Properties

Label 624.4.d.b.287.6
Level $624$
Weight $4$
Character 624.287
Analytic conductor $36.817$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,4,Mod(287,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.287");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8171918436\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 120x^{10} + 5196x^{8} + 96803x^{6} + 702900x^{4} + 976752x^{2} + 254016 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 287.6
Root \(-1.16673i\) of defining polynomial
Character \(\chi\) \(=\) 624.287
Dual form 624.4.d.b.287.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.28065 + 4.66890i) q^{3} -4.73978i q^{5} -12.5922i q^{7} +(-16.5973 - 21.2962i) q^{9} -56.4872 q^{11} -13.0000 q^{13} +(22.1296 + 10.8098i) q^{15} -33.1129i q^{17} +65.5448i q^{19} +(58.7919 + 28.7184i) q^{21} +21.2486 q^{23} +102.534 q^{25} +(137.283 - 28.9218i) q^{27} +81.2014i q^{29} +235.197i q^{31} +(128.828 - 263.733i) q^{33} -59.6844 q^{35} +139.781 q^{37} +(29.6484 - 60.6957i) q^{39} -332.576i q^{41} +133.819i q^{43} +(-100.940 + 78.6676i) q^{45} +286.498 q^{47} +184.436 q^{49} +(154.601 + 75.5190i) q^{51} -52.6315i q^{53} +267.737i q^{55} +(-306.022 - 149.485i) q^{57} +119.958 q^{59} -376.581 q^{61} +(-268.167 + 208.997i) q^{63} +61.6172i q^{65} +487.985i q^{67} +(-48.4606 + 99.2076i) q^{69} +466.446 q^{71} +461.463 q^{73} +(-233.845 + 478.723i) q^{75} +711.300i q^{77} +533.857i q^{79} +(-178.060 + 706.920i) q^{81} +897.316 q^{83} -156.948 q^{85} +(-379.121 - 185.192i) q^{87} +1511.73i q^{89} +163.699i q^{91} +(-1098.11 - 536.401i) q^{93} +310.668 q^{95} +47.3252 q^{97} +(937.535 + 1202.97i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 54 q^{9} - 156 q^{13} - 54 q^{21} - 408 q^{25} - 360 q^{33} + 636 q^{37} - 810 q^{45} + 336 q^{49} - 1260 q^{57} + 960 q^{61} - 252 q^{69} + 3216 q^{73} - 2538 q^{81} + 2196 q^{85} - 1116 q^{93}+ \cdots + 4800 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.28065 + 4.66890i −0.438911 + 0.898531i
\(4\) 0 0
\(5\) 4.73978i 0.423939i −0.977276 0.211970i \(-0.932012\pi\)
0.977276 0.211970i \(-0.0679878\pi\)
\(6\) 0 0
\(7\) 12.5922i 0.679916i −0.940441 0.339958i \(-0.889587\pi\)
0.940441 0.339958i \(-0.110413\pi\)
\(8\) 0 0
\(9\) −16.5973 21.2962i −0.614714 0.788750i
\(10\) 0 0
\(11\) −56.4872 −1.54832 −0.774161 0.632989i \(-0.781828\pi\)
−0.774161 + 0.632989i \(0.781828\pi\)
\(12\) 0 0
\(13\) −13.0000 −0.277350
\(14\) 0 0
\(15\) 22.1296 + 10.8098i 0.380922 + 0.186072i
\(16\) 0 0
\(17\) 33.1129i 0.472416i −0.971703 0.236208i \(-0.924095\pi\)
0.971703 0.236208i \(-0.0759046\pi\)
\(18\) 0 0
\(19\) 65.5448i 0.791421i 0.918375 + 0.395711i \(0.129502\pi\)
−0.918375 + 0.395711i \(0.870498\pi\)
\(20\) 0 0
\(21\) 58.7919 + 28.7184i 0.610925 + 0.298423i
\(22\) 0 0
\(23\) 21.2486 0.192637 0.0963183 0.995351i \(-0.469293\pi\)
0.0963183 + 0.995351i \(0.469293\pi\)
\(24\) 0 0
\(25\) 102.534 0.820276
\(26\) 0 0
\(27\) 137.283 28.9218i 0.978521 0.206148i
\(28\) 0 0
\(29\) 81.2014i 0.519956i 0.965615 + 0.259978i \(0.0837153\pi\)
−0.965615 + 0.259978i \(0.916285\pi\)
\(30\) 0 0
\(31\) 235.197i 1.36266i 0.731975 + 0.681332i \(0.238599\pi\)
−0.731975 + 0.681332i \(0.761401\pi\)
\(32\) 0 0
\(33\) 128.828 263.733i 0.679576 1.39121i
\(34\) 0 0
\(35\) −59.6844 −0.288243
\(36\) 0 0
\(37\) 139.781 0.621076 0.310538 0.950561i \(-0.399491\pi\)
0.310538 + 0.950561i \(0.399491\pi\)
\(38\) 0 0
\(39\) 29.6484 60.6957i 0.121732 0.249208i
\(40\) 0 0
\(41\) 332.576i 1.26682i −0.773816 0.633410i \(-0.781655\pi\)
0.773816 0.633410i \(-0.218345\pi\)
\(42\) 0 0
\(43\) 133.819i 0.474586i 0.971438 + 0.237293i \(0.0762601\pi\)
−0.971438 + 0.237293i \(0.923740\pi\)
\(44\) 0 0
\(45\) −100.940 + 78.6676i −0.334382 + 0.260601i
\(46\) 0 0
\(47\) 286.498 0.889148 0.444574 0.895742i \(-0.353355\pi\)
0.444574 + 0.895742i \(0.353355\pi\)
\(48\) 0 0
\(49\) 184.436 0.537714
\(50\) 0 0
\(51\) 154.601 + 75.5190i 0.424480 + 0.207348i
\(52\) 0 0
\(53\) 52.6315i 0.136406i −0.997671 0.0682028i \(-0.978274\pi\)
0.997671 0.0682028i \(-0.0217265\pi\)
\(54\) 0 0
\(55\) 267.737i 0.656394i
\(56\) 0 0
\(57\) −306.022 149.485i −0.711116 0.347363i
\(58\) 0 0
\(59\) 119.958 0.264698 0.132349 0.991203i \(-0.457748\pi\)
0.132349 + 0.991203i \(0.457748\pi\)
\(60\) 0 0
\(61\) −376.581 −0.790431 −0.395215 0.918589i \(-0.629330\pi\)
−0.395215 + 0.918589i \(0.629330\pi\)
\(62\) 0 0
\(63\) −268.167 + 208.997i −0.536284 + 0.417954i
\(64\) 0 0
\(65\) 61.6172i 0.117580i
\(66\) 0 0
\(67\) 487.985i 0.889803i 0.895579 + 0.444902i \(0.146761\pi\)
−0.895579 + 0.444902i \(0.853239\pi\)
\(68\) 0 0
\(69\) −48.4606 + 99.2076i −0.0845503 + 0.173090i
\(70\) 0 0
\(71\) 466.446 0.779675 0.389838 0.920884i \(-0.372531\pi\)
0.389838 + 0.920884i \(0.372531\pi\)
\(72\) 0 0
\(73\) 461.463 0.739865 0.369933 0.929059i \(-0.379381\pi\)
0.369933 + 0.929059i \(0.379381\pi\)
\(74\) 0 0
\(75\) −233.845 + 478.723i −0.360028 + 0.737043i
\(76\) 0 0
\(77\) 711.300i 1.05273i
\(78\) 0 0
\(79\) 533.857i 0.760299i 0.924925 + 0.380150i \(0.124127\pi\)
−0.924925 + 0.380150i \(0.875873\pi\)
\(80\) 0 0
\(81\) −178.060 + 706.920i −0.244253 + 0.969712i
\(82\) 0 0
\(83\) 897.316 1.18667 0.593333 0.804957i \(-0.297812\pi\)
0.593333 + 0.804957i \(0.297812\pi\)
\(84\) 0 0
\(85\) −156.948 −0.200275
\(86\) 0 0
\(87\) −379.121 185.192i −0.467196 0.228214i
\(88\) 0 0
\(89\) 1511.73i 1.80049i 0.435388 + 0.900243i \(0.356611\pi\)
−0.435388 + 0.900243i \(0.643389\pi\)
\(90\) 0 0
\(91\) 163.699i 0.188575i
\(92\) 0 0
\(93\) −1098.11 536.401i −1.22440 0.598088i
\(94\) 0 0
\(95\) 310.668 0.335515
\(96\) 0 0
\(97\) 47.3252 0.0495376 0.0247688 0.999693i \(-0.492115\pi\)
0.0247688 + 0.999693i \(0.492115\pi\)
\(98\) 0 0
\(99\) 937.535 + 1202.97i 0.951775 + 1.22124i
\(100\) 0 0
\(101\) 971.101i 0.956714i 0.878165 + 0.478357i \(0.158768\pi\)
−0.878165 + 0.478357i \(0.841232\pi\)
\(102\) 0 0
\(103\) 1307.84i 1.25112i 0.780175 + 0.625562i \(0.215130\pi\)
−0.780175 + 0.625562i \(0.784870\pi\)
\(104\) 0 0
\(105\) 136.119 278.661i 0.126513 0.258995i
\(106\) 0 0
\(107\) 743.046 0.671336 0.335668 0.941980i \(-0.391038\pi\)
0.335668 + 0.941980i \(0.391038\pi\)
\(108\) 0 0
\(109\) −1489.02 −1.30846 −0.654231 0.756295i \(-0.727008\pi\)
−0.654231 + 0.756295i \(0.727008\pi\)
\(110\) 0 0
\(111\) −318.791 + 652.623i −0.272597 + 0.558056i
\(112\) 0 0
\(113\) 2207.42i 1.83767i −0.394638 0.918836i \(-0.629130\pi\)
0.394638 0.918836i \(-0.370870\pi\)
\(114\) 0 0
\(115\) 100.714i 0.0816662i
\(116\) 0 0
\(117\) 215.765 + 276.851i 0.170491 + 0.218760i
\(118\) 0 0
\(119\) −416.965 −0.321203
\(120\) 0 0
\(121\) 1859.81 1.39730
\(122\) 0 0
\(123\) 1552.76 + 758.489i 1.13828 + 0.556022i
\(124\) 0 0
\(125\) 1078.46i 0.771686i
\(126\) 0 0
\(127\) 448.045i 0.313052i −0.987674 0.156526i \(-0.949971\pi\)
0.987674 0.156526i \(-0.0500294\pi\)
\(128\) 0 0
\(129\) −624.787 305.194i −0.426430 0.208301i
\(130\) 0 0
\(131\) −2490.66 −1.66115 −0.830573 0.556909i \(-0.811987\pi\)
−0.830573 + 0.556909i \(0.811987\pi\)
\(132\) 0 0
\(133\) 825.354 0.538100
\(134\) 0 0
\(135\) −137.083 650.690i −0.0873944 0.414833i
\(136\) 0 0
\(137\) 843.526i 0.526039i −0.964791 0.263019i \(-0.915282\pi\)
0.964791 0.263019i \(-0.0847183\pi\)
\(138\) 0 0
\(139\) 1573.93i 0.960426i 0.877152 + 0.480213i \(0.159441\pi\)
−0.877152 + 0.480213i \(0.840559\pi\)
\(140\) 0 0
\(141\) −653.400 + 1337.63i −0.390257 + 0.798927i
\(142\) 0 0
\(143\) 734.334 0.429427
\(144\) 0 0
\(145\) 384.877 0.220430
\(146\) 0 0
\(147\) −420.634 + 861.113i −0.236009 + 0.483152i
\(148\) 0 0
\(149\) 1266.77i 0.696498i 0.937402 + 0.348249i \(0.113224\pi\)
−0.937402 + 0.348249i \(0.886776\pi\)
\(150\) 0 0
\(151\) 333.612i 0.179794i −0.995951 0.0898972i \(-0.971346\pi\)
0.995951 0.0898972i \(-0.0286539\pi\)
\(152\) 0 0
\(153\) −705.181 + 549.585i −0.372618 + 0.290401i
\(154\) 0 0
\(155\) 1114.78 0.577687
\(156\) 0 0
\(157\) 3007.54 1.52884 0.764420 0.644718i \(-0.223025\pi\)
0.764420 + 0.644718i \(0.223025\pi\)
\(158\) 0 0
\(159\) 245.731 + 120.034i 0.122565 + 0.0598699i
\(160\) 0 0
\(161\) 267.567i 0.130977i
\(162\) 0 0
\(163\) 471.180i 0.226415i 0.993571 + 0.113208i \(0.0361125\pi\)
−0.993571 + 0.113208i \(0.963887\pi\)
\(164\) 0 0
\(165\) −1250.04 610.615i −0.589790 0.288099i
\(166\) 0 0
\(167\) −3229.01 −1.49622 −0.748109 0.663576i \(-0.769038\pi\)
−0.748109 + 0.663576i \(0.769038\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 1395.86 1087.87i 0.624233 0.486498i
\(172\) 0 0
\(173\) 867.551i 0.381264i −0.981662 0.190632i \(-0.938946\pi\)
0.981662 0.190632i \(-0.0610537\pi\)
\(174\) 0 0
\(175\) 1291.14i 0.557719i
\(176\) 0 0
\(177\) −273.582 + 560.071i −0.116179 + 0.237839i
\(178\) 0 0
\(179\) 1444.75 0.603272 0.301636 0.953423i \(-0.402467\pi\)
0.301636 + 0.953423i \(0.402467\pi\)
\(180\) 0 0
\(181\) 4377.66 1.79773 0.898864 0.438227i \(-0.144394\pi\)
0.898864 + 0.438227i \(0.144394\pi\)
\(182\) 0 0
\(183\) 858.849 1758.22i 0.346929 0.710226i
\(184\) 0 0
\(185\) 662.531i 0.263299i
\(186\) 0 0
\(187\) 1870.46i 0.731451i
\(188\) 0 0
\(189\) −364.190 1728.69i −0.140164 0.665312i
\(190\) 0 0
\(191\) 2307.05 0.873992 0.436996 0.899464i \(-0.356042\pi\)
0.436996 + 0.899464i \(0.356042\pi\)
\(192\) 0 0
\(193\) −809.433 −0.301887 −0.150944 0.988542i \(-0.548231\pi\)
−0.150944 + 0.988542i \(0.548231\pi\)
\(194\) 0 0
\(195\) −287.685 140.527i −0.105649 0.0516070i
\(196\) 0 0
\(197\) 254.930i 0.0921980i 0.998937 + 0.0460990i \(0.0146790\pi\)
−0.998937 + 0.0460990i \(0.985321\pi\)
\(198\) 0 0
\(199\) 4222.68i 1.50421i −0.659043 0.752105i \(-0.729039\pi\)
0.659043 0.752105i \(-0.270961\pi\)
\(200\) 0 0
\(201\) −2278.35 1112.92i −0.799515 0.390544i
\(202\) 0 0
\(203\) 1022.51 0.353526
\(204\) 0 0
\(205\) −1576.34 −0.537055
\(206\) 0 0
\(207\) −352.669 452.516i −0.118416 0.151942i
\(208\) 0 0
\(209\) 3702.44i 1.22537i
\(210\) 0 0
\(211\) 91.0781i 0.0297160i −0.999890 0.0148580i \(-0.995270\pi\)
0.999890 0.0148580i \(-0.00472962\pi\)
\(212\) 0 0
\(213\) −1063.80 + 2177.79i −0.342208 + 0.700562i
\(214\) 0 0
\(215\) 634.272 0.201195
\(216\) 0 0
\(217\) 2961.65 0.926497
\(218\) 0 0
\(219\) −1052.43 + 2154.53i −0.324735 + 0.664791i
\(220\) 0 0
\(221\) 430.468i 0.131024i
\(222\) 0 0
\(223\) 598.966i 0.179864i −0.995948 0.0899322i \(-0.971335\pi\)
0.995948 0.0899322i \(-0.0286650\pi\)
\(224\) 0 0
\(225\) −1701.79 2183.60i −0.504235 0.646992i
\(226\) 0 0
\(227\) −3843.83 −1.12389 −0.561947 0.827173i \(-0.689947\pi\)
−0.561947 + 0.827173i \(0.689947\pi\)
\(228\) 0 0
\(229\) 664.801 0.191840 0.0959198 0.995389i \(-0.469421\pi\)
0.0959198 + 0.995389i \(0.469421\pi\)
\(230\) 0 0
\(231\) −3320.99 1622.22i −0.945909 0.462054i
\(232\) 0 0
\(233\) 3381.44i 0.950754i −0.879782 0.475377i \(-0.842312\pi\)
0.879782 0.475377i \(-0.157688\pi\)
\(234\) 0 0
\(235\) 1357.94i 0.376945i
\(236\) 0 0
\(237\) −2492.53 1217.54i −0.683152 0.333704i
\(238\) 0 0
\(239\) −3153.88 −0.853587 −0.426793 0.904349i \(-0.640357\pi\)
−0.426793 + 0.904349i \(0.640357\pi\)
\(240\) 0 0
\(241\) 6192.87 1.65526 0.827630 0.561275i \(-0.189689\pi\)
0.827630 + 0.561275i \(0.189689\pi\)
\(242\) 0 0
\(243\) −2894.45 2443.58i −0.764110 0.645086i
\(244\) 0 0
\(245\) 874.187i 0.227958i
\(246\) 0 0
\(247\) 852.082i 0.219501i
\(248\) 0 0
\(249\) −2046.46 + 4189.48i −0.520841 + 1.06626i
\(250\) 0 0
\(251\) 5318.24 1.33739 0.668694 0.743537i \(-0.266853\pi\)
0.668694 + 0.743537i \(0.266853\pi\)
\(252\) 0 0
\(253\) −1200.27 −0.298263
\(254\) 0 0
\(255\) 357.944 732.775i 0.0879031 0.179954i
\(256\) 0 0
\(257\) 6217.84i 1.50918i 0.656199 + 0.754588i \(0.272163\pi\)
−0.656199 + 0.754588i \(0.727837\pi\)
\(258\) 0 0
\(259\) 1760.15i 0.422280i
\(260\) 0 0
\(261\) 1729.28 1347.72i 0.410115 0.319624i
\(262\) 0 0
\(263\) 810.725 0.190082 0.0950408 0.995473i \(-0.469702\pi\)
0.0950408 + 0.995473i \(0.469702\pi\)
\(264\) 0 0
\(265\) −249.462 −0.0578277
\(266\) 0 0
\(267\) −7058.13 3447.73i −1.61779 0.790253i
\(268\) 0 0
\(269\) 8369.06i 1.89692i 0.316900 + 0.948459i \(0.397358\pi\)
−0.316900 + 0.948459i \(0.602642\pi\)
\(270\) 0 0
\(271\) 6015.62i 1.34843i −0.738537 0.674213i \(-0.764483\pi\)
0.738537 0.674213i \(-0.235517\pi\)
\(272\) 0 0
\(273\) −764.294 373.340i −0.169440 0.0827676i
\(274\) 0 0
\(275\) −5791.89 −1.27005
\(276\) 0 0
\(277\) 1754.37 0.380542 0.190271 0.981732i \(-0.439063\pi\)
0.190271 + 0.981732i \(0.439063\pi\)
\(278\) 0 0
\(279\) 5008.81 3903.63i 1.07480 0.837649i
\(280\) 0 0
\(281\) 3709.04i 0.787413i 0.919236 + 0.393707i \(0.128807\pi\)
−0.919236 + 0.393707i \(0.871193\pi\)
\(282\) 0 0
\(283\) 2133.83i 0.448209i 0.974565 + 0.224104i \(0.0719457\pi\)
−0.974565 + 0.224104i \(0.928054\pi\)
\(284\) 0 0
\(285\) −708.525 + 1450.48i −0.147261 + 0.301470i
\(286\) 0 0
\(287\) −4187.87 −0.861332
\(288\) 0 0
\(289\) 3816.53 0.776824
\(290\) 0 0
\(291\) −107.932 + 220.957i −0.0217426 + 0.0445110i
\(292\) 0 0
\(293\) 6874.80i 1.37075i −0.728190 0.685375i \(-0.759638\pi\)
0.728190 0.685375i \(-0.240362\pi\)
\(294\) 0 0
\(295\) 568.574i 0.112216i
\(296\) 0 0
\(297\) −7754.72 + 1633.71i −1.51507 + 0.319184i
\(298\) 0 0
\(299\) −276.232 −0.0534278
\(300\) 0 0
\(301\) 1685.08 0.322678
\(302\) 0 0
\(303\) −4533.97 2214.74i −0.859637 0.419912i
\(304\) 0 0
\(305\) 1784.91i 0.335095i
\(306\) 0 0
\(307\) 3241.62i 0.602635i 0.953524 + 0.301317i \(0.0974263\pi\)
−0.953524 + 0.301317i \(0.902574\pi\)
\(308\) 0 0
\(309\) −6106.20 2982.73i −1.12417 0.549132i
\(310\) 0 0
\(311\) −6309.24 −1.15037 −0.575183 0.818025i \(-0.695069\pi\)
−0.575183 + 0.818025i \(0.695069\pi\)
\(312\) 0 0
\(313\) 3290.01 0.594129 0.297065 0.954857i \(-0.403992\pi\)
0.297065 + 0.954857i \(0.403992\pi\)
\(314\) 0 0
\(315\) 990.599 + 1271.05i 0.177187 + 0.227352i
\(316\) 0 0
\(317\) 9565.15i 1.69474i 0.531003 + 0.847370i \(0.321815\pi\)
−0.531003 + 0.847370i \(0.678185\pi\)
\(318\) 0 0
\(319\) 4586.84i 0.805059i
\(320\) 0 0
\(321\) −1694.63 + 3469.21i −0.294657 + 0.603216i
\(322\) 0 0
\(323\) 2170.38 0.373880
\(324\) 0 0
\(325\) −1332.95 −0.227503
\(326\) 0 0
\(327\) 3395.93 6952.09i 0.574299 1.17569i
\(328\) 0 0
\(329\) 3607.64i 0.604546i
\(330\) 0 0
\(331\) 4651.42i 0.772403i −0.922414 0.386201i \(-0.873787\pi\)
0.922414 0.386201i \(-0.126213\pi\)
\(332\) 0 0
\(333\) −2319.98 2976.81i −0.381784 0.489874i
\(334\) 0 0
\(335\) 2312.94 0.377222
\(336\) 0 0
\(337\) −7306.29 −1.18101 −0.590503 0.807036i \(-0.701071\pi\)
−0.590503 + 0.807036i \(0.701071\pi\)
\(338\) 0 0
\(339\) 10306.2 + 5034.36i 1.65121 + 0.806575i
\(340\) 0 0
\(341\) 13285.6i 2.10984i
\(342\) 0 0
\(343\) 6641.59i 1.04552i
\(344\) 0 0
\(345\) 470.223 + 229.693i 0.0733796 + 0.0358442i
\(346\) 0 0
\(347\) 8403.19 1.30002 0.650010 0.759926i \(-0.274765\pi\)
0.650010 + 0.759926i \(0.274765\pi\)
\(348\) 0 0
\(349\) −5089.19 −0.780568 −0.390284 0.920695i \(-0.627623\pi\)
−0.390284 + 0.920695i \(0.627623\pi\)
\(350\) 0 0
\(351\) −1784.67 + 375.984i −0.271393 + 0.0571753i
\(352\) 0 0
\(353\) 12131.1i 1.82910i 0.404472 + 0.914551i \(0.367455\pi\)
−0.404472 + 0.914551i \(0.632545\pi\)
\(354\) 0 0
\(355\) 2210.85i 0.330535i
\(356\) 0 0
\(357\) 950.951 1946.77i 0.140980 0.288611i
\(358\) 0 0
\(359\) −6926.28 −1.01826 −0.509130 0.860690i \(-0.670033\pi\)
−0.509130 + 0.860690i \(0.670033\pi\)
\(360\) 0 0
\(361\) 2562.88 0.373653
\(362\) 0 0
\(363\) −4241.57 + 8683.26i −0.613291 + 1.25552i
\(364\) 0 0
\(365\) 2187.24i 0.313658i
\(366\) 0 0
\(367\) 4512.36i 0.641807i −0.947112 0.320903i \(-0.896014\pi\)
0.947112 0.320903i \(-0.103986\pi\)
\(368\) 0 0
\(369\) −7082.62 + 5519.86i −0.999205 + 0.778733i
\(370\) 0 0
\(371\) −662.748 −0.0927444
\(372\) 0 0
\(373\) 5078.10 0.704917 0.352459 0.935827i \(-0.385346\pi\)
0.352459 + 0.935827i \(0.385346\pi\)
\(374\) 0 0
\(375\) 5035.24 + 2459.60i 0.693384 + 0.338702i
\(376\) 0 0
\(377\) 1055.62i 0.144210i
\(378\) 0 0
\(379\) 2969.26i 0.402430i 0.979547 + 0.201215i \(0.0644889\pi\)
−0.979547 + 0.201215i \(0.935511\pi\)
\(380\) 0 0
\(381\) 2091.88 + 1021.83i 0.281286 + 0.137402i
\(382\) 0 0
\(383\) −6104.12 −0.814376 −0.407188 0.913344i \(-0.633491\pi\)
−0.407188 + 0.913344i \(0.633491\pi\)
\(384\) 0 0
\(385\) 3371.41 0.446293
\(386\) 0 0
\(387\) 2849.84 2221.03i 0.374329 0.291734i
\(388\) 0 0
\(389\) 2923.45i 0.381041i −0.981683 0.190520i \(-0.938983\pi\)
0.981683 0.190520i \(-0.0610175\pi\)
\(390\) 0 0
\(391\) 703.603i 0.0910045i
\(392\) 0 0
\(393\) 5680.33 11628.7i 0.729095 1.49259i
\(394\) 0 0
\(395\) 2530.37 0.322321
\(396\) 0 0
\(397\) 9433.57 1.19259 0.596294 0.802766i \(-0.296639\pi\)
0.596294 + 0.802766i \(0.296639\pi\)
\(398\) 0 0
\(399\) −1882.34 + 3853.50i −0.236178 + 0.483499i
\(400\) 0 0
\(401\) 4034.68i 0.502449i 0.967929 + 0.251225i \(0.0808333\pi\)
−0.967929 + 0.251225i \(0.919167\pi\)
\(402\) 0 0
\(403\) 3057.56i 0.377935i
\(404\) 0 0
\(405\) 3350.65 + 843.968i 0.411099 + 0.103548i
\(406\) 0 0
\(407\) −7895.83 −0.961626
\(408\) 0 0
\(409\) 8228.17 0.994759 0.497380 0.867533i \(-0.334296\pi\)
0.497380 + 0.867533i \(0.334296\pi\)
\(410\) 0 0
\(411\) 3938.34 + 1923.79i 0.472662 + 0.230884i
\(412\) 0 0
\(413\) 1510.54i 0.179972i
\(414\) 0 0
\(415\) 4253.09i 0.503074i
\(416\) 0 0
\(417\) −7348.54 3589.59i −0.862972 0.421542i
\(418\) 0 0
\(419\) 6070.39 0.707776 0.353888 0.935288i \(-0.384859\pi\)
0.353888 + 0.935288i \(0.384859\pi\)
\(420\) 0 0
\(421\) 5196.88 0.601616 0.300808 0.953685i \(-0.402744\pi\)
0.300808 + 0.953685i \(0.402744\pi\)
\(422\) 0 0
\(423\) −4755.08 6101.32i −0.546572 0.701316i
\(424\) 0 0
\(425\) 3395.22i 0.387511i
\(426\) 0 0
\(427\) 4741.99i 0.537427i
\(428\) 0 0
\(429\) −1674.76 + 3428.53i −0.188480 + 0.385853i
\(430\) 0 0
\(431\) −4150.56 −0.463864 −0.231932 0.972732i \(-0.574505\pi\)
−0.231932 + 0.972732i \(0.574505\pi\)
\(432\) 0 0
\(433\) 5614.13 0.623090 0.311545 0.950231i \(-0.399154\pi\)
0.311545 + 0.950231i \(0.399154\pi\)
\(434\) 0 0
\(435\) −877.769 + 1796.95i −0.0967490 + 0.198063i
\(436\) 0 0
\(437\) 1392.73i 0.152457i
\(438\) 0 0
\(439\) 4396.64i 0.477996i −0.971020 0.238998i \(-0.923181\pi\)
0.971020 0.238998i \(-0.0768190\pi\)
\(440\) 0 0
\(441\) −3061.14 3927.79i −0.330540 0.424122i
\(442\) 0 0
\(443\) 3049.29 0.327034 0.163517 0.986541i \(-0.447716\pi\)
0.163517 + 0.986541i \(0.447716\pi\)
\(444\) 0 0
\(445\) 7165.28 0.763297
\(446\) 0 0
\(447\) −5914.45 2889.07i −0.625825 0.305701i
\(448\) 0 0
\(449\) 1995.33i 0.209723i −0.994487 0.104861i \(-0.966560\pi\)
0.994487 0.104861i \(-0.0334399\pi\)
\(450\) 0 0
\(451\) 18786.3i 1.96145i
\(452\) 0 0
\(453\) 1557.60 + 760.852i 0.161551 + 0.0789138i
\(454\) 0 0
\(455\) 775.898 0.0799443
\(456\) 0 0
\(457\) −7565.40 −0.774386 −0.387193 0.921999i \(-0.626555\pi\)
−0.387193 + 0.921999i \(0.626555\pi\)
\(458\) 0 0
\(459\) −957.686 4545.83i −0.0973877 0.462268i
\(460\) 0 0
\(461\) 5402.40i 0.545802i −0.962042 0.272901i \(-0.912017\pi\)
0.962042 0.272901i \(-0.0879832\pi\)
\(462\) 0 0
\(463\) 14297.3i 1.43510i 0.696506 + 0.717551i \(0.254737\pi\)
−0.696506 + 0.717551i \(0.745263\pi\)
\(464\) 0 0
\(465\) −2542.43 + 5204.81i −0.253553 + 0.519069i
\(466\) 0 0
\(467\) −93.0283 −0.00921806 −0.00460903 0.999989i \(-0.501467\pi\)
−0.00460903 + 0.999989i \(0.501467\pi\)
\(468\) 0 0
\(469\) 6144.81 0.604991
\(470\) 0 0
\(471\) −6859.14 + 14041.9i −0.671025 + 1.37371i
\(472\) 0 0
\(473\) 7559.05i 0.734811i
\(474\) 0 0
\(475\) 6720.60i 0.649183i
\(476\) 0 0
\(477\) −1120.85 + 873.540i −0.107590 + 0.0838504i
\(478\) 0 0
\(479\) 8205.03 0.782667 0.391333 0.920249i \(-0.372014\pi\)
0.391333 + 0.920249i \(0.372014\pi\)
\(480\) 0 0
\(481\) −1817.15 −0.172255
\(482\) 0 0
\(483\) 1249.24 + 610.227i 0.117687 + 0.0574871i
\(484\) 0 0
\(485\) 224.311i 0.0210009i
\(486\) 0 0
\(487\) 1000.78i 0.0931204i 0.998915 + 0.0465602i \(0.0148259\pi\)
−0.998915 + 0.0465602i \(0.985174\pi\)
\(488\) 0 0
\(489\) −2199.89 1074.60i −0.203441 0.0993761i
\(490\) 0 0
\(491\) 9137.19 0.839828 0.419914 0.907564i \(-0.362060\pi\)
0.419914 + 0.907564i \(0.362060\pi\)
\(492\) 0 0
\(493\) 2688.81 0.245635
\(494\) 0 0
\(495\) 5701.80 4443.71i 0.517731 0.403495i
\(496\) 0 0
\(497\) 5873.59i 0.530114i
\(498\) 0 0
\(499\) 13386.3i 1.20091i 0.799659 + 0.600454i \(0.205013\pi\)
−0.799659 + 0.600454i \(0.794987\pi\)
\(500\) 0 0
\(501\) 7364.24 15075.9i 0.656707 1.34440i
\(502\) 0 0
\(503\) 21815.8 1.93383 0.966917 0.255093i \(-0.0821060\pi\)
0.966917 + 0.255093i \(0.0821060\pi\)
\(504\) 0 0
\(505\) 4602.81 0.405589
\(506\) 0 0
\(507\) −385.430 + 789.044i −0.0337624 + 0.0691177i
\(508\) 0 0
\(509\) 3193.23i 0.278070i −0.990287 0.139035i \(-0.955600\pi\)
0.990287 0.139035i \(-0.0444001\pi\)
\(510\) 0 0
\(511\) 5810.84i 0.503046i
\(512\) 0 0
\(513\) 1895.67 + 8998.16i 0.163150 + 0.774422i
\(514\) 0 0
\(515\) 6198.90 0.530400
\(516\) 0 0
\(517\) −16183.5 −1.37669
\(518\) 0 0
\(519\) 4050.51 + 1978.58i 0.342577 + 0.167341i
\(520\) 0 0
\(521\) 15395.8i 1.29463i −0.762222 0.647316i \(-0.775891\pi\)
0.762222 0.647316i \(-0.224109\pi\)
\(522\) 0 0
\(523\) 17611.8i 1.47249i 0.676715 + 0.736245i \(0.263403\pi\)
−0.676715 + 0.736245i \(0.736597\pi\)
\(524\) 0 0
\(525\) 6028.19 + 2944.63i 0.501127 + 0.244789i
\(526\) 0 0
\(527\) 7788.05 0.643744
\(528\) 0 0
\(529\) −11715.5 −0.962891
\(530\) 0 0
\(531\) −1990.97 2554.65i −0.162714 0.208780i
\(532\) 0 0
\(533\) 4323.49i 0.351353i
\(534\) 0 0
\(535\) 3521.88i 0.284606i
\(536\) 0 0
\(537\) −3294.97 + 6745.39i −0.264783 + 0.542058i
\(538\) 0 0
\(539\) −10418.3 −0.832554
\(540\) 0 0
\(541\) −12992.0 −1.03247 −0.516236 0.856446i \(-0.672667\pi\)
−0.516236 + 0.856446i \(0.672667\pi\)
\(542\) 0 0
\(543\) −9983.90 + 20438.9i −0.789043 + 1.61531i
\(544\) 0 0
\(545\) 7057.64i 0.554709i
\(546\) 0 0
\(547\) 4116.33i 0.321758i −0.986974 0.160879i \(-0.948567\pi\)
0.986974 0.160879i \(-0.0514329\pi\)
\(548\) 0 0
\(549\) 6250.22 + 8019.76i 0.485889 + 0.623452i
\(550\) 0 0
\(551\) −5322.33 −0.411504
\(552\) 0 0
\(553\) 6722.45 0.516940
\(554\) 0 0
\(555\) 3093.29 + 1511.00i 0.236582 + 0.115565i
\(556\) 0 0
\(557\) 19666.7i 1.49606i 0.663664 + 0.748031i \(0.269000\pi\)
−0.663664 + 0.748031i \(0.731000\pi\)
\(558\) 0 0
\(559\) 1739.64i 0.131626i
\(560\) 0 0
\(561\) −8732.98 4265.86i −0.657231 0.321042i
\(562\) 0 0
\(563\) 7219.27 0.540419 0.270209 0.962802i \(-0.412907\pi\)
0.270209 + 0.962802i \(0.412907\pi\)
\(564\) 0 0
\(565\) −10462.7 −0.779062
\(566\) 0 0
\(567\) 8901.69 + 2242.18i 0.659323 + 0.166071i
\(568\) 0 0
\(569\) 23857.7i 1.75777i 0.477038 + 0.878883i \(0.341711\pi\)
−0.477038 + 0.878883i \(0.658289\pi\)
\(570\) 0 0
\(571\) 11268.9i 0.825903i 0.910753 + 0.412951i \(0.135502\pi\)
−0.910753 + 0.412951i \(0.864498\pi\)
\(572\) 0 0
\(573\) −5261.57 + 10771.4i −0.383605 + 0.785308i
\(574\) 0 0
\(575\) 2178.71 0.158015
\(576\) 0 0
\(577\) −3079.46 −0.222183 −0.111092 0.993810i \(-0.535435\pi\)
−0.111092 + 0.993810i \(0.535435\pi\)
\(578\) 0 0
\(579\) 1846.03 3779.16i 0.132502 0.271255i
\(580\) 0 0
\(581\) 11299.2i 0.806833i
\(582\) 0 0
\(583\) 2973.01i 0.211200i
\(584\) 0 0
\(585\) 1312.22 1022.68i 0.0927409 0.0722778i
\(586\) 0 0
\(587\) −7171.36 −0.504248 −0.252124 0.967695i \(-0.581129\pi\)
−0.252124 + 0.967695i \(0.581129\pi\)
\(588\) 0 0
\(589\) −15415.9 −1.07844
\(590\) 0 0
\(591\) −1190.24 581.406i −0.0828427 0.0404667i
\(592\) 0 0
\(593\) 18908.0i 1.30938i 0.755899 + 0.654688i \(0.227200\pi\)
−0.755899 + 0.654688i \(0.772800\pi\)
\(594\) 0 0
\(595\) 1976.33i 0.136171i
\(596\) 0 0
\(597\) 19715.3 + 9630.45i 1.35158 + 0.660215i
\(598\) 0 0
\(599\) −9850.09 −0.671893 −0.335947 0.941881i \(-0.609056\pi\)
−0.335947 + 0.941881i \(0.609056\pi\)
\(600\) 0 0
\(601\) 16503.2 1.12010 0.560048 0.828460i \(-0.310783\pi\)
0.560048 + 0.828460i \(0.310783\pi\)
\(602\) 0 0
\(603\) 10392.2 8099.22i 0.701832 0.546975i
\(604\) 0 0
\(605\) 8815.09i 0.592371i
\(606\) 0 0
\(607\) 28206.7i 1.88612i 0.332625 + 0.943059i \(0.392066\pi\)
−0.332625 + 0.943059i \(0.607934\pi\)
\(608\) 0 0
\(609\) −2331.98 + 4773.98i −0.155167 + 0.317654i
\(610\) 0 0
\(611\) −3724.47 −0.246605
\(612\) 0 0
\(613\) −14944.3 −0.984656 −0.492328 0.870410i \(-0.663854\pi\)
−0.492328 + 0.870410i \(0.663854\pi\)
\(614\) 0 0
\(615\) 3595.07 7359.77i 0.235719 0.482560i
\(616\) 0 0
\(617\) 9362.22i 0.610873i −0.952212 0.305436i \(-0.901198\pi\)
0.952212 0.305436i \(-0.0988024\pi\)
\(618\) 0 0
\(619\) 24425.4i 1.58601i 0.609217 + 0.793003i \(0.291484\pi\)
−0.609217 + 0.793003i \(0.708516\pi\)
\(620\) 0 0
\(621\) 2917.06 614.548i 0.188499 0.0397117i
\(622\) 0 0
\(623\) 19036.1 1.22418
\(624\) 0 0
\(625\) 7705.12 0.493127
\(626\) 0 0
\(627\) 17286.3 + 8443.97i 1.10104 + 0.537831i
\(628\) 0 0
\(629\) 4628.55i 0.293406i
\(630\) 0 0
\(631\) 29822.6i 1.88149i −0.339116 0.940744i \(-0.610128\pi\)
0.339116 0.940744i \(-0.389872\pi\)
\(632\) 0 0
\(633\) 425.235 + 207.717i 0.0267007 + 0.0130427i
\(634\) 0 0
\(635\) −2123.64 −0.132715
\(636\) 0 0
\(637\) −2397.67 −0.149135
\(638\) 0 0
\(639\) −7741.74 9933.55i −0.479277 0.614969i
\(640\) 0 0
\(641\) 6584.30i 0.405716i −0.979208 0.202858i \(-0.934977\pi\)
0.979208 0.202858i \(-0.0650230\pi\)
\(642\) 0 0
\(643\) 11578.3i 0.710117i −0.934844 0.355059i \(-0.884461\pi\)
0.934844 0.355059i \(-0.115539\pi\)
\(644\) 0 0
\(645\) −1446.55 + 2961.36i −0.0883069 + 0.180780i
\(646\) 0 0
\(647\) −3122.17 −0.189715 −0.0948573 0.995491i \(-0.530239\pi\)
−0.0948573 + 0.995491i \(0.530239\pi\)
\(648\) 0 0
\(649\) −6776.09 −0.409838
\(650\) 0 0
\(651\) −6754.48 + 13827.7i −0.406650 + 0.832486i
\(652\) 0 0
\(653\) 11624.5i 0.696631i 0.937377 + 0.348315i \(0.113246\pi\)
−0.937377 + 0.348315i \(0.886754\pi\)
\(654\) 0 0
\(655\) 11805.2i 0.704225i
\(656\) 0 0
\(657\) −7659.03 9827.43i −0.454806 0.583569i
\(658\) 0 0
\(659\) −26126.2 −1.54436 −0.772178 0.635406i \(-0.780833\pi\)
−0.772178 + 0.635406i \(0.780833\pi\)
\(660\) 0 0
\(661\) 4266.16 0.251036 0.125518 0.992091i \(-0.459941\pi\)
0.125518 + 0.992091i \(0.459941\pi\)
\(662\) 0 0
\(663\) −2009.81 981.746i −0.117730 0.0575081i
\(664\) 0 0
\(665\) 3912.00i 0.228122i
\(666\) 0 0
\(667\) 1725.42i 0.100162i
\(668\) 0 0
\(669\) 2796.52 + 1366.03i 0.161614 + 0.0789445i
\(670\) 0 0
\(671\) 21272.0 1.22384
\(672\) 0 0
\(673\) 2064.82 0.118266 0.0591330 0.998250i \(-0.481166\pi\)
0.0591330 + 0.998250i \(0.481166\pi\)
\(674\) 0 0
\(675\) 14076.2 2965.48i 0.802657 0.169099i
\(676\) 0 0
\(677\) 14865.8i 0.843928i 0.906613 + 0.421964i \(0.138659\pi\)
−0.906613 + 0.421964i \(0.861341\pi\)
\(678\) 0 0
\(679\) 595.930i 0.0336814i
\(680\) 0 0
\(681\) 8766.42 17946.5i 0.493289 1.00985i
\(682\) 0 0
\(683\) −14535.6 −0.814333 −0.407166 0.913354i \(-0.633483\pi\)
−0.407166 + 0.913354i \(0.633483\pi\)
\(684\) 0 0
\(685\) −3998.13 −0.223008
\(686\) 0 0
\(687\) −1516.18 + 3103.89i −0.0842005 + 0.172374i
\(688\) 0 0
\(689\) 684.210i 0.0378321i
\(690\) 0 0
\(691\) 19381.0i 1.06699i −0.845803 0.533495i \(-0.820878\pi\)
0.845803 0.533495i \(-0.179122\pi\)
\(692\) 0 0
\(693\) 15148.0 11805.6i 0.830340 0.647128i
\(694\) 0 0
\(695\) 7460.11 0.407162
\(696\) 0 0
\(697\) −11012.6 −0.598466
\(698\) 0 0
\(699\) 15787.6 + 7711.88i 0.854281 + 0.417296i
\(700\) 0 0
\(701\) 11084.3i 0.597215i −0.954376 0.298608i \(-0.903478\pi\)
0.954376 0.298608i \(-0.0965222\pi\)
\(702\) 0 0
\(703\) 9161.90i 0.491533i
\(704\) 0 0
\(705\) 6340.07 + 3096.98i 0.338696 + 0.165445i
\(706\) 0 0
\(707\) 12228.3 0.650485
\(708\) 0 0
\(709\) −26108.5 −1.38297 −0.691485 0.722391i \(-0.743043\pi\)
−0.691485 + 0.722391i \(0.743043\pi\)
\(710\) 0 0
\(711\) 11369.2 8860.58i 0.599686 0.467367i
\(712\) 0 0
\(713\) 4997.60i 0.262499i
\(714\) 0 0
\(715\) 3480.59i 0.182051i
\(716\) 0 0
\(717\) 7192.88 14725.1i 0.374649 0.766974i
\(718\) 0 0
\(719\) −34006.7 −1.76389 −0.881945 0.471353i \(-0.843766\pi\)
−0.881945 + 0.471353i \(0.843766\pi\)
\(720\) 0 0
\(721\) 16468.7 0.850659
\(722\) 0 0
\(723\) −14123.7 + 28913.9i −0.726512 + 1.48730i
\(724\) 0 0
\(725\) 8325.94i 0.426507i
\(726\) 0 0
\(727\) 17074.9i 0.871075i 0.900171 + 0.435537i \(0.143442\pi\)
−0.900171 + 0.435537i \(0.856558\pi\)
\(728\) 0 0
\(729\) 18010.1 7940.93i 0.915006 0.403441i
\(730\) 0 0
\(731\) 4431.13 0.224202
\(732\) 0 0
\(733\) −25846.2 −1.30239 −0.651196 0.758910i \(-0.725732\pi\)
−0.651196 + 0.758910i \(0.725732\pi\)
\(734\) 0 0
\(735\) 4081.49 + 1993.71i 0.204827 + 0.100053i
\(736\) 0 0
\(737\) 27564.9i 1.37770i
\(738\) 0 0
\(739\) 32313.7i 1.60849i −0.594295 0.804247i \(-0.702569\pi\)
0.594295 0.804247i \(-0.297431\pi\)
\(740\) 0 0
\(741\) 3978.29 + 1943.30i 0.197228 + 0.0963413i
\(742\) 0 0
\(743\) 19614.0 0.968460 0.484230 0.874941i \(-0.339100\pi\)
0.484230 + 0.874941i \(0.339100\pi\)
\(744\) 0 0
\(745\) 6004.24 0.295273
\(746\) 0 0
\(747\) −14893.0 19109.5i −0.729460 0.935982i
\(748\) 0 0
\(749\) 9356.60i 0.456452i
\(750\) 0 0
\(751\) 21469.4i 1.04318i −0.853195 0.521592i \(-0.825338\pi\)
0.853195 0.521592i \(-0.174662\pi\)
\(752\) 0 0
\(753\) −12129.0 + 24830.4i −0.586995 + 1.20168i
\(754\) 0 0
\(755\) −1581.25 −0.0762219
\(756\) 0 0
\(757\) −4896.90 −0.235113 −0.117557 0.993066i \(-0.537506\pi\)
−0.117557 + 0.993066i \(0.537506\pi\)
\(758\) 0 0
\(759\) 2737.41 5603.97i 0.130911 0.267999i
\(760\) 0 0
\(761\) 6422.14i 0.305916i 0.988233 + 0.152958i \(0.0488800\pi\)
−0.988233 + 0.152958i \(0.951120\pi\)
\(762\) 0 0
\(763\) 18750.1i 0.889645i
\(764\) 0 0
\(765\) 2604.91 + 3342.41i 0.123112 + 0.157967i
\(766\) 0 0
\(767\) −1559.45 −0.0734140
\(768\) 0 0
\(769\) 10539.8 0.494246 0.247123 0.968984i \(-0.420515\pi\)
0.247123 + 0.968984i \(0.420515\pi\)
\(770\) 0 0
\(771\) −29030.5 14180.7i −1.35604 0.662394i
\(772\) 0 0
\(773\) 17792.4i 0.827876i 0.910305 + 0.413938i \(0.135847\pi\)
−0.910305 + 0.413938i \(0.864153\pi\)
\(774\) 0 0
\(775\) 24115.8i 1.11776i
\(776\) 0 0
\(777\) 8217.97 + 4014.28i 0.379431 + 0.185343i
\(778\) 0 0
\(779\) 21798.6 1.00259
\(780\) 0 0
\(781\) −26348.2 −1.20719
\(782\) 0 0
\(783\) 2348.49 + 11147.5i 0.107188 + 0.508787i
\(784\) 0 0
\(785\) 14255.1i 0.648135i
\(786\) 0 0
\(787\) 39289.0i 1.77955i −0.456404 0.889773i \(-0.650863\pi\)
0.456404 0.889773i \(-0.349137\pi\)
\(788\) 0 0
\(789\) −1848.98 + 3785.20i −0.0834289 + 0.170794i
\(790\) 0 0
\(791\) −27796.4 −1.24946
\(792\) 0 0
\(793\) 4895.55 0.219226
\(794\) 0 0
\(795\) 568.935 1164.71i 0.0253812 0.0519599i
\(796\) 0 0
\(797\) 4765.27i 0.211787i 0.994377 + 0.105894i \(0.0337703\pi\)
−0.994377 + 0.105894i \(0.966230\pi\)
\(798\) 0 0
\(799\) 9486.77i 0.420047i
\(800\) 0 0
\(801\) 32194.2 25090.6i 1.42013 1.10678i
\(802\) 0 0
\(803\) −26066.8 −1.14555
\(804\) 0 0
\(805\) −1268.21 −0.0555262
\(806\) 0 0
\(807\) −39074.3 19086.9i −1.70444 0.832578i
\(808\) 0 0
\(809\) 11056.5i 0.480500i 0.970711 + 0.240250i \(0.0772294\pi\)
−0.970711 + 0.240250i \(0.922771\pi\)
\(810\) 0 0
\(811\) 12248.1i 0.530320i −0.964204 0.265160i \(-0.914575\pi\)
0.964204 0.265160i \(-0.0854248\pi\)
\(812\) 0 0
\(813\) 28086.4 + 13719.5i 1.21160 + 0.591839i
\(814\) 0 0
\(815\) 2233.29 0.0959863
\(816\) 0 0
\(817\) −8771.12 −0.375597
\(818\) 0 0
\(819\) 3486.17 2716.96i 0.148738 0.115920i
\(820\) 0 0
\(821\) 2241.79i 0.0952972i −0.998864 0.0476486i \(-0.984827\pi\)
0.998864 0.0476486i \(-0.0151728\pi\)
\(822\) 0 0
\(823\) 30297.5i 1.28324i −0.767025 0.641618i \(-0.778264\pi\)
0.767025 0.641618i \(-0.221736\pi\)
\(824\) 0 0
\(825\) 13209.3 27041.7i 0.557439 1.14118i
\(826\) 0 0
\(827\) 36267.0 1.52494 0.762472 0.647021i \(-0.223985\pi\)
0.762472 + 0.647021i \(0.223985\pi\)
\(828\) 0 0
\(829\) 17040.4 0.713916 0.356958 0.934120i \(-0.383814\pi\)
0.356958 + 0.934120i \(0.383814\pi\)
\(830\) 0 0
\(831\) −4001.11 + 8191.00i −0.167024 + 0.341929i
\(832\) 0 0
\(833\) 6107.21i 0.254024i
\(834\) 0 0
\(835\) 15304.8i 0.634305i
\(836\) 0 0
\(837\) 6802.32 + 32288.4i 0.280911 + 1.33339i
\(838\) 0 0
\(839\) −33418.3 −1.37512 −0.687561 0.726126i \(-0.741319\pi\)
−0.687561 + 0.726126i \(0.741319\pi\)
\(840\) 0 0
\(841\) 17795.3 0.729646
\(842\) 0 0
\(843\) −17317.2 8459.03i −0.707515 0.345604i
\(844\) 0 0
\(845\) 801.024i 0.0326107i
\(846\) 0 0
\(847\) 23419.1i 0.950047i
\(848\) 0 0
\(849\) −9962.65 4866.52i −0.402729 0.196724i
\(850\) 0 0
\(851\) 2970.15 0.119642
\(852\) 0 0
\(853\) −15972.1 −0.641120 −0.320560 0.947228i \(-0.603871\pi\)
−0.320560 + 0.947228i \(0.603871\pi\)
\(854\) 0 0
\(855\) −5156.25 6616.07i −0.206246 0.264637i
\(856\) 0 0
\(857\) 2020.39i 0.0805312i −0.999189 0.0402656i \(-0.987180\pi\)
0.999189 0.0402656i \(-0.0128204\pi\)
\(858\) 0 0
\(859\) 19850.2i 0.788450i −0.919014 0.394225i \(-0.871013\pi\)
0.919014 0.394225i \(-0.128987\pi\)
\(860\) 0 0
\(861\) 9551.06 19552.8i 0.378048 0.773933i
\(862\) 0 0
\(863\) 6378.24 0.251585 0.125793 0.992057i \(-0.459853\pi\)
0.125793 + 0.992057i \(0.459853\pi\)
\(864\) 0 0
\(865\) −4112.00 −0.161633
\(866\) 0 0
\(867\) −8704.17 + 17819.0i −0.340956 + 0.698000i
\(868\) 0 0
\(869\) 30156.1i 1.17719i
\(870\) 0 0
\(871\) 6343.80i 0.246787i
\(872\) 0 0
\(873\) −785.470 1007.85i −0.0304515 0.0390728i
\(874\) 0 0
\(875\) −13580.3 −0.524682
\(876\) 0 0
\(877\) −45258.3 −1.74260 −0.871302 0.490746i \(-0.836724\pi\)
−0.871302 + 0.490746i \(0.836724\pi\)
\(878\) 0 0
\(879\) 32097.8 + 15679.0i 1.23166 + 0.601638i
\(880\) 0 0
\(881\) 35315.1i 1.35051i −0.737586 0.675253i \(-0.764035\pi\)
0.737586 0.675253i \(-0.235965\pi\)
\(882\) 0 0
\(883\) 36739.2i 1.40019i −0.714047 0.700097i \(-0.753140\pi\)
0.714047 0.700097i \(-0.246860\pi\)
\(884\) 0 0
\(885\) 2654.62 + 1296.72i 0.100829 + 0.0492528i
\(886\) 0 0
\(887\) −9433.23 −0.357088 −0.178544 0.983932i \(-0.557139\pi\)
−0.178544 + 0.983932i \(0.557139\pi\)
\(888\) 0 0
\(889\) −5641.88 −0.212849
\(890\) 0 0
\(891\) 10058.1 39931.9i 0.378182 1.50143i
\(892\) 0 0
\(893\) 18778.4i 0.703691i
\(894\) 0 0
\(895\) 6847.80i 0.255751i
\(896\) 0 0
\(897\) 629.988 1289.70i 0.0234500 0.0480065i
\(898\) 0 0
\(899\) −19098.3 −0.708525
\(900\) 0 0
\(901\) −1742.78 −0.0644401
\(902\) 0 0
\(903\) −3843.07 + 7867.46i −0.141627 + 0.289936i
\(904\) 0 0
\(905\) 20749.2i 0.762128i
\(906\) 0 0
\(907\) 642.884i 0.0235354i −0.999931 0.0117677i \(-0.996254\pi\)
0.999931 0.0117677i \(-0.00374586\pi\)
\(908\) 0 0
\(909\) 20680.8 16117.6i 0.754608 0.588106i
\(910\) 0 0
\(911\) 35614.3 1.29523 0.647614 0.761968i \(-0.275767\pi\)
0.647614 + 0.761968i \(0.275767\pi\)
\(912\) 0 0
\(913\) −50686.9 −1.83734
\(914\) 0 0
\(915\) −8333.59 4070.76i −0.301093 0.147077i
\(916\) 0 0
\(917\) 31363.0i 1.12944i
\(918\) 0 0
\(919\) 29451.9i 1.05716i 0.848883 + 0.528580i \(0.177275\pi\)
−0.848883 + 0.528580i \(0.822725\pi\)
\(920\) 0 0
\(921\) −15134.8 7392.99i −0.541486 0.264503i
\(922\) 0 0
\(923\) −6063.80 −0.216243
\(924\) 0 0
\(925\) 14332.3 0.509453
\(926\) 0 0
\(927\) 27852.2 21706.7i 0.986823 0.769083i
\(928\) 0 0
\(929\) 8447.63i 0.298340i 0.988812 + 0.149170i \(0.0476601\pi\)
−0.988812 + 0.149170i \(0.952340\pi\)
\(930\) 0 0
\(931\) 12088.8i 0.425558i
\(932\) 0 0
\(933\) 14389.1 29457.2i 0.504908 1.03364i
\(934\) 0 0
\(935\) 8865.57 0.310091
\(936\) 0 0
\(937\) 20096.9 0.700678 0.350339 0.936623i \(-0.386066\pi\)
0.350339 + 0.936623i \(0.386066\pi\)
\(938\) 0 0
\(939\) −7503.36 + 15360.7i −0.260770 + 0.533843i
\(940\) 0 0
\(941\) 1850.92i 0.0641214i 0.999486 + 0.0320607i \(0.0102070\pi\)
−0.999486 + 0.0320607i \(0.989793\pi\)
\(942\) 0 0
\(943\) 7066.78i 0.244036i
\(944\) 0 0
\(945\) −8193.64 + 1726.18i −0.282052 + 0.0594209i
\(946\) 0 0
\(947\) 14572.9 0.500060 0.250030 0.968238i \(-0.419560\pi\)
0.250030 + 0.968238i \(0.419560\pi\)
\(948\) 0 0
\(949\) −5999.02 −0.205202
\(950\) 0 0
\(951\) −44658.8 21814.8i −1.52278 0.743840i
\(952\) 0 0
\(953\) 36301.7i 1.23392i 0.786994 + 0.616961i \(0.211636\pi\)
−0.786994 + 0.616961i \(0.788364\pi\)
\(954\) 0 0
\(955\) 10934.9i 0.370519i
\(956\) 0 0
\(957\) 21415.5 + 10461.0i 0.723370 + 0.353349i
\(958\) 0 0
\(959\) −10621.9 −0.357662
\(960\) 0 0
\(961\) −25526.5 −0.856853
\(962\) 0 0
\(963\) −12332.5 15824.1i −0.412680 0.529516i
\(964\) 0 0
\(965\) 3836.54i 0.127982i
\(966\) 0 0
\(967\) 17293.4i 0.575095i −0.957766 0.287548i \(-0.907160\pi\)
0.957766 0.287548i \(-0.0928399\pi\)
\(968\) 0 0
\(969\) −4949.87 + 10133.3i −0.164100 + 0.335942i
\(970\) 0 0
\(971\) −9064.99 −0.299598 −0.149799 0.988716i \(-0.547863\pi\)
−0.149799 + 0.988716i \(0.547863\pi\)
\(972\) 0 0
\(973\) 19819.3 0.653009
\(974\) 0 0
\(975\) 3039.99 6223.40i 0.0998538 0.204419i
\(976\) 0 0
\(977\) 47549.5i 1.55705i 0.627611 + 0.778527i \(0.284033\pi\)
−0.627611 + 0.778527i \(0.715967\pi\)
\(978\) 0 0
\(979\) 85393.5i 2.78773i
\(980\) 0 0
\(981\) 24713.7 + 31710.6i 0.804330 + 1.03205i
\(982\) 0 0
\(983\) 16093.2 0.522171 0.261086 0.965316i \(-0.415920\pi\)
0.261086 + 0.965316i \(0.415920\pi\)
\(984\) 0 0
\(985\) 1208.31 0.0390864
\(986\) 0 0
\(987\) 16843.7 + 8227.76i 0.543203 + 0.265342i
\(988\) 0 0
\(989\) 2843.46i 0.0914225i
\(990\) 0 0
\(991\) 39905.4i 1.27915i 0.768729 + 0.639575i \(0.220890\pi\)
−0.768729 + 0.639575i \(0.779110\pi\)
\(992\) 0 0
\(993\) 21717.0 + 10608.3i 0.694028 + 0.339016i
\(994\) 0 0
\(995\) −20014.6 −0.637694
\(996\) 0 0
\(997\) −17774.9 −0.564632 −0.282316 0.959321i \(-0.591103\pi\)
−0.282316 + 0.959321i \(0.591103\pi\)
\(998\) 0 0
\(999\) 19189.5 4042.71i 0.607736 0.128034i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.4.d.b.287.6 yes 12
3.2 odd 2 inner 624.4.d.b.287.8 yes 12
4.3 odd 2 inner 624.4.d.b.287.7 yes 12
12.11 even 2 inner 624.4.d.b.287.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
624.4.d.b.287.5 12 12.11 even 2 inner
624.4.d.b.287.6 yes 12 1.1 even 1 trivial
624.4.d.b.287.7 yes 12 4.3 odd 2 inner
624.4.d.b.287.8 yes 12 3.2 odd 2 inner