Properties

Label 624.4.a.u
Level $624$
Weight $4$
Character orbit 624.a
Self dual yes
Analytic conductor $36.817$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,4,Mod(1,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.8171918436\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.36248.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 54x - 90 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + (\beta_{2} + 5) q^{5} + ( - \beta_{2} - \beta_1 + 8) q^{7} + 9 q^{9} + ( - 2 \beta_{2} + \beta_1 + 7) q^{11} + 13 q^{13} + (3 \beta_{2} + 15) q^{15} + 34 q^{17} + (5 \beta_{2} - 3 \beta_1 + 12) q^{19}+ \cdots + ( - 18 \beta_{2} + 9 \beta_1 + 63) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} + 16 q^{5} + 22 q^{7} + 27 q^{9} + 20 q^{11} + 39 q^{13} + 48 q^{15} + 102 q^{17} + 38 q^{19} + 66 q^{21} - 32 q^{23} + 161 q^{25} + 81 q^{27} + 350 q^{29} - 50 q^{31} + 60 q^{33} - 232 q^{35}+ \cdots + 180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 54x - 90 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 4\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{2} - 8\nu - 69 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{2} + 2\beta _1 + 71 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.84636
8.54849
−5.70213
0 3.00000 0 −10.8037 0 32.1891 0 9.00000 0
1.2 0 3.00000 0 7.92181 0 −28.1158 0 9.00000 0
1.3 0 3.00000 0 18.8819 0 17.9266 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 624.4.a.u 3
3.b odd 2 1 1872.4.a.bj 3
4.b odd 2 1 312.4.a.g 3
8.b even 2 1 2496.4.a.bk 3
8.d odd 2 1 2496.4.a.bo 3
12.b even 2 1 936.4.a.k 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.4.a.g 3 4.b odd 2 1
624.4.a.u 3 1.a even 1 1 trivial
936.4.a.k 3 12.b even 2 1
1872.4.a.bj 3 3.b odd 2 1
2496.4.a.bk 3 8.b even 2 1
2496.4.a.bo 3 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(624))\):

\( T_{5}^{3} - 16T_{5}^{2} - 140T_{5} + 1616 \) Copy content Toggle raw display
\( T_{7}^{3} - 22T_{7}^{2} - 832T_{7} + 16224 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T - 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 16 T^{2} + \cdots + 1616 \) Copy content Toggle raw display
$7$ \( T^{3} - 22 T^{2} + \cdots + 16224 \) Copy content Toggle raw display
$11$ \( T^{3} - 20 T^{2} + \cdots + 46272 \) Copy content Toggle raw display
$13$ \( (T - 13)^{3} \) Copy content Toggle raw display
$17$ \( (T - 34)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} - 38 T^{2} + \cdots - 466880 \) Copy content Toggle raw display
$23$ \( T^{3} + 32 T^{2} + \cdots - 589824 \) Copy content Toggle raw display
$29$ \( T^{3} - 350 T^{2} + \cdots - 71304 \) Copy content Toggle raw display
$31$ \( T^{3} + 50 T^{2} + \cdots - 288 \) Copy content Toggle raw display
$37$ \( T^{3} - 542 T^{2} + \cdots + 40843640 \) Copy content Toggle raw display
$41$ \( T^{3} - 500 T^{2} + \cdots + 64365984 \) Copy content Toggle raw display
$43$ \( T^{3} + 420 T^{2} + \cdots - 43152192 \) Copy content Toggle raw display
$47$ \( T^{3} + 324 T^{2} + \cdots - 10105472 \) Copy content Toggle raw display
$53$ \( T^{3} - 538 T^{2} + \cdots + 34539144 \) Copy content Toggle raw display
$59$ \( T^{3} + 112 T^{2} + \cdots + 21713536 \) Copy content Toggle raw display
$61$ \( T^{3} - 1206 T^{2} + \cdots + 429405208 \) Copy content Toggle raw display
$67$ \( T^{3} + 950 T^{2} + \cdots - 55440064 \) Copy content Toggle raw display
$71$ \( T^{3} - 1008 T^{2} + \cdots + 8100864 \) Copy content Toggle raw display
$73$ \( T^{3} - 1834 T^{2} + \cdots - 187287192 \) Copy content Toggle raw display
$79$ \( T^{3} - 272 T^{2} + \cdots - 115697664 \) Copy content Toggle raw display
$83$ \( T^{3} - 1640 T^{2} + \cdots - 143127296 \) Copy content Toggle raw display
$89$ \( T^{3} + 1576 T^{2} + \cdots - 52508976 \) Copy content Toggle raw display
$97$ \( T^{3} - 402 T^{2} + \cdots + 587099592 \) Copy content Toggle raw display
show more
show less