Properties

Label 624.4.bc.c.31.8
Level $624$
Weight $4$
Character 624.31
Analytic conductor $36.817$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,4,Mod(31,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 0, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.31");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.bc (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8171918436\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 31.8
Character \(\chi\) \(=\) 624.31
Dual form 624.4.bc.c.463.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{3} +(-0.273393 + 0.273393i) q^{5} +(-21.0333 + 21.0333i) q^{7} -9.00000 q^{9} +(25.8675 - 25.8675i) q^{11} +(-15.7390 + 44.1507i) q^{13} +(0.820180 + 0.820180i) q^{15} -111.650i q^{17} +(-64.0398 - 64.0398i) q^{19} +(63.0999 + 63.0999i) q^{21} -92.7291 q^{23} +124.851i q^{25} +27.0000i q^{27} +254.637 q^{29} +(173.320 + 173.320i) q^{31} +(-77.6026 - 77.6026i) q^{33} -11.5007i q^{35} +(90.5331 + 90.5331i) q^{37} +(132.452 + 47.2169i) q^{39} +(235.240 - 235.240i) q^{41} +291.487 q^{43} +(2.46054 - 2.46054i) q^{45} +(35.6910 - 35.6910i) q^{47} -541.801i q^{49} -334.951 q^{51} +655.515 q^{53} +14.1440i q^{55} +(-192.119 + 192.119i) q^{57} +(-64.7380 + 64.7380i) q^{59} +243.569 q^{61} +(189.300 - 189.300i) q^{63} +(-7.76758 - 16.3734i) q^{65} +(-286.961 - 286.961i) q^{67} +278.187i q^{69} +(-707.169 - 707.169i) q^{71} +(530.346 + 530.346i) q^{73} +374.552 q^{75} +1088.16i q^{77} -1264.84i q^{79} +81.0000 q^{81} +(358.933 + 358.933i) q^{83} +(30.5244 + 30.5244i) q^{85} -763.910i q^{87} +(-374.949 - 374.949i) q^{89} +(-597.593 - 1259.68i) q^{91} +(519.959 - 519.959i) q^{93} +35.0161 q^{95} +(759.324 - 759.324i) q^{97} +(-232.808 + 232.808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 4 q^{5} - 8 q^{7} - 252 q^{9} + 64 q^{11} - 32 q^{13} - 12 q^{15} + 56 q^{19} + 24 q^{21} + 384 q^{23} - 32 q^{29} - 168 q^{31} - 192 q^{33} + 412 q^{37} + 252 q^{39} + 1340 q^{41} + 624 q^{43} - 36 q^{45}+ \cdots - 576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 0.577350i
\(4\) 0 0
\(5\) −0.273393 + 0.273393i −0.0244530 + 0.0244530i −0.719228 0.694775i \(-0.755504\pi\)
0.694775 + 0.719228i \(0.255504\pi\)
\(6\) 0 0
\(7\) −21.0333 + 21.0333i −1.13569 + 1.13569i −0.146478 + 0.989214i \(0.546794\pi\)
−0.989214 + 0.146478i \(0.953206\pi\)
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 25.8675 25.8675i 0.709032 0.709032i −0.257300 0.966332i \(-0.582833\pi\)
0.966332 + 0.257300i \(0.0828327\pi\)
\(12\) 0 0
\(13\) −15.7390 + 44.1507i −0.335785 + 0.941939i
\(14\) 0 0
\(15\) 0.820180 + 0.820180i 0.0141180 + 0.0141180i
\(16\) 0 0
\(17\) 111.650i 1.59289i −0.604710 0.796446i \(-0.706711\pi\)
0.604710 0.796446i \(-0.293289\pi\)
\(18\) 0 0
\(19\) −64.0398 64.0398i −0.773250 0.773250i 0.205424 0.978673i \(-0.434143\pi\)
−0.978673 + 0.205424i \(0.934143\pi\)
\(20\) 0 0
\(21\) 63.0999 + 63.0999i 0.655692 + 0.655692i
\(22\) 0 0
\(23\) −92.7291 −0.840668 −0.420334 0.907369i \(-0.638087\pi\)
−0.420334 + 0.907369i \(0.638087\pi\)
\(24\) 0 0
\(25\) 124.851i 0.998804i
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) 254.637 1.63051 0.815256 0.579101i \(-0.196596\pi\)
0.815256 + 0.579101i \(0.196596\pi\)
\(30\) 0 0
\(31\) 173.320 + 173.320i 1.00417 + 1.00417i 0.999991 + 0.00417411i \(0.00132866\pi\)
0.00417411 + 0.999991i \(0.498671\pi\)
\(32\) 0 0
\(33\) −77.6026 77.6026i −0.409360 0.409360i
\(34\) 0 0
\(35\) 11.5007i 0.0555422i
\(36\) 0 0
\(37\) 90.5331 + 90.5331i 0.402258 + 0.402258i 0.879028 0.476770i \(-0.158193\pi\)
−0.476770 + 0.879028i \(0.658193\pi\)
\(38\) 0 0
\(39\) 132.452 + 47.2169i 0.543829 + 0.193865i
\(40\) 0 0
\(41\) 235.240 235.240i 0.896057 0.896057i −0.0990278 0.995085i \(-0.531573\pi\)
0.995085 + 0.0990278i \(0.0315733\pi\)
\(42\) 0 0
\(43\) 291.487 1.03375 0.516876 0.856060i \(-0.327095\pi\)
0.516876 + 0.856060i \(0.327095\pi\)
\(44\) 0 0
\(45\) 2.46054 2.46054i 0.00815101 0.00815101i
\(46\) 0 0
\(47\) 35.6910 35.6910i 0.110767 0.110767i −0.649551 0.760318i \(-0.725043\pi\)
0.760318 + 0.649551i \(0.225043\pi\)
\(48\) 0 0
\(49\) 541.801i 1.57959i
\(50\) 0 0
\(51\) −334.951 −0.919657
\(52\) 0 0
\(53\) 655.515 1.69891 0.849453 0.527665i \(-0.176932\pi\)
0.849453 + 0.527665i \(0.176932\pi\)
\(54\) 0 0
\(55\) 14.1440i 0.0346760i
\(56\) 0 0
\(57\) −192.119 + 192.119i −0.446436 + 0.446436i
\(58\) 0 0
\(59\) −64.7380 + 64.7380i −0.142850 + 0.142850i −0.774915 0.632065i \(-0.782208\pi\)
0.632065 + 0.774915i \(0.282208\pi\)
\(60\) 0 0
\(61\) 243.569 0.511244 0.255622 0.966777i \(-0.417720\pi\)
0.255622 + 0.966777i \(0.417720\pi\)
\(62\) 0 0
\(63\) 189.300 189.300i 0.378564 0.378564i
\(64\) 0 0
\(65\) −7.76758 16.3734i −0.0148223 0.0312442i
\(66\) 0 0
\(67\) −286.961 286.961i −0.523251 0.523251i 0.395300 0.918552i \(-0.370640\pi\)
−0.918552 + 0.395300i \(0.870640\pi\)
\(68\) 0 0
\(69\) 278.187i 0.485360i
\(70\) 0 0
\(71\) −707.169 707.169i −1.18205 1.18205i −0.979212 0.202838i \(-0.934983\pi\)
−0.202838 0.979212i \(-0.565017\pi\)
\(72\) 0 0
\(73\) 530.346 + 530.346i 0.850305 + 0.850305i 0.990171 0.139865i \(-0.0446670\pi\)
−0.139865 + 0.990171i \(0.544667\pi\)
\(74\) 0 0
\(75\) 374.552 0.576660
\(76\) 0 0
\(77\) 1088.16i 1.61048i
\(78\) 0 0
\(79\) 1264.84i 1.80134i −0.434507 0.900668i \(-0.643077\pi\)
0.434507 0.900668i \(-0.356923\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 358.933 + 358.933i 0.474674 + 0.474674i 0.903424 0.428749i \(-0.141046\pi\)
−0.428749 + 0.903424i \(0.641046\pi\)
\(84\) 0 0
\(85\) 30.5244 + 30.5244i 0.0389510 + 0.0389510i
\(86\) 0 0
\(87\) 763.910i 0.941377i
\(88\) 0 0
\(89\) −374.949 374.949i −0.446567 0.446567i 0.447645 0.894212i \(-0.352263\pi\)
−0.894212 + 0.447645i \(0.852263\pi\)
\(90\) 0 0
\(91\) −597.593 1259.68i −0.688405 1.45110i
\(92\) 0 0
\(93\) 519.959 519.959i 0.579755 0.579755i
\(94\) 0 0
\(95\) 35.0161 0.0378166
\(96\) 0 0
\(97\) 759.324 759.324i 0.794822 0.794822i −0.187452 0.982274i \(-0.560023\pi\)
0.982274 + 0.187452i \(0.0600229\pi\)
\(98\) 0 0
\(99\) −232.808 + 232.808i −0.236344 + 0.236344i
\(100\) 0 0
\(101\) 778.258i 0.766728i −0.923597 0.383364i \(-0.874765\pi\)
0.923597 0.383364i \(-0.125235\pi\)
\(102\) 0 0
\(103\) −1400.37 −1.33963 −0.669817 0.742526i \(-0.733627\pi\)
−0.669817 + 0.742526i \(0.733627\pi\)
\(104\) 0 0
\(105\) −34.5022 −0.0320673
\(106\) 0 0
\(107\) 67.6349i 0.0611076i −0.999533 0.0305538i \(-0.990273\pi\)
0.999533 0.0305538i \(-0.00972709\pi\)
\(108\) 0 0
\(109\) −89.4906 + 89.4906i −0.0786389 + 0.0786389i −0.745332 0.666693i \(-0.767709\pi\)
0.666693 + 0.745332i \(0.267709\pi\)
\(110\) 0 0
\(111\) 271.599 271.599i 0.232244 0.232244i
\(112\) 0 0
\(113\) 1831.00 1.52430 0.762152 0.647398i \(-0.224143\pi\)
0.762152 + 0.647398i \(0.224143\pi\)
\(114\) 0 0
\(115\) 25.3515 25.3515i 0.0205569 0.0205569i
\(116\) 0 0
\(117\) 141.651 397.356i 0.111928 0.313980i
\(118\) 0 0
\(119\) 2348.38 + 2348.38i 1.80904 + 1.80904i
\(120\) 0 0
\(121\) 7.25759i 0.00545274i
\(122\) 0 0
\(123\) −705.720 705.720i −0.517339 0.517339i
\(124\) 0 0
\(125\) −68.3074 68.3074i −0.0488768 0.0488768i
\(126\) 0 0
\(127\) 2749.79 1.92129 0.960647 0.277773i \(-0.0895963\pi\)
0.960647 + 0.277773i \(0.0895963\pi\)
\(128\) 0 0
\(129\) 874.461i 0.596837i
\(130\) 0 0
\(131\) 2159.32i 1.44016i −0.693892 0.720079i \(-0.744105\pi\)
0.693892 0.720079i \(-0.255895\pi\)
\(132\) 0 0
\(133\) 2693.94 1.75635
\(134\) 0 0
\(135\) −7.38162 7.38162i −0.00470599 0.00470599i
\(136\) 0 0
\(137\) 1905.40 + 1905.40i 1.18824 + 1.18824i 0.977553 + 0.210692i \(0.0675716\pi\)
0.210692 + 0.977553i \(0.432428\pi\)
\(138\) 0 0
\(139\) 1429.73i 0.872431i 0.899842 + 0.436215i \(0.143681\pi\)
−0.899842 + 0.436215i \(0.856319\pi\)
\(140\) 0 0
\(141\) −107.073 107.073i −0.0639515 0.0639515i
\(142\) 0 0
\(143\) 734.942 + 1549.20i 0.429783 + 0.905947i
\(144\) 0 0
\(145\) −69.6159 + 69.6159i −0.0398710 + 0.0398710i
\(146\) 0 0
\(147\) −1625.40 −0.911979
\(148\) 0 0
\(149\) −1750.08 + 1750.08i −0.962226 + 0.962226i −0.999312 0.0370857i \(-0.988193\pi\)
0.0370857 + 0.999312i \(0.488193\pi\)
\(150\) 0 0
\(151\) 421.983 421.983i 0.227421 0.227421i −0.584194 0.811614i \(-0.698589\pi\)
0.811614 + 0.584194i \(0.198589\pi\)
\(152\) 0 0
\(153\) 1004.85i 0.530964i
\(154\) 0 0
\(155\) −94.7688 −0.0491098
\(156\) 0 0
\(157\) −3172.08 −1.61248 −0.806239 0.591589i \(-0.798501\pi\)
−0.806239 + 0.591589i \(0.798501\pi\)
\(158\) 0 0
\(159\) 1966.55i 0.980863i
\(160\) 0 0
\(161\) 1950.40 1950.40i 0.954740 0.954740i
\(162\) 0 0
\(163\) 62.0039 62.0039i 0.0297946 0.0297946i −0.692053 0.721847i \(-0.743293\pi\)
0.721847 + 0.692053i \(0.243293\pi\)
\(164\) 0 0
\(165\) 42.4320 0.0200202
\(166\) 0 0
\(167\) −2608.31 + 2608.31i −1.20861 + 1.20861i −0.237128 + 0.971478i \(0.576206\pi\)
−0.971478 + 0.237128i \(0.923794\pi\)
\(168\) 0 0
\(169\) −1701.57 1389.77i −0.774497 0.632577i
\(170\) 0 0
\(171\) 576.358 + 576.358i 0.257750 + 0.257750i
\(172\) 0 0
\(173\) 538.180i 0.236515i −0.992983 0.118258i \(-0.962269\pi\)
0.992983 0.118258i \(-0.0377308\pi\)
\(174\) 0 0
\(175\) −2626.02 2626.02i −1.13433 1.13433i
\(176\) 0 0
\(177\) 194.214 + 194.214i 0.0824746 + 0.0824746i
\(178\) 0 0
\(179\) 755.184 0.315336 0.157668 0.987492i \(-0.449602\pi\)
0.157668 + 0.987492i \(0.449602\pi\)
\(180\) 0 0
\(181\) 26.3232i 0.0108099i 0.999985 + 0.00540494i \(0.00172045\pi\)
−0.999985 + 0.00540494i \(0.998280\pi\)
\(182\) 0 0
\(183\) 730.708i 0.295167i
\(184\) 0 0
\(185\) −49.5022 −0.0196728
\(186\) 0 0
\(187\) −2888.12 2888.12i −1.12941 1.12941i
\(188\) 0 0
\(189\) −567.900 567.900i −0.218564 0.218564i
\(190\) 0 0
\(191\) 959.409i 0.363457i 0.983349 + 0.181729i \(0.0581693\pi\)
−0.983349 + 0.181729i \(0.941831\pi\)
\(192\) 0 0
\(193\) 2734.09 + 2734.09i 1.01971 + 1.01971i 0.999802 + 0.0199077i \(0.00633724\pi\)
0.0199077 + 0.999802i \(0.493663\pi\)
\(194\) 0 0
\(195\) −49.1203 + 23.3027i −0.0180389 + 0.00855766i
\(196\) 0 0
\(197\) 2713.88 2713.88i 0.981502 0.981502i −0.0183301 0.999832i \(-0.505835\pi\)
0.999832 + 0.0183301i \(0.00583497\pi\)
\(198\) 0 0
\(199\) 4469.99 1.59231 0.796154 0.605095i \(-0.206865\pi\)
0.796154 + 0.605095i \(0.206865\pi\)
\(200\) 0 0
\(201\) −860.883 + 860.883i −0.302099 + 0.302099i
\(202\) 0 0
\(203\) −5355.85 + 5355.85i −1.85176 + 1.85176i
\(204\) 0 0
\(205\) 128.626i 0.0438226i
\(206\) 0 0
\(207\) 834.562 0.280223
\(208\) 0 0
\(209\) −3313.10 −1.09652
\(210\) 0 0
\(211\) 3871.83i 1.26326i 0.775271 + 0.631629i \(0.217613\pi\)
−0.775271 + 0.631629i \(0.782387\pi\)
\(212\) 0 0
\(213\) −2121.51 + 2121.51i −0.682457 + 0.682457i
\(214\) 0 0
\(215\) −79.6906 + 79.6906i −0.0252784 + 0.0252784i
\(216\) 0 0
\(217\) −7290.97 −2.28085
\(218\) 0 0
\(219\) 1591.04 1591.04i 0.490924 0.490924i
\(220\) 0 0
\(221\) 4929.44 + 1757.26i 1.50041 + 0.534869i
\(222\) 0 0
\(223\) 622.771 + 622.771i 0.187013 + 0.187013i 0.794403 0.607391i \(-0.207784\pi\)
−0.607391 + 0.794403i \(0.707784\pi\)
\(224\) 0 0
\(225\) 1123.65i 0.332935i
\(226\) 0 0
\(227\) 2515.85 + 2515.85i 0.735607 + 0.735607i 0.971725 0.236117i \(-0.0758750\pi\)
−0.236117 + 0.971725i \(0.575875\pi\)
\(228\) 0 0
\(229\) −153.691 153.691i −0.0443502 0.0443502i 0.684584 0.728934i \(-0.259984\pi\)
−0.728934 + 0.684584i \(0.759984\pi\)
\(230\) 0 0
\(231\) 3264.48 0.929814
\(232\) 0 0
\(233\) 1246.98i 0.350612i 0.984514 + 0.175306i \(0.0560914\pi\)
−0.984514 + 0.175306i \(0.943909\pi\)
\(234\) 0 0
\(235\) 19.5153i 0.00541719i
\(236\) 0 0
\(237\) −3794.52 −1.04000
\(238\) 0 0
\(239\) 1522.92 + 1522.92i 0.412173 + 0.412173i 0.882495 0.470322i \(-0.155862\pi\)
−0.470322 + 0.882495i \(0.655862\pi\)
\(240\) 0 0
\(241\) 1140.78 + 1140.78i 0.304912 + 0.304912i 0.842932 0.538020i \(-0.180828\pi\)
−0.538020 + 0.842932i \(0.680828\pi\)
\(242\) 0 0
\(243\) 243.000i 0.0641500i
\(244\) 0 0
\(245\) 148.125 + 148.125i 0.0386259 + 0.0386259i
\(246\) 0 0
\(247\) 3835.32 1819.48i 0.987999 0.468708i
\(248\) 0 0
\(249\) 1076.80 1076.80i 0.274053 0.274053i
\(250\) 0 0
\(251\) −87.5945 −0.0220275 −0.0110138 0.999939i \(-0.503506\pi\)
−0.0110138 + 0.999939i \(0.503506\pi\)
\(252\) 0 0
\(253\) −2398.67 + 2398.67i −0.596060 + 0.596060i
\(254\) 0 0
\(255\) 91.5733 91.5733i 0.0224884 0.0224884i
\(256\) 0 0
\(257\) 6685.04i 1.62257i −0.584649 0.811286i \(-0.698768\pi\)
0.584649 0.811286i \(-0.301232\pi\)
\(258\) 0 0
\(259\) −3808.42 −0.913682
\(260\) 0 0
\(261\) −2291.73 −0.543504
\(262\) 0 0
\(263\) 401.346i 0.0940990i −0.998893 0.0470495i \(-0.985018\pi\)
0.998893 0.0470495i \(-0.0149819\pi\)
\(264\) 0 0
\(265\) −179.213 + 179.213i −0.0415434 + 0.0415434i
\(266\) 0 0
\(267\) −1124.85 + 1124.85i −0.257826 + 0.257826i
\(268\) 0 0
\(269\) −682.208 −0.154628 −0.0773141 0.997007i \(-0.524634\pi\)
−0.0773141 + 0.997007i \(0.524634\pi\)
\(270\) 0 0
\(271\) −2700.91 + 2700.91i −0.605419 + 0.605419i −0.941745 0.336327i \(-0.890815\pi\)
0.336327 + 0.941745i \(0.390815\pi\)
\(272\) 0 0
\(273\) −3779.04 + 1792.78i −0.837793 + 0.397451i
\(274\) 0 0
\(275\) 3229.57 + 3229.57i 0.708184 + 0.708184i
\(276\) 0 0
\(277\) 8547.11i 1.85396i −0.375115 0.926978i \(-0.622397\pi\)
0.375115 0.926978i \(-0.377603\pi\)
\(278\) 0 0
\(279\) −1559.88 1559.88i −0.334722 0.334722i
\(280\) 0 0
\(281\) −1468.43 1468.43i −0.311741 0.311741i 0.533842 0.845584i \(-0.320748\pi\)
−0.845584 + 0.533842i \(0.820748\pi\)
\(282\) 0 0
\(283\) −3121.63 −0.655696 −0.327848 0.944731i \(-0.606323\pi\)
−0.327848 + 0.944731i \(0.606323\pi\)
\(284\) 0 0
\(285\) 105.048i 0.0218334i
\(286\) 0 0
\(287\) 9895.76i 2.03529i
\(288\) 0 0
\(289\) −7552.78 −1.53731
\(290\) 0 0
\(291\) −2277.97 2277.97i −0.458891 0.458891i
\(292\) 0 0
\(293\) −970.105 970.105i −0.193427 0.193427i 0.603748 0.797175i \(-0.293673\pi\)
−0.797175 + 0.603748i \(0.793673\pi\)
\(294\) 0 0
\(295\) 35.3978i 0.00698624i
\(296\) 0 0
\(297\) 698.423 + 698.423i 0.136453 + 0.136453i
\(298\) 0 0
\(299\) 1459.46 4094.06i 0.282283 0.791858i
\(300\) 0 0
\(301\) −6130.94 + 6130.94i −1.17402 + 1.17402i
\(302\) 0 0
\(303\) −2334.77 −0.442671
\(304\) 0 0
\(305\) −66.5902 + 66.5902i −0.0125015 + 0.0125015i
\(306\) 0 0
\(307\) 1890.33 1890.33i 0.351423 0.351423i −0.509216 0.860639i \(-0.670065\pi\)
0.860639 + 0.509216i \(0.170065\pi\)
\(308\) 0 0
\(309\) 4201.10i 0.773438i
\(310\) 0 0
\(311\) 3592.16 0.654960 0.327480 0.944858i \(-0.393801\pi\)
0.327480 + 0.944858i \(0.393801\pi\)
\(312\) 0 0
\(313\) 963.010 0.173906 0.0869529 0.996212i \(-0.472287\pi\)
0.0869529 + 0.996212i \(0.472287\pi\)
\(314\) 0 0
\(315\) 103.507i 0.0185141i
\(316\) 0 0
\(317\) −6422.68 + 6422.68i −1.13796 + 1.13796i −0.149146 + 0.988815i \(0.547652\pi\)
−0.988815 + 0.149146i \(0.952348\pi\)
\(318\) 0 0
\(319\) 6586.82 6586.82i 1.15609 1.15609i
\(320\) 0 0
\(321\) −202.905 −0.0352805
\(322\) 0 0
\(323\) −7150.06 + 7150.06i −1.23170 + 1.23170i
\(324\) 0 0
\(325\) −5512.24 1965.02i −0.940812 0.335383i
\(326\) 0 0
\(327\) 268.472 + 268.472i 0.0454022 + 0.0454022i
\(328\) 0 0
\(329\) 1501.40i 0.251595i
\(330\) 0 0
\(331\) −4569.55 4569.55i −0.758807 0.758807i 0.217298 0.976105i \(-0.430276\pi\)
−0.976105 + 0.217298i \(0.930276\pi\)
\(332\) 0 0
\(333\) −814.797 814.797i −0.134086 0.134086i
\(334\) 0 0
\(335\) 156.906 0.0255902
\(336\) 0 0
\(337\) 88.7401i 0.0143442i −0.999974 0.00717208i \(-0.997717\pi\)
0.999974 0.00717208i \(-0.00228296\pi\)
\(338\) 0 0
\(339\) 5493.01i 0.880058i
\(340\) 0 0
\(341\) 8966.70 1.42397
\(342\) 0 0
\(343\) 4181.44 + 4181.44i 0.658241 + 0.658241i
\(344\) 0 0
\(345\) −76.0545 76.0545i −0.0118685 0.0118685i
\(346\) 0 0
\(347\) 2219.46i 0.343363i −0.985152 0.171682i \(-0.945080\pi\)
0.985152 0.171682i \(-0.0549200\pi\)
\(348\) 0 0
\(349\) 348.999 + 348.999i 0.0535287 + 0.0535287i 0.733364 0.679836i \(-0.237949\pi\)
−0.679836 + 0.733364i \(0.737949\pi\)
\(350\) 0 0
\(351\) −1192.07 424.952i −0.181276 0.0646218i
\(352\) 0 0
\(353\) −3197.63 + 3197.63i −0.482132 + 0.482132i −0.905812 0.423680i \(-0.860738\pi\)
0.423680 + 0.905812i \(0.360738\pi\)
\(354\) 0 0
\(355\) 386.671 0.0578094
\(356\) 0 0
\(357\) 7045.13 7045.13i 1.04445 1.04445i
\(358\) 0 0
\(359\) 3873.97 3873.97i 0.569528 0.569528i −0.362468 0.931996i \(-0.618066\pi\)
0.931996 + 0.362468i \(0.118066\pi\)
\(360\) 0 0
\(361\) 1343.20i 0.195830i
\(362\) 0 0
\(363\) −21.7728 −0.00314814
\(364\) 0 0
\(365\) −289.986 −0.0415851
\(366\) 0 0
\(367\) 10811.6i 1.53777i −0.639385 0.768887i \(-0.720811\pi\)
0.639385 0.768887i \(-0.279189\pi\)
\(368\) 0 0
\(369\) −2117.16 + 2117.16i −0.298686 + 0.298686i
\(370\) 0 0
\(371\) −13787.7 + 13787.7i −1.92943 + 1.92943i
\(372\) 0 0
\(373\) −952.323 −0.132197 −0.0660984 0.997813i \(-0.521055\pi\)
−0.0660984 + 0.997813i \(0.521055\pi\)
\(374\) 0 0
\(375\) −204.922 + 204.922i −0.0282190 + 0.0282190i
\(376\) 0 0
\(377\) −4007.72 + 11242.4i −0.547501 + 1.53584i
\(378\) 0 0
\(379\) 1274.63 + 1274.63i 0.172754 + 0.172754i 0.788188 0.615434i \(-0.211019\pi\)
−0.615434 + 0.788188i \(0.711019\pi\)
\(380\) 0 0
\(381\) 8249.37i 1.10926i
\(382\) 0 0
\(383\) 8644.16 + 8644.16i 1.15325 + 1.15325i 0.985896 + 0.167356i \(0.0535230\pi\)
0.167356 + 0.985896i \(0.446477\pi\)
\(384\) 0 0
\(385\) −297.495 297.495i −0.0393812 0.0393812i
\(386\) 0 0
\(387\) −2623.38 −0.344584
\(388\) 0 0
\(389\) 4083.99i 0.532305i −0.963931 0.266152i \(-0.914248\pi\)
0.963931 0.266152i \(-0.0857524\pi\)
\(390\) 0 0
\(391\) 10353.2i 1.33909i
\(392\) 0 0
\(393\) −6477.96 −0.831476
\(394\) 0 0
\(395\) 345.799 + 345.799i 0.0440481 + 0.0440481i
\(396\) 0 0
\(397\) 2127.11 + 2127.11i 0.268908 + 0.268908i 0.828660 0.559752i \(-0.189104\pi\)
−0.559752 + 0.828660i \(0.689104\pi\)
\(398\) 0 0
\(399\) 8081.82i 1.01403i
\(400\) 0 0
\(401\) −7622.18 7622.18i −0.949211 0.949211i 0.0495604 0.998771i \(-0.484218\pi\)
−0.998771 + 0.0495604i \(0.984218\pi\)
\(402\) 0 0
\(403\) −10380.1 + 4924.31i −1.28305 + 0.608679i
\(404\) 0 0
\(405\) −22.1448 + 22.1448i −0.00271700 + 0.00271700i
\(406\) 0 0
\(407\) 4683.73 0.570427
\(408\) 0 0
\(409\) 9151.38 9151.38i 1.10637 1.10637i 0.112750 0.993623i \(-0.464034\pi\)
0.993623 0.112750i \(-0.0359659\pi\)
\(410\) 0 0
\(411\) 5716.21 5716.21i 0.686033 0.686033i
\(412\) 0 0
\(413\) 2723.31i 0.324468i
\(414\) 0 0
\(415\) −196.260 −0.0232145
\(416\) 0 0
\(417\) 4289.18 0.503698
\(418\) 0 0
\(419\) 4782.66i 0.557633i −0.960344 0.278817i \(-0.910058\pi\)
0.960344 0.278817i \(-0.0899422\pi\)
\(420\) 0 0
\(421\) −793.867 + 793.867i −0.0919019 + 0.0919019i −0.751563 0.659661i \(-0.770700\pi\)
0.659661 + 0.751563i \(0.270700\pi\)
\(422\) 0 0
\(423\) −321.219 + 321.219i −0.0369224 + 0.0369224i
\(424\) 0 0
\(425\) 13939.6 1.59099
\(426\) 0 0
\(427\) −5123.07 + 5123.07i −0.580616 + 0.580616i
\(428\) 0 0
\(429\) 4647.59 2204.83i 0.523049 0.248135i
\(430\) 0 0
\(431\) 2361.03 + 2361.03i 0.263867 + 0.263867i 0.826623 0.562756i \(-0.190259\pi\)
−0.562756 + 0.826623i \(0.690259\pi\)
\(432\) 0 0
\(433\) 14581.4i 1.61833i 0.587580 + 0.809166i \(0.300081\pi\)
−0.587580 + 0.809166i \(0.699919\pi\)
\(434\) 0 0
\(435\) 208.848 + 208.848i 0.0230195 + 0.0230195i
\(436\) 0 0
\(437\) 5938.36 + 5938.36i 0.650046 + 0.650046i
\(438\) 0 0
\(439\) 2833.46 0.308049 0.154025 0.988067i \(-0.450777\pi\)
0.154025 + 0.988067i \(0.450777\pi\)
\(440\) 0 0
\(441\) 4876.21i 0.526531i
\(442\) 0 0
\(443\) 16412.0i 1.76018i 0.474808 + 0.880089i \(0.342517\pi\)
−0.474808 + 0.880089i \(0.657483\pi\)
\(444\) 0 0
\(445\) 205.017 0.0218398
\(446\) 0 0
\(447\) 5250.23 + 5250.23i 0.555542 + 0.555542i
\(448\) 0 0
\(449\) −1800.87 1800.87i −0.189284 0.189284i 0.606103 0.795386i \(-0.292732\pi\)
−0.795386 + 0.606103i \(0.792732\pi\)
\(450\) 0 0
\(451\) 12170.2i 1.27067i
\(452\) 0 0
\(453\) −1265.95 1265.95i −0.131301 0.131301i
\(454\) 0 0
\(455\) 507.765 + 181.010i 0.0523174 + 0.0186502i
\(456\) 0 0
\(457\) 6711.08 6711.08i 0.686939 0.686939i −0.274615 0.961554i \(-0.588550\pi\)
0.961554 + 0.274615i \(0.0885504\pi\)
\(458\) 0 0
\(459\) 3014.56 0.306552
\(460\) 0 0
\(461\) −4702.09 + 4702.09i −0.475050 + 0.475050i −0.903544 0.428495i \(-0.859044\pi\)
0.428495 + 0.903544i \(0.359044\pi\)
\(462\) 0 0
\(463\) 7769.17 7769.17i 0.779835 0.779835i −0.199967 0.979803i \(-0.564084\pi\)
0.979803 + 0.199967i \(0.0640835\pi\)
\(464\) 0 0
\(465\) 284.306i 0.0283535i
\(466\) 0 0
\(467\) 6414.73 0.635628 0.317814 0.948153i \(-0.397051\pi\)
0.317814 + 0.948153i \(0.397051\pi\)
\(468\) 0 0
\(469\) 12071.5 1.18851
\(470\) 0 0
\(471\) 9516.23i 0.930965i
\(472\) 0 0
\(473\) 7540.05 7540.05i 0.732964 0.732964i
\(474\) 0 0
\(475\) 7995.40 7995.40i 0.772325 0.772325i
\(476\) 0 0
\(477\) −5899.64 −0.566302
\(478\) 0 0
\(479\) 1920.28 1920.28i 0.183173 0.183173i −0.609564 0.792737i \(-0.708655\pi\)
0.792737 + 0.609564i \(0.208655\pi\)
\(480\) 0 0
\(481\) −5421.99 + 2572.20i −0.513974 + 0.243830i
\(482\) 0 0
\(483\) −5851.20 5851.20i −0.551219 0.551219i
\(484\) 0 0
\(485\) 415.188i 0.0388716i
\(486\) 0 0
\(487\) 3787.66 + 3787.66i 0.352433 + 0.352433i 0.861014 0.508581i \(-0.169830\pi\)
−0.508581 + 0.861014i \(0.669830\pi\)
\(488\) 0 0
\(489\) −186.012 186.012i −0.0172019 0.0172019i
\(490\) 0 0
\(491\) −10052.6 −0.923964 −0.461982 0.886889i \(-0.652862\pi\)
−0.461982 + 0.886889i \(0.652862\pi\)
\(492\) 0 0
\(493\) 28430.3i 2.59723i
\(494\) 0 0
\(495\) 127.296i 0.0115587i
\(496\) 0 0
\(497\) 29748.2 2.68489
\(498\) 0 0
\(499\) −2487.89 2487.89i −0.223193 0.223193i 0.586649 0.809841i \(-0.300447\pi\)
−0.809841 + 0.586649i \(0.800447\pi\)
\(500\) 0 0
\(501\) 7824.94 + 7824.94i 0.697789 + 0.697789i
\(502\) 0 0
\(503\) 7122.94i 0.631404i −0.948858 0.315702i \(-0.897760\pi\)
0.948858 0.315702i \(-0.102240\pi\)
\(504\) 0 0
\(505\) 212.770 + 212.770i 0.0187488 + 0.0187488i
\(506\) 0 0
\(507\) −4169.32 + 5104.71i −0.365219 + 0.447156i
\(508\) 0 0
\(509\) −21.1389 + 21.1389i −0.00184080 + 0.00184080i −0.708027 0.706186i \(-0.750414\pi\)
0.706186 + 0.708027i \(0.250414\pi\)
\(510\) 0 0
\(511\) −22309.9 −1.93137
\(512\) 0 0
\(513\) 1729.08 1729.08i 0.148812 0.148812i
\(514\) 0 0
\(515\) 382.851 382.851i 0.0327581 0.0327581i
\(516\) 0 0
\(517\) 1846.47i 0.157075i
\(518\) 0 0
\(519\) −1614.54 −0.136552
\(520\) 0 0
\(521\) 1146.31 0.0963926 0.0481963 0.998838i \(-0.484653\pi\)
0.0481963 + 0.998838i \(0.484653\pi\)
\(522\) 0 0
\(523\) 2668.61i 0.223117i −0.993758 0.111559i \(-0.964416\pi\)
0.993758 0.111559i \(-0.0355843\pi\)
\(524\) 0 0
\(525\) −7878.06 + 7878.06i −0.654908 + 0.654908i
\(526\) 0 0
\(527\) 19351.2 19351.2i 1.59953 1.59953i
\(528\) 0 0
\(529\) −3568.31 −0.293277
\(530\) 0 0
\(531\) 582.642 582.642i 0.0476167 0.0476167i
\(532\) 0 0
\(533\) 6683.58 + 14088.5i 0.543149 + 1.14491i
\(534\) 0 0
\(535\) 18.4909 + 18.4909i 0.00149427 + 0.00149427i
\(536\) 0 0
\(537\) 2265.55i 0.182059i
\(538\) 0 0
\(539\) −14015.0 14015.0i −1.11998 1.11998i
\(540\) 0 0
\(541\) 6831.12 + 6831.12i 0.542870 + 0.542870i 0.924369 0.381499i \(-0.124592\pi\)
−0.381499 + 0.924369i \(0.624592\pi\)
\(542\) 0 0
\(543\) 78.9695 0.00624108
\(544\) 0 0
\(545\) 48.9322i 0.00384592i
\(546\) 0 0
\(547\) 2808.78i 0.219551i 0.993956 + 0.109776i \(0.0350133\pi\)
−0.993956 + 0.109776i \(0.964987\pi\)
\(548\) 0 0
\(549\) −2192.12 −0.170415
\(550\) 0 0
\(551\) −16306.9 16306.9i −1.26079 1.26079i
\(552\) 0 0
\(553\) 26603.8 + 26603.8i 2.04576 + 2.04576i
\(554\) 0 0
\(555\) 148.507i 0.0113581i
\(556\) 0 0
\(557\) −708.506 708.506i −0.0538965 0.0538965i 0.679645 0.733541i \(-0.262134\pi\)
−0.733541 + 0.679645i \(0.762134\pi\)
\(558\) 0 0
\(559\) −4587.70 + 12869.4i −0.347118 + 0.973731i
\(560\) 0 0
\(561\) −8664.35 + 8664.35i −0.652066 + 0.652066i
\(562\) 0 0
\(563\) −5784.89 −0.433044 −0.216522 0.976278i \(-0.569471\pi\)
−0.216522 + 0.976278i \(0.569471\pi\)
\(564\) 0 0
\(565\) −500.584 + 500.584i −0.0372739 + 0.0372739i
\(566\) 0 0
\(567\) −1703.70 + 1703.70i −0.126188 + 0.126188i
\(568\) 0 0
\(569\) 22693.4i 1.67198i −0.548744 0.835991i \(-0.684894\pi\)
0.548744 0.835991i \(-0.315106\pi\)
\(570\) 0 0
\(571\) 11986.8 0.878517 0.439258 0.898361i \(-0.355241\pi\)
0.439258 + 0.898361i \(0.355241\pi\)
\(572\) 0 0
\(573\) 2878.23 0.209842
\(574\) 0 0
\(575\) 11577.3i 0.839663i
\(576\) 0 0
\(577\) −10669.9 + 10669.9i −0.769836 + 0.769836i −0.978078 0.208241i \(-0.933226\pi\)
0.208241 + 0.978078i \(0.433226\pi\)
\(578\) 0 0
\(579\) 8202.26 8202.26i 0.588730 0.588730i
\(580\) 0 0
\(581\) −15099.1 −1.07817
\(582\) 0 0
\(583\) 16956.6 16956.6i 1.20458 1.20458i
\(584\) 0 0
\(585\) 69.9082 + 147.361i 0.00494077 + 0.0104147i
\(586\) 0 0
\(587\) −18497.4 18497.4i −1.30063 1.30063i −0.927966 0.372664i \(-0.878444\pi\)
−0.372664 0.927966i \(-0.621556\pi\)
\(588\) 0 0
\(589\) 22198.7i 1.55294i
\(590\) 0 0
\(591\) −8141.64 8141.64i −0.566670 0.566670i
\(592\) 0 0
\(593\) −9906.75 9906.75i −0.686039 0.686039i 0.275315 0.961354i \(-0.411218\pi\)
−0.961354 + 0.275315i \(0.911218\pi\)
\(594\) 0 0
\(595\) −1284.06 −0.0884728
\(596\) 0 0
\(597\) 13410.0i 0.919319i
\(598\) 0 0
\(599\) 9307.98i 0.634914i 0.948273 + 0.317457i \(0.102829\pi\)
−0.948273 + 0.317457i \(0.897171\pi\)
\(600\) 0 0
\(601\) 5679.52 0.385478 0.192739 0.981250i \(-0.438263\pi\)
0.192739 + 0.981250i \(0.438263\pi\)
\(602\) 0 0
\(603\) 2582.65 + 2582.65i 0.174417 + 0.174417i
\(604\) 0 0
\(605\) 1.98418 + 1.98418i 0.000133336 + 0.000133336i
\(606\) 0 0
\(607\) 2238.02i 0.149652i −0.997197 0.0748259i \(-0.976160\pi\)
0.997197 0.0748259i \(-0.0238401\pi\)
\(608\) 0 0
\(609\) 16067.6 + 16067.6i 1.06911 + 1.06911i
\(610\) 0 0
\(611\) 1014.04 + 2137.52i 0.0671420 + 0.141530i
\(612\) 0 0
\(613\) −11118.2 + 11118.2i −0.732562 + 0.732562i −0.971127 0.238564i \(-0.923323\pi\)
0.238564 + 0.971127i \(0.423323\pi\)
\(614\) 0 0
\(615\) 385.878 0.0253010
\(616\) 0 0
\(617\) 11356.7 11356.7i 0.741009 0.741009i −0.231764 0.972772i \(-0.574450\pi\)
0.972772 + 0.231764i \(0.0744496\pi\)
\(618\) 0 0
\(619\) 10331.5 10331.5i 0.670854 0.670854i −0.287059 0.957913i \(-0.592678\pi\)
0.957913 + 0.287059i \(0.0926776\pi\)
\(620\) 0 0
\(621\) 2503.69i 0.161787i
\(622\) 0 0
\(623\) 15772.8 1.01433
\(624\) 0 0
\(625\) −15569.0 −0.996414
\(626\) 0 0
\(627\) 9939.31i 0.633075i
\(628\) 0 0
\(629\) 10108.0 10108.0i 0.640753 0.640753i
\(630\) 0 0
\(631\) −5854.45 + 5854.45i −0.369353 + 0.369353i −0.867241 0.497888i \(-0.834109\pi\)
0.497888 + 0.867241i \(0.334109\pi\)
\(632\) 0 0
\(633\) 11615.5 0.729342
\(634\) 0 0
\(635\) −751.773 + 751.773i −0.0469814 + 0.0469814i
\(636\) 0 0
\(637\) 23920.9 + 8527.38i 1.48788 + 0.530404i
\(638\) 0 0
\(639\) 6364.53 + 6364.53i 0.394017 + 0.394017i
\(640\) 0 0
\(641\) 10683.0i 0.658275i −0.944282 0.329137i \(-0.893242\pi\)
0.944282 0.329137i \(-0.106758\pi\)
\(642\) 0 0
\(643\) −4982.94 4982.94i −0.305611 0.305611i 0.537593 0.843204i \(-0.319334\pi\)
−0.843204 + 0.537593i \(0.819334\pi\)
\(644\) 0 0
\(645\) 239.072 + 239.072i 0.0145945 + 0.0145945i
\(646\) 0 0
\(647\) 2784.86 0.169218 0.0846091 0.996414i \(-0.473036\pi\)
0.0846091 + 0.996414i \(0.473036\pi\)
\(648\) 0 0
\(649\) 3349.22i 0.202571i
\(650\) 0 0
\(651\) 21872.9i 1.31685i
\(652\) 0 0
\(653\) 26879.1 1.61081 0.805405 0.592724i \(-0.201948\pi\)
0.805405 + 0.592724i \(0.201948\pi\)
\(654\) 0 0
\(655\) 590.344 + 590.344i 0.0352162 + 0.0352162i
\(656\) 0 0
\(657\) −4773.11 4773.11i −0.283435 0.283435i
\(658\) 0 0
\(659\) 6679.58i 0.394840i 0.980319 + 0.197420i \(0.0632563\pi\)
−0.980319 + 0.197420i \(0.936744\pi\)
\(660\) 0 0
\(661\) 8985.44 + 8985.44i 0.528734 + 0.528734i 0.920195 0.391461i \(-0.128030\pi\)
−0.391461 + 0.920195i \(0.628030\pi\)
\(662\) 0 0
\(663\) 5271.78 14788.3i 0.308807 0.866260i
\(664\) 0 0
\(665\) −736.505 + 736.505i −0.0429480 + 0.0429480i
\(666\) 0 0
\(667\) −23612.2 −1.37072
\(668\) 0 0
\(669\) 1868.31 1868.31i 0.107972 0.107972i
\(670\) 0 0
\(671\) 6300.54 6300.54i 0.362488 0.362488i
\(672\) 0 0
\(673\) 6040.00i 0.345951i 0.984926 + 0.172975i \(0.0553381\pi\)
−0.984926 + 0.172975i \(0.944662\pi\)
\(674\) 0 0
\(675\) −3370.96 −0.192220
\(676\) 0 0
\(677\) −17765.9 −1.00857 −0.504284 0.863538i \(-0.668243\pi\)
−0.504284 + 0.863538i \(0.668243\pi\)
\(678\) 0 0
\(679\) 31942.2i 1.80535i
\(680\) 0 0
\(681\) 7547.55 7547.55i 0.424703 0.424703i
\(682\) 0 0
\(683\) 17350.8 17350.8i 0.972048 0.972048i −0.0275722 0.999620i \(-0.508778\pi\)
0.999620 + 0.0275722i \(0.00877763\pi\)
\(684\) 0 0
\(685\) −1041.85 −0.0581123
\(686\) 0 0
\(687\) −461.073 + 461.073i −0.0256056 + 0.0256056i
\(688\) 0 0
\(689\) −10317.1 + 28941.5i −0.570466 + 1.60026i
\(690\) 0 0
\(691\) 23320.9 + 23320.9i 1.28389 + 1.28389i 0.938435 + 0.345455i \(0.112275\pi\)
0.345455 + 0.938435i \(0.387725\pi\)
\(692\) 0 0
\(693\) 9793.44i 0.536828i
\(694\) 0 0
\(695\) −390.878 390.878i −0.0213336 0.0213336i
\(696\) 0 0
\(697\) −26264.6 26264.6i −1.42732 1.42732i
\(698\) 0 0
\(699\) 3740.95 0.202426
\(700\) 0 0
\(701\) 19117.6i 1.03005i 0.857176 + 0.515024i \(0.172217\pi\)
−0.857176 + 0.515024i \(0.827783\pi\)
\(702\) 0 0
\(703\) 11595.4i 0.622092i
\(704\) 0 0
\(705\) 58.5460 0.00312762
\(706\) 0 0
\(707\) 16369.3 + 16369.3i 0.870768 + 0.870768i
\(708\) 0 0
\(709\) 7633.77 + 7633.77i 0.404361 + 0.404361i 0.879767 0.475406i \(-0.157699\pi\)
−0.475406 + 0.879767i \(0.657699\pi\)
\(710\) 0 0
\(711\) 11383.6i 0.600446i
\(712\) 0 0
\(713\) −16071.8 16071.8i −0.844170 0.844170i
\(714\) 0 0
\(715\) −624.468 222.612i −0.0326626 0.0116437i
\(716\) 0 0
\(717\) 4568.75 4568.75i 0.237968 0.237968i
\(718\) 0 0
\(719\) −736.056 −0.0381784 −0.0190892 0.999818i \(-0.506077\pi\)
−0.0190892 + 0.999818i \(0.506077\pi\)
\(720\) 0 0
\(721\) 29454.4 29454.4i 1.52141 1.52141i
\(722\) 0 0
\(723\) 3422.33 3422.33i 0.176041 0.176041i
\(724\) 0 0
\(725\) 31791.5i 1.62856i
\(726\) 0 0
\(727\) −7583.38 −0.386867 −0.193433 0.981113i \(-0.561962\pi\)
−0.193433 + 0.981113i \(0.561962\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 32544.6i 1.64666i
\(732\) 0 0
\(733\) −556.909 + 556.909i −0.0280626 + 0.0280626i −0.720999 0.692936i \(-0.756317\pi\)
0.692936 + 0.720999i \(0.256317\pi\)
\(734\) 0 0
\(735\) 444.374 444.374i 0.0223007 0.0223007i
\(736\) 0 0
\(737\) −14845.9 −0.742004
\(738\) 0 0
\(739\) 186.504 186.504i 0.00928373 0.00928373i −0.702450 0.711733i \(-0.747910\pi\)
0.711733 + 0.702450i \(0.247910\pi\)
\(740\) 0 0
\(741\) −5458.45 11506.0i −0.270609 0.570422i
\(742\) 0 0
\(743\) −20707.9 20707.9i −1.02248 1.02248i −0.999742 0.0227341i \(-0.992763\pi\)
−0.0227341 0.999742i \(-0.507237\pi\)
\(744\) 0 0
\(745\) 956.917i 0.0470587i
\(746\) 0 0
\(747\) −3230.39 3230.39i −0.158225 0.158225i
\(748\) 0 0
\(749\) 1422.59 + 1422.59i 0.0693995 + 0.0693995i
\(750\) 0 0
\(751\) 5271.99 0.256162 0.128081 0.991764i \(-0.459118\pi\)
0.128081 + 0.991764i \(0.459118\pi\)
\(752\) 0 0
\(753\) 262.783i 0.0127176i
\(754\) 0 0
\(755\) 230.735i 0.0111223i
\(756\) 0 0
\(757\) 4172.85 0.200350 0.100175 0.994970i \(-0.468060\pi\)
0.100175 + 0.994970i \(0.468060\pi\)
\(758\) 0 0
\(759\) 7196.02 + 7196.02i 0.344136 + 0.344136i
\(760\) 0 0
\(761\) −1713.92 1713.92i −0.0816422 0.0816422i 0.665106 0.746749i \(-0.268386\pi\)
−0.746749 + 0.665106i \(0.768386\pi\)
\(762\) 0 0
\(763\) 3764.57i 0.178619i
\(764\) 0 0
\(765\) −274.720 274.720i −0.0129837 0.0129837i
\(766\) 0 0
\(767\) −1839.32 3877.13i −0.0865893 0.182523i
\(768\) 0 0
\(769\) 11330.4 11330.4i 0.531321 0.531321i −0.389645 0.920965i \(-0.627402\pi\)
0.920965 + 0.389645i \(0.127402\pi\)
\(770\) 0 0
\(771\) −20055.1 −0.936793
\(772\) 0 0
\(773\) −24535.7 + 24535.7i −1.14164 + 1.14164i −0.153492 + 0.988150i \(0.549052\pi\)
−0.988150 + 0.153492i \(0.950948\pi\)
\(774\) 0 0
\(775\) −21639.0 + 21639.0i −1.00296 + 1.00296i
\(776\) 0 0
\(777\) 11425.3i 0.527515i
\(778\) 0 0
\(779\) −30129.5 −1.38575
\(780\) 0 0
\(781\) −36585.4 −1.67622
\(782\) 0 0
\(783\) 6875.19i 0.313792i
\(784\) 0 0
\(785\) 867.224 867.224i 0.0394300 0.0394300i
\(786\) 0 0
\(787\) −8238.29 + 8238.29i −0.373143 + 0.373143i −0.868621 0.495478i \(-0.834993\pi\)
0.495478 + 0.868621i \(0.334993\pi\)
\(788\) 0 0
\(789\) −1204.04 −0.0543281
\(790\) 0 0
\(791\) −38512.1 + 38512.1i −1.73114 + 1.73114i
\(792\) 0 0
\(793\) −3833.53 + 10753.8i −0.171668 + 0.481560i
\(794\) 0 0
\(795\) 537.640 + 537.640i 0.0239851 + 0.0239851i
\(796\) 0 0
\(797\) 7079.26i 0.314630i 0.987548 + 0.157315i \(0.0502838\pi\)
−0.987548 + 0.157315i \(0.949716\pi\)
\(798\) 0 0
\(799\) −3984.91 3984.91i −0.176440 0.176440i
\(800\) 0 0
\(801\) 3374.54 + 3374.54i 0.148856 + 0.148856i
\(802\) 0 0
\(803\) 27437.5 1.20579
\(804\) 0 0
\(805\) 1066.45i 0.0466926i
\(806\) 0 0
\(807\) 2046.62i 0.0892746i
\(808\) 0 0
\(809\) −35129.6 −1.52669 −0.763344 0.645993i \(-0.776444\pi\)
−0.763344 + 0.645993i \(0.776444\pi\)
\(810\) 0 0
\(811\) 2803.23 + 2803.23i 0.121375 + 0.121375i 0.765185 0.643810i \(-0.222647\pi\)
−0.643810 + 0.765185i \(0.722647\pi\)
\(812\) 0 0
\(813\) 8102.72 + 8102.72i 0.349539 + 0.349539i
\(814\) 0 0
\(815\) 33.9029i 0.00145714i
\(816\) 0 0
\(817\) −18666.8 18666.8i −0.799349 0.799349i
\(818\) 0 0
\(819\) 5378.34 + 11337.1i 0.229468 + 0.483700i
\(820\) 0 0
\(821\) −24188.6 + 24188.6i −1.02825 + 1.02825i −0.0286563 + 0.999589i \(0.509123\pi\)
−0.999589 + 0.0286563i \(0.990877\pi\)
\(822\) 0 0
\(823\) 21771.5 0.922122 0.461061 0.887368i \(-0.347469\pi\)
0.461061 + 0.887368i \(0.347469\pi\)
\(824\) 0 0
\(825\) 9688.72 9688.72i 0.408870 0.408870i
\(826\) 0 0
\(827\) 10484.4 10484.4i 0.440844 0.440844i −0.451451 0.892296i \(-0.649094\pi\)
0.892296 + 0.451451i \(0.149094\pi\)
\(828\) 0 0
\(829\) 10416.0i 0.436386i −0.975906 0.218193i \(-0.929984\pi\)
0.975906 0.218193i \(-0.0700163\pi\)
\(830\) 0 0
\(831\) −25641.3 −1.07038
\(832\) 0 0
\(833\) −60492.2 −2.51612
\(834\) 0 0
\(835\) 1426.19i 0.0591082i
\(836\) 0 0
\(837\) −4679.63 + 4679.63i −0.193252 + 0.193252i
\(838\) 0 0
\(839\) 12549.6 12549.6i 0.516402 0.516402i −0.400078 0.916481i \(-0.631017\pi\)
0.916481 + 0.400078i \(0.131017\pi\)
\(840\) 0 0
\(841\) 40450.8 1.65857
\(842\) 0 0
\(843\) −4405.30 + 4405.30i −0.179984 + 0.179984i
\(844\) 0 0
\(845\) 845.152 85.2435i 0.0344072 0.00347037i
\(846\) 0 0
\(847\) 152.651 + 152.651i 0.00619263 + 0.00619263i
\(848\) 0 0
\(849\) 9364.90i 0.378566i
\(850\) 0 0
\(851\) −8395.05 8395.05i −0.338165 0.338165i
\(852\) 0 0
\(853\) 30365.1 + 30365.1i 1.21885 + 1.21885i 0.968034 + 0.250818i \(0.0806996\pi\)
0.250818 + 0.968034i \(0.419300\pi\)
\(854\) 0 0
\(855\) −315.145 −0.0126055
\(856\) 0 0
\(857\) 13468.8i 0.536855i −0.963300 0.268427i \(-0.913496\pi\)
0.963300 0.268427i \(-0.0865039\pi\)
\(858\) 0 0
\(859\) 44650.0i 1.77350i 0.462248 + 0.886751i \(0.347043\pi\)
−0.462248 + 0.886751i \(0.652957\pi\)
\(860\) 0 0
\(861\) 29687.3 1.17508
\(862\) 0 0
\(863\) 18961.1 + 18961.1i 0.747906 + 0.747906i 0.974086 0.226179i \(-0.0726235\pi\)
−0.226179 + 0.974086i \(0.572624\pi\)
\(864\) 0 0
\(865\) 147.135 + 147.135i 0.00578351 + 0.00578351i
\(866\) 0 0
\(867\) 22658.3i 0.887564i
\(868\) 0 0
\(869\) −32718.3 32718.3i −1.27721 1.27721i
\(870\) 0 0
\(871\) 17186.0 8153.06i 0.668571 0.317171i
\(872\) 0 0
\(873\) −6833.92 + 6833.92i −0.264941 + 0.264941i
\(874\) 0 0
\(875\) 2873.46 0.111018
\(876\) 0 0
\(877\) 10734.2 10734.2i 0.413306 0.413306i −0.469582 0.882889i \(-0.655595\pi\)
0.882889 + 0.469582i \(0.155595\pi\)
\(878\) 0 0
\(879\) −2910.32 + 2910.32i −0.111675 + 0.111675i
\(880\) 0 0
\(881\) 40328.3i 1.54222i −0.636702 0.771110i \(-0.719702\pi\)
0.636702 0.771110i \(-0.280298\pi\)
\(882\) 0 0
\(883\) 8935.90 0.340563 0.170281 0.985395i \(-0.445532\pi\)
0.170281 + 0.985395i \(0.445532\pi\)
\(884\) 0 0
\(885\) −106.194 −0.00403351
\(886\) 0 0
\(887\) 7581.44i 0.286990i −0.989651 0.143495i \(-0.954166\pi\)
0.989651 0.143495i \(-0.0458341\pi\)
\(888\) 0 0
\(889\) −57837.2 + 57837.2i −2.18200 + 2.18200i
\(890\) 0 0
\(891\) 2095.27 2095.27i 0.0787813 0.0787813i
\(892\) 0 0
\(893\) −4571.29 −0.171301
\(894\) 0 0
\(895\) −206.462 + 206.462i −0.00771092 + 0.00771092i
\(896\) 0 0
\(897\) −12282.2 4378.38i −0.457179 0.162976i
\(898\) 0 0
\(899\) 44133.5 + 44133.5i 1.63730 + 1.63730i
\(900\) 0 0
\(901\) 73188.5i 2.70617i
\(902\) 0 0
\(903\) 18392.8 + 18392.8i 0.677823 + 0.677823i
\(904\) 0 0
\(905\) −7.19658 7.19658i −0.000264334 0.000264334i
\(906\) 0 0
\(907\) 6949.46 0.254414 0.127207 0.991876i \(-0.459399\pi\)
0.127207 + 0.991876i \(0.459399\pi\)
\(908\) 0 0
\(909\) 7004.32i 0.255576i
\(910\) 0 0
\(911\) 30432.9i 1.10679i −0.832918 0.553396i \(-0.813332\pi\)
0.832918 0.553396i \(-0.186668\pi\)
\(912\) 0 0
\(913\) 18569.4 0.673119
\(914\) 0 0
\(915\) 199.771 + 199.771i 0.00721772 + 0.00721772i
\(916\) 0 0
\(917\) 45417.7 + 45417.7i 1.63558 + 1.63558i
\(918\) 0 0
\(919\) 18081.4i 0.649020i 0.945882 + 0.324510i \(0.105199\pi\)
−0.945882 + 0.324510i \(0.894801\pi\)
\(920\) 0 0
\(921\) −5670.99 5670.99i −0.202894 0.202894i
\(922\) 0 0
\(923\) 42352.1 20091.9i 1.51033 0.716505i
\(924\) 0 0
\(925\) −11303.1 + 11303.1i −0.401777 + 0.401777i
\(926\) 0 0
\(927\) 12603.3 0.446545
\(928\) 0 0
\(929\) 12783.7 12783.7i 0.451476 0.451476i −0.444368 0.895844i \(-0.646572\pi\)
0.895844 + 0.444368i \(0.146572\pi\)
\(930\) 0 0
\(931\) −34696.8 + 34696.8i −1.22142 + 1.22142i
\(932\) 0 0
\(933\) 10776.5i 0.378142i
\(934\) 0 0
\(935\) 1579.18 0.0552351
\(936\) 0 0
\(937\) −2344.53 −0.0817421 −0.0408710 0.999164i \(-0.513013\pi\)
−0.0408710 + 0.999164i \(0.513013\pi\)
\(938\) 0 0
\(939\) 2889.03i 0.100405i
\(940\) 0 0
\(941\) −18313.4 + 18313.4i −0.634432 + 0.634432i −0.949176 0.314745i \(-0.898081\pi\)
0.314745 + 0.949176i \(0.398081\pi\)
\(942\) 0 0
\(943\) −21813.6 + 21813.6i −0.753286 + 0.753286i
\(944\) 0 0
\(945\) 310.520 0.0106891
\(946\) 0 0
\(947\) 30759.0 30759.0i 1.05547 1.05547i 0.0571038 0.998368i \(-0.481813\pi\)
0.998368 0.0571038i \(-0.0181866\pi\)
\(948\) 0 0
\(949\) −31762.2 + 15068.1i −1.08645 + 0.515416i
\(950\) 0 0
\(951\) 19268.0 + 19268.0i 0.657002 + 0.657002i
\(952\) 0 0
\(953\) 37108.6i 1.26135i −0.776048 0.630674i \(-0.782778\pi\)
0.776048 0.630674i \(-0.217222\pi\)
\(954\) 0 0
\(955\) −262.296 262.296i −0.00888764 0.00888764i
\(956\) 0 0
\(957\) −19760.5 19760.5i −0.667466 0.667466i
\(958\) 0 0
\(959\) −80153.8 −2.69896
\(960\) 0 0
\(961\) 30288.4i 1.01670i
\(962\) 0 0
\(963\) 608.714i 0.0203692i
\(964\) 0 0
\(965\) −1494.96 −0.0498700
\(966\) 0 0
\(967\) 19976.2 + 19976.2i 0.664312 + 0.664312i 0.956394 0.292081i \(-0.0943477\pi\)
−0.292081 + 0.956394i \(0.594348\pi\)
\(968\) 0 0
\(969\) 21450.2 + 21450.2i 0.711124 + 0.711124i
\(970\) 0 0
\(971\) 30509.9i 1.00835i −0.863601 0.504176i \(-0.831796\pi\)
0.863601 0.504176i \(-0.168204\pi\)
\(972\) 0 0
\(973\) −30071.9 30071.9i −0.990813 0.990813i
\(974\) 0 0
\(975\) −5895.05 + 16536.7i −0.193634 + 0.543178i
\(976\) 0 0
\(977\) 4511.07 4511.07i 0.147719 0.147719i −0.629379 0.777098i \(-0.716691\pi\)
0.777098 + 0.629379i \(0.216691\pi\)
\(978\) 0 0
\(979\) −19398.0 −0.633261
\(980\) 0 0
\(981\) 805.415 805.415i 0.0262130 0.0262130i
\(982\) 0 0
\(983\) −34195.2 + 34195.2i −1.10952 + 1.10952i −0.116306 + 0.993213i \(0.537105\pi\)
−0.993213 + 0.116306i \(0.962895\pi\)
\(984\) 0 0
\(985\) 1483.91i 0.0480014i
\(986\) 0 0
\(987\) 4504.20 0.145258
\(988\) 0 0
\(989\) −27029.3 −0.869042
\(990\) 0 0
\(991\) 48201.6i 1.54508i −0.634966 0.772540i \(-0.718986\pi\)
0.634966 0.772540i \(-0.281014\pi\)
\(992\) 0 0
\(993\) −13708.6 + 13708.6i −0.438097 + 0.438097i
\(994\) 0 0
\(995\) −1222.06 + 1222.06i −0.0389367 + 0.0389367i
\(996\) 0 0
\(997\) −35777.2 −1.13648 −0.568242 0.822861i \(-0.692376\pi\)
−0.568242 + 0.822861i \(0.692376\pi\)
\(998\) 0 0
\(999\) −2444.39 + 2444.39i −0.0774146 + 0.0774146i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.4.bc.c.31.8 28
4.3 odd 2 624.4.bc.d.31.8 yes 28
13.8 odd 4 624.4.bc.d.463.8 yes 28
52.47 even 4 inner 624.4.bc.c.463.8 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
624.4.bc.c.31.8 28 1.1 even 1 trivial
624.4.bc.c.463.8 yes 28 52.47 even 4 inner
624.4.bc.d.31.8 yes 28 4.3 odd 2
624.4.bc.d.463.8 yes 28 13.8 odd 4