Properties

Label 627.2.a.e.1.1
Level 627627
Weight 22
Character 627.1
Self dual yes
Analytic conductor 5.0075.007
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [627,2,Mod(1,627)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(627, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("627.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 627=31119 627 = 3 \cdot 11 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 627.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 5.006620206735.00662020673
Analytic rank: 11
Dimension: 33
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x24x+1 x^{3} - x^{2} - 4x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 1.69963-1.69963 of defining polynomial
Character χ\chi == 627.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.69963q2+1.00000q3+5.28799q40.888736q52.69963q60.411636q78.87636q8+1.00000q9+2.39926q10+1.00000q11+5.28799q122.30037q13+1.11126q140.888736q15+13.3869q168.09888q172.69963q181.00000q194.69963q200.411636q212.69963q225.00000q238.87636q244.21015q25+6.21015q26+1.00000q272.17673q28+7.38688q29+2.39926q301.98762q3118.3869q32+1.00000q33+21.8640q34+0.365836q35+5.28799q36+9.35346q37+2.69963q382.30037q39+7.88874q40+1.69963q41+1.11126q427.28799q43+5.28799q440.888736q45+13.4981q464.47710q47+13.3869q486.83056q49+11.3658q508.09888q5112.1643q520.333792q532.69963q540.888736q55+3.65383q561.00000q5719.9418q584.76509q594.69963q6010.5105q61+5.36584q620.411636q63+22.8640q64+2.04442q652.69963q66+10.0531q6742.8268q685.00000q690.987620q705.30037q718.87636q72+2.47710q7325.2509q744.21015q755.28799q760.411636q77+6.21015q7816.0741q7911.8974q80+1.00000q814.58836q82+8.73305q832.17673q84+7.19777q85+19.6749q86+7.38688q878.87636q88+1.98762q89+2.39926q90+0.946916q9126.4400q921.98762q93+12.0865q94+0.888736q9518.3869q9615.6094q97+18.4400q98+1.00000q99+O(q100)q-2.69963 q^{2} +1.00000 q^{3} +5.28799 q^{4} -0.888736 q^{5} -2.69963 q^{6} -0.411636 q^{7} -8.87636 q^{8} +1.00000 q^{9} +2.39926 q^{10} +1.00000 q^{11} +5.28799 q^{12} -2.30037 q^{13} +1.11126 q^{14} -0.888736 q^{15} +13.3869 q^{16} -8.09888 q^{17} -2.69963 q^{18} -1.00000 q^{19} -4.69963 q^{20} -0.411636 q^{21} -2.69963 q^{22} -5.00000 q^{23} -8.87636 q^{24} -4.21015 q^{25} +6.21015 q^{26} +1.00000 q^{27} -2.17673 q^{28} +7.38688 q^{29} +2.39926 q^{30} -1.98762 q^{31} -18.3869 q^{32} +1.00000 q^{33} +21.8640 q^{34} +0.365836 q^{35} +5.28799 q^{36} +9.35346 q^{37} +2.69963 q^{38} -2.30037 q^{39} +7.88874 q^{40} +1.69963 q^{41} +1.11126 q^{42} -7.28799 q^{43} +5.28799 q^{44} -0.888736 q^{45} +13.4981 q^{46} -4.47710 q^{47} +13.3869 q^{48} -6.83056 q^{49} +11.3658 q^{50} -8.09888 q^{51} -12.1643 q^{52} -0.333792 q^{53} -2.69963 q^{54} -0.888736 q^{55} +3.65383 q^{56} -1.00000 q^{57} -19.9418 q^{58} -4.76509 q^{59} -4.69963 q^{60} -10.5105 q^{61} +5.36584 q^{62} -0.411636 q^{63} +22.8640 q^{64} +2.04442 q^{65} -2.69963 q^{66} +10.0531 q^{67} -42.8268 q^{68} -5.00000 q^{69} -0.987620 q^{70} -5.30037 q^{71} -8.87636 q^{72} +2.47710 q^{73} -25.2509 q^{74} -4.21015 q^{75} -5.28799 q^{76} -0.411636 q^{77} +6.21015 q^{78} -16.0741 q^{79} -11.8974 q^{80} +1.00000 q^{81} -4.58836 q^{82} +8.73305 q^{83} -2.17673 q^{84} +7.19777 q^{85} +19.6749 q^{86} +7.38688 q^{87} -8.87636 q^{88} +1.98762 q^{89} +2.39926 q^{90} +0.946916 q^{91} -26.4400 q^{92} -1.98762 q^{93} +12.0865 q^{94} +0.888736 q^{95} -18.3869 q^{96} -15.6094 q^{97} +18.4400 q^{98} +1.00000 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q2q2+3q3+4q43q52q67q79q8+3q95q10+3q11+4q1213q13+3q143q15+10q166q172q183q198q20++3q99+O(q100) 3 q - 2 q^{2} + 3 q^{3} + 4 q^{4} - 3 q^{5} - 2 q^{6} - 7 q^{7} - 9 q^{8} + 3 q^{9} - 5 q^{10} + 3 q^{11} + 4 q^{12} - 13 q^{13} + 3 q^{14} - 3 q^{15} + 10 q^{16} - 6 q^{17} - 2 q^{18} - 3 q^{19} - 8 q^{20}+ \cdots + 3 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −2.69963 −1.90893 −0.954463 0.298330i 0.903570π-0.903570\pi
−0.954463 + 0.298330i 0.903570π0.903570\pi
33 1.00000 0.577350
44 5.28799 2.64400
55 −0.888736 −0.397455 −0.198727 0.980055i 0.563681π-0.563681\pi
−0.198727 + 0.980055i 0.563681π0.563681\pi
66 −2.69963 −1.10212
77 −0.411636 −0.155584 −0.0777919 0.996970i 0.524787π-0.524787\pi
−0.0777919 + 0.996970i 0.524787π0.524787\pi
88 −8.87636 −3.13827
99 1.00000 0.333333
1010 2.39926 0.758711
1111 1.00000 0.301511
1212 5.28799 1.52651
1313 −2.30037 −0.638008 −0.319004 0.947753i 0.603348π-0.603348\pi
−0.319004 + 0.947753i 0.603348π0.603348\pi
1414 1.11126 0.296998
1515 −0.888736 −0.229471
1616 13.3869 3.34672
1717 −8.09888 −1.96427 −0.982134 0.188183i 0.939740π-0.939740\pi
−0.982134 + 0.188183i 0.939740π0.939740\pi
1818 −2.69963 −0.636308
1919 −1.00000 −0.229416
2020 −4.69963 −1.05087
2121 −0.411636 −0.0898263
2222 −2.69963 −0.575563
2323 −5.00000 −1.04257 −0.521286 0.853382i 0.674548π-0.674548\pi
−0.521286 + 0.853382i 0.674548π0.674548\pi
2424 −8.87636 −1.81188
2525 −4.21015 −0.842030
2626 6.21015 1.21791
2727 1.00000 0.192450
2828 −2.17673 −0.411363
2929 7.38688 1.37171 0.685854 0.727739i 0.259429π-0.259429\pi
0.685854 + 0.727739i 0.259429π0.259429\pi
3030 2.39926 0.438042
3131 −1.98762 −0.356987 −0.178494 0.983941i 0.557122π-0.557122\pi
−0.178494 + 0.983941i 0.557122π0.557122\pi
3232 −18.3869 −3.25037
3333 1.00000 0.174078
3434 21.8640 3.74964
3535 0.365836 0.0618375
3636 5.28799 0.881332
3737 9.35346 1.53770 0.768849 0.639430i 0.220830π-0.220830\pi
0.768849 + 0.639430i 0.220830π0.220830\pi
3838 2.69963 0.437938
3939 −2.30037 −0.368354
4040 7.88874 1.24732
4141 1.69963 0.265437 0.132719 0.991154i 0.457629π-0.457629\pi
0.132719 + 0.991154i 0.457629π0.457629\pi
4242 1.11126 0.171472
4343 −7.28799 −1.11141 −0.555704 0.831380i 0.687551π-0.687551\pi
−0.555704 + 0.831380i 0.687551π0.687551\pi
4444 5.28799 0.797195
4545 −0.888736 −0.132485
4646 13.4981 1.99019
4747 −4.47710 −0.653052 −0.326526 0.945188i 0.605878π-0.605878\pi
−0.326526 + 0.945188i 0.605878π0.605878\pi
4848 13.3869 1.93223
4949 −6.83056 −0.975794
5050 11.3658 1.60737
5151 −8.09888 −1.13407
5252 −12.1643 −1.68689
5353 −0.333792 −0.0458499 −0.0229250 0.999737i 0.507298π-0.507298\pi
−0.0229250 + 0.999737i 0.507298π0.507298\pi
5454 −2.69963 −0.367373
5555 −0.888736 −0.119837
5656 3.65383 0.488263
5757 −1.00000 −0.132453
5858 −19.9418 −2.61849
5959 −4.76509 −0.620362 −0.310181 0.950677i 0.600390π-0.600390\pi
−0.310181 + 0.950677i 0.600390π0.600390\pi
6060 −4.69963 −0.606719
6161 −10.5105 −1.34573 −0.672867 0.739763i 0.734937π-0.734937\pi
−0.672867 + 0.739763i 0.734937π0.734937\pi
6262 5.36584 0.681462
6363 −0.411636 −0.0518613
6464 22.8640 2.85800
6565 2.04442 0.253579
6666 −2.69963 −0.332301
6767 10.0531 1.22818 0.614090 0.789236i 0.289523π-0.289523\pi
0.614090 + 0.789236i 0.289523π0.289523\pi
6868 −42.8268 −5.19352
6969 −5.00000 −0.601929
7070 −0.987620 −0.118043
7171 −5.30037 −0.629038 −0.314519 0.949251i 0.601843π-0.601843\pi
−0.314519 + 0.949251i 0.601843π0.601843\pi
7272 −8.87636 −1.04609
7373 2.47710 0.289923 0.144961 0.989437i 0.453694π-0.453694\pi
0.144961 + 0.989437i 0.453694π0.453694\pi
7474 −25.2509 −2.93535
7575 −4.21015 −0.486146
7676 −5.28799 −0.606574
7777 −0.411636 −0.0469103
7878 6.21015 0.703161
7979 −16.0741 −1.80848 −0.904240 0.427024i 0.859562π-0.859562\pi
−0.904240 + 0.427024i 0.859562π0.859562\pi
8080 −11.8974 −1.33017
8181 1.00000 0.111111
8282 −4.58836 −0.506700
8383 8.73305 0.958577 0.479288 0.877658i 0.340895π-0.340895\pi
0.479288 + 0.877658i 0.340895π0.340895\pi
8484 −2.17673 −0.237500
8585 7.19777 0.780708
8686 19.6749 2.12160
8787 7.38688 0.791956
8888 −8.87636 −0.946223
8989 1.98762 0.210687 0.105344 0.994436i 0.466406π-0.466406\pi
0.105344 + 0.994436i 0.466406π0.466406\pi
9090 2.39926 0.252904
9191 0.946916 0.0992638
9292 −26.4400 −2.75656
9393 −1.98762 −0.206107
9494 12.0865 1.24663
9595 0.888736 0.0911824
9696 −18.3869 −1.87660
9797 −15.6094 −1.58489 −0.792447 0.609940i 0.791193π-0.791193\pi
−0.792447 + 0.609940i 0.791193π0.791193\pi
9898 18.4400 1.86272
9999 1.00000 0.100504
100100 −22.2632 −2.22632
101101 0.888736 0.0884325 0.0442163 0.999022i 0.485921π-0.485921\pi
0.0442163 + 0.999022i 0.485921π0.485921\pi
102102 21.8640 2.16486
103103 −11.7193 −1.15474 −0.577368 0.816484i 0.695920π-0.695920\pi
−0.577368 + 0.816484i 0.695920π0.695920\pi
104104 20.4189 2.00224
105105 0.365836 0.0357019
106106 0.901116 0.0875241
107107 −6.18911 −0.598324 −0.299162 0.954202i 0.596707π-0.596707\pi
−0.299162 + 0.954202i 0.596707π0.596707\pi
108108 5.28799 0.508837
109109 −11.7651 −1.12689 −0.563446 0.826153i 0.690525π-0.690525\pi
−0.563446 + 0.826153i 0.690525π0.690525\pi
110110 2.39926 0.228760
111111 9.35346 0.887791
112112 −5.51052 −0.520695
113113 −1.84294 −0.173369 −0.0866844 0.996236i 0.527627π-0.527627\pi
−0.0866844 + 0.996236i 0.527627π0.527627\pi
114114 2.69963 0.252843
115115 4.44368 0.414375
116116 39.0617 3.62679
117117 −2.30037 −0.212669
118118 12.8640 1.18423
119119 3.33379 0.305608
120120 7.88874 0.720140
121121 1.00000 0.0909091
122122 28.3745 2.56891
123123 1.69963 0.153250
124124 −10.5105 −0.943873
125125 8.18539 0.732123
126126 1.11126 0.0989993
127127 9.43268 0.837015 0.418507 0.908213i 0.362553π-0.362553\pi
0.418507 + 0.908213i 0.362553π0.362553\pi
128128 −24.9505 −2.20533
129129 −7.28799 −0.641672
130130 −5.51918 −0.484064
131131 9.24357 0.807614 0.403807 0.914844i 0.367687π-0.367687\pi
0.403807 + 0.914844i 0.367687π0.367687\pi
132132 5.28799 0.460261
133133 0.411636 0.0356934
134134 −27.1396 −2.34450
135135 −0.888736 −0.0764902
136136 71.8886 6.16440
137137 −1.15706 −0.0988547 −0.0494273 0.998778i 0.515740π-0.515740\pi
−0.0494273 + 0.998778i 0.515740π0.515740\pi
138138 13.4981 1.14904
139139 −4.25457 −0.360868 −0.180434 0.983587i 0.557750π-0.557750\pi
−0.180434 + 0.983587i 0.557750π0.557750\pi
140140 1.93454 0.163498
141141 −4.47710 −0.377040
142142 14.3090 1.20079
143143 −2.30037 −0.192367
144144 13.3869 1.11557
145145 −6.56498 −0.545192
146146 −6.68725 −0.553441
147147 −6.83056 −0.563375
148148 49.4610 4.06567
149149 8.30037 0.679993 0.339996 0.940427i 0.389574π-0.389574\pi
0.339996 + 0.940427i 0.389574π0.389574\pi
150150 11.3658 0.928017
151151 21.4189 1.74305 0.871523 0.490354i 0.163132π-0.163132\pi
0.871523 + 0.490354i 0.163132π0.163132\pi
152152 8.87636 0.719968
153153 −8.09888 −0.654756
154154 1.11126 0.0895482
155155 1.76647 0.141886
156156 −12.1643 −0.973927
157157 −5.85532 −0.467305 −0.233653 0.972320i 0.575068π-0.575068\pi
−0.233653 + 0.972320i 0.575068π0.575068\pi
158158 43.3942 3.45225
159159 −0.333792 −0.0264715
160160 16.3411 1.29188
161161 2.05818 0.162207
162162 −2.69963 −0.212103
163163 18.6094 1.45760 0.728801 0.684726i 0.240078π-0.240078\pi
0.728801 + 0.684726i 0.240078π0.240078\pi
164164 8.98762 0.701815
165165 −0.888736 −0.0691880
166166 −23.5760 −1.82985
167167 −1.11126 −0.0859922 −0.0429961 0.999075i 0.513690π-0.513690\pi
−0.0429961 + 0.999075i 0.513690π0.513690\pi
168168 3.65383 0.281899
169169 −7.70829 −0.592945
170170 −19.4313 −1.49031
171171 −1.00000 −0.0764719
172172 −38.5388 −2.93856
173173 −9.66621 −0.734908 −0.367454 0.930042i 0.619770π-0.619770\pi
−0.367454 + 0.930042i 0.619770π0.619770\pi
174174 −19.9418 −1.51179
175175 1.73305 0.131006
176176 13.3869 1.00907
177177 −4.76509 −0.358166
178178 −5.36584 −0.402186
179179 14.3658 1.07375 0.536876 0.843661i 0.319604π-0.319604\pi
0.536876 + 0.843661i 0.319604π0.319604\pi
180180 −4.69963 −0.350290
181181 4.14468 0.308072 0.154036 0.988065i 0.450773π-0.450773\pi
0.154036 + 0.988065i 0.450773π0.450773\pi
182182 −2.55632 −0.189487
183183 −10.5105 −0.776960
184184 44.3818 3.27187
185185 −8.31275 −0.611166
186186 5.36584 0.393442
187187 −8.09888 −0.592249
188188 −23.6749 −1.72667
189189 −0.411636 −0.0299421
190190 −2.39926 −0.174060
191191 −18.2101 −1.31764 −0.658820 0.752301i 0.728944π-0.728944\pi
−0.658820 + 0.752301i 0.728944π0.728944\pi
192192 22.8640 1.65007
193193 24.0989 1.73468 0.867338 0.497720i 0.165829π-0.165829\pi
0.867338 + 0.497720i 0.165829π0.165829\pi
194194 42.1396 3.02545
195195 2.04442 0.146404
196196 −36.1199 −2.57999
197197 −16.5512 −1.17923 −0.589613 0.807686i 0.700720π-0.700720\pi
−0.589613 + 0.807686i 0.700720π0.700720\pi
198198 −2.69963 −0.191854
199199 1.53528 0.108833 0.0544166 0.998518i 0.482670π-0.482670\pi
0.0544166 + 0.998518i 0.482670π0.482670\pi
200200 37.3708 2.64251
201201 10.0531 0.709090
202202 −2.39926 −0.168811
203203 −3.04070 −0.213416
204204 −42.8268 −2.99848
205205 −1.51052 −0.105499
206206 31.6377 2.20431
207207 −5.00000 −0.347524
208208 −30.7948 −2.13523
209209 −1.00000 −0.0691714
210210 −0.987620 −0.0681523
211211 9.01966 0.620939 0.310470 0.950583i 0.399514π-0.399514\pi
0.310470 + 0.950583i 0.399514π0.399514\pi
212212 −1.76509 −0.121227
213213 −5.30037 −0.363175
214214 16.7083 1.14216
215215 6.47710 0.441735
216216 −8.87636 −0.603960
217217 0.818176 0.0555414
218218 31.7614 2.15115
219219 2.47710 0.167387
220220 −4.69963 −0.316849
221221 18.6304 1.25322
222222 −25.2509 −1.69473
223223 11.3535 0.760284 0.380142 0.924928i 0.375875π-0.375875\pi
0.380142 + 0.924928i 0.375875π0.375875\pi
224224 7.56870 0.505705
225225 −4.21015 −0.280677
226226 4.97524 0.330948
227227 −13.7651 −0.913621 −0.456811 0.889564i 0.651008π-0.651008\pi
−0.456811 + 0.889564i 0.651008π0.651008\pi
228228 −5.28799 −0.350206
229229 −23.5512 −1.55631 −0.778154 0.628073i 0.783844π-0.783844\pi
−0.778154 + 0.628073i 0.783844π0.783844\pi
230230 −11.9963 −0.791011
231231 −0.411636 −0.0270837
232232 −65.5685 −4.30479
233233 27.2632 1.78607 0.893037 0.449983i 0.148570π-0.148570\pi
0.893037 + 0.449983i 0.148570π0.148570\pi
234234 6.21015 0.405970
235235 3.97896 0.259559
236236 −25.1978 −1.64024
237237 −16.0741 −1.04413
238238 −9.00000 −0.583383
239239 0.320035 0.0207014 0.0103507 0.999946i 0.496705π-0.496705\pi
0.0103507 + 0.999946i 0.496705π0.496705\pi
240240 −11.8974 −0.767974
241241 26.8392 1.72887 0.864433 0.502748i 0.167678π-0.167678\pi
0.864433 + 0.502748i 0.167678π0.167678\pi
242242 −2.69963 −0.173539
243243 1.00000 0.0641500
244244 −55.5795 −3.55812
245245 6.07056 0.387834
246246 −4.58836 −0.292543
247247 2.30037 0.146369
248248 17.6428 1.12032
249249 8.73305 0.553434
250250 −22.0975 −1.39757
251251 27.5709 1.74026 0.870130 0.492823i 0.164035π-0.164035\pi
0.870130 + 0.492823i 0.164035π0.164035\pi
252252 −2.17673 −0.137121
253253 −5.00000 −0.314347
254254 −25.4647 −1.59780
255255 7.19777 0.450742
256256 21.6291 1.35182
257257 1.19049 0.0742604 0.0371302 0.999310i 0.488178π-0.488178\pi
0.0371302 + 0.999310i 0.488178π0.488178\pi
258258 19.6749 1.22490
259259 −3.85022 −0.239241
260260 10.8109 0.670463
261261 7.38688 0.457236
262262 −24.9542 −1.54168
263263 −19.0334 −1.17365 −0.586825 0.809713i 0.699623π-0.699623\pi
−0.586825 + 0.809713i 0.699623π0.699623\pi
264264 −8.87636 −0.546302
265265 0.296653 0.0182233
266266 −1.11126 −0.0681360
267267 1.98762 0.121640
268268 53.1606 3.24730
269269 11.7069 0.713783 0.356892 0.934146i 0.383837π-0.383837\pi
0.356892 + 0.934146i 0.383837π0.383837\pi
270270 2.39926 0.146014
271271 −15.4523 −0.938663 −0.469331 0.883022i 0.655505π-0.655505\pi
−0.469331 + 0.883022i 0.655505π0.655505\pi
272272 −108.419 −6.57385
273273 0.946916 0.0573100
274274 3.12364 0.188706
275275 −4.21015 −0.253882
276276 −26.4400 −1.59150
277277 −20.9876 −1.26102 −0.630512 0.776180i 0.717155π-0.717155\pi
−0.630512 + 0.776180i 0.717155π0.717155\pi
278278 11.4858 0.688870
279279 −1.98762 −0.118996
280280 −3.24729 −0.194063
281281 9.68725 0.577893 0.288946 0.957345i 0.406695π-0.406695\pi
0.288946 + 0.957345i 0.406695π0.406695\pi
282282 12.0865 0.719741
283283 13.0865 0.777912 0.388956 0.921256i 0.372836π-0.372836\pi
0.388956 + 0.921256i 0.372836π0.372836\pi
284284 −28.0283 −1.66318
285285 0.888736 0.0526442
286286 6.21015 0.367214
287287 −0.699628 −0.0412977
288288 −18.3869 −1.08346
289289 48.5919 2.85835
290290 17.7230 1.04073
291291 −15.6094 −0.915040
292292 13.0989 0.766554
293293 −19.1447 −1.11844 −0.559222 0.829018i 0.688900π-0.688900\pi
−0.559222 + 0.829018i 0.688900π0.688900\pi
294294 18.4400 1.07544
295295 4.23491 0.246566
296296 −83.0246 −4.82571
297297 1.00000 0.0580259
298298 −22.4079 −1.29806
299299 11.5019 0.665170
300300 −22.2632 −1.28537
301301 3.00000 0.172917
302302 −57.8231 −3.32735
303303 0.888736 0.0510565
304304 −13.3869 −0.767790
305305 9.34108 0.534868
306306 21.8640 1.24988
307307 −3.28799 −0.187656 −0.0938278 0.995588i 0.529910π-0.529910\pi
−0.0938278 + 0.995588i 0.529910π0.529910\pi
308308 −2.17673 −0.124031
309309 −11.7193 −0.666687
310310 −4.76881 −0.270850
311311 9.83056 0.557440 0.278720 0.960372i 0.410090π-0.410090\pi
0.278720 + 0.960372i 0.410090π0.410090\pi
312312 20.4189 1.15599
313313 −29.8516 −1.68731 −0.843656 0.536884i 0.819601π-0.819601\pi
−0.843656 + 0.536884i 0.819601π0.819601\pi
314314 15.8072 0.892050
315315 0.365836 0.0206125
316316 −84.9998 −4.78161
317317 −9.66249 −0.542699 −0.271350 0.962481i 0.587470π-0.587470\pi
−0.271350 + 0.962481i 0.587470π0.587470\pi
318318 0.901116 0.0505321
319319 7.38688 0.413586
320320 −20.3200 −1.13592
321321 −6.18911 −0.345442
322322 −5.55632 −0.309642
323323 8.09888 0.450634
324324 5.28799 0.293777
325325 9.68491 0.537222
326326 −50.2385 −2.78245
327327 −11.7651 −0.650611
328328 −15.0865 −0.833013
329329 1.84294 0.101604
330330 2.39926 0.132075
331331 −0.333792 −0.0183469 −0.00917345 0.999958i 0.502920π-0.502920\pi
−0.00917345 + 0.999958i 0.502920π0.502920\pi
332332 46.1803 2.53447
333333 9.35346 0.512566
334334 3.00000 0.164153
335335 −8.93454 −0.488146
336336 −5.51052 −0.300624
337337 22.8306 1.24366 0.621830 0.783152i 0.286390π-0.286390\pi
0.621830 + 0.783152i 0.286390π0.286390\pi
338338 20.8095 1.13189
339339 −1.84294 −0.100095
340340 38.0617 2.06419
341341 −1.98762 −0.107636
342342 2.69963 0.145979
343343 5.69315 0.307401
344344 64.6908 3.48789
345345 4.44368 0.239240
346346 26.0952 1.40288
347347 26.5054 1.42289 0.711443 0.702744i 0.248042π-0.248042\pi
0.711443 + 0.702744i 0.248042π0.248042\pi
348348 39.0617 2.09393
349349 −11.9469 −0.639504 −0.319752 0.947501i 0.603600π-0.603600\pi
−0.319752 + 0.947501i 0.603600π0.603600\pi
350350 −4.67859 −0.250081
351351 −2.30037 −0.122785
352352 −18.3869 −0.980024
353353 28.2312 1.50259 0.751297 0.659964i 0.229428π-0.229428\pi
0.751297 + 0.659964i 0.229428π0.229428\pi
354354 12.8640 0.683713
355355 4.71063 0.250014
356356 10.5105 0.557056
357357 3.33379 0.176443
358358 −38.7824 −2.04971
359359 18.3039 0.966045 0.483022 0.875608i 0.339539π-0.339539\pi
0.483022 + 0.875608i 0.339539π0.339539\pi
360360 7.88874 0.415773
361361 1.00000 0.0526316
362362 −11.1891 −0.588086
363363 1.00000 0.0524864
364364 5.00728 0.262453
365365 −2.20149 −0.115231
366366 28.3745 1.48316
367367 30.7600 1.60566 0.802829 0.596209i 0.203327π-0.203327\pi
0.802829 + 0.596209i 0.203327π0.203327\pi
368368 −66.9344 −3.48920
369369 1.69963 0.0884791
370370 22.4413 1.16667
371371 0.137401 0.00713350
372372 −10.5105 −0.544945
373373 −2.22115 −0.115007 −0.0575034 0.998345i 0.518314π-0.518314\pi
−0.0575034 + 0.998345i 0.518314π0.518314\pi
374374 21.8640 1.13056
375375 8.18539 0.422692
376376 39.7403 2.04945
377377 −16.9926 −0.875162
378378 1.11126 0.0571573
379379 −8.05308 −0.413659 −0.206830 0.978377i 0.566315π-0.566315\pi
−0.206830 + 0.978377i 0.566315π0.566315\pi
380380 4.69963 0.241086
381381 9.43268 0.483251
382382 49.1606 2.51528
383383 −6.59703 −0.337092 −0.168546 0.985694i 0.553907π-0.553907\pi
−0.168546 + 0.985694i 0.553907π0.553907\pi
384384 −24.9505 −1.27325
385385 0.365836 0.0186447
386386 −65.0580 −3.31137
387387 −7.28799 −0.370469
388388 −82.5424 −4.19046
389389 −25.1199 −1.27363 −0.636815 0.771016i 0.719749π-0.719749\pi
−0.636815 + 0.771016i 0.719749π0.719749\pi
390390 −5.51918 −0.279475
391391 40.4944 2.04789
392392 60.6304 3.06230
393393 9.24357 0.466276
394394 44.6822 2.25105
395395 14.2857 0.718789
396396 5.28799 0.265732
397397 −31.5068 −1.58128 −0.790641 0.612281i 0.790252π-0.790252\pi
−0.790641 + 0.612281i 0.790252π0.790252\pi
398398 −4.14468 −0.207754
399399 0.411636 0.0206076
400400 −56.3607 −2.81804
401401 −34.1643 −1.70609 −0.853043 0.521841i 0.825246π-0.825246\pi
−0.853043 + 0.521841i 0.825246π0.825246\pi
402402 −27.1396 −1.35360
403403 4.57227 0.227761
404404 4.69963 0.233815
405405 −0.888736 −0.0441616
406406 8.20877 0.407394
407407 9.35346 0.463634
408408 71.8886 3.55902
409409 0.642826 0.0317857 0.0158928 0.999874i 0.494941π-0.494941\pi
0.0158928 + 0.999874i 0.494941π0.494941\pi
410410 4.07784 0.201390
411411 −1.15706 −0.0570738
412412 −61.9715 −3.05312
413413 1.96148 0.0965183
414414 13.4981 0.663397
415415 −7.76137 −0.380991
416416 42.2967 2.07376
417417 −4.25457 −0.208347
418418 2.69963 0.132043
419419 20.8502 1.01860 0.509300 0.860589i 0.329904π-0.329904\pi
0.509300 + 0.860589i 0.329904π0.329904\pi
420420 1.93454 0.0943957
421421 −10.3425 −0.504060 −0.252030 0.967719i 0.581098π-0.581098\pi
−0.252030 + 0.967719i 0.581098π0.581098\pi
422422 −24.3497 −1.18533
423423 −4.47710 −0.217684
424424 2.96286 0.143889
425425 34.0975 1.65397
426426 14.3090 0.693275
427427 4.32651 0.209374
428428 −32.7280 −1.58197
429429 −2.30037 −0.111063
430430 −17.4858 −0.843238
431431 −13.9615 −0.672501 −0.336250 0.941773i 0.609159π-0.609159\pi
−0.336250 + 0.941773i 0.609159π0.609159\pi
432432 13.3869 0.644076
433433 5.53156 0.265830 0.132915 0.991127i 0.457566π-0.457566\pi
0.132915 + 0.991127i 0.457566π0.457566\pi
434434 −2.20877 −0.106024
435435 −6.56498 −0.314767
436436 −62.2137 −2.97950
437437 5.00000 0.239182
438438 −6.68725 −0.319529
439439 −20.2509 −0.966520 −0.483260 0.875477i 0.660548π-0.660548\pi
−0.483260 + 0.875477i 0.660548π0.660548\pi
440440 7.88874 0.376081
441441 −6.83056 −0.325265
442442 −50.2953 −2.39230
443443 −30.6080 −1.45423 −0.727116 0.686515i 0.759140π-0.759140\pi
−0.727116 + 0.686515i 0.759140π0.759140\pi
444444 49.4610 2.34732
445445 −1.76647 −0.0837387
446446 −30.6501 −1.45132
447447 8.30037 0.392594
448448 −9.41164 −0.444658
449449 −3.75643 −0.177277 −0.0886385 0.996064i 0.528252π-0.528252\pi
−0.0886385 + 0.996064i 0.528252π0.528252\pi
450450 11.3658 0.535791
451451 1.69963 0.0800324
452452 −9.74543 −0.458386
453453 21.4189 1.00635
454454 37.1606 1.74403
455455 −0.841558 −0.0394529
456456 8.87636 0.415673
457457 −2.41026 −0.112747 −0.0563736 0.998410i 0.517954π-0.517954\pi
−0.0563736 + 0.998410i 0.517954π0.517954\pi
458458 63.5795 2.97088
459459 −8.09888 −0.378024
460460 23.4981 1.09561
461461 4.35855 0.202998 0.101499 0.994836i 0.467636π-0.467636\pi
0.101499 + 0.994836i 0.467636π0.467636\pi
462462 1.11126 0.0517007
463463 38.6167 1.79467 0.897335 0.441350i 0.145500π-0.145500\pi
0.897335 + 0.441350i 0.145500π0.145500\pi
464464 98.8872 4.59072
465465 1.76647 0.0819181
466466 −73.6006 −3.40948
467467 −16.1767 −0.748570 −0.374285 0.927314i 0.622112π-0.622112\pi
−0.374285 + 0.927314i 0.622112π0.622112\pi
468468 −12.1643 −0.562297
469469 −4.13821 −0.191085
470470 −10.7417 −0.495478
471471 −5.85532 −0.269799
472472 42.2967 1.94686
473473 −7.28799 −0.335102
474474 43.3942 1.99316
475475 4.21015 0.193175
476476 17.6291 0.808027
477477 −0.333792 −0.0152833
478478 −0.863976 −0.0395174
479479 −28.9825 −1.32425 −0.662123 0.749395i 0.730344π-0.730344\pi
−0.662123 + 0.749395i 0.730344π0.730344\pi
480480 16.3411 0.745865
481481 −21.5164 −0.981065
482482 −72.4559 −3.30028
483483 2.05818 0.0936504
484484 5.28799 0.240363
485485 13.8726 0.629924
486486 −2.69963 −0.122458
487487 21.2670 0.963698 0.481849 0.876254i 0.339965π-0.339965\pi
0.481849 + 0.876254i 0.339965π0.339965\pi
488488 93.2951 4.22327
489489 18.6094 0.841546
490490 −16.3883 −0.740346
491491 −3.55494 −0.160432 −0.0802162 0.996777i 0.525561π-0.525561\pi
−0.0802162 + 0.996777i 0.525561π0.525561\pi
492492 8.98762 0.405193
493493 −59.8255 −2.69440
494494 −6.21015 −0.279408
495495 −0.888736 −0.0399457
496496 −26.6080 −1.19474
497497 2.18182 0.0978682
498498 −23.5760 −1.05647
499499 −23.0952 −1.03388 −0.516941 0.856021i 0.672929π-0.672929\pi
−0.516941 + 0.856021i 0.672929π0.672929\pi
500500 43.2843 1.93573
501501 −1.11126 −0.0496476
502502 −74.4311 −3.32202
503503 36.4930 1.62714 0.813572 0.581464i 0.197520π-0.197520\pi
0.813572 + 0.581464i 0.197520π0.197520\pi
504504 3.65383 0.162754
505505 −0.789851 −0.0351479
506506 13.4981 0.600066
507507 −7.70829 −0.342337
508508 49.8799 2.21306
509509 −25.0036 −1.10826 −0.554132 0.832429i 0.686950π-0.686950\pi
−0.554132 + 0.832429i 0.686950π0.686950\pi
510510 −19.4313 −0.860432
511511 −1.01966 −0.0451073
512512 −8.48948 −0.375186
513513 −1.00000 −0.0441511
514514 −3.21387 −0.141758
515515 10.4154 0.458955
516516 −38.5388 −1.69658
517517 −4.47710 −0.196903
518518 10.3942 0.456693
519519 −9.66621 −0.424299
520520 −18.1470 −0.795800
521521 −43.8355 −1.92047 −0.960234 0.279196i 0.909932π-0.909932\pi
−0.960234 + 0.279196i 0.909932π0.909932\pi
522522 −19.9418 −0.872830
523523 23.2829 1.01809 0.509045 0.860740i 0.329999π-0.329999\pi
0.509045 + 0.860740i 0.329999π0.329999\pi
524524 48.8799 2.13533
525525 1.73305 0.0756364
526526 51.3832 2.24041
527527 16.0975 0.701218
528528 13.3869 0.582589
529529 2.00000 0.0869565
530530 −0.800854 −0.0347869
531531 −4.76509 −0.206787
532532 2.17673 0.0943731
533533 −3.90978 −0.169351
534534 −5.36584 −0.232202
535535 5.50048 0.237807
536536 −89.2348 −3.85435
537537 14.3658 0.619932
538538 −31.6043 −1.36256
539539 −6.83056 −0.294213
540540 −4.69963 −0.202240
541541 29.9556 1.28789 0.643945 0.765071i 0.277296π-0.277296\pi
0.643945 + 0.765071i 0.277296π0.277296\pi
542542 41.7156 1.79184
543543 4.14468 0.177865
544544 148.913 6.38460
545545 10.4561 0.447888
546546 −2.55632 −0.109400
547547 45.7700 1.95699 0.978493 0.206282i 0.0661363π-0.0661363\pi
0.978493 + 0.206282i 0.0661363π0.0661363\pi
548548 −6.11855 −0.261371
549549 −10.5105 −0.448578
550550 11.3658 0.484641
551551 −7.38688 −0.314692
552552 44.3818 1.88901
553553 6.61669 0.281370
554554 56.6588 2.40720
555555 −8.31275 −0.352857
556556 −22.4981 −0.954134
557557 0.987620 0.0418468 0.0209234 0.999781i 0.493339π-0.493339\pi
0.0209234 + 0.999781i 0.493339π0.493339\pi
558558 5.36584 0.227154
559559 16.7651 0.709088
560560 4.89740 0.206953
561561 −8.09888 −0.341935
562562 −26.1520 −1.10315
563563 5.97896 0.251983 0.125992 0.992031i 0.459789π-0.459789\pi
0.125992 + 0.992031i 0.459789π0.459789\pi
564564 −23.6749 −0.996892
565565 1.63788 0.0689062
566566 −35.3287 −1.48498
567567 −0.411636 −0.0172871
568568 47.0480 1.97409
569569 29.8799 1.25263 0.626316 0.779569i 0.284562π-0.284562\pi
0.626316 + 0.779569i 0.284562π0.284562\pi
570570 −2.39926 −0.100494
571571 −15.4785 −0.647754 −0.323877 0.946099i 0.604986π-0.604986\pi
−0.323877 + 0.946099i 0.604986π0.604986\pi
572572 −12.1643 −0.508617
573573 −18.2101 −0.760740
574574 1.88874 0.0788343
575575 21.0507 0.877877
576576 22.8640 0.952666
577577 −4.14840 −0.172700 −0.0863501 0.996265i 0.527520π-0.527520\pi
−0.0863501 + 0.996265i 0.527520π0.527520\pi
578578 −131.180 −5.45637
579579 24.0989 1.00152
580580 −34.7156 −1.44149
581581 −3.59484 −0.149139
582582 42.1396 1.74674
583583 −0.333792 −0.0138243
584584 −21.9876 −0.909854
585585 2.04442 0.0845265
586586 51.6835 2.13503
587587 −23.2522 −0.959722 −0.479861 0.877344i 0.659313π-0.659313\pi
−0.479861 + 0.877344i 0.659313π0.659313\pi
588588 −36.1199 −1.48956
589589 1.98762 0.0818985
590590 −11.4327 −0.470676
591591 −16.5512 −0.680826
592592 125.214 5.14625
593593 −17.2225 −0.707244 −0.353622 0.935388i 0.615050π-0.615050\pi
−0.353622 + 0.935388i 0.615050π0.615050\pi
594594 −2.69963 −0.110767
595595 −2.96286 −0.121465
596596 43.8923 1.79790
597597 1.53528 0.0628348
598598 −31.0507 −1.26976
599599 −15.8268 −0.646667 −0.323334 0.946285i 0.604804π-0.604804\pi
−0.323334 + 0.946285i 0.604804π0.604804\pi
600600 37.3708 1.52566
601601 −37.5599 −1.53210 −0.766050 0.642781i 0.777780π-0.777780\pi
−0.766050 + 0.642781i 0.777780π0.777780\pi
602602 −8.09888 −0.330086
603603 10.0531 0.409393
604604 113.263 4.60861
605605 −0.888736 −0.0361323
606606 −2.39926 −0.0974631
607607 1.07413 0.0435974 0.0217987 0.999762i 0.493061π-0.493061\pi
0.0217987 + 0.999762i 0.493061π0.493061\pi
608608 18.3869 0.745686
609609 −3.04070 −0.123216
610610 −25.2174 −1.02102
611611 10.2990 0.416653
612612 −42.8268 −1.73117
613613 19.4771 0.786673 0.393336 0.919395i 0.371321π-0.371321\pi
0.393336 + 0.919395i 0.371321π0.371321\pi
614614 8.87636 0.358221
615615 −1.51052 −0.0609101
616616 3.65383 0.147217
617617 −44.3845 −1.78685 −0.893427 0.449208i 0.851706π-0.851706\pi
−0.893427 + 0.449208i 0.851706π0.851706\pi
618618 31.6377 1.27266
619619 39.5636 1.59020 0.795098 0.606481i 0.207419π-0.207419\pi
0.795098 + 0.606481i 0.207419π0.207419\pi
620620 9.34108 0.375147
621621 −5.00000 −0.200643
622622 −26.5388 −1.06411
623623 −0.818176 −0.0327795
624624 −30.7948 −1.23278
625625 13.7761 0.551044
626626 80.5882 3.22095
627627 −1.00000 −0.0399362
628628 −30.9629 −1.23555
629629 −75.7526 −3.02045
630630 −0.987620 −0.0393477
631631 13.4203 0.534254 0.267127 0.963661i 0.413926π-0.413926\pi
0.267127 + 0.963661i 0.413926π0.413926\pi
632632 142.680 5.67549
633633 9.01966 0.358499
634634 26.0851 1.03597
635635 −8.38316 −0.332675
636636 −1.76509 −0.0699904
637637 15.7128 0.622565
638638 −19.9418 −0.789504
639639 −5.30037 −0.209679
640640 22.1744 0.876520
641641 −23.9381 −0.945498 −0.472749 0.881197i 0.656738π-0.656738\pi
−0.472749 + 0.881197i 0.656738π0.656738\pi
642642 16.7083 0.659424
643643 −11.5956 −0.457288 −0.228644 0.973510i 0.573429π-0.573429\pi
−0.228644 + 0.973510i 0.573429π0.573429\pi
644644 10.8836 0.428875
645645 6.47710 0.255036
646646 −21.8640 −0.860227
647647 −48.9998 −1.92638 −0.963191 0.268817i 0.913367π-0.913367\pi
−0.963191 + 0.268817i 0.913367π0.913367\pi
648648 −8.87636 −0.348696
649649 −4.76509 −0.187046
650650 −26.1456 −1.02552
651651 0.818176 0.0320668
652652 98.4064 3.85389
653653 −31.6996 −1.24050 −0.620251 0.784403i 0.712969π-0.712969\pi
−0.620251 + 0.784403i 0.712969π0.712969\pi
654654 31.7614 1.24197
655655 −8.21509 −0.320990
656656 22.7527 0.888344
657657 2.47710 0.0966409
658658 −4.97524 −0.193955
659659 8.70101 0.338943 0.169472 0.985535i 0.445794π-0.445794\pi
0.169472 + 0.985535i 0.445794π0.445794\pi
660660 −4.69963 −0.182933
661661 23.4647 0.912672 0.456336 0.889808i 0.349162π-0.349162\pi
0.456336 + 0.889808i 0.349162π0.349162\pi
662662 0.901116 0.0350229
663663 18.6304 0.723547
664664 −77.5177 −3.00827
665665 −0.365836 −0.0141865
666666 −25.2509 −0.978451
667667 −36.9344 −1.43011
668668 −5.87636 −0.227363
669669 11.3535 0.438950
670670 24.1199 0.931834
671671 −10.5105 −0.405754
672672 7.56870 0.291969
673673 −37.7861 −1.45655 −0.728274 0.685286i 0.759677π-0.759677\pi
−0.728274 + 0.685286i 0.759677π0.759677\pi
674674 −61.6340 −2.37405
675675 −4.21015 −0.162049
676676 −40.7614 −1.56775
677677 −41.2705 −1.58615 −0.793077 0.609121i 0.791522π-0.791522\pi
−0.793077 + 0.609121i 0.791522π0.791522\pi
678678 4.97524 0.191073
679679 6.42539 0.246584
680680 −63.8900 −2.45007
681681 −13.7651 −0.527479
682682 5.36584 0.205468
683683 36.3374 1.39041 0.695205 0.718811i 0.255314π-0.255314\pi
0.695205 + 0.718811i 0.255314π0.255314\pi
684684 −5.28799 −0.202191
685685 1.02832 0.0392903
686686 −15.3694 −0.586806
687687 −23.5512 −0.898535
688688 −97.5635 −3.71957
689689 0.767847 0.0292526
690690 −11.9963 −0.456691
691691 35.8777 1.36485 0.682427 0.730954i 0.260925π-0.260925\pi
0.682427 + 0.730954i 0.260925π0.260925\pi
692692 −51.1148 −1.94309
693693 −0.411636 −0.0156368
694694 −71.5548 −2.71618
695695 3.78119 0.143429
696696 −65.5685 −2.48537
697697 −13.7651 −0.521390
698698 32.2522 1.22076
699699 27.2632 1.03119
700700 9.16435 0.346380
701701 26.2632 0.991949 0.495974 0.868337i 0.334811π-0.334811\pi
0.495974 + 0.868337i 0.334811π0.334811\pi
702702 6.21015 0.234387
703703 −9.35346 −0.352772
704704 22.8640 0.861719
705705 3.97896 0.149856
706706 −76.2137 −2.86834
707707 −0.365836 −0.0137587
708708 −25.1978 −0.946990
709709 33.7824 1.26873 0.634363 0.773036i 0.281263π-0.281263\pi
0.634363 + 0.773036i 0.281263π0.281263\pi
710710 −12.7170 −0.477259
711711 −16.0741 −0.602827
712712 −17.6428 −0.661193
713713 9.93810 0.372185
714714 −9.00000 −0.336817
715715 2.04442 0.0764571
716716 75.9664 2.83900
717717 0.320035 0.0119519
718718 −49.4138 −1.84411
719719 −17.8777 −0.666727 −0.333363 0.942798i 0.608184π-0.608184\pi
−0.333363 + 0.942798i 0.608184π0.608184\pi
720720 −11.8974 −0.443390
721721 4.82408 0.179658
722722 −2.69963 −0.100470
723723 26.8392 0.998161
724724 21.9171 0.814541
725725 −31.0998 −1.15502
726726 −2.69963 −0.100193
727727 20.8502 0.773292 0.386646 0.922228i 0.373634π-0.373634\pi
0.386646 + 0.922228i 0.373634π0.373634\pi
728728 −8.40516 −0.311516
729729 1.00000 0.0370370
730730 5.94320 0.219968
731731 59.0246 2.18310
732732 −55.5795 −2.05428
733733 −39.2756 −1.45068 −0.725339 0.688392i 0.758317π-0.758317\pi
−0.725339 + 0.688392i 0.758317π0.758317\pi
734734 −83.0406 −3.06508
735735 6.07056 0.223916
736736 91.9344 3.38875
737737 10.0531 0.370310
738738 −4.58836 −0.168900
739739 −43.7366 −1.60888 −0.804439 0.594036i 0.797534π-0.797534\pi
−0.804439 + 0.594036i 0.797534π0.797534\pi
740740 −43.9578 −1.61592
741741 2.30037 0.0845063
742742 −0.370932 −0.0136173
743743 −11.2312 −0.412032 −0.206016 0.978549i 0.566050π-0.566050\pi
−0.206016 + 0.978549i 0.566050π0.566050\pi
744744 17.6428 0.646817
745745 −7.37684 −0.270266
746746 5.99628 0.219539
747747 8.73305 0.319526
748748 −42.8268 −1.56590
749749 2.54766 0.0930895
750750 −22.0975 −0.806887
751751 −11.2742 −0.411403 −0.205701 0.978615i 0.565948π-0.565948\pi
−0.205701 + 0.978615i 0.565948π0.565948\pi
752752 −59.9344 −2.18558
753753 27.5709 1.00474
754754 45.8736 1.67062
755755 −19.0358 −0.692782
756756 −2.17673 −0.0791668
757757 13.9257 0.506139 0.253069 0.967448i 0.418560π-0.418560\pi
0.253069 + 0.967448i 0.418560π0.418560\pi
758758 21.7403 0.789644
759759 −5.00000 −0.181489
760760 −7.88874 −0.286155
761761 20.0952 0.728449 0.364225 0.931311i 0.381334π-0.381334\pi
0.364225 + 0.931311i 0.381334π0.381334\pi
762762 −25.4647 −0.922489
763763 4.84294 0.175326
764764 −96.2951 −3.48384
765765 7.19777 0.260236
766766 17.8095 0.643484
767767 10.9615 0.395796
768768 21.6291 0.780472
769769 −39.9098 −1.43918 −0.719592 0.694397i 0.755671π-0.755671\pi
−0.719592 + 0.694397i 0.755671π0.755671\pi
770770 −0.987620 −0.0355914
771771 1.19049 0.0428743
772772 127.435 4.58648
773773 38.6464 1.39001 0.695007 0.719003i 0.255401π-0.255401\pi
0.695007 + 0.719003i 0.255401π0.255401\pi
774774 19.6749 0.707199
775775 8.36818 0.300594
776776 138.555 4.97382
777777 −3.85022 −0.138126
778778 67.8145 2.43127
779779 −1.69963 −0.0608955
780780 10.8109 0.387092
781781 −5.30037 −0.189662
782782 −109.320 −3.90927
783783 7.38688 0.263985
784784 −91.4398 −3.26571
785785 5.20383 0.185733
786786 −24.9542 −0.890087
787787 28.8988 1.03013 0.515065 0.857151i 0.327768π-0.327768\pi
0.515065 + 0.857151i 0.327768π0.327768\pi
788788 −87.5227 −3.11787
789789 −19.0334 −0.677608
790790 −38.5659 −1.37211
791791 0.758619 0.0269734
792792 −8.87636 −0.315408
793793 24.1781 0.858590
794794 85.0566 3.01855
795795 0.296653 0.0105212
796796 8.11855 0.287754
797797 8.62907 0.305657 0.152829 0.988253i 0.451162π-0.451162\pi
0.152829 + 0.988253i 0.451162π0.451162\pi
798798 −1.11126 −0.0393383
799799 36.2595 1.28277
800800 77.4115 2.73691
801801 1.98762 0.0702291
802802 92.2310 3.25679
803803 2.47710 0.0874150
804804 53.1606 1.87483
805805 −1.82918 −0.0644701
806806 −12.3434 −0.434778
807807 11.7069 0.412103
808808 −7.88874 −0.277525
809809 −21.1162 −0.742406 −0.371203 0.928552i 0.621055π-0.621055\pi
−0.371203 + 0.928552i 0.621055π0.621055\pi
810810 2.39926 0.0843013
811811 −0.634164 −0.0222685 −0.0111343 0.999938i 0.503544π-0.503544\pi
−0.0111343 + 0.999938i 0.503544π0.503544\pi
812812 −16.0792 −0.564270
813813 −15.4523 −0.541937
814814 −25.2509 −0.885042
815815 −16.5388 −0.579330
816816 −108.419 −3.79542
817817 7.28799 0.254975
818818 −1.73539 −0.0606765
819819 0.946916 0.0330879
820820 −7.98762 −0.278940
821821 5.01238 0.174933 0.0874666 0.996167i 0.472123π-0.472123\pi
0.0874666 + 0.996167i 0.472123π0.472123\pi
822822 3.12364 0.108950
823823 −5.65383 −0.197080 −0.0985400 0.995133i 0.531417π-0.531417\pi
−0.0985400 + 0.995133i 0.531417π0.531417\pi
824824 104.025 3.62387
825825 −4.21015 −0.146579
826826 −5.29528 −0.184246
827827 −10.8726 −0.378079 −0.189039 0.981970i 0.560537π-0.560537\pi
−0.189039 + 0.981970i 0.560537π0.560537\pi
828828 −26.4400 −0.918852
829829 8.45234 0.293562 0.146781 0.989169i 0.453109π-0.453109\pi
0.146781 + 0.989169i 0.453109π0.453109\pi
830830 20.9528 0.727283
831831 −20.9876 −0.728052
832832 −52.5956 −1.82343
833833 55.3199 1.91672
834834 11.4858 0.397719
835835 0.987620 0.0341780
836836 −5.28799 −0.182889
837837 −1.98762 −0.0687022
838838 −56.2878 −1.94443
839839 −29.6800 −1.02467 −0.512333 0.858787i 0.671219π-0.671219\pi
−0.512333 + 0.858787i 0.671219π0.671219\pi
840840 −3.24729 −0.112042
841841 25.5659 0.881584
842842 27.9208 0.962214
843843 9.68725 0.333647
844844 47.6959 1.64176
845845 6.85063 0.235669
846846 12.0865 0.415543
847847 −0.411636 −0.0141440
848848 −4.46844 −0.153447
849849 13.0865 0.449128
850850 −92.0506 −3.15731
851851 −46.7673 −1.60316
852852 −28.0283 −0.960235
853853 39.3584 1.34761 0.673803 0.738911i 0.264660π-0.264660\pi
0.673803 + 0.738911i 0.264660π0.264660\pi
854854 −11.6800 −0.399680
855855 0.888736 0.0303941
856856 54.9367 1.87770
857857 −34.4079 −1.17535 −0.587676 0.809096i 0.699957π-0.699957\pi
−0.587676 + 0.809096i 0.699957π0.699957\pi
858858 6.21015 0.212011
859859 −21.7293 −0.741395 −0.370698 0.928754i 0.620881π-0.620881\pi
−0.370698 + 0.928754i 0.620881π0.620881\pi
860860 34.2509 1.16794
861861 −0.699628 −0.0238433
862862 37.6908 1.28375
863863 −4.26461 −0.145169 −0.0725845 0.997362i 0.523125π-0.523125\pi
−0.0725845 + 0.997362i 0.523125π0.523125\pi
864864 −18.3869 −0.625534
865865 8.59071 0.292093
866866 −14.9332 −0.507449
867867 48.5919 1.65027
868868 4.32651 0.146851
869869 −16.0741 −0.545277
870870 17.7230 0.600866
871871 −23.1258 −0.783589
872872 104.431 3.53648
873873 −15.6094 −0.528298
874874 −13.4981 −0.456581
875875 −3.36940 −0.113907
876876 13.0989 0.442570
877877 −23.6908 −0.799982 −0.399991 0.916519i 0.630987π-0.630987\pi
−0.399991 + 0.916519i 0.630987π0.630987\pi
878878 54.6698 1.84502
879879 −19.1447 −0.645734
880880 −11.8974 −0.401061
881881 −10.4276 −0.351314 −0.175657 0.984451i 0.556205π-0.556205\pi
−0.175657 + 0.984451i 0.556205π0.556205\pi
882882 18.4400 0.620906
883883 −16.2349 −0.546348 −0.273174 0.961965i 0.588074π-0.588074\pi
−0.273174 + 0.961965i 0.588074π0.588074\pi
884884 98.5177 3.31351
885885 4.23491 0.142355
886886 82.6303 2.77602
887887 31.1991 1.04756 0.523782 0.851852i 0.324520π-0.324520\pi
0.523782 + 0.851852i 0.324520π0.324520\pi
888888 −83.0246 −2.78612
889889 −3.88283 −0.130226
890890 4.76881 0.159851
891891 1.00000 0.0335013
892892 60.0370 2.01019
893893 4.47710 0.149820
894894 −22.4079 −0.749433
895895 −12.7674 −0.426768
896896 10.2705 0.343114
897897 11.5019 0.384036
898898 10.1410 0.338408
899899 −14.6823 −0.489682
900900 −22.2632 −0.742108
901901 2.70335 0.0900615
902902 −4.58836 −0.152776
903903 3.00000 0.0998337
904904 16.3586 0.544077
905905 −3.68353 −0.122445
906906 −57.8231 −1.92104
907907 9.56498 0.317600 0.158800 0.987311i 0.449237π-0.449237\pi
0.158800 + 0.987311i 0.449237π0.449237\pi
908908 −72.7897 −2.41561
909909 0.888736 0.0294775
910910 2.27189 0.0753125
911911 32.8589 1.08866 0.544332 0.838870i 0.316783π-0.316783\pi
0.544332 + 0.838870i 0.316783π0.316783\pi
912912 −13.3869 −0.443284
913913 8.73305 0.289022
914914 6.50680 0.215226
915915 9.34108 0.308806
916916 −124.539 −4.11487
917917 −3.80499 −0.125652
918918 21.8640 0.721619
919919 52.0755 1.71781 0.858906 0.512133i 0.171145π-0.171145\pi
0.858906 + 0.512133i 0.171145π0.171145\pi
920920 −39.4437 −1.30042
921921 −3.28799 −0.108343
922922 −11.7665 −0.387508
923923 12.1928 0.401332
924924 −2.17673 −0.0716091
925925 −39.3794 −1.29479
926926 −104.251 −3.42589
927927 −11.7193 −0.384912
928928 −135.822 −4.45856
929929 −6.73305 −0.220904 −0.110452 0.993881i 0.535230π-0.535230\pi
−0.110452 + 0.993881i 0.535230π0.535230\pi
930930 −4.76881 −0.156375
931931 6.83056 0.223862
932932 144.168 4.72237
933933 9.83056 0.321838
934934 43.6712 1.42896
935935 7.19777 0.235392
936936 20.4189 0.667413
937937 −13.1557 −0.429778 −0.214889 0.976639i 0.568939π-0.568939\pi
−0.214889 + 0.976639i 0.568939π0.568939\pi
938938 11.1716 0.364767
939939 −29.8516 −0.974170
940940 21.0407 0.686272
941941 −18.5105 −0.603426 −0.301713 0.953399i 0.597558π-0.597558\pi
−0.301713 + 0.953399i 0.597558π0.597558\pi
942942 15.8072 0.515026
943943 −8.49814 −0.276738
944944 −63.7897 −2.07618
945945 0.365836 0.0119006
946946 19.6749 0.639685
947947 2.67349 0.0868768 0.0434384 0.999056i 0.486169π-0.486169\pi
0.0434384 + 0.999056i 0.486169π0.486169\pi
948948 −84.9998 −2.76067
949949 −5.69825 −0.184973
950950 −11.3658 −0.368756
951951 −9.66249 −0.313328
952952 −29.5919 −0.959080
953953 45.3336 1.46850 0.734250 0.678879i 0.237534π-0.237534\pi
0.734250 + 0.678879i 0.237534π0.237534\pi
954954 0.901116 0.0291747
955955 16.1840 0.523702
956956 1.69234 0.0547343
957957 7.38688 0.238784
958958 78.2420 2.52789
959959 0.476289 0.0153802
960960 −20.3200 −0.655826
961961 −27.0494 −0.872560
962962 58.0864 1.87278
963963 −6.18911 −0.199441
964964 141.926 4.57111
965965 −21.4175 −0.689455
966966 −5.55632 −0.178772
967967 −49.7797 −1.60081 −0.800403 0.599462i 0.795381π-0.795381\pi
−0.800403 + 0.599462i 0.795381π0.795381\pi
968968 −8.87636 −0.285297
969969 8.09888 0.260174
970970 −37.4510 −1.20248
971971 −5.46982 −0.175535 −0.0877674 0.996141i 0.527973π-0.527973\pi
−0.0877674 + 0.996141i 0.527973π0.527973\pi
972972 5.28799 0.169612
973973 1.75133 0.0561452
974974 −57.4129 −1.83963
975975 9.68491 0.310165
976976 −140.703 −4.50379
977977 33.5933 1.07475 0.537373 0.843345i 0.319417π-0.319417\pi
0.537373 + 0.843345i 0.319417π0.319417\pi
978978 −50.2385 −1.60645
979979 1.98762 0.0635246
980980 32.1011 1.02543
981981 −11.7651 −0.375630
982982 9.59703 0.306253
983983 49.0122 1.56325 0.781624 0.623750i 0.214392π-0.214392\pi
0.781624 + 0.623750i 0.214392π0.214392\pi
984984 −15.0865 −0.480940
985985 14.7097 0.468689
986986 161.506 5.14341
987987 1.84294 0.0586613
988988 12.1643 0.386999
989989 36.4400 1.15872
990990 2.39926 0.0762534
991991 27.0159 0.858190 0.429095 0.903259i 0.358833π-0.358833\pi
0.429095 + 0.903259i 0.358833π0.358833\pi
992992 36.5461 1.16034
993993 −0.333792 −0.0105926
994994 −5.89011 −0.186823
995995 −1.36446 −0.0432562
996996 46.1803 1.46328
997997 −16.4981 −0.522501 −0.261251 0.965271i 0.584135π-0.584135\pi
−0.261251 + 0.965271i 0.584135π0.584135\pi
998998 62.3484 1.97360
999999 9.35346 0.295930
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 627.2.a.e.1.1 3
3.2 odd 2 1881.2.a.i.1.3 3
11.10 odd 2 6897.2.a.p.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
627.2.a.e.1.1 3 1.1 even 1 trivial
1881.2.a.i.1.3 3 3.2 odd 2
6897.2.a.p.1.3 3 11.10 odd 2