Properties

Label 624.4.n.b
Level 624624
Weight 44
Character orbit 624.n
Analytic conductor 36.81736.817
Analytic rank 11
Dimension 22
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,4,Mod(623,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.623");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 624=24313 624 = 2^{4} \cdot 3 \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 624.n (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 36.817191843636.8171918436
Analytic rank: 11
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 23 2\cdot 3
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=33\beta = 3\sqrt{-3}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+βq3+20q727q9+(6β35)q1356q19+20βq21125q2527βq27308q31+84βq37+(35β+162)q3942βq43+264βq97+O(q100) q + \beta q^{3} + 20 q^{7} - 27 q^{9} + ( - 6 \beta - 35) q^{13} - 56 q^{19} + 20 \beta q^{21} - 125 q^{25} - 27 \beta q^{27} - 308 q^{31} + 84 \beta q^{37} + ( - 35 \beta + 162) q^{39} - 42 \beta q^{43} + \cdots - 264 \beta q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+40q754q970q13112q19250q25616q31+324q39+114q49364q611080q631760q67+1458q811400q91+O(q100) 2 q + 40 q^{7} - 54 q^{9} - 70 q^{13} - 112 q^{19} - 250 q^{25} - 616 q^{31} + 324 q^{39} + 114 q^{49} - 364 q^{61} - 1080 q^{63} - 1760 q^{67} + 1458 q^{81} - 1400 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/624Z)×\left(\mathbb{Z}/624\mathbb{Z}\right)^\times.

nn 7979 145145 209209 469469
χ(n)\chi(n) 1-1 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
623.1
0.500000 0.866025i
0.500000 + 0.866025i
0 5.19615i 0 0 0 20.0000 0 −27.0000 0
623.2 0 5.19615i 0 0 0 20.0000 0 −27.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
52.b odd 2 1 inner
156.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 624.4.n.b yes 2
3.b odd 2 1 CM 624.4.n.b yes 2
4.b odd 2 1 624.4.n.a 2
12.b even 2 1 624.4.n.a 2
13.b even 2 1 624.4.n.a 2
39.d odd 2 1 624.4.n.a 2
52.b odd 2 1 inner 624.4.n.b yes 2
156.h even 2 1 inner 624.4.n.b yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
624.4.n.a 2 4.b odd 2 1
624.4.n.a 2 12.b even 2 1
624.4.n.a 2 13.b even 2 1
624.4.n.a 2 39.d odd 2 1
624.4.n.b yes 2 1.a even 1 1 trivial
624.4.n.b yes 2 3.b odd 2 1 CM
624.4.n.b yes 2 52.b odd 2 1 inner
624.4.n.b yes 2 156.h even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(624,[χ])S_{4}^{\mathrm{new}}(624, [\chi]):

T5 T_{5} Copy content Toggle raw display
T720 T_{7} - 20 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+27 T^{2} + 27 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 (T20)2 (T - 20)^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+70T+2197 T^{2} + 70T + 2197 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 (T+56)2 (T + 56)^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 (T+308)2 (T + 308)^{2} Copy content Toggle raw display
3737 T2+190512 T^{2} + 190512 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2+47628 T^{2} + 47628 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 (T+182)2 (T + 182)^{2} Copy content Toggle raw display
6767 (T+880)2 (T + 880)^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+139968 T^{2} + 139968 Copy content Toggle raw display
7979 T2+1190700 T^{2} + 1190700 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2+1881792 T^{2} + 1881792 Copy content Toggle raw display
show more
show less