Properties

Label 624.4.d.b.287.1
Level $624$
Weight $4$
Character 624.287
Analytic conductor $36.817$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,4,Mod(287,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.287");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8171918436\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 120x^{10} + 5196x^{8} + 96803x^{6} + 702900x^{4} + 976752x^{2} + 254016 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 287.1
Root \(4.65383i\) of defining polynomial
Character \(\chi\) \(=\) 624.287
Dual form 624.4.d.b.287.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.84460 - 1.87879i) q^{3} +18.9647i q^{5} -27.0499i q^{7} +(19.9403 + 18.2040i) q^{9} +9.39288 q^{11} -13.0000 q^{13} +(35.6306 - 91.8764i) q^{15} -1.52149i q^{17} -31.1981i q^{19} +(-50.8209 + 131.046i) q^{21} -145.367 q^{23} -234.660 q^{25} +(-62.4015 - 125.654i) q^{27} +32.9938i q^{29} +73.9450i q^{31} +(-45.5048 - 17.6472i) q^{33} +512.992 q^{35} +392.429 q^{37} +(62.9798 + 24.4242i) q^{39} -323.179i q^{41} +305.902i q^{43} +(-345.232 + 378.162i) q^{45} +29.9279 q^{47} -388.695 q^{49} +(-2.85856 + 7.37101i) q^{51} -415.331i q^{53} +178.133i q^{55} +(-58.6146 + 151.142i) q^{57} +765.208 q^{59} -89.5213 q^{61} +(492.414 - 539.383i) q^{63} -246.541i q^{65} -34.1410i q^{67} +(704.244 + 273.113i) q^{69} +534.416 q^{71} +730.823 q^{73} +(1136.83 + 440.876i) q^{75} -254.076i q^{77} -784.929i q^{79} +(66.2324 + 725.985i) q^{81} -782.388 q^{83} +28.8546 q^{85} +(61.9883 - 159.842i) q^{87} +1148.57i q^{89} +351.648i q^{91} +(138.927 - 358.234i) q^{93} +591.663 q^{95} +1665.46 q^{97} +(187.297 + 170.988i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 54 q^{9} - 156 q^{13} - 54 q^{21} - 408 q^{25} - 360 q^{33} + 636 q^{37} - 810 q^{45} + 336 q^{49} - 1260 q^{57} + 960 q^{61} - 252 q^{69} + 3216 q^{73} - 2538 q^{81} + 2196 q^{85} - 1116 q^{93}+ \cdots + 4800 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.84460 1.87879i −0.932344 0.361573i
\(4\) 0 0
\(5\) 18.9647i 1.69625i 0.529793 + 0.848127i \(0.322270\pi\)
−0.529793 + 0.848127i \(0.677730\pi\)
\(6\) 0 0
\(7\) 27.0499i 1.46056i −0.683150 0.730278i \(-0.739391\pi\)
0.683150 0.730278i \(-0.260609\pi\)
\(8\) 0 0
\(9\) 19.9403 + 18.2040i 0.738530 + 0.674220i
\(10\) 0 0
\(11\) 9.39288 0.257460 0.128730 0.991680i \(-0.458910\pi\)
0.128730 + 0.991680i \(0.458910\pi\)
\(12\) 0 0
\(13\) −13.0000 −0.277350
\(14\) 0 0
\(15\) 35.6306 91.8764i 0.613319 1.58149i
\(16\) 0 0
\(17\) 1.52149i 0.0217068i −0.999941 0.0108534i \(-0.996545\pi\)
0.999941 0.0108534i \(-0.00345481\pi\)
\(18\) 0 0
\(19\) 31.1981i 0.376702i −0.982102 0.188351i \(-0.939686\pi\)
0.982102 0.188351i \(-0.0603143\pi\)
\(20\) 0 0
\(21\) −50.8209 + 131.046i −0.528097 + 1.36174i
\(22\) 0 0
\(23\) −145.367 −1.31787 −0.658936 0.752199i \(-0.728993\pi\)
−0.658936 + 0.752199i \(0.728993\pi\)
\(24\) 0 0
\(25\) −234.660 −1.87728
\(26\) 0 0
\(27\) −62.4015 125.654i −0.444784 0.895638i
\(28\) 0 0
\(29\) 32.9938i 0.211269i 0.994405 + 0.105634i \(0.0336873\pi\)
−0.994405 + 0.105634i \(0.966313\pi\)
\(30\) 0 0
\(31\) 73.9450i 0.428417i 0.976788 + 0.214208i \(0.0687171\pi\)
−0.976788 + 0.214208i \(0.931283\pi\)
\(32\) 0 0
\(33\) −45.5048 17.6472i −0.240041 0.0930905i
\(34\) 0 0
\(35\) 512.992 2.47747
\(36\) 0 0
\(37\) 392.429 1.74365 0.871824 0.489820i \(-0.162937\pi\)
0.871824 + 0.489820i \(0.162937\pi\)
\(38\) 0 0
\(39\) 62.9798 + 24.4242i 0.258586 + 0.100282i
\(40\) 0 0
\(41\) 323.179i 1.23103i −0.788127 0.615513i \(-0.788949\pi\)
0.788127 0.615513i \(-0.211051\pi\)
\(42\) 0 0
\(43\) 305.902i 1.08487i 0.840096 + 0.542437i \(0.182498\pi\)
−0.840096 + 0.542437i \(0.817502\pi\)
\(44\) 0 0
\(45\) −345.232 + 378.162i −1.14365 + 1.25273i
\(46\) 0 0
\(47\) 29.9279 0.0928815 0.0464407 0.998921i \(-0.485212\pi\)
0.0464407 + 0.998921i \(0.485212\pi\)
\(48\) 0 0
\(49\) −388.695 −1.13322
\(50\) 0 0
\(51\) −2.85856 + 7.37101i −0.00784859 + 0.0202382i
\(52\) 0 0
\(53\) 415.331i 1.07642i −0.842812 0.538208i \(-0.819101\pi\)
0.842812 0.538208i \(-0.180899\pi\)
\(54\) 0 0
\(55\) 178.133i 0.436717i
\(56\) 0 0
\(57\) −58.6146 + 151.142i −0.136205 + 0.351216i
\(58\) 0 0
\(59\) 765.208 1.68850 0.844251 0.535948i \(-0.180046\pi\)
0.844251 + 0.535948i \(0.180046\pi\)
\(60\) 0 0
\(61\) −89.5213 −0.187902 −0.0939510 0.995577i \(-0.529950\pi\)
−0.0939510 + 0.995577i \(0.529950\pi\)
\(62\) 0 0
\(63\) 492.414 539.383i 0.984736 1.07866i
\(64\) 0 0
\(65\) 246.541i 0.470456i
\(66\) 0 0
\(67\) 34.1410i 0.0622535i −0.999515 0.0311267i \(-0.990090\pi\)
0.999515 0.0311267i \(-0.00990954\pi\)
\(68\) 0 0
\(69\) 704.244 + 273.113i 1.22871 + 0.476507i
\(70\) 0 0
\(71\) 534.416 0.893290 0.446645 0.894711i \(-0.352619\pi\)
0.446645 + 0.894711i \(0.352619\pi\)
\(72\) 0 0
\(73\) 730.823 1.17173 0.585865 0.810408i \(-0.300755\pi\)
0.585865 + 0.810408i \(0.300755\pi\)
\(74\) 0 0
\(75\) 1136.83 + 440.876i 1.75027 + 0.678772i
\(76\) 0 0
\(77\) 254.076i 0.376035i
\(78\) 0 0
\(79\) 784.929i 1.11787i −0.829213 0.558933i \(-0.811211\pi\)
0.829213 0.558933i \(-0.188789\pi\)
\(80\) 0 0
\(81\) 66.2324 + 725.985i 0.0908537 + 0.995864i
\(82\) 0 0
\(83\) −782.388 −1.03468 −0.517339 0.855781i \(-0.673077\pi\)
−0.517339 + 0.855781i \(0.673077\pi\)
\(84\) 0 0
\(85\) 28.8546 0.0368202
\(86\) 0 0
\(87\) 61.9883 159.842i 0.0763890 0.196975i
\(88\) 0 0
\(89\) 1148.57i 1.36796i 0.729502 + 0.683979i \(0.239752\pi\)
−0.729502 + 0.683979i \(0.760248\pi\)
\(90\) 0 0
\(91\) 351.648i 0.405085i
\(92\) 0 0
\(93\) 138.927 358.234i 0.154904 0.399432i
\(94\) 0 0
\(95\) 591.663 0.638982
\(96\) 0 0
\(97\) 1665.46 1.74332 0.871660 0.490111i \(-0.163044\pi\)
0.871660 + 0.490111i \(0.163044\pi\)
\(98\) 0 0
\(99\) 187.297 + 170.988i 0.190142 + 0.173585i
\(100\) 0 0
\(101\) 1115.43i 1.09891i −0.835525 0.549453i \(-0.814836\pi\)
0.835525 0.549453i \(-0.185164\pi\)
\(102\) 0 0
\(103\) 1318.22i 1.26105i −0.776168 0.630527i \(-0.782839\pi\)
0.776168 0.630527i \(-0.217161\pi\)
\(104\) 0 0
\(105\) −2485.24 963.804i −2.30986 0.895787i
\(106\) 0 0
\(107\) 1822.87 1.64695 0.823474 0.567354i \(-0.192033\pi\)
0.823474 + 0.567354i \(0.192033\pi\)
\(108\) 0 0
\(109\) 2001.88 1.75913 0.879564 0.475780i \(-0.157834\pi\)
0.879564 + 0.475780i \(0.157834\pi\)
\(110\) 0 0
\(111\) −1901.16 737.291i −1.62568 0.630456i
\(112\) 0 0
\(113\) 646.361i 0.538093i −0.963127 0.269047i \(-0.913291\pi\)
0.963127 0.269047i \(-0.0867085\pi\)
\(114\) 0 0
\(115\) 2756.84i 2.23545i
\(116\) 0 0
\(117\) −259.224 236.651i −0.204831 0.186995i
\(118\) 0 0
\(119\) −41.1561 −0.0317040
\(120\) 0 0
\(121\) −1242.77 −0.933714
\(122\) 0 0
\(123\) −607.185 + 1565.67i −0.445106 + 1.14774i
\(124\) 0 0
\(125\) 2079.66i 1.48809i
\(126\) 0 0
\(127\) 1825.33i 1.27537i −0.770298 0.637684i \(-0.779893\pi\)
0.770298 0.637684i \(-0.220107\pi\)
\(128\) 0 0
\(129\) 574.724 1481.97i 0.392261 1.01148i
\(130\) 0 0
\(131\) 2253.25 1.50280 0.751402 0.659844i \(-0.229378\pi\)
0.751402 + 0.659844i \(0.229378\pi\)
\(132\) 0 0
\(133\) −843.905 −0.550194
\(134\) 0 0
\(135\) 2383.00 1183.43i 1.51923 0.754467i
\(136\) 0 0
\(137\) 1546.24i 0.964265i 0.876098 + 0.482132i \(0.160138\pi\)
−0.876098 + 0.482132i \(0.839862\pi\)
\(138\) 0 0
\(139\) 747.775i 0.456298i 0.973626 + 0.228149i \(0.0732674\pi\)
−0.973626 + 0.228149i \(0.926733\pi\)
\(140\) 0 0
\(141\) −144.989 56.2281i −0.0865975 0.0335834i
\(142\) 0 0
\(143\) −122.107 −0.0714065
\(144\) 0 0
\(145\) −625.717 −0.358365
\(146\) 0 0
\(147\) 1883.07 + 730.276i 1.05655 + 0.409742i
\(148\) 0 0
\(149\) 2308.42i 1.26922i 0.772833 + 0.634609i \(0.218839\pi\)
−0.772833 + 0.634609i \(0.781161\pi\)
\(150\) 0 0
\(151\) 1897.60i 1.02268i 0.859378 + 0.511340i \(0.170851\pi\)
−0.859378 + 0.511340i \(0.829149\pi\)
\(152\) 0 0
\(153\) 27.6971 30.3390i 0.0146352 0.0160311i
\(154\) 0 0
\(155\) −1402.34 −0.726703
\(156\) 0 0
\(157\) 1538.82 0.782237 0.391118 0.920340i \(-0.372088\pi\)
0.391118 + 0.920340i \(0.372088\pi\)
\(158\) 0 0
\(159\) −780.318 + 2012.11i −0.389203 + 1.00359i
\(160\) 0 0
\(161\) 3932.15i 1.92483i
\(162\) 0 0
\(163\) 3933.13i 1.88998i −0.327099 0.944990i \(-0.606071\pi\)
0.327099 0.944990i \(-0.393929\pi\)
\(164\) 0 0
\(165\) 334.674 862.984i 0.157905 0.407171i
\(166\) 0 0
\(167\) −274.828 −0.127346 −0.0636732 0.997971i \(-0.520282\pi\)
−0.0636732 + 0.997971i \(0.520282\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 567.929 622.100i 0.253980 0.278206i
\(172\) 0 0
\(173\) 1086.77i 0.477607i −0.971068 0.238803i \(-0.923245\pi\)
0.971068 0.238803i \(-0.0767551\pi\)
\(174\) 0 0
\(175\) 6347.51i 2.74187i
\(176\) 0 0
\(177\) −3707.13 1437.66i −1.57426 0.610516i
\(178\) 0 0
\(179\) −730.004 −0.304821 −0.152411 0.988317i \(-0.548704\pi\)
−0.152411 + 0.988317i \(0.548704\pi\)
\(180\) 0 0
\(181\) −1845.20 −0.757751 −0.378875 0.925448i \(-0.623689\pi\)
−0.378875 + 0.925448i \(0.623689\pi\)
\(182\) 0 0
\(183\) 433.695 + 168.191i 0.175189 + 0.0679403i
\(184\) 0 0
\(185\) 7442.30i 2.95767i
\(186\) 0 0
\(187\) 14.2912i 0.00558863i
\(188\) 0 0
\(189\) −3398.94 + 1687.95i −1.30813 + 0.649632i
\(190\) 0 0
\(191\) 1806.56 0.684389 0.342195 0.939629i \(-0.388830\pi\)
0.342195 + 0.939629i \(0.388830\pi\)
\(192\) 0 0
\(193\) 2597.91 0.968920 0.484460 0.874813i \(-0.339016\pi\)
0.484460 + 0.874813i \(0.339016\pi\)
\(194\) 0 0
\(195\) −463.198 + 1194.39i −0.170104 + 0.438627i
\(196\) 0 0
\(197\) 573.841i 0.207535i −0.994602 0.103768i \(-0.966910\pi\)
0.994602 0.103768i \(-0.0330899\pi\)
\(198\) 0 0
\(199\) 5308.02i 1.89083i 0.325864 + 0.945417i \(0.394345\pi\)
−0.325864 + 0.945417i \(0.605655\pi\)
\(200\) 0 0
\(201\) −64.1436 + 165.399i −0.0225092 + 0.0580416i
\(202\) 0 0
\(203\) 892.477 0.308570
\(204\) 0 0
\(205\) 6128.99 2.08813
\(206\) 0 0
\(207\) −2898.66 2646.25i −0.973288 0.888536i
\(208\) 0 0
\(209\) 293.040i 0.0969857i
\(210\) 0 0
\(211\) 1494.94i 0.487755i 0.969806 + 0.243877i \(0.0784194\pi\)
−0.969806 + 0.243877i \(0.921581\pi\)
\(212\) 0 0
\(213\) −2589.03 1004.05i −0.832853 0.322989i
\(214\) 0 0
\(215\) −5801.33 −1.84022
\(216\) 0 0
\(217\) 2000.20 0.625726
\(218\) 0 0
\(219\) −3540.55 1373.06i −1.09246 0.423666i
\(220\) 0 0
\(221\) 19.7794i 0.00602038i
\(222\) 0 0
\(223\) 2016.71i 0.605599i 0.953054 + 0.302800i \(0.0979213\pi\)
−0.953054 + 0.302800i \(0.902079\pi\)
\(224\) 0 0
\(225\) −4679.19 4271.73i −1.38643 1.26570i
\(226\) 0 0
\(227\) 3386.54 0.990189 0.495094 0.868839i \(-0.335134\pi\)
0.495094 + 0.868839i \(0.335134\pi\)
\(228\) 0 0
\(229\) −1306.25 −0.376942 −0.188471 0.982079i \(-0.560353\pi\)
−0.188471 + 0.982079i \(0.560353\pi\)
\(230\) 0 0
\(231\) −477.355 + 1230.90i −0.135964 + 0.350594i
\(232\) 0 0
\(233\) 965.637i 0.271506i 0.990743 + 0.135753i \(0.0433454\pi\)
−0.990743 + 0.135753i \(0.956655\pi\)
\(234\) 0 0
\(235\) 567.573i 0.157551i
\(236\) 0 0
\(237\) −1474.71 + 3802.67i −0.404190 + 1.04224i
\(238\) 0 0
\(239\) −4920.68 −1.33177 −0.665884 0.746055i \(-0.731945\pi\)
−0.665884 + 0.746055i \(0.731945\pi\)
\(240\) 0 0
\(241\) −621.817 −0.166202 −0.0831011 0.996541i \(-0.526482\pi\)
−0.0831011 + 0.996541i \(0.526482\pi\)
\(242\) 0 0
\(243\) 1043.10 3641.54i 0.275371 0.961338i
\(244\) 0 0
\(245\) 7371.49i 1.92223i
\(246\) 0 0
\(247\) 405.575i 0.104478i
\(248\) 0 0
\(249\) 3790.36 + 1469.94i 0.964675 + 0.374111i
\(250\) 0 0
\(251\) −4513.14 −1.13493 −0.567464 0.823398i \(-0.692075\pi\)
−0.567464 + 0.823398i \(0.692075\pi\)
\(252\) 0 0
\(253\) −1365.41 −0.339299
\(254\) 0 0
\(255\) −139.789 54.2116i −0.0343291 0.0133132i
\(256\) 0 0
\(257\) 3835.60i 0.930965i −0.885057 0.465483i \(-0.845881\pi\)
0.885057 0.465483i \(-0.154119\pi\)
\(258\) 0 0
\(259\) 10615.2i 2.54669i
\(260\) 0 0
\(261\) −600.617 + 657.906i −0.142442 + 0.156028i
\(262\) 0 0
\(263\) −2295.90 −0.538293 −0.269147 0.963099i \(-0.586742\pi\)
−0.269147 + 0.963099i \(0.586742\pi\)
\(264\) 0 0
\(265\) 7876.62 1.82588
\(266\) 0 0
\(267\) 2157.92 5564.37i 0.494616 1.27541i
\(268\) 0 0
\(269\) 4332.30i 0.981952i 0.871173 + 0.490976i \(0.163360\pi\)
−0.871173 + 0.490976i \(0.836640\pi\)
\(270\) 0 0
\(271\) 7712.96i 1.72889i −0.502727 0.864445i \(-0.667670\pi\)
0.502727 0.864445i \(-0.332330\pi\)
\(272\) 0 0
\(273\) 660.672 1703.60i 0.146468 0.377679i
\(274\) 0 0
\(275\) −2204.13 −0.483324
\(276\) 0 0
\(277\) −707.242 −0.153408 −0.0767040 0.997054i \(-0.524440\pi\)
−0.0767040 + 0.997054i \(0.524440\pi\)
\(278\) 0 0
\(279\) −1346.09 + 1474.49i −0.288847 + 0.316399i
\(280\) 0 0
\(281\) 8445.74i 1.79299i −0.443052 0.896496i \(-0.646104\pi\)
0.443052 0.896496i \(-0.353896\pi\)
\(282\) 0 0
\(283\) 5277.23i 1.10848i 0.832358 + 0.554238i \(0.186990\pi\)
−0.832358 + 0.554238i \(0.813010\pi\)
\(284\) 0 0
\(285\) −2866.37 1111.61i −0.595751 0.231039i
\(286\) 0 0
\(287\) −8741.95 −1.79798
\(288\) 0 0
\(289\) 4910.69 0.999529
\(290\) 0 0
\(291\) −8068.50 3129.05i −1.62537 0.630337i
\(292\) 0 0
\(293\) 2522.55i 0.502966i −0.967862 0.251483i \(-0.919082\pi\)
0.967862 0.251483i \(-0.0809182\pi\)
\(294\) 0 0
\(295\) 14511.9i 2.86413i
\(296\) 0 0
\(297\) −586.130 1180.26i −0.114514 0.230591i
\(298\) 0 0
\(299\) 1889.77 0.365512
\(300\) 0 0
\(301\) 8274.60 1.58452
\(302\) 0 0
\(303\) −2095.66 + 5403.82i −0.397334 + 1.02456i
\(304\) 0 0
\(305\) 1697.74i 0.318730i
\(306\) 0 0
\(307\) 3496.71i 0.650057i −0.945704 0.325029i \(-0.894626\pi\)
0.945704 0.325029i \(-0.105374\pi\)
\(308\) 0 0
\(309\) −2476.66 + 6386.27i −0.455963 + 1.17574i
\(310\) 0 0
\(311\) −4140.52 −0.754943 −0.377471 0.926021i \(-0.623206\pi\)
−0.377471 + 0.926021i \(0.623206\pi\)
\(312\) 0 0
\(313\) −8963.98 −1.61877 −0.809383 0.587280i \(-0.800199\pi\)
−0.809383 + 0.587280i \(0.800199\pi\)
\(314\) 0 0
\(315\) 10229.2 + 9338.49i 1.82969 + 1.67036i
\(316\) 0 0
\(317\) 4352.50i 0.771170i −0.922672 0.385585i \(-0.874000\pi\)
0.922672 0.385585i \(-0.126000\pi\)
\(318\) 0 0
\(319\) 309.907i 0.0543932i
\(320\) 0 0
\(321\) −8831.08 3424.79i −1.53552 0.595492i
\(322\) 0 0
\(323\) −47.4676 −0.00817699
\(324\) 0 0
\(325\) 3050.58 0.520663
\(326\) 0 0
\(327\) −9698.29 3761.10i −1.64011 0.636053i
\(328\) 0 0
\(329\) 809.545i 0.135659i
\(330\) 0 0
\(331\) 329.402i 0.0546996i 0.999626 + 0.0273498i \(0.00870680\pi\)
−0.999626 + 0.0273498i \(0.991293\pi\)
\(332\) 0 0
\(333\) 7825.16 + 7143.76i 1.28774 + 1.17560i
\(334\) 0 0
\(335\) 647.473 0.105598
\(336\) 0 0
\(337\) 7316.96 1.18273 0.591365 0.806404i \(-0.298589\pi\)
0.591365 + 0.806404i \(0.298589\pi\)
\(338\) 0 0
\(339\) −1214.37 + 3131.36i −0.194560 + 0.501688i
\(340\) 0 0
\(341\) 694.556i 0.110300i
\(342\) 0 0
\(343\) 1236.05i 0.194578i
\(344\) 0 0
\(345\) −5179.51 + 13355.8i −0.808276 + 2.08420i
\(346\) 0 0
\(347\) 4803.87 0.743185 0.371592 0.928396i \(-0.378812\pi\)
0.371592 + 0.928396i \(0.378812\pi\)
\(348\) 0 0
\(349\) 7003.62 1.07420 0.537099 0.843519i \(-0.319520\pi\)
0.537099 + 0.843519i \(0.319520\pi\)
\(350\) 0 0
\(351\) 811.220 + 1633.51i 0.123361 + 0.248405i
\(352\) 0 0
\(353\) 8180.33i 1.23341i −0.787193 0.616707i \(-0.788466\pi\)
0.787193 0.616707i \(-0.211534\pi\)
\(354\) 0 0
\(355\) 10135.0i 1.51525i
\(356\) 0 0
\(357\) 199.385 + 77.3235i 0.0295590 + 0.0114633i
\(358\) 0 0
\(359\) 5651.15 0.830798 0.415399 0.909639i \(-0.363642\pi\)
0.415399 + 0.909639i \(0.363642\pi\)
\(360\) 0 0
\(361\) 5885.68 0.858096
\(362\) 0 0
\(363\) 6020.74 + 2334.91i 0.870543 + 0.337606i
\(364\) 0 0
\(365\) 13859.8i 1.98755i
\(366\) 0 0
\(367\) 7110.90i 1.01141i −0.862708 0.505703i \(-0.831233\pi\)
0.862708 0.505703i \(-0.168767\pi\)
\(368\) 0 0
\(369\) 5883.13 6444.29i 0.829983 0.909150i
\(370\) 0 0
\(371\) −11234.6 −1.57217
\(372\) 0 0
\(373\) 2779.65 0.385857 0.192928 0.981213i \(-0.438201\pi\)
0.192928 + 0.981213i \(0.438201\pi\)
\(374\) 0 0
\(375\) −3907.24 + 10075.1i −0.538051 + 1.38741i
\(376\) 0 0
\(377\) 428.919i 0.0585954i
\(378\) 0 0
\(379\) 3707.98i 0.502549i 0.967916 + 0.251274i \(0.0808496\pi\)
−0.967916 + 0.251274i \(0.919150\pi\)
\(380\) 0 0
\(381\) −3429.40 + 8842.98i −0.461138 + 1.18908i
\(382\) 0 0
\(383\) −8269.75 −1.10330 −0.551651 0.834075i \(-0.686002\pi\)
−0.551651 + 0.834075i \(0.686002\pi\)
\(384\) 0 0
\(385\) 4818.48 0.637850
\(386\) 0 0
\(387\) −5568.62 + 6099.78i −0.731444 + 0.801212i
\(388\) 0 0
\(389\) 5001.39i 0.651878i 0.945391 + 0.325939i \(0.105680\pi\)
−0.945391 + 0.325939i \(0.894320\pi\)
\(390\) 0 0
\(391\) 221.174i 0.0286068i
\(392\) 0 0
\(393\) −10916.1 4233.38i −1.40113 0.543373i
\(394\) 0 0
\(395\) 14885.9 1.89618
\(396\) 0 0
\(397\) −9115.07 −1.15232 −0.576161 0.817336i \(-0.695450\pi\)
−0.576161 + 0.817336i \(0.695450\pi\)
\(398\) 0 0
\(399\) 4088.38 + 1585.52i 0.512970 + 0.198935i
\(400\) 0 0
\(401\) 2574.10i 0.320559i 0.987072 + 0.160280i \(0.0512396\pi\)
−0.987072 + 0.160280i \(0.948760\pi\)
\(402\) 0 0
\(403\) 961.285i 0.118821i
\(404\) 0 0
\(405\) −13768.1 + 1256.08i −1.68924 + 0.154111i
\(406\) 0 0
\(407\) 3686.04 0.448919
\(408\) 0 0
\(409\) −509.413 −0.0615864 −0.0307932 0.999526i \(-0.509803\pi\)
−0.0307932 + 0.999526i \(0.509803\pi\)
\(410\) 0 0
\(411\) 2905.06 7490.92i 0.348652 0.899026i
\(412\) 0 0
\(413\) 20698.8i 2.46615i
\(414\) 0 0
\(415\) 14837.8i 1.75508i
\(416\) 0 0
\(417\) 1404.91 3622.67i 0.164985 0.425427i
\(418\) 0 0
\(419\) 3747.50 0.436938 0.218469 0.975844i \(-0.429894\pi\)
0.218469 + 0.975844i \(0.429894\pi\)
\(420\) 0 0
\(421\) −13871.8 −1.60587 −0.802933 0.596069i \(-0.796729\pi\)
−0.802933 + 0.596069i \(0.796729\pi\)
\(422\) 0 0
\(423\) 596.771 + 544.805i 0.0685958 + 0.0626226i
\(424\) 0 0
\(425\) 357.032i 0.0407497i
\(426\) 0 0
\(427\) 2421.54i 0.274441i
\(428\) 0 0
\(429\) 591.562 + 229.414i 0.0665755 + 0.0258187i
\(430\) 0 0
\(431\) 1861.83 0.208078 0.104039 0.994573i \(-0.466823\pi\)
0.104039 + 0.994573i \(0.466823\pi\)
\(432\) 0 0
\(433\) 9690.92 1.07556 0.537778 0.843086i \(-0.319264\pi\)
0.537778 + 0.843086i \(0.319264\pi\)
\(434\) 0 0
\(435\) 3031.35 + 1175.59i 0.334120 + 0.129575i
\(436\) 0 0
\(437\) 4535.17i 0.496445i
\(438\) 0 0
\(439\) 13719.8i 1.49159i −0.666173 0.745797i \(-0.732069\pi\)
0.666173 0.745797i \(-0.267931\pi\)
\(440\) 0 0
\(441\) −7750.71 7075.79i −0.836919 0.764042i
\(442\) 0 0
\(443\) 5826.49 0.624886 0.312443 0.949936i \(-0.398853\pi\)
0.312443 + 0.949936i \(0.398853\pi\)
\(444\) 0 0
\(445\) −21782.3 −2.32040
\(446\) 0 0
\(447\) 4337.04 11183.4i 0.458915 1.18335i
\(448\) 0 0
\(449\) 10377.1i 1.09071i 0.838206 + 0.545353i \(0.183605\pi\)
−0.838206 + 0.545353i \(0.816395\pi\)
\(450\) 0 0
\(451\) 3035.58i 0.316940i
\(452\) 0 0
\(453\) 3565.19 9193.13i 0.369773 0.953490i
\(454\) 0 0
\(455\) −6668.90 −0.687127
\(456\) 0 0
\(457\) 5187.07 0.530942 0.265471 0.964119i \(-0.414472\pi\)
0.265471 + 0.964119i \(0.414472\pi\)
\(458\) 0 0
\(459\) −191.182 + 94.9433i −0.0194414 + 0.00965484i
\(460\) 0 0
\(461\) 6627.57i 0.669581i −0.942293 0.334791i \(-0.891334\pi\)
0.942293 0.334791i \(-0.108666\pi\)
\(462\) 0 0
\(463\) 6406.83i 0.643089i −0.946894 0.321545i \(-0.895798\pi\)
0.946894 0.321545i \(-0.104202\pi\)
\(464\) 0 0
\(465\) 6793.80 + 2634.71i 0.677537 + 0.262756i
\(466\) 0 0
\(467\) 9510.16 0.942350 0.471175 0.882040i \(-0.343830\pi\)
0.471175 + 0.882040i \(0.343830\pi\)
\(468\) 0 0
\(469\) −923.508 −0.0909246
\(470\) 0 0
\(471\) −7454.96 2891.11i −0.729313 0.282835i
\(472\) 0 0
\(473\) 2873.30i 0.279312i
\(474\) 0 0
\(475\) 7320.94i 0.707174i
\(476\) 0 0
\(477\) 7560.66 8281.82i 0.725742 0.794966i
\(478\) 0 0
\(479\) −20500.8 −1.95555 −0.977773 0.209668i \(-0.932762\pi\)
−0.977773 + 0.209668i \(0.932762\pi\)
\(480\) 0 0
\(481\) −5101.58 −0.483601
\(482\) 0 0
\(483\) 7387.67 19049.7i 0.695964 1.79460i
\(484\) 0 0
\(485\) 31585.0i 2.95711i
\(486\) 0 0
\(487\) 3216.16i 0.299257i −0.988742 0.149629i \(-0.952192\pi\)
0.988742 0.149629i \(-0.0478078\pi\)
\(488\) 0 0
\(489\) −7389.52 + 19054.5i −0.683365 + 1.76211i
\(490\) 0 0
\(491\) 14594.4 1.34141 0.670707 0.741723i \(-0.265991\pi\)
0.670707 + 0.741723i \(0.265991\pi\)
\(492\) 0 0
\(493\) 50.1997 0.00458596
\(494\) 0 0
\(495\) −3242.73 + 3552.03i −0.294444 + 0.322529i
\(496\) 0 0
\(497\) 14455.9i 1.30470i
\(498\) 0 0
\(499\) 369.555i 0.0331534i −0.999863 0.0165767i \(-0.994723\pi\)
0.999863 0.0165767i \(-0.00527678\pi\)
\(500\) 0 0
\(501\) 1331.43 + 516.344i 0.118731 + 0.0460450i
\(502\) 0 0
\(503\) −3667.35 −0.325088 −0.162544 0.986701i \(-0.551970\pi\)
−0.162544 + 0.986701i \(0.551970\pi\)
\(504\) 0 0
\(505\) 21153.8 1.86402
\(506\) 0 0
\(507\) −818.738 317.515i −0.0717188 0.0278133i
\(508\) 0 0
\(509\) 5884.32i 0.512412i −0.966622 0.256206i \(-0.917527\pi\)
0.966622 0.256206i \(-0.0824726\pi\)
\(510\) 0 0
\(511\) 19768.7i 1.71138i
\(512\) 0 0
\(513\) −3920.18 + 1946.81i −0.337388 + 0.167551i
\(514\) 0 0
\(515\) 24999.7 2.13907
\(516\) 0 0
\(517\) 281.109 0.0239133
\(518\) 0 0
\(519\) −2041.82 + 5264.99i −0.172690 + 0.445294i
\(520\) 0 0
\(521\) 18495.2i 1.55526i 0.628722 + 0.777630i \(0.283578\pi\)
−0.628722 + 0.777630i \(0.716422\pi\)
\(522\) 0 0
\(523\) 10139.5i 0.847746i −0.905722 0.423873i \(-0.860670\pi\)
0.905722 0.423873i \(-0.139330\pi\)
\(524\) 0 0
\(525\) 11925.6 30751.2i 0.991385 2.55636i
\(526\) 0 0
\(527\) 112.507 0.00929955
\(528\) 0 0
\(529\) 8964.49 0.736787
\(530\) 0 0
\(531\) 15258.5 + 13929.8i 1.24701 + 1.13842i
\(532\) 0 0
\(533\) 4201.33i 0.341425i
\(534\) 0 0
\(535\) 34570.2i 2.79364i
\(536\) 0 0
\(537\) 3536.58 + 1371.52i 0.284198 + 0.110215i
\(538\) 0 0
\(539\) −3650.97 −0.291759
\(540\) 0 0
\(541\) 754.389 0.0599514 0.0299757 0.999551i \(-0.490457\pi\)
0.0299757 + 0.999551i \(0.490457\pi\)
\(542\) 0 0
\(543\) 8939.27 + 3466.75i 0.706484 + 0.273982i
\(544\) 0 0
\(545\) 37965.0i 2.98393i
\(546\) 0 0
\(547\) 7114.45i 0.556110i 0.960565 + 0.278055i \(0.0896897\pi\)
−0.960565 + 0.278055i \(0.910310\pi\)
\(548\) 0 0
\(549\) −1785.08 1629.64i −0.138771 0.126687i
\(550\) 0 0
\(551\) 1029.34 0.0795853
\(552\) 0 0
\(553\) −21232.2 −1.63271
\(554\) 0 0
\(555\) 13982.5 36055.0i 1.06941 2.75756i
\(556\) 0 0
\(557\) 6758.58i 0.514130i −0.966394 0.257065i \(-0.917245\pi\)
0.966394 0.257065i \(-0.0827554\pi\)
\(558\) 0 0
\(559\) 3976.72i 0.300890i
\(560\) 0 0
\(561\) −26.8501 + 69.2350i −0.00202070 + 0.00521052i
\(562\) 0 0
\(563\) −11775.0 −0.881452 −0.440726 0.897642i \(-0.645279\pi\)
−0.440726 + 0.897642i \(0.645279\pi\)
\(564\) 0 0
\(565\) 12258.0 0.912742
\(566\) 0 0
\(567\) 19637.8 1791.58i 1.45451 0.132697i
\(568\) 0 0
\(569\) 24159.5i 1.78000i −0.455962 0.889999i \(-0.650705\pi\)
0.455962 0.889999i \(-0.349295\pi\)
\(570\) 0 0
\(571\) 14791.5i 1.08408i 0.840354 + 0.542038i \(0.182347\pi\)
−0.840354 + 0.542038i \(0.817653\pi\)
\(572\) 0 0
\(573\) −8752.08 3394.15i −0.638086 0.247457i
\(574\) 0 0
\(575\) 34111.7 2.47401
\(576\) 0 0
\(577\) −678.760 −0.0489725 −0.0244863 0.999700i \(-0.507795\pi\)
−0.0244863 + 0.999700i \(0.507795\pi\)
\(578\) 0 0
\(579\) −12585.8 4880.92i −0.903367 0.350335i
\(580\) 0 0
\(581\) 21163.5i 1.51120i
\(582\) 0 0
\(583\) 3901.15i 0.277134i
\(584\) 0 0
\(585\) 4488.02 4916.11i 0.317191 0.347446i
\(586\) 0 0
\(587\) −17118.7 −1.20368 −0.601842 0.798615i \(-0.705566\pi\)
−0.601842 + 0.798615i \(0.705566\pi\)
\(588\) 0 0
\(589\) 2306.94 0.161385
\(590\) 0 0
\(591\) −1078.13 + 2780.03i −0.0750392 + 0.193494i
\(592\) 0 0
\(593\) 1677.81i 0.116188i −0.998311 0.0580939i \(-0.981498\pi\)
0.998311 0.0580939i \(-0.0185023\pi\)
\(594\) 0 0
\(595\) 780.513i 0.0537780i
\(596\) 0 0
\(597\) 9972.65 25715.3i 0.683674 1.76291i
\(598\) 0 0
\(599\) 26951.4 1.83841 0.919203 0.393783i \(-0.128834\pi\)
0.919203 + 0.393783i \(0.128834\pi\)
\(600\) 0 0
\(601\) −10467.5 −0.710448 −0.355224 0.934781i \(-0.615595\pi\)
−0.355224 + 0.934781i \(0.615595\pi\)
\(602\) 0 0
\(603\) 621.500 680.781i 0.0419725 0.0459761i
\(604\) 0 0
\(605\) 23568.8i 1.58382i
\(606\) 0 0
\(607\) 10455.4i 0.699131i 0.936912 + 0.349566i \(0.113671\pi\)
−0.936912 + 0.349566i \(0.886329\pi\)
\(608\) 0 0
\(609\) −4323.70 1676.77i −0.287693 0.111570i
\(610\) 0 0
\(611\) −389.062 −0.0257607
\(612\) 0 0
\(613\) 3808.84 0.250959 0.125479 0.992096i \(-0.459953\pi\)
0.125479 + 0.992096i \(0.459953\pi\)
\(614\) 0 0
\(615\) −29692.5 11515.1i −1.94686 0.755012i
\(616\) 0 0
\(617\) 23475.0i 1.53171i −0.643012 0.765856i \(-0.722316\pi\)
0.643012 0.765856i \(-0.277684\pi\)
\(618\) 0 0
\(619\) 3890.94i 0.252650i −0.991989 0.126325i \(-0.959682\pi\)
0.991989 0.126325i \(-0.0403181\pi\)
\(620\) 0 0
\(621\) 9071.10 + 18266.0i 0.586169 + 1.18034i
\(622\) 0 0
\(623\) 31068.7 1.99798
\(624\) 0 0
\(625\) 10107.7 0.646893
\(626\) 0 0
\(627\) −550.560 + 1419.66i −0.0350674 + 0.0904240i
\(628\) 0 0
\(629\) 597.077i 0.0378490i
\(630\) 0 0
\(631\) 28914.1i 1.82417i 0.410003 + 0.912084i \(0.365528\pi\)
−0.410003 + 0.912084i \(0.634472\pi\)
\(632\) 0 0
\(633\) 2808.68 7242.41i 0.176359 0.454755i
\(634\) 0 0
\(635\) 34616.8 2.16335
\(636\) 0 0
\(637\) 5053.04 0.314299
\(638\) 0 0
\(639\) 10656.4 + 9728.49i 0.659721 + 0.602274i
\(640\) 0 0
\(641\) 18809.5i 1.15902i −0.814966 0.579509i \(-0.803244\pi\)
0.814966 0.579509i \(-0.196756\pi\)
\(642\) 0 0
\(643\) 23057.2i 1.41413i −0.707148 0.707066i \(-0.750018\pi\)
0.707148 0.707066i \(-0.249982\pi\)
\(644\) 0 0
\(645\) 28105.1 + 10899.5i 1.71572 + 0.665374i
\(646\) 0 0
\(647\) −27308.1 −1.65934 −0.829670 0.558254i \(-0.811471\pi\)
−0.829670 + 0.558254i \(0.811471\pi\)
\(648\) 0 0
\(649\) 7187.51 0.434722
\(650\) 0 0
\(651\) −9690.18 3757.95i −0.583392 0.226246i
\(652\) 0 0
\(653\) 13032.8i 0.781028i 0.920597 + 0.390514i \(0.127703\pi\)
−0.920597 + 0.390514i \(0.872297\pi\)
\(654\) 0 0
\(655\) 42732.2i 2.54914i
\(656\) 0 0
\(657\) 14572.8 + 13303.9i 0.865359 + 0.790005i
\(658\) 0 0
\(659\) 14776.2 0.873441 0.436720 0.899597i \(-0.356140\pi\)
0.436720 + 0.899597i \(0.356140\pi\)
\(660\) 0 0
\(661\) −32520.4 −1.91361 −0.956806 0.290726i \(-0.906103\pi\)
−0.956806 + 0.290726i \(0.906103\pi\)
\(662\) 0 0
\(663\) 37.1612 95.8231i 0.00217681 0.00561306i
\(664\) 0 0
\(665\) 16004.4i 0.933269i
\(666\) 0 0
\(667\) 4796.20i 0.278425i
\(668\) 0 0
\(669\) 3788.96 9770.14i 0.218968 0.564627i
\(670\) 0 0
\(671\) −840.863 −0.0483773
\(672\) 0 0
\(673\) −5999.36 −0.343623 −0.171811 0.985130i \(-0.554962\pi\)
−0.171811 + 0.985130i \(0.554962\pi\)
\(674\) 0 0
\(675\) 14643.1 + 29486.0i 0.834984 + 1.68136i
\(676\) 0 0
\(677\) 17024.7i 0.966485i 0.875486 + 0.483243i \(0.160541\pi\)
−0.875486 + 0.483243i \(0.839459\pi\)
\(678\) 0 0
\(679\) 45050.5i 2.54621i
\(680\) 0 0
\(681\) −16406.5 6362.60i −0.923196 0.358025i
\(682\) 0 0
\(683\) 5330.85 0.298652 0.149326 0.988788i \(-0.452290\pi\)
0.149326 + 0.988788i \(0.452290\pi\)
\(684\) 0 0
\(685\) −29324.0 −1.63564
\(686\) 0 0
\(687\) 6328.27 + 2454.17i 0.351439 + 0.136292i
\(688\) 0 0
\(689\) 5399.30i 0.298544i
\(690\) 0 0
\(691\) 17083.2i 0.940486i −0.882537 0.470243i \(-0.844166\pi\)
0.882537 0.470243i \(-0.155834\pi\)
\(692\) 0 0
\(693\) 4625.19 5066.36i 0.253530 0.277713i
\(694\) 0 0
\(695\) −14181.3 −0.773998
\(696\) 0 0
\(697\) −491.714 −0.0267216
\(698\) 0 0
\(699\) 1814.23 4678.13i 0.0981693 0.253137i
\(700\) 0 0
\(701\) 6292.35i 0.339028i 0.985528 + 0.169514i \(0.0542198\pi\)
−0.985528 + 0.169514i \(0.945780\pi\)
\(702\) 0 0
\(703\) 12243.0i 0.656836i
\(704\) 0 0
\(705\) 1066.35 2749.66i 0.0569660 0.146891i
\(706\) 0 0
\(707\) −30172.2 −1.60501
\(708\) 0 0
\(709\) 5829.62 0.308795 0.154398 0.988009i \(-0.450656\pi\)
0.154398 + 0.988009i \(0.450656\pi\)
\(710\) 0 0
\(711\) 14288.8 15651.7i 0.753688 0.825578i
\(712\) 0 0
\(713\) 10749.1i 0.564598i
\(714\) 0 0
\(715\) 2315.73i 0.121124i
\(716\) 0 0
\(717\) 23838.8 + 9244.92i 1.24167 + 0.481531i
\(718\) 0 0
\(719\) −27748.6 −1.43929 −0.719644 0.694343i \(-0.755695\pi\)
−0.719644 + 0.694343i \(0.755695\pi\)
\(720\) 0 0
\(721\) −35657.8 −1.84184
\(722\) 0 0
\(723\) 3012.45 + 1168.26i 0.154958 + 0.0600942i
\(724\) 0 0
\(725\) 7742.31i 0.396610i
\(726\) 0 0
\(727\) 26119.3i 1.33248i 0.745739 + 0.666238i \(0.232097\pi\)
−0.745739 + 0.666238i \(0.767903\pi\)
\(728\) 0 0
\(729\) −11895.1 + 15682.1i −0.604334 + 0.796731i
\(730\) 0 0
\(731\) 465.426 0.0235491
\(732\) 0 0
\(733\) 29497.8 1.48639 0.743196 0.669073i \(-0.233309\pi\)
0.743196 + 0.669073i \(0.233309\pi\)
\(734\) 0 0
\(735\) −13849.5 + 35711.9i −0.695027 + 1.79218i
\(736\) 0 0
\(737\) 320.682i 0.0160278i
\(738\) 0 0
\(739\) 3129.82i 0.155795i 0.996961 + 0.0778974i \(0.0248207\pi\)
−0.996961 + 0.0778974i \(0.975179\pi\)
\(740\) 0 0
\(741\) 761.990 1964.85i 0.0377765 0.0974097i
\(742\) 0 0
\(743\) −22557.0 −1.11378 −0.556889 0.830587i \(-0.688005\pi\)
−0.556889 + 0.830587i \(0.688005\pi\)
\(744\) 0 0
\(745\) −43778.6 −2.15292
\(746\) 0 0
\(747\) −15601.1 14242.6i −0.764141 0.697601i
\(748\) 0 0
\(749\) 49308.4i 2.40546i
\(750\) 0 0
\(751\) 26473.3i 1.28632i −0.765733 0.643158i \(-0.777624\pi\)
0.765733 0.643158i \(-0.222376\pi\)
\(752\) 0 0
\(753\) 21864.4 + 8479.23i 1.05814 + 0.410359i
\(754\) 0 0
\(755\) −35987.5 −1.73473
\(756\) 0 0
\(757\) 19518.6 0.937142 0.468571 0.883426i \(-0.344769\pi\)
0.468571 + 0.883426i \(0.344769\pi\)
\(758\) 0 0
\(759\) 6614.88 + 2565.32i 0.316344 + 0.122681i
\(760\) 0 0
\(761\) 127.754i 0.00608553i −0.999995 0.00304276i \(-0.999031\pi\)
0.999995 0.00304276i \(-0.000968544\pi\)
\(762\) 0 0
\(763\) 54150.5i 2.56930i
\(764\) 0 0
\(765\) 575.370 + 525.267i 0.0271929 + 0.0248249i
\(766\) 0 0
\(767\) −9947.70 −0.468306
\(768\) 0 0
\(769\) 7997.51 0.375030 0.187515 0.982262i \(-0.439957\pi\)
0.187515 + 0.982262i \(0.439957\pi\)
\(770\) 0 0
\(771\) −7206.28 + 18581.9i −0.336612 + 0.867980i
\(772\) 0 0
\(773\) 36122.3i 1.68076i 0.541995 + 0.840382i \(0.317669\pi\)
−0.541995 + 0.840382i \(0.682331\pi\)
\(774\) 0 0
\(775\) 17351.9i 0.804257i
\(776\) 0 0
\(777\) −19943.6 + 51426.2i −0.920815 + 2.37439i
\(778\) 0 0
\(779\) −10082.6 −0.463730
\(780\) 0 0
\(781\) 5019.71 0.229986
\(782\) 0 0
\(783\) 4145.82 2058.86i 0.189220 0.0939690i
\(784\) 0 0
\(785\) 29183.2i 1.32687i
\(786\) 0 0
\(787\) 36951.4i 1.67367i 0.547458 + 0.836833i \(0.315595\pi\)
−0.547458 + 0.836833i \(0.684405\pi\)
\(788\) 0 0
\(789\) 11122.7 + 4313.50i 0.501874 + 0.194632i
\(790\) 0 0
\(791\) −17484.0 −0.785915
\(792\) 0 0
\(793\) 1163.78 0.0521147
\(794\) 0 0
\(795\) −38159.1 14798.5i −1.70234 0.660187i
\(796\) 0 0
\(797\) 7249.80i 0.322210i −0.986937 0.161105i \(-0.948494\pi\)
0.986937 0.161105i \(-0.0515057\pi\)
\(798\) 0 0
\(799\) 45.5349i 0.00201616i
\(800\) 0 0
\(801\) −20908.5 + 22902.9i −0.922305 + 1.01028i
\(802\) 0 0
\(803\) 6864.53 0.301674
\(804\) 0 0
\(805\) −74572.0 −3.26499
\(806\) 0 0
\(807\) 8139.47 20988.3i 0.355047 0.915517i
\(808\) 0 0
\(809\) 8810.75i 0.382904i −0.981502 0.191452i \(-0.938680\pi\)
0.981502 0.191452i \(-0.0613196\pi\)
\(810\) 0 0
\(811\) 1190.22i 0.0515344i −0.999668 0.0257672i \(-0.991797\pi\)
0.999668 0.0257672i \(-0.00820286\pi\)
\(812\) 0 0
\(813\) −14491.0 + 37366.2i −0.625120 + 1.61192i
\(814\) 0 0
\(815\) 74590.7 3.20589
\(816\) 0 0
\(817\) 9543.56 0.408674
\(818\) 0 0
\(819\) −6401.39 + 7011.98i −0.273117 + 0.299168i
\(820\) 0 0
\(821\) 22524.3i 0.957497i 0.877952 + 0.478749i \(0.158909\pi\)
−0.877952 + 0.478749i \(0.841091\pi\)
\(822\) 0 0
\(823\) 11724.0i 0.496564i −0.968688 0.248282i \(-0.920134\pi\)
0.968688 0.248282i \(-0.0798659\pi\)
\(824\) 0 0
\(825\) 10678.1 + 4141.09i 0.450624 + 0.174757i
\(826\) 0 0
\(827\) 41525.1 1.74603 0.873017 0.487689i \(-0.162160\pi\)
0.873017 + 0.487689i \(0.162160\pi\)
\(828\) 0 0
\(829\) 10398.6 0.435657 0.217828 0.975987i \(-0.430103\pi\)
0.217828 + 0.975987i \(0.430103\pi\)
\(830\) 0 0
\(831\) 3426.30 + 1328.76i 0.143029 + 0.0554682i
\(832\) 0 0
\(833\) 591.396i 0.0245986i
\(834\) 0 0
\(835\) 5212.03i 0.216012i
\(836\) 0 0
\(837\) 9291.52 4614.28i 0.383706 0.190553i
\(838\) 0 0
\(839\) −12481.7 −0.513606 −0.256803 0.966464i \(-0.582669\pi\)
−0.256803 + 0.966464i \(0.582669\pi\)
\(840\) 0 0
\(841\) 23300.4 0.955366
\(842\) 0 0
\(843\) −15867.8 + 40916.3i −0.648297 + 1.67169i
\(844\) 0 0
\(845\) 3205.03i 0.130481i
\(846\) 0 0
\(847\) 33616.9i 1.36374i
\(848\) 0 0
\(849\) 9914.79 25566.1i 0.400795 1.03348i
\(850\) 0 0
\(851\) −57046.1 −2.29790
\(852\) 0 0
\(853\) −41076.9 −1.64882 −0.824411 0.565991i \(-0.808494\pi\)
−0.824411 + 0.565991i \(0.808494\pi\)
\(854\) 0 0
\(855\) 11797.9 + 10770.6i 0.471908 + 0.430815i
\(856\) 0 0
\(857\) 4204.50i 0.167588i −0.996483 0.0837941i \(-0.973296\pi\)
0.996483 0.0837941i \(-0.0267038\pi\)
\(858\) 0 0
\(859\) 27745.2i 1.10204i −0.834491 0.551021i \(-0.814238\pi\)
0.834491 0.551021i \(-0.185762\pi\)
\(860\) 0 0
\(861\) 42351.3 + 16424.3i 1.67634 + 0.650101i
\(862\) 0 0
\(863\) 25148.1 0.991947 0.495973 0.868338i \(-0.334811\pi\)
0.495973 + 0.868338i \(0.334811\pi\)
\(864\) 0 0
\(865\) 20610.4 0.810142
\(866\) 0 0
\(867\) −23790.3 9226.13i −0.931905 0.361402i
\(868\) 0 0
\(869\) 7372.74i 0.287806i
\(870\) 0 0
\(871\) 443.832i 0.0172660i
\(872\) 0 0
\(873\) 33209.8 + 30318.0i 1.28749 + 1.17538i
\(874\) 0 0
\(875\) −56254.6 −2.17343
\(876\) 0 0
\(877\) −20440.5 −0.787033 −0.393516 0.919318i \(-0.628742\pi\)
−0.393516 + 0.919318i \(0.628742\pi\)
\(878\) 0 0
\(879\) −4739.33 + 12220.7i −0.181859 + 0.468937i
\(880\) 0 0
\(881\) 16071.5i 0.614601i −0.951613 0.307300i \(-0.900574\pi\)
0.951613 0.307300i \(-0.0994256\pi\)
\(882\) 0 0
\(883\) 49484.4i 1.88594i 0.332880 + 0.942969i \(0.391980\pi\)
−0.332880 + 0.942969i \(0.608020\pi\)
\(884\) 0 0
\(885\) 27264.8 70304.5i 1.03559 2.67035i
\(886\) 0 0
\(887\) −27463.0 −1.03959 −0.519796 0.854290i \(-0.673992\pi\)
−0.519796 + 0.854290i \(0.673992\pi\)
\(888\) 0 0
\(889\) −49374.9 −1.86274
\(890\) 0 0
\(891\) 622.113 + 6819.09i 0.0233912 + 0.256395i
\(892\) 0 0
\(893\) 933.693i 0.0349886i
\(894\) 0 0
\(895\) 13844.3i 0.517055i
\(896\) 0 0
\(897\) −9155.17 3550.47i −0.340783 0.132159i
\(898\) 0 0
\(899\) −2439.72 −0.0905110
\(900\) 0 0
\(901\) −631.921 −0.0233655
\(902\) 0 0
\(903\) −40087.1 15546.2i −1.47732 0.572919i
\(904\) 0 0
\(905\) 34993.7i 1.28534i
\(906\) 0 0
\(907\) 32344.3i 1.18410i 0.805903 + 0.592048i \(0.201681\pi\)
−0.805903 + 0.592048i \(0.798319\pi\)
\(908\) 0 0
\(909\) 20305.2 22242.0i 0.740905 0.811575i
\(910\) 0 0
\(911\) −27199.1 −0.989182 −0.494591 0.869126i \(-0.664682\pi\)
−0.494591 + 0.869126i \(0.664682\pi\)
\(912\) 0 0
\(913\) −7348.88 −0.266388
\(914\) 0 0
\(915\) −3189.70 + 8224.89i −0.115244 + 0.297166i
\(916\) 0 0
\(917\) 60950.1i 2.19493i
\(918\) 0 0
\(919\) 34349.3i 1.23295i 0.787376 + 0.616473i \(0.211439\pi\)
−0.787376 + 0.616473i \(0.788561\pi\)
\(920\) 0 0
\(921\) −6569.57 + 16940.1i −0.235043 + 0.606077i
\(922\) 0 0
\(923\) −6947.41 −0.247754
\(924\) 0 0
\(925\) −92087.3 −3.27331
\(926\) 0 0
\(927\) 23996.9 26285.8i 0.850228 0.931326i
\(928\) 0 0
\(929\) 13372.2i 0.472256i −0.971722 0.236128i \(-0.924121\pi\)
0.971722 0.236128i \(-0.0758785\pi\)
\(930\) 0 0
\(931\) 12126.6i 0.426887i
\(932\) 0 0
\(933\) 20059.2 + 7779.15i 0.703866 + 0.272967i
\(934\) 0 0
\(935\) 271.028 0.00947973
\(936\) 0 0
\(937\) 14249.6 0.496812 0.248406 0.968656i \(-0.420093\pi\)
0.248406 + 0.968656i \(0.420093\pi\)
\(938\) 0 0
\(939\) 43426.9 + 16841.4i 1.50925 + 0.585302i
\(940\) 0 0
\(941\) 41885.8i 1.45105i 0.688196 + 0.725525i \(0.258403\pi\)
−0.688196 + 0.725525i \(0.741597\pi\)
\(942\) 0 0
\(943\) 46979.5i 1.62234i
\(944\) 0 0
\(945\) −32011.5 64459.8i −1.10194 2.21892i
\(946\) 0 0
\(947\) −8510.92 −0.292046 −0.146023 0.989281i \(-0.546647\pi\)
−0.146023 + 0.989281i \(0.546647\pi\)
\(948\) 0 0
\(949\) −9500.70 −0.324980
\(950\) 0 0
\(951\) −8177.43 + 21086.1i −0.278834 + 0.718996i
\(952\) 0 0
\(953\) 2613.59i 0.0888379i 0.999013 + 0.0444190i \(0.0141436\pi\)
−0.999013 + 0.0444190i \(0.985856\pi\)
\(954\) 0 0
\(955\) 34260.9i 1.16090i
\(956\) 0 0
\(957\) 582.248 1501.37i 0.0196671 0.0507132i
\(958\) 0 0
\(959\) 41825.6 1.40836
\(960\) 0 0
\(961\) 24323.1 0.816459
\(962\) 0 0
\(963\) 36348.6 + 33183.4i 1.21632 + 1.11041i
\(964\) 0 0
\(965\) 49268.5i 1.64353i
\(966\) 0 0
\(967\) 10938.7i 0.363768i 0.983320 + 0.181884i \(0.0582195\pi\)
−0.983320 + 0.181884i \(0.941780\pi\)
\(968\) 0 0
\(969\) 229.962 + 89.1815i 0.00762377 + 0.00295658i
\(970\) 0 0
\(971\) −13458.2 −0.444794 −0.222397 0.974956i \(-0.571388\pi\)
−0.222397 + 0.974956i \(0.571388\pi\)
\(972\) 0 0
\(973\) 20227.2 0.666449
\(974\) 0 0
\(975\) −14778.8 5731.38i −0.485437 0.188258i
\(976\) 0 0
\(977\) 16556.3i 0.542153i −0.962558 0.271076i \(-0.912620\pi\)
0.962558 0.271076i \(-0.0873796\pi\)
\(978\) 0 0
\(979\) 10788.4i 0.352194i
\(980\) 0 0
\(981\) 39918.1 + 36442.1i 1.29917 + 1.18604i
\(982\) 0 0
\(983\) 42411.4 1.37611 0.688054 0.725659i \(-0.258465\pi\)
0.688054 + 0.725659i \(0.258465\pi\)
\(984\) 0 0
\(985\) 10882.7 0.352033
\(986\) 0 0
\(987\) −1520.96 + 3921.92i −0.0490504 + 0.126480i
\(988\) 0 0
\(989\) 44467.9i 1.42973i
\(990\) 0 0
\(991\) 19264.9i 0.617526i −0.951139 0.308763i \(-0.900085\pi\)
0.951139 0.308763i \(-0.0999150\pi\)
\(992\) 0 0
\(993\) 618.876 1595.82i 0.0197779 0.0509988i
\(994\) 0 0
\(995\) −100665. −3.20733
\(996\) 0 0
\(997\) 20315.1 0.645323 0.322661 0.946514i \(-0.395423\pi\)
0.322661 + 0.946514i \(0.395423\pi\)
\(998\) 0 0
\(999\) −24488.2 49310.5i −0.775547 1.56168i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.4.d.b.287.1 12
3.2 odd 2 inner 624.4.d.b.287.11 yes 12
4.3 odd 2 inner 624.4.d.b.287.12 yes 12
12.11 even 2 inner 624.4.d.b.287.2 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
624.4.d.b.287.1 12 1.1 even 1 trivial
624.4.d.b.287.2 yes 12 12.11 even 2 inner
624.4.d.b.287.11 yes 12 3.2 odd 2 inner
624.4.d.b.287.12 yes 12 4.3 odd 2 inner