i −0.575419 0.575419i 0.358219 0.933638i \(-0.383384\pi\)
−0.933638 + 0.358219i \(0.883384\pi\)
\(978\) 392.589 0.401420
\(979\) 1281.43i 1.30892i
\(980\) 85.6593 + 85.6593i 0.0874075 + 0.0874075i
\(981\) −13.6918 13.6918i −0.0139570 0.0139570i
\(982\) −17.1809 + 17.1809i −0.0174958 + 0.0174958i
\(983\) 351.787 351.787i 0.357870 0.357870i −0.505157 0.863027i \(-0.668565\pi\)
0.863027 + 0.505157i \(0.168565\pi\)
\(984\) 476.493 0.484241
\(985\) 154.445i 0.156797i
\(986\) 35.7304 35.7304i 0.0362377 0.0362377i
\(987\) 516.263i 0.523063i
\(988\) 152.689 + 411.293i 0.154543 + 0.416289i
\(989\) −1487.91 −1.50446
\(990\) 64.3496 + 64.3496i 0.0649996 + 0.0649996i
\(991\) 96.6030 0.0974803 0.0487401 0.998811i \(-0.484479\pi\)
0.0487401 + 0.998811i \(0.484479\pi\)
\(992\) 641.339i 0.646511i
\(993\) −231.659 231.659i −0.233292 0.233292i
\(994\) −160.119 160.119i −0.161085 0.161085i
\(995\) 220.532 220.532i 0.221640 0.221640i
\(996\) −455.646 + 455.646i −0.457476 + 0.457476i
\(997\) −1290.54 −1.29443 −0.647213 0.762309i \(-0.724065\pi\)
−0.647213 + 0.762309i \(0.724065\pi\)
\(998\) 443.861i 0.444751i
\(999\) −193.568 + 193.568i −0.193762 + 0.193762i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 39.3.g.a.34.2 yes 8
3.2 odd 2 117.3.j.b.73.3 8
4.3 odd 2 624.3.ba.b.385.2 8
13.5 odd 4 inner 39.3.g.a.31.2 8
39.5 even 4 117.3.j.b.109.3 8
52.31 even 4 624.3.ba.b.577.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.3.g.a.31.2 8 13.5 odd 4 inner
39.3.g.a.34.2 yes 8 1.1 even 1 trivial
117.3.j.b.73.3 8 3.2 odd 2
117.3.j.b.109.3 8 39.5 even 4
624.3.ba.b.385.2 8 4.3 odd 2
624.3.ba.b.577.2 8 52.31 even 4