Properties

Label 624.4.bc.a.31.1
Level $624$
Weight $4$
Character 624.31
Analytic conductor $36.817$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,4,Mod(31,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 0, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.31");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.bc (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8171918436\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 557 x^{12} + 114776 x^{10} + 11098364 x^{8} + 523047796 x^{6} + 11529575940 x^{4} + \cdots + 338947524864 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 31.1
Root \(10.9706i\) of defining polynomial
Character \(\chi\) \(=\) 624.31
Dual form 624.4.bc.a.463.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{3} +(-10.9706 + 10.9706i) q^{5} +(7.36979 - 7.36979i) q^{7} -9.00000 q^{9} +(36.0614 - 36.0614i) q^{11} +(-18.7699 + 42.9498i) q^{13} +(32.9118 + 32.9118i) q^{15} -3.63826i q^{17} +(-67.3749 - 67.3749i) q^{19} +(-22.1094 - 22.1094i) q^{21} +24.5391 q^{23} -115.708i q^{25} +27.0000i q^{27} -82.8379 q^{29} +(102.651 + 102.651i) q^{31} +(-108.184 - 108.184i) q^{33} +161.702i q^{35} +(215.409 + 215.409i) q^{37} +(128.850 + 56.3098i) q^{39} +(-20.3098 + 20.3098i) q^{41} -61.7745 q^{43} +(98.7354 - 98.7354i) q^{45} +(-163.317 + 163.317i) q^{47} +234.372i q^{49} -10.9148 q^{51} -551.555 q^{53} +791.230i q^{55} +(-202.125 + 202.125i) q^{57} +(-541.810 + 541.810i) q^{59} +391.345 q^{61} +(-66.3281 + 66.3281i) q^{63} +(-265.268 - 677.103i) q^{65} +(194.093 + 194.093i) q^{67} -73.6173i q^{69} +(289.844 + 289.844i) q^{71} +(629.772 + 629.772i) q^{73} -347.124 q^{75} -531.530i q^{77} +800.798i q^{79} +81.0000 q^{81} +(-96.9092 - 96.9092i) q^{83} +(39.9139 + 39.9139i) q^{85} +248.514i q^{87} +(444.922 + 444.922i) q^{89} +(178.201 + 454.862i) q^{91} +(307.954 - 307.954i) q^{93} +1478.28 q^{95} +(841.467 - 841.467i) q^{97} +(-324.552 + 324.552i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 2 q^{5} - 12 q^{7} - 126 q^{9} - 64 q^{11} + 32 q^{13} - 6 q^{15} - 84 q^{19} + 36 q^{21} - 384 q^{23} + 32 q^{29} - 140 q^{31} + 192 q^{33} - 466 q^{37} + 270 q^{39} - 98 q^{41} - 104 q^{43} - 18 q^{45}+ \cdots + 576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 0.577350i
\(4\) 0 0
\(5\) −10.9706 + 10.9706i −0.981240 + 0.981240i −0.999827 0.0185872i \(-0.994083\pi\)
0.0185872 + 0.999827i \(0.494083\pi\)
\(6\) 0 0
\(7\) 7.36979 7.36979i 0.397931 0.397931i −0.479572 0.877503i \(-0.659208\pi\)
0.877503 + 0.479572i \(0.159208\pi\)
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 36.0614 36.0614i 0.988447 0.988447i −0.0114873 0.999934i \(-0.503657\pi\)
0.999934 + 0.0114873i \(0.00365660\pi\)
\(12\) 0 0
\(13\) −18.7699 + 42.9498i −0.400450 + 0.916319i
\(14\) 0 0
\(15\) 32.9118 + 32.9118i 0.566519 + 0.566519i
\(16\) 0 0
\(17\) 3.63826i 0.0519064i −0.999663 0.0259532i \(-0.991738\pi\)
0.999663 0.0259532i \(-0.00826208\pi\)
\(18\) 0 0
\(19\) −67.3749 67.3749i −0.813519 0.813519i 0.171641 0.985160i \(-0.445093\pi\)
−0.985160 + 0.171641i \(0.945093\pi\)
\(20\) 0 0
\(21\) −22.1094 22.1094i −0.229746 0.229746i
\(22\) 0 0
\(23\) 24.5391 0.222468 0.111234 0.993794i \(-0.464520\pi\)
0.111234 + 0.993794i \(0.464520\pi\)
\(24\) 0 0
\(25\) 115.708i 0.925664i
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) −82.8379 −0.530435 −0.265218 0.964189i \(-0.585444\pi\)
−0.265218 + 0.964189i \(0.585444\pi\)
\(30\) 0 0
\(31\) 102.651 + 102.651i 0.594734 + 0.594734i 0.938906 0.344173i \(-0.111841\pi\)
−0.344173 + 0.938906i \(0.611841\pi\)
\(32\) 0 0
\(33\) −108.184 108.184i −0.570680 0.570680i
\(34\) 0 0
\(35\) 161.702i 0.780932i
\(36\) 0 0
\(37\) 215.409 + 215.409i 0.957107 + 0.957107i 0.999117 0.0420099i \(-0.0133761\pi\)
−0.0420099 + 0.999117i \(0.513376\pi\)
\(38\) 0 0
\(39\) 128.850 + 56.3098i 0.529037 + 0.231200i
\(40\) 0 0
\(41\) −20.3098 + 20.3098i −0.0773625 + 0.0773625i −0.744729 0.667367i \(-0.767421\pi\)
0.667367 + 0.744729i \(0.267421\pi\)
\(42\) 0 0
\(43\) −61.7745 −0.219082 −0.109541 0.993982i \(-0.534938\pi\)
−0.109541 + 0.993982i \(0.534938\pi\)
\(44\) 0 0
\(45\) 98.7354 98.7354i 0.327080 0.327080i
\(46\) 0 0
\(47\) −163.317 + 163.317i −0.506856 + 0.506856i −0.913560 0.406704i \(-0.866678\pi\)
0.406704 + 0.913560i \(0.366678\pi\)
\(48\) 0 0
\(49\) 234.372i 0.683301i
\(50\) 0 0
\(51\) −10.9148 −0.0299682
\(52\) 0 0
\(53\) −551.555 −1.42947 −0.714735 0.699395i \(-0.753453\pi\)
−0.714735 + 0.699395i \(0.753453\pi\)
\(54\) 0 0
\(55\) 791.230i 1.93981i
\(56\) 0 0
\(57\) −202.125 + 202.125i −0.469685 + 0.469685i
\(58\) 0 0
\(59\) −541.810 + 541.810i −1.19555 + 1.19555i −0.220070 + 0.975484i \(0.570629\pi\)
−0.975484 + 0.220070i \(0.929371\pi\)
\(60\) 0 0
\(61\) 391.345 0.821419 0.410709 0.911766i \(-0.365281\pi\)
0.410709 + 0.911766i \(0.365281\pi\)
\(62\) 0 0
\(63\) −66.3281 + 66.3281i −0.132644 + 0.132644i
\(64\) 0 0
\(65\) −265.268 677.103i −0.506191 1.29207i
\(66\) 0 0
\(67\) 194.093 + 194.093i 0.353914 + 0.353914i 0.861563 0.507650i \(-0.169486\pi\)
−0.507650 + 0.861563i \(0.669486\pi\)
\(68\) 0 0
\(69\) 73.6173i 0.128442i
\(70\) 0 0
\(71\) 289.844 + 289.844i 0.484480 + 0.484480i 0.906559 0.422079i \(-0.138699\pi\)
−0.422079 + 0.906559i \(0.638699\pi\)
\(72\) 0 0
\(73\) 629.772 + 629.772i 1.00972 + 1.00972i 0.999952 + 0.00976281i \(0.00310765\pi\)
0.00976281 + 0.999952i \(0.496892\pi\)
\(74\) 0 0
\(75\) −347.124 −0.534432
\(76\) 0 0
\(77\) 531.530i 0.786668i
\(78\) 0 0
\(79\) 800.798i 1.14047i 0.821483 + 0.570233i \(0.193147\pi\)
−0.821483 + 0.570233i \(0.806853\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −96.9092 96.9092i −0.128159 0.128159i 0.640118 0.768277i \(-0.278885\pi\)
−0.768277 + 0.640118i \(0.778885\pi\)
\(84\) 0 0
\(85\) 39.9139 + 39.9139i 0.0509326 + 0.0509326i
\(86\) 0 0
\(87\) 248.514i 0.306247i
\(88\) 0 0
\(89\) 444.922 + 444.922i 0.529906 + 0.529906i 0.920544 0.390638i \(-0.127746\pi\)
−0.390638 + 0.920544i \(0.627746\pi\)
\(90\) 0 0
\(91\) 178.201 + 454.862i 0.205280 + 0.523983i
\(92\) 0 0
\(93\) 307.954 307.954i 0.343370 0.343370i
\(94\) 0 0
\(95\) 1478.28 1.59651
\(96\) 0 0
\(97\) 841.467 841.467i 0.880805 0.880805i −0.112812 0.993616i \(-0.535986\pi\)
0.993616 + 0.112812i \(0.0359857\pi\)
\(98\) 0 0
\(99\) −324.552 + 324.552i −0.329482 + 0.329482i
\(100\) 0 0
\(101\) 1387.11i 1.36656i 0.730155 + 0.683282i \(0.239448\pi\)
−0.730155 + 0.683282i \(0.760552\pi\)
\(102\) 0 0
\(103\) 964.726 0.922886 0.461443 0.887170i \(-0.347332\pi\)
0.461443 + 0.887170i \(0.347332\pi\)
\(104\) 0 0
\(105\) 485.106 0.450871
\(106\) 0 0
\(107\) 259.962i 0.234873i 0.993080 + 0.117437i \(0.0374677\pi\)
−0.993080 + 0.117437i \(0.962532\pi\)
\(108\) 0 0
\(109\) −500.506 + 500.506i −0.439815 + 0.439815i −0.891950 0.452135i \(-0.850663\pi\)
0.452135 + 0.891950i \(0.350663\pi\)
\(110\) 0 0
\(111\) 646.226 646.226i 0.552586 0.552586i
\(112\) 0 0
\(113\) −1446.07 −1.20385 −0.601924 0.798553i \(-0.705599\pi\)
−0.601924 + 0.798553i \(0.705599\pi\)
\(114\) 0 0
\(115\) −269.208 + 269.208i −0.218294 + 0.218294i
\(116\) 0 0
\(117\) 168.930 386.549i 0.133483 0.305440i
\(118\) 0 0
\(119\) −26.8132 26.8132i −0.0206552 0.0206552i
\(120\) 0 0
\(121\) 1269.85i 0.954054i
\(122\) 0 0
\(123\) 60.9295 + 60.9295i 0.0446652 + 0.0446652i
\(124\) 0 0
\(125\) −101.939 101.939i −0.0729414 0.0729414i
\(126\) 0 0
\(127\) −152.628 −0.106642 −0.0533210 0.998577i \(-0.516981\pi\)
−0.0533210 + 0.998577i \(0.516981\pi\)
\(128\) 0 0
\(129\) 185.323i 0.126487i
\(130\) 0 0
\(131\) 2237.91i 1.49257i 0.665626 + 0.746285i \(0.268164\pi\)
−0.665626 + 0.746285i \(0.731836\pi\)
\(132\) 0 0
\(133\) −993.077 −0.647449
\(134\) 0 0
\(135\) −296.206 296.206i −0.188840 0.188840i
\(136\) 0 0
\(137\) 261.801 + 261.801i 0.163264 + 0.163264i 0.784011 0.620747i \(-0.213171\pi\)
−0.620747 + 0.784011i \(0.713171\pi\)
\(138\) 0 0
\(139\) 2681.10i 1.63603i −0.575199 0.818014i \(-0.695075\pi\)
0.575199 0.818014i \(-0.304925\pi\)
\(140\) 0 0
\(141\) 489.951 + 489.951i 0.292633 + 0.292633i
\(142\) 0 0
\(143\) 871.960 + 2225.70i 0.509909 + 1.30156i
\(144\) 0 0
\(145\) 908.782 908.782i 0.520484 0.520484i
\(146\) 0 0
\(147\) 703.117 0.394504
\(148\) 0 0
\(149\) −593.938 + 593.938i −0.326559 + 0.326559i −0.851276 0.524718i \(-0.824171\pi\)
0.524718 + 0.851276i \(0.324171\pi\)
\(150\) 0 0
\(151\) −1760.60 + 1760.60i −0.948842 + 0.948842i −0.998754 0.0499112i \(-0.984106\pi\)
0.0499112 + 0.998754i \(0.484106\pi\)
\(152\) 0 0
\(153\) 32.7444i 0.0173021i
\(154\) 0 0
\(155\) −2252.30 −1.16715
\(156\) 0 0
\(157\) 224.026 0.113881 0.0569403 0.998378i \(-0.481866\pi\)
0.0569403 + 0.998378i \(0.481866\pi\)
\(158\) 0 0
\(159\) 1654.67i 0.825305i
\(160\) 0 0
\(161\) 180.848 180.848i 0.0885268 0.0885268i
\(162\) 0 0
\(163\) −1336.85 + 1336.85i −0.642394 + 0.642394i −0.951143 0.308750i \(-0.900089\pi\)
0.308750 + 0.951143i \(0.400089\pi\)
\(164\) 0 0
\(165\) 2373.69 1.11995
\(166\) 0 0
\(167\) 1645.17 1645.17i 0.762318 0.762318i −0.214423 0.976741i \(-0.568787\pi\)
0.976741 + 0.214423i \(0.0687870\pi\)
\(168\) 0 0
\(169\) −1492.38 1612.33i −0.679280 0.733879i
\(170\) 0 0
\(171\) 606.374 + 606.374i 0.271173 + 0.271173i
\(172\) 0 0
\(173\) 495.731i 0.217860i −0.994049 0.108930i \(-0.965258\pi\)
0.994049 0.108930i \(-0.0347424\pi\)
\(174\) 0 0
\(175\) −852.744 852.744i −0.368351 0.368351i
\(176\) 0 0
\(177\) 1625.43 + 1625.43i 0.690253 + 0.690253i
\(178\) 0 0
\(179\) −19.1300 −0.00798796 −0.00399398 0.999992i \(-0.501271\pi\)
−0.00399398 + 0.999992i \(0.501271\pi\)
\(180\) 0 0
\(181\) 2416.45i 0.992340i 0.868225 + 0.496170i \(0.165261\pi\)
−0.868225 + 0.496170i \(0.834739\pi\)
\(182\) 0 0
\(183\) 1174.03i 0.474246i
\(184\) 0 0
\(185\) −4726.32 −1.87830
\(186\) 0 0
\(187\) −131.201 131.201i −0.0513067 0.0513067i
\(188\) 0 0
\(189\) 198.984 + 198.984i 0.0765819 + 0.0765819i
\(190\) 0 0
\(191\) 847.618i 0.321107i −0.987027 0.160554i \(-0.948672\pi\)
0.987027 0.160554i \(-0.0513279\pi\)
\(192\) 0 0
\(193\) −2449.57 2449.57i −0.913594 0.913594i 0.0829586 0.996553i \(-0.473563\pi\)
−0.996553 + 0.0829586i \(0.973563\pi\)
\(194\) 0 0
\(195\) −2031.31 + 795.804i −0.745975 + 0.292250i
\(196\) 0 0
\(197\) −1812.44 + 1812.44i −0.655489 + 0.655489i −0.954309 0.298820i \(-0.903407\pi\)
0.298820 + 0.954309i \(0.403407\pi\)
\(198\) 0 0
\(199\) 3377.35 1.20309 0.601543 0.798840i \(-0.294553\pi\)
0.601543 + 0.798840i \(0.294553\pi\)
\(200\) 0 0
\(201\) 582.279 582.279i 0.204332 0.204332i
\(202\) 0 0
\(203\) −610.498 + 610.498i −0.211077 + 0.211077i
\(204\) 0 0
\(205\) 445.622i 0.151822i
\(206\) 0 0
\(207\) −220.852 −0.0741559
\(208\) 0 0
\(209\) −4859.26 −1.60824
\(210\) 0 0
\(211\) 4064.46i 1.32611i 0.748571 + 0.663055i \(0.230741\pi\)
−0.748571 + 0.663055i \(0.769259\pi\)
\(212\) 0 0
\(213\) 869.531 869.531i 0.279715 0.279715i
\(214\) 0 0
\(215\) 677.703 677.703i 0.214972 0.214972i
\(216\) 0 0
\(217\) 1513.04 0.473326
\(218\) 0 0
\(219\) 1889.32 1889.32i 0.582959 0.582959i
\(220\) 0 0
\(221\) 156.263 + 68.2900i 0.0475628 + 0.0207859i
\(222\) 0 0
\(223\) −2441.41 2441.41i −0.733135 0.733135i 0.238105 0.971240i \(-0.423474\pi\)
−0.971240 + 0.238105i \(0.923474\pi\)
\(224\) 0 0
\(225\) 1041.37i 0.308555i
\(226\) 0 0
\(227\) −4148.22 4148.22i −1.21289 1.21289i −0.970070 0.242825i \(-0.921926\pi\)
−0.242825 0.970070i \(-0.578074\pi\)
\(228\) 0 0
\(229\) 191.599 + 191.599i 0.0552890 + 0.0552890i 0.734211 0.678922i \(-0.237552\pi\)
−0.678922 + 0.734211i \(0.737552\pi\)
\(230\) 0 0
\(231\) −1594.59 −0.454183
\(232\) 0 0
\(233\) 4035.95i 1.13478i 0.823449 + 0.567390i \(0.192047\pi\)
−0.823449 + 0.567390i \(0.807953\pi\)
\(234\) 0 0
\(235\) 3583.37i 0.994694i
\(236\) 0 0
\(237\) 2402.39 0.658449
\(238\) 0 0
\(239\) −4449.88 4449.88i −1.20435 1.20435i −0.972831 0.231516i \(-0.925631\pi\)
−0.231516 0.972831i \(-0.574369\pi\)
\(240\) 0 0
\(241\) 4132.19 + 4132.19i 1.10447 + 1.10447i 0.993864 + 0.110609i \(0.0352801\pi\)
0.110609 + 0.993864i \(0.464720\pi\)
\(242\) 0 0
\(243\) 243.000i 0.0641500i
\(244\) 0 0
\(245\) −2571.20 2571.20i −0.670483 0.670483i
\(246\) 0 0
\(247\) 4158.36 1629.12i 1.07122 0.419669i
\(248\) 0 0
\(249\) −290.727 + 290.727i −0.0739924 + 0.0739924i
\(250\) 0 0
\(251\) 7095.04 1.78420 0.892101 0.451836i \(-0.149231\pi\)
0.892101 + 0.451836i \(0.149231\pi\)
\(252\) 0 0
\(253\) 884.913 884.913i 0.219897 0.219897i
\(254\) 0 0
\(255\) 119.742 119.742i 0.0294060 0.0294060i
\(256\) 0 0
\(257\) 2469.31i 0.599343i −0.954043 0.299671i \(-0.903123\pi\)
0.954043 0.299671i \(-0.0968770\pi\)
\(258\) 0 0
\(259\) 3175.03 0.761726
\(260\) 0 0
\(261\) 745.541 0.176812
\(262\) 0 0
\(263\) 5277.61i 1.23738i −0.785635 0.618690i \(-0.787664\pi\)
0.785635 0.618690i \(-0.212336\pi\)
\(264\) 0 0
\(265\) 6050.89 6050.89i 1.40265 1.40265i
\(266\) 0 0
\(267\) 1334.77 1334.77i 0.305941 0.305941i
\(268\) 0 0
\(269\) 3205.60 0.726575 0.363288 0.931677i \(-0.381654\pi\)
0.363288 + 0.931677i \(0.381654\pi\)
\(270\) 0 0
\(271\) 4988.78 4988.78i 1.11825 1.11825i 0.126256 0.991998i \(-0.459704\pi\)
0.991998 0.126256i \(-0.0402960\pi\)
\(272\) 0 0
\(273\) 1364.59 534.602i 0.302522 0.118519i
\(274\) 0 0
\(275\) −4172.59 4172.59i −0.914970 0.914970i
\(276\) 0 0
\(277\) 2923.91i 0.634227i 0.948388 + 0.317114i \(0.102714\pi\)
−0.948388 + 0.317114i \(0.897286\pi\)
\(278\) 0 0
\(279\) −923.863 923.863i −0.198245 0.198245i
\(280\) 0 0
\(281\) −2323.87 2323.87i −0.493347 0.493347i 0.416012 0.909359i \(-0.363427\pi\)
−0.909359 + 0.416012i \(0.863427\pi\)
\(282\) 0 0
\(283\) −2327.45 −0.488878 −0.244439 0.969665i \(-0.578604\pi\)
−0.244439 + 0.969665i \(0.578604\pi\)
\(284\) 0 0
\(285\) 4434.85i 0.921748i
\(286\) 0 0
\(287\) 299.358i 0.0615699i
\(288\) 0 0
\(289\) 4899.76 0.997306
\(290\) 0 0
\(291\) −2524.40 2524.40i −0.508533 0.508533i
\(292\) 0 0
\(293\) −5889.56 5889.56i −1.17431 1.17431i −0.981172 0.193135i \(-0.938134\pi\)
−0.193135 0.981172i \(-0.561866\pi\)
\(294\) 0 0
\(295\) 11888.0i 2.34625i
\(296\) 0 0
\(297\) 973.657 + 973.657i 0.190227 + 0.190227i
\(298\) 0 0
\(299\) −460.597 + 1053.95i −0.0890871 + 0.203851i
\(300\) 0 0
\(301\) −455.265 + 455.265i −0.0871795 + 0.0871795i
\(302\) 0 0
\(303\) 4161.34 0.788986
\(304\) 0 0
\(305\) −4293.29 + 4293.29i −0.806009 + 0.806009i
\(306\) 0 0
\(307\) −4484.81 + 4484.81i −0.833750 + 0.833750i −0.988028 0.154277i \(-0.950695\pi\)
0.154277 + 0.988028i \(0.450695\pi\)
\(308\) 0 0
\(309\) 2894.18i 0.532829i
\(310\) 0 0
\(311\) 7020.75 1.28010 0.640048 0.768335i \(-0.278914\pi\)
0.640048 + 0.768335i \(0.278914\pi\)
\(312\) 0 0
\(313\) 5393.47 0.973983 0.486991 0.873407i \(-0.338094\pi\)
0.486991 + 0.873407i \(0.338094\pi\)
\(314\) 0 0
\(315\) 1455.32i 0.260311i
\(316\) 0 0
\(317\) −6856.60 + 6856.60i −1.21484 + 1.21484i −0.245428 + 0.969415i \(0.578929\pi\)
−0.969415 + 0.245428i \(0.921071\pi\)
\(318\) 0 0
\(319\) −2987.25 + 2987.25i −0.524307 + 0.524307i
\(320\) 0 0
\(321\) 779.886 0.135604
\(322\) 0 0
\(323\) −245.127 + 245.127i −0.0422268 + 0.0422268i
\(324\) 0 0
\(325\) 4969.64 + 2171.83i 0.848203 + 0.370682i
\(326\) 0 0
\(327\) 1501.52 + 1501.52i 0.253927 + 0.253927i
\(328\) 0 0
\(329\) 2407.22i 0.403387i
\(330\) 0 0
\(331\) −5600.07 5600.07i −0.929932 0.929932i 0.0677690 0.997701i \(-0.478412\pi\)
−0.997701 + 0.0677690i \(0.978412\pi\)
\(332\) 0 0
\(333\) −1938.68 1938.68i −0.319036 0.319036i
\(334\) 0 0
\(335\) −4258.63 −0.694548
\(336\) 0 0
\(337\) 7892.56i 1.27577i 0.770131 + 0.637886i \(0.220191\pi\)
−0.770131 + 0.637886i \(0.779809\pi\)
\(338\) 0 0
\(339\) 4338.21i 0.695042i
\(340\) 0 0
\(341\) 7403.51 1.17573
\(342\) 0 0
\(343\) 4255.11 + 4255.11i 0.669838 + 0.669838i
\(344\) 0 0
\(345\) 807.625 + 807.625i 0.126032 + 0.126032i
\(346\) 0 0
\(347\) 439.011i 0.0679174i −0.999423 0.0339587i \(-0.989189\pi\)
0.999423 0.0339587i \(-0.0108115\pi\)
\(348\) 0 0
\(349\) −2664.52 2664.52i −0.408678 0.408678i 0.472599 0.881277i \(-0.343316\pi\)
−0.881277 + 0.472599i \(0.843316\pi\)
\(350\) 0 0
\(351\) −1159.65 506.789i −0.176346 0.0770666i
\(352\) 0 0
\(353\) −3883.96 + 3883.96i −0.585615 + 0.585615i −0.936441 0.350826i \(-0.885901\pi\)
0.350826 + 0.936441i \(0.385901\pi\)
\(354\) 0 0
\(355\) −6359.52 −0.950783
\(356\) 0 0
\(357\) −80.4397 + 80.4397i −0.0119253 + 0.0119253i
\(358\) 0 0
\(359\) −993.863 + 993.863i −0.146112 + 0.146112i −0.776379 0.630267i \(-0.782945\pi\)
0.630267 + 0.776379i \(0.282945\pi\)
\(360\) 0 0
\(361\) 2219.74i 0.323625i
\(362\) 0 0
\(363\) −3809.54 −0.550823
\(364\) 0 0
\(365\) −13817.9 −1.98155
\(366\) 0 0
\(367\) 3038.32i 0.432149i 0.976377 + 0.216075i \(0.0693255\pi\)
−0.976377 + 0.216075i \(0.930675\pi\)
\(368\) 0 0
\(369\) 182.788 182.788i 0.0257875 0.0257875i
\(370\) 0 0
\(371\) −4064.85 + 4064.85i −0.568831 + 0.568831i
\(372\) 0 0
\(373\) 4888.47 0.678593 0.339297 0.940679i \(-0.389811\pi\)
0.339297 + 0.940679i \(0.389811\pi\)
\(374\) 0 0
\(375\) −305.816 + 305.816i −0.0421128 + 0.0421128i
\(376\) 0 0
\(377\) 1554.86 3557.88i 0.212413 0.486048i
\(378\) 0 0
\(379\) −6546.84 6546.84i −0.887305 0.887305i 0.106958 0.994263i \(-0.465889\pi\)
−0.994263 + 0.106958i \(0.965889\pi\)
\(380\) 0 0
\(381\) 457.883i 0.0615697i
\(382\) 0 0
\(383\) 8521.73 + 8521.73i 1.13692 + 1.13692i 0.988999 + 0.147920i \(0.0472577\pi\)
0.147920 + 0.988999i \(0.452742\pi\)
\(384\) 0 0
\(385\) 5831.20 + 5831.20i 0.771910 + 0.771910i
\(386\) 0 0
\(387\) 555.970 0.0730273
\(388\) 0 0
\(389\) 7276.26i 0.948383i −0.880422 0.474191i \(-0.842740\pi\)
0.880422 0.474191i \(-0.157260\pi\)
\(390\) 0 0
\(391\) 89.2796i 0.0115475i
\(392\) 0 0
\(393\) 6713.72 0.861736
\(394\) 0 0
\(395\) −8785.24 8785.24i −1.11907 1.11907i
\(396\) 0 0
\(397\) −3578.87 3578.87i −0.452439 0.452439i 0.443724 0.896163i \(-0.353657\pi\)
−0.896163 + 0.443724i \(0.853657\pi\)
\(398\) 0 0
\(399\) 2979.23i 0.373805i
\(400\) 0 0
\(401\) −9942.14 9942.14i −1.23812 1.23812i −0.960768 0.277353i \(-0.910543\pi\)
−0.277353 0.960768i \(-0.589457\pi\)
\(402\) 0 0
\(403\) −6335.63 + 2482.10i −0.783127 + 0.306805i
\(404\) 0 0
\(405\) −888.618 + 888.618i −0.109027 + 0.109027i
\(406\) 0 0
\(407\) 15535.9 1.89210
\(408\) 0 0
\(409\) −1169.15 + 1169.15i −0.141346 + 0.141346i −0.774239 0.632893i \(-0.781867\pi\)
0.632893 + 0.774239i \(0.281867\pi\)
\(410\) 0 0
\(411\) 785.403 785.403i 0.0942606 0.0942606i
\(412\) 0 0
\(413\) 7986.06i 0.951497i
\(414\) 0 0
\(415\) 2126.30 0.251509
\(416\) 0 0
\(417\) −8043.30 −0.944561
\(418\) 0 0
\(419\) 9436.20i 1.10021i 0.835095 + 0.550105i \(0.185412\pi\)
−0.835095 + 0.550105i \(0.814588\pi\)
\(420\) 0 0
\(421\) 9925.26 9925.26i 1.14900 1.14900i 0.162247 0.986750i \(-0.448126\pi\)
0.986750 0.162247i \(-0.0518740\pi\)
\(422\) 0 0
\(423\) 1469.85 1469.85i 0.168952 0.168952i
\(424\) 0 0
\(425\) −420.976 −0.0480479
\(426\) 0 0
\(427\) 2884.13 2884.13i 0.326868 0.326868i
\(428\) 0 0
\(429\) 6677.10 2615.88i 0.751453 0.294396i
\(430\) 0 0
\(431\) 3896.99 + 3896.99i 0.435526 + 0.435526i 0.890503 0.454977i \(-0.150353\pi\)
−0.454977 + 0.890503i \(0.650353\pi\)
\(432\) 0 0
\(433\) 1649.61i 0.183083i −0.995801 0.0915417i \(-0.970821\pi\)
0.995801 0.0915417i \(-0.0291795\pi\)
\(434\) 0 0
\(435\) −2726.34 2726.34i −0.300502 0.300502i
\(436\) 0 0
\(437\) −1653.32 1653.32i −0.180981 0.180981i
\(438\) 0 0
\(439\) 17380.7 1.88960 0.944802 0.327643i \(-0.106254\pi\)
0.944802 + 0.327643i \(0.106254\pi\)
\(440\) 0 0
\(441\) 2109.35i 0.227767i
\(442\) 0 0
\(443\) 11980.0i 1.28485i −0.766349 0.642424i \(-0.777929\pi\)
0.766349 0.642424i \(-0.222071\pi\)
\(444\) 0 0
\(445\) −9762.12 −1.03993
\(446\) 0 0
\(447\) 1781.81 + 1781.81i 0.188539 + 0.188539i
\(448\) 0 0
\(449\) −4541.83 4541.83i −0.477377 0.477377i 0.426915 0.904292i \(-0.359600\pi\)
−0.904292 + 0.426915i \(0.859600\pi\)
\(450\) 0 0
\(451\) 1464.80i 0.152937i
\(452\) 0 0
\(453\) 5281.79 + 5281.79i 0.547814 + 0.547814i
\(454\) 0 0
\(455\) −6945.08 3035.14i −0.715583 0.312724i
\(456\) 0 0
\(457\) −23.9691 + 23.9691i −0.00245345 + 0.00245345i −0.708332 0.705879i \(-0.750552\pi\)
0.705879 + 0.708332i \(0.250552\pi\)
\(458\) 0 0
\(459\) 98.2331 0.00998939
\(460\) 0 0
\(461\) 5064.78 5064.78i 0.511692 0.511692i −0.403352 0.915045i \(-0.632155\pi\)
0.915045 + 0.403352i \(0.132155\pi\)
\(462\) 0 0
\(463\) −178.036 + 178.036i −0.0178705 + 0.0178705i −0.715986 0.698115i \(-0.754022\pi\)
0.698115 + 0.715986i \(0.254022\pi\)
\(464\) 0 0
\(465\) 6756.89i 0.673856i
\(466\) 0 0
\(467\) 111.584 0.0110567 0.00552834 0.999985i \(-0.498240\pi\)
0.00552834 + 0.999985i \(0.498240\pi\)
\(468\) 0 0
\(469\) 2860.85 0.281667
\(470\) 0 0
\(471\) 672.079i 0.0657490i
\(472\) 0 0
\(473\) −2227.67 + 2227.67i −0.216551 + 0.216551i
\(474\) 0 0
\(475\) −7795.81 + 7795.81i −0.753045 + 0.753045i
\(476\) 0 0
\(477\) 4964.00 0.476490
\(478\) 0 0
\(479\) −3259.16 + 3259.16i −0.310887 + 0.310887i −0.845253 0.534366i \(-0.820550\pi\)
0.534366 + 0.845253i \(0.320550\pi\)
\(480\) 0 0
\(481\) −13295.0 + 5208.56i −1.26029 + 0.493742i
\(482\) 0 0
\(483\) −542.544 542.544i −0.0511110 0.0511110i
\(484\) 0 0
\(485\) 18462.8i 1.72856i
\(486\) 0 0
\(487\) 12524.9 + 12524.9i 1.16541 + 1.16541i 0.983272 + 0.182141i \(0.0583028\pi\)
0.182141 + 0.983272i \(0.441697\pi\)
\(488\) 0 0
\(489\) 4010.55 + 4010.55i 0.370886 + 0.370886i
\(490\) 0 0
\(491\) −261.811 −0.0240638 −0.0120319 0.999928i \(-0.503830\pi\)
−0.0120319 + 0.999928i \(0.503830\pi\)
\(492\) 0 0
\(493\) 301.386i 0.0275330i
\(494\) 0 0
\(495\) 7121.07i 0.646602i
\(496\) 0 0
\(497\) 4272.17 0.385580
\(498\) 0 0
\(499\) 6817.56 + 6817.56i 0.611615 + 0.611615i 0.943367 0.331751i \(-0.107640\pi\)
−0.331751 + 0.943367i \(0.607640\pi\)
\(500\) 0 0
\(501\) −4935.51 4935.51i −0.440125 0.440125i
\(502\) 0 0
\(503\) 6873.42i 0.609286i 0.952467 + 0.304643i \(0.0985371\pi\)
−0.952467 + 0.304643i \(0.901463\pi\)
\(504\) 0 0
\(505\) −15217.5 15217.5i −1.34093 1.34093i
\(506\) 0 0
\(507\) −4837.00 + 4477.13i −0.423705 + 0.392182i
\(508\) 0 0
\(509\) −8261.33 + 8261.33i −0.719405 + 0.719405i −0.968483 0.249078i \(-0.919872\pi\)
0.249078 + 0.968483i \(0.419872\pi\)
\(510\) 0 0
\(511\) 9282.57 0.803595
\(512\) 0 0
\(513\) 1819.12 1819.12i 0.156562 0.156562i
\(514\) 0 0
\(515\) −10583.6 + 10583.6i −0.905573 + 0.905573i
\(516\) 0 0
\(517\) 11778.9i 1.00200i
\(518\) 0 0
\(519\) −1487.19 −0.125781
\(520\) 0 0
\(521\) 19121.9 1.60796 0.803978 0.594660i \(-0.202713\pi\)
0.803978 + 0.594660i \(0.202713\pi\)
\(522\) 0 0
\(523\) 13346.3i 1.11585i 0.829890 + 0.557927i \(0.188403\pi\)
−0.829890 + 0.557927i \(0.811597\pi\)
\(524\) 0 0
\(525\) −2558.23 + 2558.23i −0.212667 + 0.212667i
\(526\) 0 0
\(527\) 373.473 373.473i 0.0308705 0.0308705i
\(528\) 0 0
\(529\) −11564.8 −0.950508
\(530\) 0 0
\(531\) 4876.29 4876.29i 0.398518 0.398518i
\(532\) 0 0
\(533\) −491.089 1253.52i −0.0399089 0.101868i
\(534\) 0 0
\(535\) −2851.94 2851.94i −0.230467 0.230467i
\(536\) 0 0
\(537\) 57.3900i 0.00461185i
\(538\) 0 0
\(539\) 8451.79 + 8451.79i 0.675407 + 0.675407i
\(540\) 0 0
\(541\) −8318.38 8318.38i −0.661063 0.661063i 0.294568 0.955631i \(-0.404824\pi\)
−0.955631 + 0.294568i \(0.904824\pi\)
\(542\) 0 0
\(543\) 7249.36 0.572928
\(544\) 0 0
\(545\) 10981.7i 0.863127i
\(546\) 0 0
\(547\) 5413.15i 0.423125i −0.977364 0.211563i \(-0.932145\pi\)
0.977364 0.211563i \(-0.0678553\pi\)
\(548\) 0 0
\(549\) −3522.10 −0.273806
\(550\) 0 0
\(551\) 5581.19 + 5581.19i 0.431519 + 0.431519i
\(552\) 0 0
\(553\) 5901.72 + 5901.72i 0.453827 + 0.453827i
\(554\) 0 0
\(555\) 14179.0i 1.08444i
\(556\) 0 0
\(557\) 18416.6 + 18416.6i 1.40096 + 1.40096i 0.797050 + 0.603913i \(0.206393\pi\)
0.603913 + 0.797050i \(0.293607\pi\)
\(558\) 0 0
\(559\) 1159.50 2653.20i 0.0877313 0.200749i
\(560\) 0 0
\(561\) −393.602 + 393.602i −0.0296219 + 0.0296219i
\(562\) 0 0
\(563\) −14219.0 −1.06441 −0.532204 0.846616i \(-0.678636\pi\)
−0.532204 + 0.846616i \(0.678636\pi\)
\(564\) 0 0
\(565\) 15864.3 15864.3i 1.18126 1.18126i
\(566\) 0 0
\(567\) 596.953 596.953i 0.0442146 0.0442146i
\(568\) 0 0
\(569\) 2144.88i 0.158028i −0.996874 0.0790140i \(-0.974823\pi\)
0.996874 0.0790140i \(-0.0251772\pi\)
\(570\) 0 0
\(571\) 1393.24 0.102111 0.0510555 0.998696i \(-0.483741\pi\)
0.0510555 + 0.998696i \(0.483741\pi\)
\(572\) 0 0
\(573\) −2542.85 −0.185391
\(574\) 0 0
\(575\) 2839.37i 0.205930i
\(576\) 0 0
\(577\) 5614.68 5614.68i 0.405099 0.405099i −0.474926 0.880026i \(-0.657525\pi\)
0.880026 + 0.474926i \(0.157525\pi\)
\(578\) 0 0
\(579\) −7348.70 + 7348.70i −0.527464 + 0.527464i
\(580\) 0 0
\(581\) −1428.40 −0.101997
\(582\) 0 0
\(583\) −19889.8 + 19889.8i −1.41296 + 1.41296i
\(584\) 0 0
\(585\) 2387.41 + 6093.93i 0.168730 + 0.430689i
\(586\) 0 0
\(587\) 10456.4 + 10456.4i 0.735230 + 0.735230i 0.971651 0.236421i \(-0.0759743\pi\)
−0.236421 + 0.971651i \(0.575974\pi\)
\(588\) 0 0
\(589\) 13832.3i 0.967654i
\(590\) 0 0
\(591\) 5437.33 + 5437.33i 0.378447 + 0.378447i
\(592\) 0 0
\(593\) 5623.39 + 5623.39i 0.389418 + 0.389418i 0.874480 0.485062i \(-0.161203\pi\)
−0.485062 + 0.874480i \(0.661203\pi\)
\(594\) 0 0
\(595\) 588.314 0.0405354
\(596\) 0 0
\(597\) 10132.1i 0.694602i
\(598\) 0 0
\(599\) 5680.38i 0.387469i 0.981054 + 0.193735i \(0.0620601\pi\)
−0.981054 + 0.193735i \(0.937940\pi\)
\(600\) 0 0
\(601\) −23639.4 −1.60444 −0.802221 0.597027i \(-0.796349\pi\)
−0.802221 + 0.597027i \(0.796349\pi\)
\(602\) 0 0
\(603\) −1746.84 1746.84i −0.117971 0.117971i
\(604\) 0 0
\(605\) 13931.0 + 13931.0i 0.936156 + 0.936156i
\(606\) 0 0
\(607\) 20622.5i 1.37898i 0.724293 + 0.689492i \(0.242166\pi\)
−0.724293 + 0.689492i \(0.757834\pi\)
\(608\) 0 0
\(609\) 1831.49 + 1831.49i 0.121865 + 0.121865i
\(610\) 0 0
\(611\) −3948.99 10079.9i −0.261471 0.667412i
\(612\) 0 0
\(613\) 4785.20 4785.20i 0.315289 0.315289i −0.531665 0.846955i \(-0.678434\pi\)
0.846955 + 0.531665i \(0.178434\pi\)
\(614\) 0 0
\(615\) −1336.87 −0.0876547
\(616\) 0 0
\(617\) 12088.8 12088.8i 0.788780 0.788780i −0.192514 0.981294i \(-0.561664\pi\)
0.981294 + 0.192514i \(0.0616642\pi\)
\(618\) 0 0
\(619\) 9308.41 9308.41i 0.604421 0.604421i −0.337062 0.941483i \(-0.609433\pi\)
0.941483 + 0.337062i \(0.109433\pi\)
\(620\) 0 0
\(621\) 662.555i 0.0428139i
\(622\) 0 0
\(623\) 6557.97 0.421732
\(624\) 0 0
\(625\) 16700.2 1.06881
\(626\) 0 0
\(627\) 14577.8i 0.928517i
\(628\) 0 0
\(629\) 783.713 783.713i 0.0496800 0.0496800i
\(630\) 0 0
\(631\) −22247.7 + 22247.7i −1.40359 + 1.40359i −0.615298 + 0.788295i \(0.710964\pi\)
−0.788295 + 0.615298i \(0.789036\pi\)
\(632\) 0 0
\(633\) 12193.4 0.765630
\(634\) 0 0
\(635\) 1674.42 1674.42i 0.104641 0.104641i
\(636\) 0 0
\(637\) −10066.3 4399.16i −0.626122 0.273628i
\(638\) 0 0
\(639\) −2608.59 2608.59i −0.161493 0.161493i
\(640\) 0 0
\(641\) 16079.9i 0.990825i −0.868658 0.495413i \(-0.835017\pi\)
0.868658 0.495413i \(-0.164983\pi\)
\(642\) 0 0
\(643\) 15703.6 + 15703.6i 0.963125 + 0.963125i 0.999344 0.0362193i \(-0.0115315\pi\)
−0.0362193 + 0.999344i \(0.511531\pi\)
\(644\) 0 0
\(645\) −2033.11 2033.11i −0.124114 0.124114i
\(646\) 0 0
\(647\) −25336.7 −1.53955 −0.769774 0.638316i \(-0.779631\pi\)
−0.769774 + 0.638316i \(0.779631\pi\)
\(648\) 0 0
\(649\) 39076.8i 2.36348i
\(650\) 0 0
\(651\) 4539.12i 0.273275i
\(652\) 0 0
\(653\) 4028.17 0.241400 0.120700 0.992689i \(-0.461486\pi\)
0.120700 + 0.992689i \(0.461486\pi\)
\(654\) 0 0
\(655\) −24551.2 24551.2i −1.46457 1.46457i
\(656\) 0 0
\(657\) −5667.95 5667.95i −0.336572 0.336572i
\(658\) 0 0
\(659\) 14725.1i 0.870423i 0.900328 + 0.435212i \(0.143326\pi\)
−0.900328 + 0.435212i \(0.856674\pi\)
\(660\) 0 0
\(661\) −13921.2 13921.2i −0.819168 0.819168i 0.166820 0.985987i \(-0.446650\pi\)
−0.985987 + 0.166820i \(0.946650\pi\)
\(662\) 0 0
\(663\) 204.870 468.788i 0.0120007 0.0274604i
\(664\) 0 0
\(665\) 10894.6 10894.6i 0.635303 0.635303i
\(666\) 0 0
\(667\) −2032.77 −0.118005
\(668\) 0 0
\(669\) −7324.24 + 7324.24i −0.423276 + 0.423276i
\(670\) 0 0
\(671\) 14112.4 14112.4i 0.811929 0.811929i
\(672\) 0 0
\(673\) 20696.7i 1.18544i 0.805409 + 0.592720i \(0.201946\pi\)
−0.805409 + 0.592720i \(0.798054\pi\)
\(674\) 0 0
\(675\) 3124.12 0.178144
\(676\) 0 0
\(677\) −12720.7 −0.722149 −0.361075 0.932537i \(-0.617590\pi\)
−0.361075 + 0.932537i \(0.617590\pi\)
\(678\) 0 0
\(679\) 12402.9i 0.700999i
\(680\) 0 0
\(681\) −12444.7 + 12444.7i −0.700265 + 0.700265i
\(682\) 0 0
\(683\) −14912.0 + 14912.0i −0.835421 + 0.835421i −0.988252 0.152832i \(-0.951161\pi\)
0.152832 + 0.988252i \(0.451161\pi\)
\(684\) 0 0
\(685\) −5744.23 −0.320403
\(686\) 0 0
\(687\) 574.796 574.796i 0.0319211 0.0319211i
\(688\) 0 0
\(689\) 10352.7 23689.2i 0.572431 1.30985i
\(690\) 0 0
\(691\) 10432.9 + 10432.9i 0.574366 + 0.574366i 0.933346 0.358979i \(-0.116875\pi\)
−0.358979 + 0.933346i \(0.616875\pi\)
\(692\) 0 0
\(693\) 4783.77i 0.262223i
\(694\) 0 0
\(695\) 29413.2 + 29413.2i 1.60534 + 1.60534i
\(696\) 0 0
\(697\) 73.8925 + 73.8925i 0.00401561 + 0.00401561i
\(698\) 0 0
\(699\) 12107.8 0.655165
\(700\) 0 0
\(701\) 1078.91i 0.0581311i −0.999578 0.0290655i \(-0.990747\pi\)
0.999578 0.0290655i \(-0.00925315\pi\)
\(702\) 0 0
\(703\) 29026.3i 1.55725i
\(704\) 0 0
\(705\) −10750.1 −0.574287
\(706\) 0 0
\(707\) 10222.7 + 10222.7i 0.543799 + 0.543799i
\(708\) 0 0
\(709\) 19584.2 + 19584.2i 1.03737 + 1.03737i 0.999274 + 0.0381009i \(0.0121308\pi\)
0.0381009 + 0.999274i \(0.487869\pi\)
\(710\) 0 0
\(711\) 7207.18i 0.380155i
\(712\) 0 0
\(713\) 2518.97 + 2518.97i 0.132309 + 0.132309i
\(714\) 0 0
\(715\) −33983.2 14851.3i −1.77748 0.776795i
\(716\) 0 0
\(717\) −13349.7 + 13349.7i −0.695330 + 0.695330i
\(718\) 0 0
\(719\) 7040.96 0.365206 0.182603 0.983187i \(-0.441548\pi\)
0.182603 + 0.983187i \(0.441548\pi\)
\(720\) 0 0
\(721\) 7109.83 7109.83i 0.367245 0.367245i
\(722\) 0 0
\(723\) 12396.6 12396.6i 0.637668 0.637668i
\(724\) 0 0
\(725\) 9585.01i 0.491005i
\(726\) 0 0
\(727\) 10443.8 0.532793 0.266397 0.963864i \(-0.414167\pi\)
0.266397 + 0.963864i \(0.414167\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 224.752i 0.0113717i
\(732\) 0 0
\(733\) −1106.47 + 1106.47i −0.0557550 + 0.0557550i −0.734435 0.678680i \(-0.762553\pi\)
0.678680 + 0.734435i \(0.262553\pi\)
\(734\) 0 0
\(735\) −7713.61 + 7713.61i −0.387103 + 0.387103i
\(736\) 0 0
\(737\) 13998.5 0.699650
\(738\) 0 0
\(739\) 23725.4 23725.4i 1.18099 1.18099i 0.201504 0.979488i \(-0.435417\pi\)
0.979488 0.201504i \(-0.0645828\pi\)
\(740\) 0 0
\(741\) −4887.35 12475.1i −0.242296 0.618467i
\(742\) 0 0
\(743\) −17110.9 17110.9i −0.844867 0.844867i 0.144620 0.989487i \(-0.453804\pi\)
−0.989487 + 0.144620i \(0.953804\pi\)
\(744\) 0 0
\(745\) 13031.7i 0.640865i
\(746\) 0 0
\(747\) 872.182 + 872.182i 0.0427195 + 0.0427195i
\(748\) 0 0
\(749\) 1915.86 + 1915.86i 0.0934635 + 0.0934635i
\(750\) 0 0
\(751\) 18833.9 0.915124 0.457562 0.889178i \(-0.348723\pi\)
0.457562 + 0.889178i \(0.348723\pi\)
\(752\) 0 0
\(753\) 21285.1i 1.03011i
\(754\) 0 0
\(755\) 38629.6i 1.86208i
\(756\) 0 0
\(757\) −13709.0 −0.658208 −0.329104 0.944294i \(-0.606747\pi\)
−0.329104 + 0.944294i \(0.606747\pi\)
\(758\) 0 0
\(759\) −2654.74 2654.74i −0.126958 0.126958i
\(760\) 0 0
\(761\) −12656.7 12656.7i −0.602899 0.602899i 0.338181 0.941081i \(-0.390188\pi\)
−0.941081 + 0.338181i \(0.890188\pi\)
\(762\) 0 0
\(763\) 7377.25i 0.350032i
\(764\) 0 0
\(765\) −359.225 359.225i −0.0169775 0.0169775i
\(766\) 0 0
\(767\) −13100.9 33440.4i −0.616749 1.57427i
\(768\) 0 0
\(769\) −18582.2 + 18582.2i −0.871378 + 0.871378i −0.992623 0.121245i \(-0.961311\pi\)
0.121245 + 0.992623i \(0.461311\pi\)
\(770\) 0 0
\(771\) −7407.92 −0.346031
\(772\) 0 0
\(773\) −494.241 + 494.241i −0.0229969 + 0.0229969i −0.718512 0.695515i \(-0.755176\pi\)
0.695515 + 0.718512i \(0.255176\pi\)
\(774\) 0 0
\(775\) 11877.6 11877.6i 0.550524 0.550524i
\(776\) 0 0
\(777\) 9525.10i 0.439783i
\(778\) 0 0
\(779\) 2736.74 0.125872
\(780\) 0 0
\(781\) 20904.3 0.957766
\(782\) 0 0
\(783\) 2236.62i 0.102082i
\(784\) 0 0
\(785\) −2457.70 + 2457.70i −0.111744 + 0.111744i
\(786\) 0 0
\(787\) 7208.46 7208.46i 0.326498 0.326498i −0.524755 0.851253i \(-0.675843\pi\)
0.851253 + 0.524755i \(0.175843\pi\)
\(788\) 0 0
\(789\) −15832.8 −0.714402
\(790\) 0 0
\(791\) −10657.2 + 10657.2i −0.479049 + 0.479049i
\(792\) 0 0
\(793\) −7345.52 + 16808.2i −0.328937 + 0.752682i
\(794\) 0 0
\(795\) −18152.7 18152.7i −0.809823 0.809823i
\(796\) 0 0
\(797\) 5869.01i 0.260842i 0.991459 + 0.130421i \(0.0416328\pi\)
−0.991459 + 0.130421i \(0.958367\pi\)
\(798\) 0 0
\(799\) 594.190 + 594.190i 0.0263090 + 0.0263090i
\(800\) 0 0
\(801\) −4004.30 4004.30i −0.176635 0.176635i
\(802\) 0 0
\(803\) 45420.9 1.99610
\(804\) 0 0
\(805\) 3968.02i 0.173732i
\(806\) 0 0
\(807\) 9616.80i 0.419489i
\(808\) 0 0
\(809\) 11522.9 0.500771 0.250386 0.968146i \(-0.419443\pi\)
0.250386 + 0.968146i \(0.419443\pi\)
\(810\) 0 0
\(811\) 1281.18 + 1281.18i 0.0554728 + 0.0554728i 0.734299 0.678826i \(-0.237511\pi\)
−0.678826 + 0.734299i \(0.737511\pi\)
\(812\) 0 0
\(813\) −14966.3 14966.3i −0.645624 0.645624i
\(814\) 0 0
\(815\) 29332.1i 1.26068i
\(816\) 0 0
\(817\) 4162.05 + 4162.05i 0.178227 + 0.178227i
\(818\) 0 0
\(819\) −1603.81 4093.76i −0.0684268 0.174661i
\(820\) 0 0
\(821\) 54.1554 54.1554i 0.00230211 0.00230211i −0.705955 0.708257i \(-0.749482\pi\)
0.708257 + 0.705955i \(0.249482\pi\)
\(822\) 0 0
\(823\) 1414.64 0.0599166 0.0299583 0.999551i \(-0.490463\pi\)
0.0299583 + 0.999551i \(0.490463\pi\)
\(824\) 0 0
\(825\) −12517.8 + 12517.8i −0.528258 + 0.528258i
\(826\) 0 0
\(827\) 17163.5 17163.5i 0.721686 0.721686i −0.247262 0.968949i \(-0.579531\pi\)
0.968949 + 0.247262i \(0.0795309\pi\)
\(828\) 0 0
\(829\) 32076.3i 1.34385i −0.740617 0.671927i \(-0.765467\pi\)
0.740617 0.671927i \(-0.234533\pi\)
\(830\) 0 0
\(831\) 8771.74 0.366171
\(832\) 0 0
\(833\) 852.708 0.0354677
\(834\) 0 0
\(835\) 36097.0i 1.49603i
\(836\) 0 0
\(837\) −2771.59 + 2771.59i −0.114457 + 0.114457i
\(838\) 0 0
\(839\) −25536.5 + 25536.5i −1.05080 + 1.05080i −0.0521563 + 0.998639i \(0.516609\pi\)
−0.998639 + 0.0521563i \(0.983391\pi\)
\(840\) 0 0
\(841\) −17526.9 −0.718639
\(842\) 0 0
\(843\) −6971.61 + 6971.61i −0.284834 + 0.284834i
\(844\) 0 0
\(845\) 34060.5 + 1315.97i 1.38665 + 0.0535749i
\(846\) 0 0
\(847\) −9358.50 9358.50i −0.379648 0.379648i
\(848\) 0 0
\(849\) 6982.35i 0.282254i
\(850\) 0 0
\(851\) 5285.93 + 5285.93i 0.212925 + 0.212925i
\(852\) 0 0
\(853\) 10542.2 + 10542.2i 0.423163 + 0.423163i 0.886291 0.463128i \(-0.153273\pi\)
−0.463128 + 0.886291i \(0.653273\pi\)
\(854\) 0 0
\(855\) −13304.6 −0.532171
\(856\) 0 0
\(857\) 14583.2i 0.581275i −0.956833 0.290638i \(-0.906133\pi\)
0.956833 0.290638i \(-0.0938674\pi\)
\(858\) 0 0
\(859\) 48275.6i 1.91751i −0.284232 0.958756i \(-0.591738\pi\)
0.284232 0.958756i \(-0.408262\pi\)
\(860\) 0 0
\(861\) 898.075 0.0355474
\(862\) 0 0
\(863\) −33892.6 33892.6i −1.33687 1.33687i −0.899077 0.437791i \(-0.855761\pi\)
−0.437791 0.899077i \(-0.644239\pi\)
\(864\) 0 0
\(865\) 5438.46 + 5438.46i 0.213772 + 0.213772i
\(866\) 0 0
\(867\) 14699.3i 0.575795i
\(868\) 0 0
\(869\) 28877.9 + 28877.9i 1.12729 + 1.12729i
\(870\) 0 0
\(871\) −11979.4 + 4693.14i −0.466022 + 0.182573i
\(872\) 0 0
\(873\) −7573.20 + 7573.20i −0.293602 + 0.293602i
\(874\) 0 0
\(875\) −1502.53 −0.0580514
\(876\) 0 0
\(877\) −33797.2 + 33797.2i −1.30131 + 1.30131i −0.373807 + 0.927507i \(0.621948\pi\)
−0.927507 + 0.373807i \(0.878052\pi\)
\(878\) 0 0
\(879\) −17668.7 + 17668.7i −0.677987 + 0.677987i
\(880\) 0 0
\(881\) 10799.2i 0.412977i −0.978449 0.206489i \(-0.933796\pi\)
0.978449 0.206489i \(-0.0662037\pi\)
\(882\) 0 0
\(883\) −32825.4 −1.25103 −0.625517 0.780210i \(-0.715112\pi\)
−0.625517 + 0.780210i \(0.715112\pi\)
\(884\) 0 0
\(885\) −35663.9 −1.35461
\(886\) 0 0
\(887\) 13074.6i 0.494929i 0.968897 + 0.247464i \(0.0795973\pi\)
−0.968897 + 0.247464i \(0.920403\pi\)
\(888\) 0 0
\(889\) −1124.83 + 1124.83i −0.0424362 + 0.0424362i
\(890\) 0 0
\(891\) 2920.97 2920.97i 0.109827 0.109827i
\(892\) 0 0
\(893\) 22006.9 0.824673
\(894\) 0 0
\(895\) 209.868 209.868i 0.00783810 0.00783810i
\(896\) 0 0
\(897\) 3161.85 + 1381.79i 0.117694 + 0.0514344i
\(898\) 0 0
\(899\) −8503.43 8503.43i −0.315468 0.315468i
\(900\) 0 0
\(901\) 2006.70i 0.0741986i
\(902\) 0 0
\(903\) 1365.79 + 1365.79i 0.0503331 + 0.0503331i
\(904\) 0 0
\(905\) −26509.9 26509.9i −0.973724 0.973724i
\(906\) 0 0
\(907\) −2492.74 −0.0912570 −0.0456285 0.998958i \(-0.514529\pi\)
−0.0456285 + 0.998958i \(0.514529\pi\)
\(908\) 0 0
\(909\) 12484.0i 0.455521i
\(910\) 0 0
\(911\) 35909.3i 1.30596i −0.757376 0.652979i \(-0.773519\pi\)
0.757376 0.652979i \(-0.226481\pi\)
\(912\) 0 0
\(913\) −6989.36 −0.253356
\(914\) 0 0
\(915\) 12879.9 + 12879.9i 0.465350 + 0.465350i
\(916\) 0 0
\(917\) 16492.9 + 16492.9i 0.593940 + 0.593940i
\(918\) 0 0
\(919\) 32386.7i 1.16250i 0.813725 + 0.581250i \(0.197436\pi\)
−0.813725 + 0.581250i \(0.802564\pi\)
\(920\) 0 0
\(921\) 13454.4 + 13454.4i 0.481366 + 0.481366i
\(922\) 0 0
\(923\) −17889.1 + 7008.39i −0.637949 + 0.249928i
\(924\) 0 0
\(925\) 24924.5 24924.5i 0.885960 0.885960i
\(926\) 0 0
\(927\) −8682.53 −0.307629
\(928\) 0 0
\(929\) −17.3090 + 17.3090i −0.000611290 + 0.000611290i −0.707412 0.706801i \(-0.750138\pi\)
0.706801 + 0.707412i \(0.250138\pi\)
\(930\) 0 0
\(931\) 15790.8 15790.8i 0.555878 0.555878i
\(932\) 0 0
\(933\) 21062.2i 0.739064i
\(934\) 0 0
\(935\) 2878.70 0.100688
\(936\) 0 0
\(937\) −6915.56 −0.241112 −0.120556 0.992707i \(-0.538468\pi\)
−0.120556 + 0.992707i \(0.538468\pi\)
\(938\) 0 0
\(939\) 16180.4i 0.562329i
\(940\) 0 0
\(941\) −1197.33 + 1197.33i −0.0414790 + 0.0414790i −0.727542 0.686063i \(-0.759337\pi\)
0.686063 + 0.727542i \(0.259337\pi\)
\(942\) 0 0
\(943\) −498.385 + 498.385i −0.0172106 + 0.0172106i
\(944\) 0 0
\(945\) −4365.95 −0.150290
\(946\) 0 0
\(947\) 16390.6 16390.6i 0.562432 0.562432i −0.367566 0.929998i \(-0.619809\pi\)
0.929998 + 0.367566i \(0.119809\pi\)
\(948\) 0 0
\(949\) −38869.4 + 15227.8i −1.32956 + 0.520881i
\(950\) 0 0
\(951\) 20569.8 + 20569.8i 0.701390 + 0.701390i
\(952\) 0 0
\(953\) 6451.51i 0.219292i −0.993971 0.109646i \(-0.965028\pi\)
0.993971 0.109646i \(-0.0349717\pi\)
\(954\) 0 0
\(955\) 9298.87 + 9298.87i 0.315083 + 0.315083i
\(956\) 0 0
\(957\) 8961.75 + 8961.75i 0.302709 + 0.302709i
\(958\) 0 0
\(959\) 3858.84 0.129936
\(960\) 0 0
\(961\) 8716.35i 0.292583i
\(962\) 0 0
\(963\) 2339.66i 0.0782912i
\(964\) 0 0
\(965\) 53746.4 1.79291
\(966\) 0 0
\(967\) −29010.0 29010.0i −0.964735 0.964735i 0.0346639 0.999399i \(-0.488964\pi\)
−0.999399 + 0.0346639i \(0.988964\pi\)
\(968\) 0 0
\(969\) 735.382 + 735.382i 0.0243796 + 0.0243796i
\(970\) 0 0
\(971\) 8585.89i 0.283764i −0.989884 0.141882i \(-0.954685\pi\)
0.989884 0.141882i \(-0.0453153\pi\)
\(972\) 0 0
\(973\) −19759.1 19759.1i −0.651026 0.651026i
\(974\) 0 0
\(975\) 6515.50 14908.9i 0.214013 0.489710i
\(976\) 0 0
\(977\) 34810.6 34810.6i 1.13991 1.13991i 0.151442 0.988466i \(-0.451608\pi\)
0.988466 0.151442i \(-0.0483918\pi\)
\(978\) 0 0
\(979\) 32089.0 1.04757
\(980\) 0 0
\(981\) 4504.56 4504.56i 0.146605 0.146605i
\(982\) 0 0
\(983\) −19086.5 + 19086.5i −0.619291 + 0.619291i −0.945350 0.326058i \(-0.894279\pi\)
0.326058 + 0.945350i \(0.394279\pi\)
\(984\) 0 0
\(985\) 39767.2i 1.28638i
\(986\) 0 0
\(987\) 7221.67 0.232896
\(988\) 0 0
\(989\) −1515.89 −0.0487386
\(990\) 0 0
\(991\) 43302.0i 1.38802i −0.719963 0.694012i \(-0.755841\pi\)
0.719963 0.694012i \(-0.244159\pi\)
\(992\) 0 0
\(993\) −16800.2 + 16800.2i −0.536897 + 0.536897i
\(994\) 0 0
\(995\) −37051.6 + 37051.6i −1.18052 + 1.18052i
\(996\) 0 0
\(997\) 8852.23 0.281197 0.140598 0.990067i \(-0.455097\pi\)
0.140598 + 0.990067i \(0.455097\pi\)
\(998\) 0 0
\(999\) −5816.03 + 5816.03i −0.184195 + 0.184195i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.4.bc.a.31.1 14
4.3 odd 2 624.4.bc.b.31.1 yes 14
13.8 odd 4 624.4.bc.b.463.1 yes 14
52.47 even 4 inner 624.4.bc.a.463.1 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
624.4.bc.a.31.1 14 1.1 even 1 trivial
624.4.bc.a.463.1 yes 14 52.47 even 4 inner
624.4.bc.b.31.1 yes 14 4.3 odd 2
624.4.bc.b.463.1 yes 14 13.8 odd 4