Properties

Label 6897.2.a.p.1.3
Level $6897$
Weight $2$
Character 6897.1
Self dual yes
Analytic conductor $55.073$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6897,2,Mod(1,6897)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6897, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6897.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6897 = 3 \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6897.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0728222741\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 627)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.69963\) of defining polynomial
Character \(\chi\) \(=\) 6897.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.69963 q^{2} +1.00000 q^{3} +5.28799 q^{4} -0.888736 q^{5} +2.69963 q^{6} +0.411636 q^{7} +8.87636 q^{8} +1.00000 q^{9} -2.39926 q^{10} +5.28799 q^{12} +2.30037 q^{13} +1.11126 q^{14} -0.888736 q^{15} +13.3869 q^{16} +8.09888 q^{17} +2.69963 q^{18} +1.00000 q^{19} -4.69963 q^{20} +0.411636 q^{21} -5.00000 q^{23} +8.87636 q^{24} -4.21015 q^{25} +6.21015 q^{26} +1.00000 q^{27} +2.17673 q^{28} -7.38688 q^{29} -2.39926 q^{30} -1.98762 q^{31} +18.3869 q^{32} +21.8640 q^{34} -0.365836 q^{35} +5.28799 q^{36} +9.35346 q^{37} +2.69963 q^{38} +2.30037 q^{39} -7.88874 q^{40} -1.69963 q^{41} +1.11126 q^{42} +7.28799 q^{43} -0.888736 q^{45} -13.4981 q^{46} -4.47710 q^{47} +13.3869 q^{48} -6.83056 q^{49} -11.3658 q^{50} +8.09888 q^{51} +12.1643 q^{52} -0.333792 q^{53} +2.69963 q^{54} +3.65383 q^{56} +1.00000 q^{57} -19.9418 q^{58} -4.76509 q^{59} -4.69963 q^{60} +10.5105 q^{61} -5.36584 q^{62} +0.411636 q^{63} +22.8640 q^{64} -2.04442 q^{65} +10.0531 q^{67} +42.8268 q^{68} -5.00000 q^{69} -0.987620 q^{70} -5.30037 q^{71} +8.87636 q^{72} -2.47710 q^{73} +25.2509 q^{74} -4.21015 q^{75} +5.28799 q^{76} +6.21015 q^{78} +16.0741 q^{79} -11.8974 q^{80} +1.00000 q^{81} -4.58836 q^{82} -8.73305 q^{83} +2.17673 q^{84} -7.19777 q^{85} +19.6749 q^{86} -7.38688 q^{87} +1.98762 q^{89} -2.39926 q^{90} +0.946916 q^{91} -26.4400 q^{92} -1.98762 q^{93} -12.0865 q^{94} -0.888736 q^{95} +18.3869 q^{96} -15.6094 q^{97} -18.4400 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} + 3 q^{3} + 4 q^{4} - 3 q^{5} + 2 q^{6} + 7 q^{7} + 9 q^{8} + 3 q^{9} + 5 q^{10} + 4 q^{12} + 13 q^{13} + 3 q^{14} - 3 q^{15} + 10 q^{16} + 6 q^{17} + 2 q^{18} + 3 q^{19} - 8 q^{20} + 7 q^{21}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.69963 1.90893 0.954463 0.298330i \(-0.0964297\pi\)
0.954463 + 0.298330i \(0.0964297\pi\)
\(3\) 1.00000 0.577350
\(4\) 5.28799 2.64400
\(5\) −0.888736 −0.397455 −0.198727 0.980055i \(-0.563681\pi\)
−0.198727 + 0.980055i \(0.563681\pi\)
\(6\) 2.69963 1.10212
\(7\) 0.411636 0.155584 0.0777919 0.996970i \(-0.475213\pi\)
0.0777919 + 0.996970i \(0.475213\pi\)
\(8\) 8.87636 3.13827
\(9\) 1.00000 0.333333
\(10\) −2.39926 −0.758711
\(11\) 0 0
\(12\) 5.28799 1.52651
\(13\) 2.30037 0.638008 0.319004 0.947753i \(-0.396652\pi\)
0.319004 + 0.947753i \(0.396652\pi\)
\(14\) 1.11126 0.296998
\(15\) −0.888736 −0.229471
\(16\) 13.3869 3.34672
\(17\) 8.09888 1.96427 0.982134 0.188183i \(-0.0602598\pi\)
0.982134 + 0.188183i \(0.0602598\pi\)
\(18\) 2.69963 0.636308
\(19\) 1.00000 0.229416
\(20\) −4.69963 −1.05087
\(21\) 0.411636 0.0898263
\(22\) 0 0
\(23\) −5.00000 −1.04257 −0.521286 0.853382i \(-0.674548\pi\)
−0.521286 + 0.853382i \(0.674548\pi\)
\(24\) 8.87636 1.81188
\(25\) −4.21015 −0.842030
\(26\) 6.21015 1.21791
\(27\) 1.00000 0.192450
\(28\) 2.17673 0.411363
\(29\) −7.38688 −1.37171 −0.685854 0.727739i \(-0.740571\pi\)
−0.685854 + 0.727739i \(0.740571\pi\)
\(30\) −2.39926 −0.438042
\(31\) −1.98762 −0.356987 −0.178494 0.983941i \(-0.557122\pi\)
−0.178494 + 0.983941i \(0.557122\pi\)
\(32\) 18.3869 3.25037
\(33\) 0 0
\(34\) 21.8640 3.74964
\(35\) −0.365836 −0.0618375
\(36\) 5.28799 0.881332
\(37\) 9.35346 1.53770 0.768849 0.639430i \(-0.220830\pi\)
0.768849 + 0.639430i \(0.220830\pi\)
\(38\) 2.69963 0.437938
\(39\) 2.30037 0.368354
\(40\) −7.88874 −1.24732
\(41\) −1.69963 −0.265437 −0.132719 0.991154i \(-0.542371\pi\)
−0.132719 + 0.991154i \(0.542371\pi\)
\(42\) 1.11126 0.171472
\(43\) 7.28799 1.11141 0.555704 0.831380i \(-0.312449\pi\)
0.555704 + 0.831380i \(0.312449\pi\)
\(44\) 0 0
\(45\) −0.888736 −0.132485
\(46\) −13.4981 −1.99019
\(47\) −4.47710 −0.653052 −0.326526 0.945188i \(-0.605878\pi\)
−0.326526 + 0.945188i \(0.605878\pi\)
\(48\) 13.3869 1.93223
\(49\) −6.83056 −0.975794
\(50\) −11.3658 −1.60737
\(51\) 8.09888 1.13407
\(52\) 12.1643 1.68689
\(53\) −0.333792 −0.0458499 −0.0229250 0.999737i \(-0.507298\pi\)
−0.0229250 + 0.999737i \(0.507298\pi\)
\(54\) 2.69963 0.367373
\(55\) 0 0
\(56\) 3.65383 0.488263
\(57\) 1.00000 0.132453
\(58\) −19.9418 −2.61849
\(59\) −4.76509 −0.620362 −0.310181 0.950677i \(-0.600390\pi\)
−0.310181 + 0.950677i \(0.600390\pi\)
\(60\) −4.69963 −0.606719
\(61\) 10.5105 1.34573 0.672867 0.739763i \(-0.265063\pi\)
0.672867 + 0.739763i \(0.265063\pi\)
\(62\) −5.36584 −0.681462
\(63\) 0.411636 0.0518613
\(64\) 22.8640 2.85800
\(65\) −2.04442 −0.253579
\(66\) 0 0
\(67\) 10.0531 1.22818 0.614090 0.789236i \(-0.289523\pi\)
0.614090 + 0.789236i \(0.289523\pi\)
\(68\) 42.8268 5.19352
\(69\) −5.00000 −0.601929
\(70\) −0.987620 −0.118043
\(71\) −5.30037 −0.629038 −0.314519 0.949251i \(-0.601843\pi\)
−0.314519 + 0.949251i \(0.601843\pi\)
\(72\) 8.87636 1.04609
\(73\) −2.47710 −0.289923 −0.144961 0.989437i \(-0.546306\pi\)
−0.144961 + 0.989437i \(0.546306\pi\)
\(74\) 25.2509 2.93535
\(75\) −4.21015 −0.486146
\(76\) 5.28799 0.606574
\(77\) 0 0
\(78\) 6.21015 0.703161
\(79\) 16.0741 1.80848 0.904240 0.427024i \(-0.140438\pi\)
0.904240 + 0.427024i \(0.140438\pi\)
\(80\) −11.8974 −1.33017
\(81\) 1.00000 0.111111
\(82\) −4.58836 −0.506700
\(83\) −8.73305 −0.958577 −0.479288 0.877658i \(-0.659105\pi\)
−0.479288 + 0.877658i \(0.659105\pi\)
\(84\) 2.17673 0.237500
\(85\) −7.19777 −0.780708
\(86\) 19.6749 2.12160
\(87\) −7.38688 −0.791956
\(88\) 0 0
\(89\) 1.98762 0.210687 0.105344 0.994436i \(-0.466406\pi\)
0.105344 + 0.994436i \(0.466406\pi\)
\(90\) −2.39926 −0.252904
\(91\) 0.946916 0.0992638
\(92\) −26.4400 −2.75656
\(93\) −1.98762 −0.206107
\(94\) −12.0865 −1.24663
\(95\) −0.888736 −0.0911824
\(96\) 18.3869 1.87660
\(97\) −15.6094 −1.58489 −0.792447 0.609940i \(-0.791193\pi\)
−0.792447 + 0.609940i \(0.791193\pi\)
\(98\) −18.4400 −1.86272
\(99\) 0 0
\(100\) −22.2632 −2.22632
\(101\) −0.888736 −0.0884325 −0.0442163 0.999022i \(-0.514079\pi\)
−0.0442163 + 0.999022i \(0.514079\pi\)
\(102\) 21.8640 2.16486
\(103\) −11.7193 −1.15474 −0.577368 0.816484i \(-0.695920\pi\)
−0.577368 + 0.816484i \(0.695920\pi\)
\(104\) 20.4189 2.00224
\(105\) −0.365836 −0.0357019
\(106\) −0.901116 −0.0875241
\(107\) 6.18911 0.598324 0.299162 0.954202i \(-0.403293\pi\)
0.299162 + 0.954202i \(0.403293\pi\)
\(108\) 5.28799 0.508837
\(109\) 11.7651 1.12689 0.563446 0.826153i \(-0.309475\pi\)
0.563446 + 0.826153i \(0.309475\pi\)
\(110\) 0 0
\(111\) 9.35346 0.887791
\(112\) 5.51052 0.520695
\(113\) −1.84294 −0.173369 −0.0866844 0.996236i \(-0.527627\pi\)
−0.0866844 + 0.996236i \(0.527627\pi\)
\(114\) 2.69963 0.252843
\(115\) 4.44368 0.414375
\(116\) −39.0617 −3.62679
\(117\) 2.30037 0.212669
\(118\) −12.8640 −1.18423
\(119\) 3.33379 0.305608
\(120\) −7.88874 −0.720140
\(121\) 0 0
\(122\) 28.3745 2.56891
\(123\) −1.69963 −0.153250
\(124\) −10.5105 −0.943873
\(125\) 8.18539 0.732123
\(126\) 1.11126 0.0989993
\(127\) −9.43268 −0.837015 −0.418507 0.908213i \(-0.637447\pi\)
−0.418507 + 0.908213i \(0.637447\pi\)
\(128\) 24.9505 2.20533
\(129\) 7.28799 0.641672
\(130\) −5.51918 −0.484064
\(131\) −9.24357 −0.807614 −0.403807 0.914844i \(-0.632313\pi\)
−0.403807 + 0.914844i \(0.632313\pi\)
\(132\) 0 0
\(133\) 0.411636 0.0356934
\(134\) 27.1396 2.34450
\(135\) −0.888736 −0.0764902
\(136\) 71.8886 6.16440
\(137\) −1.15706 −0.0988547 −0.0494273 0.998778i \(-0.515740\pi\)
−0.0494273 + 0.998778i \(0.515740\pi\)
\(138\) −13.4981 −1.14904
\(139\) 4.25457 0.360868 0.180434 0.983587i \(-0.442250\pi\)
0.180434 + 0.983587i \(0.442250\pi\)
\(140\) −1.93454 −0.163498
\(141\) −4.47710 −0.377040
\(142\) −14.3090 −1.20079
\(143\) 0 0
\(144\) 13.3869 1.11557
\(145\) 6.56498 0.545192
\(146\) −6.68725 −0.553441
\(147\) −6.83056 −0.563375
\(148\) 49.4610 4.06567
\(149\) −8.30037 −0.679993 −0.339996 0.940427i \(-0.610426\pi\)
−0.339996 + 0.940427i \(0.610426\pi\)
\(150\) −11.3658 −0.928017
\(151\) −21.4189 −1.74305 −0.871523 0.490354i \(-0.836868\pi\)
−0.871523 + 0.490354i \(0.836868\pi\)
\(152\) 8.87636 0.719968
\(153\) 8.09888 0.654756
\(154\) 0 0
\(155\) 1.76647 0.141886
\(156\) 12.1643 0.973927
\(157\) −5.85532 −0.467305 −0.233653 0.972320i \(-0.575068\pi\)
−0.233653 + 0.972320i \(0.575068\pi\)
\(158\) 43.3942 3.45225
\(159\) −0.333792 −0.0264715
\(160\) −16.3411 −1.29188
\(161\) −2.05818 −0.162207
\(162\) 2.69963 0.212103
\(163\) 18.6094 1.45760 0.728801 0.684726i \(-0.240078\pi\)
0.728801 + 0.684726i \(0.240078\pi\)
\(164\) −8.98762 −0.701815
\(165\) 0 0
\(166\) −23.5760 −1.82985
\(167\) 1.11126 0.0859922 0.0429961 0.999075i \(-0.486310\pi\)
0.0429961 + 0.999075i \(0.486310\pi\)
\(168\) 3.65383 0.281899
\(169\) −7.70829 −0.592945
\(170\) −19.4313 −1.49031
\(171\) 1.00000 0.0764719
\(172\) 38.5388 2.93856
\(173\) 9.66621 0.734908 0.367454 0.930042i \(-0.380230\pi\)
0.367454 + 0.930042i \(0.380230\pi\)
\(174\) −19.9418 −1.51179
\(175\) −1.73305 −0.131006
\(176\) 0 0
\(177\) −4.76509 −0.358166
\(178\) 5.36584 0.402186
\(179\) 14.3658 1.07375 0.536876 0.843661i \(-0.319604\pi\)
0.536876 + 0.843661i \(0.319604\pi\)
\(180\) −4.69963 −0.350290
\(181\) 4.14468 0.308072 0.154036 0.988065i \(-0.450773\pi\)
0.154036 + 0.988065i \(0.450773\pi\)
\(182\) 2.55632 0.189487
\(183\) 10.5105 0.776960
\(184\) −44.3818 −3.27187
\(185\) −8.31275 −0.611166
\(186\) −5.36584 −0.393442
\(187\) 0 0
\(188\) −23.6749 −1.72667
\(189\) 0.411636 0.0299421
\(190\) −2.39926 −0.174060
\(191\) −18.2101 −1.31764 −0.658820 0.752301i \(-0.728944\pi\)
−0.658820 + 0.752301i \(0.728944\pi\)
\(192\) 22.8640 1.65007
\(193\) −24.0989 −1.73468 −0.867338 0.497720i \(-0.834171\pi\)
−0.867338 + 0.497720i \(0.834171\pi\)
\(194\) −42.1396 −3.02545
\(195\) −2.04442 −0.146404
\(196\) −36.1199 −2.57999
\(197\) 16.5512 1.17923 0.589613 0.807686i \(-0.299280\pi\)
0.589613 + 0.807686i \(0.299280\pi\)
\(198\) 0 0
\(199\) 1.53528 0.108833 0.0544166 0.998518i \(-0.482670\pi\)
0.0544166 + 0.998518i \(0.482670\pi\)
\(200\) −37.3708 −2.64251
\(201\) 10.0531 0.709090
\(202\) −2.39926 −0.168811
\(203\) −3.04070 −0.213416
\(204\) 42.8268 2.99848
\(205\) 1.51052 0.105499
\(206\) −31.6377 −2.20431
\(207\) −5.00000 −0.347524
\(208\) 30.7948 2.13523
\(209\) 0 0
\(210\) −0.987620 −0.0681523
\(211\) −9.01966 −0.620939 −0.310470 0.950583i \(-0.600486\pi\)
−0.310470 + 0.950583i \(0.600486\pi\)
\(212\) −1.76509 −0.121227
\(213\) −5.30037 −0.363175
\(214\) 16.7083 1.14216
\(215\) −6.47710 −0.441735
\(216\) 8.87636 0.603960
\(217\) −0.818176 −0.0555414
\(218\) 31.7614 2.15115
\(219\) −2.47710 −0.167387
\(220\) 0 0
\(221\) 18.6304 1.25322
\(222\) 25.2509 1.69473
\(223\) 11.3535 0.760284 0.380142 0.924928i \(-0.375875\pi\)
0.380142 + 0.924928i \(0.375875\pi\)
\(224\) 7.56870 0.505705
\(225\) −4.21015 −0.280677
\(226\) −4.97524 −0.330948
\(227\) 13.7651 0.913621 0.456811 0.889564i \(-0.348992\pi\)
0.456811 + 0.889564i \(0.348992\pi\)
\(228\) 5.28799 0.350206
\(229\) −23.5512 −1.55631 −0.778154 0.628073i \(-0.783844\pi\)
−0.778154 + 0.628073i \(0.783844\pi\)
\(230\) 11.9963 0.791011
\(231\) 0 0
\(232\) −65.5685 −4.30479
\(233\) −27.2632 −1.78607 −0.893037 0.449983i \(-0.851430\pi\)
−0.893037 + 0.449983i \(0.851430\pi\)
\(234\) 6.21015 0.405970
\(235\) 3.97896 0.259559
\(236\) −25.1978 −1.64024
\(237\) 16.0741 1.04413
\(238\) 9.00000 0.583383
\(239\) −0.320035 −0.0207014 −0.0103507 0.999946i \(-0.503295\pi\)
−0.0103507 + 0.999946i \(0.503295\pi\)
\(240\) −11.8974 −0.767974
\(241\) −26.8392 −1.72887 −0.864433 0.502748i \(-0.832322\pi\)
−0.864433 + 0.502748i \(0.832322\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 55.5795 3.55812
\(245\) 6.07056 0.387834
\(246\) −4.58836 −0.292543
\(247\) 2.30037 0.146369
\(248\) −17.6428 −1.12032
\(249\) −8.73305 −0.553434
\(250\) 22.0975 1.39757
\(251\) 27.5709 1.74026 0.870130 0.492823i \(-0.164035\pi\)
0.870130 + 0.492823i \(0.164035\pi\)
\(252\) 2.17673 0.137121
\(253\) 0 0
\(254\) −25.4647 −1.59780
\(255\) −7.19777 −0.450742
\(256\) 21.6291 1.35182
\(257\) 1.19049 0.0742604 0.0371302 0.999310i \(-0.488178\pi\)
0.0371302 + 0.999310i \(0.488178\pi\)
\(258\) 19.6749 1.22490
\(259\) 3.85022 0.239241
\(260\) −10.8109 −0.670463
\(261\) −7.38688 −0.457236
\(262\) −24.9542 −1.54168
\(263\) 19.0334 1.17365 0.586825 0.809713i \(-0.300377\pi\)
0.586825 + 0.809713i \(0.300377\pi\)
\(264\) 0 0
\(265\) 0.296653 0.0182233
\(266\) 1.11126 0.0681360
\(267\) 1.98762 0.121640
\(268\) 53.1606 3.24730
\(269\) 11.7069 0.713783 0.356892 0.934146i \(-0.383837\pi\)
0.356892 + 0.934146i \(0.383837\pi\)
\(270\) −2.39926 −0.146014
\(271\) 15.4523 0.938663 0.469331 0.883022i \(-0.344495\pi\)
0.469331 + 0.883022i \(0.344495\pi\)
\(272\) 108.419 6.57385
\(273\) 0.946916 0.0573100
\(274\) −3.12364 −0.188706
\(275\) 0 0
\(276\) −26.4400 −1.59150
\(277\) 20.9876 1.26102 0.630512 0.776180i \(-0.282845\pi\)
0.630512 + 0.776180i \(0.282845\pi\)
\(278\) 11.4858 0.688870
\(279\) −1.98762 −0.118996
\(280\) −3.24729 −0.194063
\(281\) −9.68725 −0.577893 −0.288946 0.957345i \(-0.593305\pi\)
−0.288946 + 0.957345i \(0.593305\pi\)
\(282\) −12.0865 −0.719741
\(283\) −13.0865 −0.777912 −0.388956 0.921256i \(-0.627164\pi\)
−0.388956 + 0.921256i \(0.627164\pi\)
\(284\) −28.0283 −1.66318
\(285\) −0.888736 −0.0526442
\(286\) 0 0
\(287\) −0.699628 −0.0412977
\(288\) 18.3869 1.08346
\(289\) 48.5919 2.85835
\(290\) 17.7230 1.04073
\(291\) −15.6094 −0.915040
\(292\) −13.0989 −0.766554
\(293\) 19.1447 1.11844 0.559222 0.829018i \(-0.311100\pi\)
0.559222 + 0.829018i \(0.311100\pi\)
\(294\) −18.4400 −1.07544
\(295\) 4.23491 0.246566
\(296\) 83.0246 4.82571
\(297\) 0 0
\(298\) −22.4079 −1.29806
\(299\) −11.5019 −0.665170
\(300\) −22.2632 −1.28537
\(301\) 3.00000 0.172917
\(302\) −57.8231 −3.32735
\(303\) −0.888736 −0.0510565
\(304\) 13.3869 0.767790
\(305\) −9.34108 −0.534868
\(306\) 21.8640 1.24988
\(307\) 3.28799 0.187656 0.0938278 0.995588i \(-0.470090\pi\)
0.0938278 + 0.995588i \(0.470090\pi\)
\(308\) 0 0
\(309\) −11.7193 −0.666687
\(310\) 4.76881 0.270850
\(311\) 9.83056 0.557440 0.278720 0.960372i \(-0.410090\pi\)
0.278720 + 0.960372i \(0.410090\pi\)
\(312\) 20.4189 1.15599
\(313\) −29.8516 −1.68731 −0.843656 0.536884i \(-0.819601\pi\)
−0.843656 + 0.536884i \(0.819601\pi\)
\(314\) −15.8072 −0.892050
\(315\) −0.365836 −0.0206125
\(316\) 84.9998 4.78161
\(317\) −9.66249 −0.542699 −0.271350 0.962481i \(-0.587470\pi\)
−0.271350 + 0.962481i \(0.587470\pi\)
\(318\) −0.901116 −0.0505321
\(319\) 0 0
\(320\) −20.3200 −1.13592
\(321\) 6.18911 0.345442
\(322\) −5.55632 −0.309642
\(323\) 8.09888 0.450634
\(324\) 5.28799 0.293777
\(325\) −9.68491 −0.537222
\(326\) 50.2385 2.78245
\(327\) 11.7651 0.650611
\(328\) −15.0865 −0.833013
\(329\) −1.84294 −0.101604
\(330\) 0 0
\(331\) −0.333792 −0.0183469 −0.00917345 0.999958i \(-0.502920\pi\)
−0.00917345 + 0.999958i \(0.502920\pi\)
\(332\) −46.1803 −2.53447
\(333\) 9.35346 0.512566
\(334\) 3.00000 0.164153
\(335\) −8.93454 −0.488146
\(336\) 5.51052 0.300624
\(337\) −22.8306 −1.24366 −0.621830 0.783152i \(-0.713610\pi\)
−0.621830 + 0.783152i \(0.713610\pi\)
\(338\) −20.8095 −1.13189
\(339\) −1.84294 −0.100095
\(340\) −38.0617 −2.06419
\(341\) 0 0
\(342\) 2.69963 0.145979
\(343\) −5.69315 −0.307401
\(344\) 64.6908 3.48789
\(345\) 4.44368 0.239240
\(346\) 26.0952 1.40288
\(347\) −26.5054 −1.42289 −0.711443 0.702744i \(-0.751958\pi\)
−0.711443 + 0.702744i \(0.751958\pi\)
\(348\) −39.0617 −2.09393
\(349\) 11.9469 0.639504 0.319752 0.947501i \(-0.396400\pi\)
0.319752 + 0.947501i \(0.396400\pi\)
\(350\) −4.67859 −0.250081
\(351\) 2.30037 0.122785
\(352\) 0 0
\(353\) 28.2312 1.50259 0.751297 0.659964i \(-0.229428\pi\)
0.751297 + 0.659964i \(0.229428\pi\)
\(354\) −12.8640 −0.683713
\(355\) 4.71063 0.250014
\(356\) 10.5105 0.557056
\(357\) 3.33379 0.176443
\(358\) 38.7824 2.04971
\(359\) −18.3039 −0.966045 −0.483022 0.875608i \(-0.660461\pi\)
−0.483022 + 0.875608i \(0.660461\pi\)
\(360\) −7.88874 −0.415773
\(361\) 1.00000 0.0526316
\(362\) 11.1891 0.588086
\(363\) 0 0
\(364\) 5.00728 0.262453
\(365\) 2.20149 0.115231
\(366\) 28.3745 1.48316
\(367\) 30.7600 1.60566 0.802829 0.596209i \(-0.203327\pi\)
0.802829 + 0.596209i \(0.203327\pi\)
\(368\) −66.9344 −3.48920
\(369\) −1.69963 −0.0884791
\(370\) −22.4413 −1.16667
\(371\) −0.137401 −0.00713350
\(372\) −10.5105 −0.544945
\(373\) 2.22115 0.115007 0.0575034 0.998345i \(-0.481686\pi\)
0.0575034 + 0.998345i \(0.481686\pi\)
\(374\) 0 0
\(375\) 8.18539 0.422692
\(376\) −39.7403 −2.04945
\(377\) −16.9926 −0.875162
\(378\) 1.11126 0.0571573
\(379\) −8.05308 −0.413659 −0.206830 0.978377i \(-0.566315\pi\)
−0.206830 + 0.978377i \(0.566315\pi\)
\(380\) −4.69963 −0.241086
\(381\) −9.43268 −0.483251
\(382\) −49.1606 −2.51528
\(383\) −6.59703 −0.337092 −0.168546 0.985694i \(-0.553907\pi\)
−0.168546 + 0.985694i \(0.553907\pi\)
\(384\) 24.9505 1.27325
\(385\) 0 0
\(386\) −65.0580 −3.31137
\(387\) 7.28799 0.370469
\(388\) −82.5424 −4.19046
\(389\) −25.1199 −1.27363 −0.636815 0.771016i \(-0.719749\pi\)
−0.636815 + 0.771016i \(0.719749\pi\)
\(390\) −5.51918 −0.279475
\(391\) −40.4944 −2.04789
\(392\) −60.6304 −3.06230
\(393\) −9.24357 −0.466276
\(394\) 44.6822 2.25105
\(395\) −14.2857 −0.718789
\(396\) 0 0
\(397\) −31.5068 −1.58128 −0.790641 0.612281i \(-0.790252\pi\)
−0.790641 + 0.612281i \(0.790252\pi\)
\(398\) 4.14468 0.207754
\(399\) 0.411636 0.0206076
\(400\) −56.3607 −2.81804
\(401\) −34.1643 −1.70609 −0.853043 0.521841i \(-0.825246\pi\)
−0.853043 + 0.521841i \(0.825246\pi\)
\(402\) 27.1396 1.35360
\(403\) −4.57227 −0.227761
\(404\) −4.69963 −0.233815
\(405\) −0.888736 −0.0441616
\(406\) −8.20877 −0.407394
\(407\) 0 0
\(408\) 71.8886 3.55902
\(409\) −0.642826 −0.0317857 −0.0158928 0.999874i \(-0.505059\pi\)
−0.0158928 + 0.999874i \(0.505059\pi\)
\(410\) 4.07784 0.201390
\(411\) −1.15706 −0.0570738
\(412\) −61.9715 −3.05312
\(413\) −1.96148 −0.0965183
\(414\) −13.4981 −0.663397
\(415\) 7.76137 0.380991
\(416\) 42.2967 2.07376
\(417\) 4.25457 0.208347
\(418\) 0 0
\(419\) 20.8502 1.01860 0.509300 0.860589i \(-0.329904\pi\)
0.509300 + 0.860589i \(0.329904\pi\)
\(420\) −1.93454 −0.0943957
\(421\) −10.3425 −0.504060 −0.252030 0.967719i \(-0.581098\pi\)
−0.252030 + 0.967719i \(0.581098\pi\)
\(422\) −24.3497 −1.18533
\(423\) −4.47710 −0.217684
\(424\) −2.96286 −0.143889
\(425\) −34.0975 −1.65397
\(426\) −14.3090 −0.693275
\(427\) 4.32651 0.209374
\(428\) 32.7280 1.58197
\(429\) 0 0
\(430\) −17.4858 −0.843238
\(431\) 13.9615 0.672501 0.336250 0.941773i \(-0.390841\pi\)
0.336250 + 0.941773i \(0.390841\pi\)
\(432\) 13.3869 0.644076
\(433\) 5.53156 0.265830 0.132915 0.991127i \(-0.457566\pi\)
0.132915 + 0.991127i \(0.457566\pi\)
\(434\) −2.20877 −0.106024
\(435\) 6.56498 0.314767
\(436\) 62.2137 2.97950
\(437\) −5.00000 −0.239182
\(438\) −6.68725 −0.319529
\(439\) 20.2509 0.966520 0.483260 0.875477i \(-0.339452\pi\)
0.483260 + 0.875477i \(0.339452\pi\)
\(440\) 0 0
\(441\) −6.83056 −0.325265
\(442\) 50.2953 2.39230
\(443\) −30.6080 −1.45423 −0.727116 0.686515i \(-0.759140\pi\)
−0.727116 + 0.686515i \(0.759140\pi\)
\(444\) 49.4610 2.34732
\(445\) −1.76647 −0.0837387
\(446\) 30.6501 1.45132
\(447\) −8.30037 −0.392594
\(448\) 9.41164 0.444658
\(449\) −3.75643 −0.177277 −0.0886385 0.996064i \(-0.528252\pi\)
−0.0886385 + 0.996064i \(0.528252\pi\)
\(450\) −11.3658 −0.535791
\(451\) 0 0
\(452\) −9.74543 −0.458386
\(453\) −21.4189 −1.00635
\(454\) 37.1606 1.74403
\(455\) −0.841558 −0.0394529
\(456\) 8.87636 0.415673
\(457\) 2.41026 0.112747 0.0563736 0.998410i \(-0.482046\pi\)
0.0563736 + 0.998410i \(0.482046\pi\)
\(458\) −63.5795 −2.97088
\(459\) 8.09888 0.378024
\(460\) 23.4981 1.09561
\(461\) −4.35855 −0.202998 −0.101499 0.994836i \(-0.532364\pi\)
−0.101499 + 0.994836i \(0.532364\pi\)
\(462\) 0 0
\(463\) 38.6167 1.79467 0.897335 0.441350i \(-0.145500\pi\)
0.897335 + 0.441350i \(0.145500\pi\)
\(464\) −98.8872 −4.59072
\(465\) 1.76647 0.0819181
\(466\) −73.6006 −3.40948
\(467\) −16.1767 −0.748570 −0.374285 0.927314i \(-0.622112\pi\)
−0.374285 + 0.927314i \(0.622112\pi\)
\(468\) 12.1643 0.562297
\(469\) 4.13821 0.191085
\(470\) 10.7417 0.495478
\(471\) −5.85532 −0.269799
\(472\) −42.2967 −1.94686
\(473\) 0 0
\(474\) 43.3942 1.99316
\(475\) −4.21015 −0.193175
\(476\) 17.6291 0.808027
\(477\) −0.333792 −0.0152833
\(478\) −0.863976 −0.0395174
\(479\) 28.9825 1.32425 0.662123 0.749395i \(-0.269656\pi\)
0.662123 + 0.749395i \(0.269656\pi\)
\(480\) −16.3411 −0.745865
\(481\) 21.5164 0.981065
\(482\) −72.4559 −3.30028
\(483\) −2.05818 −0.0936504
\(484\) 0 0
\(485\) 13.8726 0.629924
\(486\) 2.69963 0.122458
\(487\) 21.2670 0.963698 0.481849 0.876254i \(-0.339965\pi\)
0.481849 + 0.876254i \(0.339965\pi\)
\(488\) 93.2951 4.22327
\(489\) 18.6094 0.841546
\(490\) 16.3883 0.740346
\(491\) 3.55494 0.160432 0.0802162 0.996777i \(-0.474439\pi\)
0.0802162 + 0.996777i \(0.474439\pi\)
\(492\) −8.98762 −0.405193
\(493\) −59.8255 −2.69440
\(494\) 6.21015 0.279408
\(495\) 0 0
\(496\) −26.6080 −1.19474
\(497\) −2.18182 −0.0978682
\(498\) −23.5760 −1.05647
\(499\) −23.0952 −1.03388 −0.516941 0.856021i \(-0.672929\pi\)
−0.516941 + 0.856021i \(0.672929\pi\)
\(500\) 43.2843 1.93573
\(501\) 1.11126 0.0496476
\(502\) 74.4311 3.32202
\(503\) −36.4930 −1.62714 −0.813572 0.581464i \(-0.802480\pi\)
−0.813572 + 0.581464i \(0.802480\pi\)
\(504\) 3.65383 0.162754
\(505\) 0.789851 0.0351479
\(506\) 0 0
\(507\) −7.70829 −0.342337
\(508\) −49.8799 −2.21306
\(509\) −25.0036 −1.10826 −0.554132 0.832429i \(-0.686950\pi\)
−0.554132 + 0.832429i \(0.686950\pi\)
\(510\) −19.4313 −0.860432
\(511\) −1.01966 −0.0451073
\(512\) 8.48948 0.375186
\(513\) 1.00000 0.0441511
\(514\) 3.21387 0.141758
\(515\) 10.4154 0.458955
\(516\) 38.5388 1.69658
\(517\) 0 0
\(518\) 10.3942 0.456693
\(519\) 9.66621 0.424299
\(520\) −18.1470 −0.795800
\(521\) −43.8355 −1.92047 −0.960234 0.279196i \(-0.909932\pi\)
−0.960234 + 0.279196i \(0.909932\pi\)
\(522\) −19.9418 −0.872830
\(523\) −23.2829 −1.01809 −0.509045 0.860740i \(-0.670001\pi\)
−0.509045 + 0.860740i \(0.670001\pi\)
\(524\) −48.8799 −2.13533
\(525\) −1.73305 −0.0756364
\(526\) 51.3832 2.24041
\(527\) −16.0975 −0.701218
\(528\) 0 0
\(529\) 2.00000 0.0869565
\(530\) 0.800854 0.0347869
\(531\) −4.76509 −0.206787
\(532\) 2.17673 0.0943731
\(533\) −3.90978 −0.169351
\(534\) 5.36584 0.232202
\(535\) −5.50048 −0.237807
\(536\) 89.2348 3.85435
\(537\) 14.3658 0.619932
\(538\) 31.6043 1.36256
\(539\) 0 0
\(540\) −4.69963 −0.202240
\(541\) −29.9556 −1.28789 −0.643945 0.765071i \(-0.722704\pi\)
−0.643945 + 0.765071i \(0.722704\pi\)
\(542\) 41.7156 1.79184
\(543\) 4.14468 0.177865
\(544\) 148.913 6.38460
\(545\) −10.4561 −0.447888
\(546\) 2.55632 0.109400
\(547\) −45.7700 −1.95699 −0.978493 0.206282i \(-0.933864\pi\)
−0.978493 + 0.206282i \(0.933864\pi\)
\(548\) −6.11855 −0.261371
\(549\) 10.5105 0.448578
\(550\) 0 0
\(551\) −7.38688 −0.314692
\(552\) −44.3818 −1.88901
\(553\) 6.61669 0.281370
\(554\) 56.6588 2.40720
\(555\) −8.31275 −0.352857
\(556\) 22.4981 0.954134
\(557\) −0.987620 −0.0418468 −0.0209234 0.999781i \(-0.506661\pi\)
−0.0209234 + 0.999781i \(0.506661\pi\)
\(558\) −5.36584 −0.227154
\(559\) 16.7651 0.709088
\(560\) −4.89740 −0.206953
\(561\) 0 0
\(562\) −26.1520 −1.10315
\(563\) −5.97896 −0.251983 −0.125992 0.992031i \(-0.540211\pi\)
−0.125992 + 0.992031i \(0.540211\pi\)
\(564\) −23.6749 −0.996892
\(565\) 1.63788 0.0689062
\(566\) −35.3287 −1.48498
\(567\) 0.411636 0.0172871
\(568\) −47.0480 −1.97409
\(569\) −29.8799 −1.25263 −0.626316 0.779569i \(-0.715438\pi\)
−0.626316 + 0.779569i \(0.715438\pi\)
\(570\) −2.39926 −0.100494
\(571\) 15.4785 0.647754 0.323877 0.946099i \(-0.395014\pi\)
0.323877 + 0.946099i \(0.395014\pi\)
\(572\) 0 0
\(573\) −18.2101 −0.760740
\(574\) −1.88874 −0.0788343
\(575\) 21.0507 0.877877
\(576\) 22.8640 0.952666
\(577\) −4.14840 −0.172700 −0.0863501 0.996265i \(-0.527520\pi\)
−0.0863501 + 0.996265i \(0.527520\pi\)
\(578\) 131.180 5.45637
\(579\) −24.0989 −1.00152
\(580\) 34.7156 1.44149
\(581\) −3.59484 −0.149139
\(582\) −42.1396 −1.74674
\(583\) 0 0
\(584\) −21.9876 −0.909854
\(585\) −2.04442 −0.0845265
\(586\) 51.6835 2.13503
\(587\) −23.2522 −0.959722 −0.479861 0.877344i \(-0.659313\pi\)
−0.479861 + 0.877344i \(0.659313\pi\)
\(588\) −36.1199 −1.48956
\(589\) −1.98762 −0.0818985
\(590\) 11.4327 0.470676
\(591\) 16.5512 0.680826
\(592\) 125.214 5.14625
\(593\) 17.2225 0.707244 0.353622 0.935388i \(-0.384950\pi\)
0.353622 + 0.935388i \(0.384950\pi\)
\(594\) 0 0
\(595\) −2.96286 −0.121465
\(596\) −43.8923 −1.79790
\(597\) 1.53528 0.0628348
\(598\) −31.0507 −1.26976
\(599\) −15.8268 −0.646667 −0.323334 0.946285i \(-0.604804\pi\)
−0.323334 + 0.946285i \(0.604804\pi\)
\(600\) −37.3708 −1.52566
\(601\) 37.5599 1.53210 0.766050 0.642781i \(-0.222220\pi\)
0.766050 + 0.642781i \(0.222220\pi\)
\(602\) 8.09888 0.330086
\(603\) 10.0531 0.409393
\(604\) −113.263 −4.60861
\(605\) 0 0
\(606\) −2.39926 −0.0974631
\(607\) −1.07413 −0.0435974 −0.0217987 0.999762i \(-0.506939\pi\)
−0.0217987 + 0.999762i \(0.506939\pi\)
\(608\) 18.3869 0.745686
\(609\) −3.04070 −0.123216
\(610\) −25.2174 −1.02102
\(611\) −10.2990 −0.416653
\(612\) 42.8268 1.73117
\(613\) −19.4771 −0.786673 −0.393336 0.919395i \(-0.628679\pi\)
−0.393336 + 0.919395i \(0.628679\pi\)
\(614\) 8.87636 0.358221
\(615\) 1.51052 0.0609101
\(616\) 0 0
\(617\) −44.3845 −1.78685 −0.893427 0.449208i \(-0.851706\pi\)
−0.893427 + 0.449208i \(0.851706\pi\)
\(618\) −31.6377 −1.27266
\(619\) 39.5636 1.59020 0.795098 0.606481i \(-0.207419\pi\)
0.795098 + 0.606481i \(0.207419\pi\)
\(620\) 9.34108 0.375147
\(621\) −5.00000 −0.200643
\(622\) 26.5388 1.06411
\(623\) 0.818176 0.0327795
\(624\) 30.7948 1.23278
\(625\) 13.7761 0.551044
\(626\) −80.5882 −3.22095
\(627\) 0 0
\(628\) −30.9629 −1.23555
\(629\) 75.7526 3.02045
\(630\) −0.987620 −0.0393477
\(631\) 13.4203 0.534254 0.267127 0.963661i \(-0.413926\pi\)
0.267127 + 0.963661i \(0.413926\pi\)
\(632\) 142.680 5.67549
\(633\) −9.01966 −0.358499
\(634\) −26.0851 −1.03597
\(635\) 8.38316 0.332675
\(636\) −1.76509 −0.0699904
\(637\) −15.7128 −0.622565
\(638\) 0 0
\(639\) −5.30037 −0.209679
\(640\) −22.1744 −0.876520
\(641\) −23.9381 −0.945498 −0.472749 0.881197i \(-0.656738\pi\)
−0.472749 + 0.881197i \(0.656738\pi\)
\(642\) 16.7083 0.659424
\(643\) −11.5956 −0.457288 −0.228644 0.973510i \(-0.573429\pi\)
−0.228644 + 0.973510i \(0.573429\pi\)
\(644\) −10.8836 −0.428875
\(645\) −6.47710 −0.255036
\(646\) 21.8640 0.860227
\(647\) −48.9998 −1.92638 −0.963191 0.268817i \(-0.913367\pi\)
−0.963191 + 0.268817i \(0.913367\pi\)
\(648\) 8.87636 0.348696
\(649\) 0 0
\(650\) −26.1456 −1.02552
\(651\) −0.818176 −0.0320668
\(652\) 98.4064 3.85389
\(653\) −31.6996 −1.24050 −0.620251 0.784403i \(-0.712969\pi\)
−0.620251 + 0.784403i \(0.712969\pi\)
\(654\) 31.7614 1.24197
\(655\) 8.21509 0.320990
\(656\) −22.7527 −0.888344
\(657\) −2.47710 −0.0966409
\(658\) −4.97524 −0.193955
\(659\) −8.70101 −0.338943 −0.169472 0.985535i \(-0.554206\pi\)
−0.169472 + 0.985535i \(0.554206\pi\)
\(660\) 0 0
\(661\) 23.4647 0.912672 0.456336 0.889808i \(-0.349162\pi\)
0.456336 + 0.889808i \(0.349162\pi\)
\(662\) −0.901116 −0.0350229
\(663\) 18.6304 0.723547
\(664\) −77.5177 −3.00827
\(665\) −0.365836 −0.0141865
\(666\) 25.2509 0.978451
\(667\) 36.9344 1.43011
\(668\) 5.87636 0.227363
\(669\) 11.3535 0.438950
\(670\) −24.1199 −0.931834
\(671\) 0 0
\(672\) 7.56870 0.291969
\(673\) 37.7861 1.45655 0.728274 0.685286i \(-0.240323\pi\)
0.728274 + 0.685286i \(0.240323\pi\)
\(674\) −61.6340 −2.37405
\(675\) −4.21015 −0.162049
\(676\) −40.7614 −1.56775
\(677\) 41.2705 1.58615 0.793077 0.609121i \(-0.208478\pi\)
0.793077 + 0.609121i \(0.208478\pi\)
\(678\) −4.97524 −0.191073
\(679\) −6.42539 −0.246584
\(680\) −63.8900 −2.45007
\(681\) 13.7651 0.527479
\(682\) 0 0
\(683\) 36.3374 1.39041 0.695205 0.718811i \(-0.255314\pi\)
0.695205 + 0.718811i \(0.255314\pi\)
\(684\) 5.28799 0.202191
\(685\) 1.02832 0.0392903
\(686\) −15.3694 −0.586806
\(687\) −23.5512 −0.898535
\(688\) 97.5635 3.71957
\(689\) −0.767847 −0.0292526
\(690\) 11.9963 0.456691
\(691\) 35.8777 1.36485 0.682427 0.730954i \(-0.260925\pi\)
0.682427 + 0.730954i \(0.260925\pi\)
\(692\) 51.1148 1.94309
\(693\) 0 0
\(694\) −71.5548 −2.71618
\(695\) −3.78119 −0.143429
\(696\) −65.5685 −2.48537
\(697\) −13.7651 −0.521390
\(698\) 32.2522 1.22076
\(699\) −27.2632 −1.03119
\(700\) −9.16435 −0.346380
\(701\) −26.2632 −0.991949 −0.495974 0.868337i \(-0.665189\pi\)
−0.495974 + 0.868337i \(0.665189\pi\)
\(702\) 6.21015 0.234387
\(703\) 9.35346 0.352772
\(704\) 0 0
\(705\) 3.97896 0.149856
\(706\) 76.2137 2.86834
\(707\) −0.365836 −0.0137587
\(708\) −25.1978 −0.946990
\(709\) 33.7824 1.26873 0.634363 0.773036i \(-0.281263\pi\)
0.634363 + 0.773036i \(0.281263\pi\)
\(710\) 12.7170 0.477259
\(711\) 16.0741 0.602827
\(712\) 17.6428 0.661193
\(713\) 9.93810 0.372185
\(714\) 9.00000 0.336817
\(715\) 0 0
\(716\) 75.9664 2.83900
\(717\) −0.320035 −0.0119519
\(718\) −49.4138 −1.84411
\(719\) −17.8777 −0.666727 −0.333363 0.942798i \(-0.608184\pi\)
−0.333363 + 0.942798i \(0.608184\pi\)
\(720\) −11.8974 −0.443390
\(721\) −4.82408 −0.179658
\(722\) 2.69963 0.100470
\(723\) −26.8392 −0.998161
\(724\) 21.9171 0.814541
\(725\) 31.0998 1.15502
\(726\) 0 0
\(727\) 20.8502 0.773292 0.386646 0.922228i \(-0.373634\pi\)
0.386646 + 0.922228i \(0.373634\pi\)
\(728\) 8.40516 0.311516
\(729\) 1.00000 0.0370370
\(730\) 5.94320 0.219968
\(731\) 59.0246 2.18310
\(732\) 55.5795 2.05428
\(733\) 39.2756 1.45068 0.725339 0.688392i \(-0.241683\pi\)
0.725339 + 0.688392i \(0.241683\pi\)
\(734\) 83.0406 3.06508
\(735\) 6.07056 0.223916
\(736\) −91.9344 −3.38875
\(737\) 0 0
\(738\) −4.58836 −0.168900
\(739\) 43.7366 1.60888 0.804439 0.594036i \(-0.202466\pi\)
0.804439 + 0.594036i \(0.202466\pi\)
\(740\) −43.9578 −1.61592
\(741\) 2.30037 0.0845063
\(742\) −0.370932 −0.0136173
\(743\) 11.2312 0.412032 0.206016 0.978549i \(-0.433950\pi\)
0.206016 + 0.978549i \(0.433950\pi\)
\(744\) −17.6428 −0.646817
\(745\) 7.37684 0.270266
\(746\) 5.99628 0.219539
\(747\) −8.73305 −0.319526
\(748\) 0 0
\(749\) 2.54766 0.0930895
\(750\) 22.0975 0.806887
\(751\) −11.2742 −0.411403 −0.205701 0.978615i \(-0.565948\pi\)
−0.205701 + 0.978615i \(0.565948\pi\)
\(752\) −59.9344 −2.18558
\(753\) 27.5709 1.00474
\(754\) −45.8736 −1.67062
\(755\) 19.0358 0.692782
\(756\) 2.17673 0.0791668
\(757\) 13.9257 0.506139 0.253069 0.967448i \(-0.418560\pi\)
0.253069 + 0.967448i \(0.418560\pi\)
\(758\) −21.7403 −0.789644
\(759\) 0 0
\(760\) −7.88874 −0.286155
\(761\) −20.0952 −0.728449 −0.364225 0.931311i \(-0.618666\pi\)
−0.364225 + 0.931311i \(0.618666\pi\)
\(762\) −25.4647 −0.922489
\(763\) 4.84294 0.175326
\(764\) −96.2951 −3.48384
\(765\) −7.19777 −0.260236
\(766\) −17.8095 −0.643484
\(767\) −10.9615 −0.395796
\(768\) 21.6291 0.780472
\(769\) 39.9098 1.43918 0.719592 0.694397i \(-0.244329\pi\)
0.719592 + 0.694397i \(0.244329\pi\)
\(770\) 0 0
\(771\) 1.19049 0.0428743
\(772\) −127.435 −4.58648
\(773\) 38.6464 1.39001 0.695007 0.719003i \(-0.255401\pi\)
0.695007 + 0.719003i \(0.255401\pi\)
\(774\) 19.6749 0.707199
\(775\) 8.36818 0.300594
\(776\) −138.555 −4.97382
\(777\) 3.85022 0.138126
\(778\) −67.8145 −2.43127
\(779\) −1.69963 −0.0608955
\(780\) −10.8109 −0.387092
\(781\) 0 0
\(782\) −109.320 −3.90927
\(783\) −7.38688 −0.263985
\(784\) −91.4398 −3.26571
\(785\) 5.20383 0.185733
\(786\) −24.9542 −0.890087
\(787\) −28.8988 −1.03013 −0.515065 0.857151i \(-0.672232\pi\)
−0.515065 + 0.857151i \(0.672232\pi\)
\(788\) 87.5227 3.11787
\(789\) 19.0334 0.677608
\(790\) −38.5659 −1.37211
\(791\) −0.758619 −0.0269734
\(792\) 0 0
\(793\) 24.1781 0.858590
\(794\) −85.0566 −3.01855
\(795\) 0.296653 0.0105212
\(796\) 8.11855 0.287754
\(797\) 8.62907 0.305657 0.152829 0.988253i \(-0.451162\pi\)
0.152829 + 0.988253i \(0.451162\pi\)
\(798\) 1.11126 0.0393383
\(799\) −36.2595 −1.28277
\(800\) −77.4115 −2.73691
\(801\) 1.98762 0.0702291
\(802\) −92.2310 −3.25679
\(803\) 0 0
\(804\) 53.1606 1.87483
\(805\) 1.82918 0.0644701
\(806\) −12.3434 −0.434778
\(807\) 11.7069 0.412103
\(808\) −7.88874 −0.277525
\(809\) 21.1162 0.742406 0.371203 0.928552i \(-0.378945\pi\)
0.371203 + 0.928552i \(0.378945\pi\)
\(810\) −2.39926 −0.0843013
\(811\) 0.634164 0.0222685 0.0111343 0.999938i \(-0.496456\pi\)
0.0111343 + 0.999938i \(0.496456\pi\)
\(812\) −16.0792 −0.564270
\(813\) 15.4523 0.541937
\(814\) 0 0
\(815\) −16.5388 −0.579330
\(816\) 108.419 3.79542
\(817\) 7.28799 0.254975
\(818\) −1.73539 −0.0606765
\(819\) 0.946916 0.0330879
\(820\) 7.98762 0.278940
\(821\) −5.01238 −0.174933 −0.0874666 0.996167i \(-0.527877\pi\)
−0.0874666 + 0.996167i \(0.527877\pi\)
\(822\) −3.12364 −0.108950
\(823\) −5.65383 −0.197080 −0.0985400 0.995133i \(-0.531417\pi\)
−0.0985400 + 0.995133i \(0.531417\pi\)
\(824\) −104.025 −3.62387
\(825\) 0 0
\(826\) −5.29528 −0.184246
\(827\) 10.8726 0.378079 0.189039 0.981970i \(-0.439463\pi\)
0.189039 + 0.981970i \(0.439463\pi\)
\(828\) −26.4400 −0.918852
\(829\) 8.45234 0.293562 0.146781 0.989169i \(-0.453109\pi\)
0.146781 + 0.989169i \(0.453109\pi\)
\(830\) 20.9528 0.727283
\(831\) 20.9876 0.728052
\(832\) 52.5956 1.82343
\(833\) −55.3199 −1.91672
\(834\) 11.4858 0.397719
\(835\) −0.987620 −0.0341780
\(836\) 0 0
\(837\) −1.98762 −0.0687022
\(838\) 56.2878 1.94443
\(839\) −29.6800 −1.02467 −0.512333 0.858787i \(-0.671219\pi\)
−0.512333 + 0.858787i \(0.671219\pi\)
\(840\) −3.24729 −0.112042
\(841\) 25.5659 0.881584
\(842\) −27.9208 −0.962214
\(843\) −9.68725 −0.333647
\(844\) −47.6959 −1.64176
\(845\) 6.85063 0.235669
\(846\) −12.0865 −0.415543
\(847\) 0 0
\(848\) −4.46844 −0.153447
\(849\) −13.0865 −0.449128
\(850\) −92.0506 −3.15731
\(851\) −46.7673 −1.60316
\(852\) −28.0283 −0.960235
\(853\) −39.3584 −1.34761 −0.673803 0.738911i \(-0.735340\pi\)
−0.673803 + 0.738911i \(0.735340\pi\)
\(854\) 11.6800 0.399680
\(855\) −0.888736 −0.0303941
\(856\) 54.9367 1.87770
\(857\) 34.4079 1.17535 0.587676 0.809096i \(-0.300043\pi\)
0.587676 + 0.809096i \(0.300043\pi\)
\(858\) 0 0
\(859\) −21.7293 −0.741395 −0.370698 0.928754i \(-0.620881\pi\)
−0.370698 + 0.928754i \(0.620881\pi\)
\(860\) −34.2509 −1.16794
\(861\) −0.699628 −0.0238433
\(862\) 37.6908 1.28375
\(863\) −4.26461 −0.145169 −0.0725845 0.997362i \(-0.523125\pi\)
−0.0725845 + 0.997362i \(0.523125\pi\)
\(864\) 18.3869 0.625534
\(865\) −8.59071 −0.292093
\(866\) 14.9332 0.507449
\(867\) 48.5919 1.65027
\(868\) −4.32651 −0.146851
\(869\) 0 0
\(870\) 17.7230 0.600866
\(871\) 23.1258 0.783589
\(872\) 104.431 3.53648
\(873\) −15.6094 −0.528298
\(874\) −13.4981 −0.456581
\(875\) 3.36940 0.113907
\(876\) −13.0989 −0.442570
\(877\) 23.6908 0.799982 0.399991 0.916519i \(-0.369013\pi\)
0.399991 + 0.916519i \(0.369013\pi\)
\(878\) 54.6698 1.84502
\(879\) 19.1447 0.645734
\(880\) 0 0
\(881\) −10.4276 −0.351314 −0.175657 0.984451i \(-0.556205\pi\)
−0.175657 + 0.984451i \(0.556205\pi\)
\(882\) −18.4400 −0.620906
\(883\) −16.2349 −0.546348 −0.273174 0.961965i \(-0.588074\pi\)
−0.273174 + 0.961965i \(0.588074\pi\)
\(884\) 98.5177 3.31351
\(885\) 4.23491 0.142355
\(886\) −82.6303 −2.77602
\(887\) −31.1991 −1.04756 −0.523782 0.851852i \(-0.675480\pi\)
−0.523782 + 0.851852i \(0.675480\pi\)
\(888\) 83.0246 2.78612
\(889\) −3.88283 −0.130226
\(890\) −4.76881 −0.159851
\(891\) 0 0
\(892\) 60.0370 2.01019
\(893\) −4.47710 −0.149820
\(894\) −22.4079 −0.749433
\(895\) −12.7674 −0.426768
\(896\) 10.2705 0.343114
\(897\) −11.5019 −0.384036
\(898\) −10.1410 −0.338408
\(899\) 14.6823 0.489682
\(900\) −22.2632 −0.742108
\(901\) −2.70335 −0.0900615
\(902\) 0 0
\(903\) 3.00000 0.0998337
\(904\) −16.3586 −0.544077
\(905\) −3.68353 −0.122445
\(906\) −57.8231 −1.92104
\(907\) 9.56498 0.317600 0.158800 0.987311i \(-0.449237\pi\)
0.158800 + 0.987311i \(0.449237\pi\)
\(908\) 72.7897 2.41561
\(909\) −0.888736 −0.0294775
\(910\) −2.27189 −0.0753125
\(911\) 32.8589 1.08866 0.544332 0.838870i \(-0.316783\pi\)
0.544332 + 0.838870i \(0.316783\pi\)
\(912\) 13.3869 0.443284
\(913\) 0 0
\(914\) 6.50680 0.215226
\(915\) −9.34108 −0.308806
\(916\) −124.539 −4.11487
\(917\) −3.80499 −0.125652
\(918\) 21.8640 0.721619
\(919\) −52.0755 −1.71781 −0.858906 0.512133i \(-0.828855\pi\)
−0.858906 + 0.512133i \(0.828855\pi\)
\(920\) 39.4437 1.30042
\(921\) 3.28799 0.108343
\(922\) −11.7665 −0.387508
\(923\) −12.1928 −0.401332
\(924\) 0 0
\(925\) −39.3794 −1.29479
\(926\) 104.251 3.42589
\(927\) −11.7193 −0.384912
\(928\) −135.822 −4.45856
\(929\) −6.73305 −0.220904 −0.110452 0.993881i \(-0.535230\pi\)
−0.110452 + 0.993881i \(0.535230\pi\)
\(930\) 4.76881 0.156375
\(931\) −6.83056 −0.223862
\(932\) −144.168 −4.72237
\(933\) 9.83056 0.321838
\(934\) −43.6712 −1.42896
\(935\) 0 0
\(936\) 20.4189 0.667413
\(937\) 13.1557 0.429778 0.214889 0.976639i \(-0.431061\pi\)
0.214889 + 0.976639i \(0.431061\pi\)
\(938\) 11.1716 0.364767
\(939\) −29.8516 −0.974170
\(940\) 21.0407 0.686272
\(941\) 18.5105 0.603426 0.301713 0.953399i \(-0.402442\pi\)
0.301713 + 0.953399i \(0.402442\pi\)
\(942\) −15.8072 −0.515026
\(943\) 8.49814 0.276738
\(944\) −63.7897 −2.07618
\(945\) −0.365836 −0.0119006
\(946\) 0 0
\(947\) 2.67349 0.0868768 0.0434384 0.999056i \(-0.486169\pi\)
0.0434384 + 0.999056i \(0.486169\pi\)
\(948\) 84.9998 2.76067
\(949\) −5.69825 −0.184973
\(950\) −11.3658 −0.368756
\(951\) −9.66249 −0.313328
\(952\) 29.5919 0.959080
\(953\) −45.3336 −1.46850 −0.734250 0.678879i \(-0.762466\pi\)
−0.734250 + 0.678879i \(0.762466\pi\)
\(954\) −0.901116 −0.0291747
\(955\) 16.1840 0.523702
\(956\) −1.69234 −0.0547343
\(957\) 0 0
\(958\) 78.2420 2.52789
\(959\) −0.476289 −0.0153802
\(960\) −20.3200 −0.655826
\(961\) −27.0494 −0.872560
\(962\) 58.0864 1.87278
\(963\) 6.18911 0.199441
\(964\) −141.926 −4.57111
\(965\) 21.4175 0.689455
\(966\) −5.55632 −0.178772
\(967\) 49.7797 1.60081 0.800403 0.599462i \(-0.204619\pi\)
0.800403 + 0.599462i \(0.204619\pi\)
\(968\) 0 0
\(969\) 8.09888 0.260174
\(970\) 37.4510 1.20248
\(971\) −5.46982 −0.175535 −0.0877674 0.996141i \(-0.527973\pi\)
−0.0877674 + 0.996141i \(0.527973\pi\)
\(972\) 5.28799 0.169612
\(973\) 1.75133 0.0561452
\(974\) 57.4129 1.83963
\(975\) −9.68491 −0.310165
\(976\) 140.703 4.50379
\(977\) 33.5933 1.07475 0.537373 0.843345i \(-0.319417\pi\)
0.537373 + 0.843345i \(0.319417\pi\)
\(978\) 50.2385 1.60645
\(979\) 0 0
\(980\) 32.1011 1.02543
\(981\) 11.7651 0.375630
\(982\) 9.59703 0.306253
\(983\) 49.0122 1.56325 0.781624 0.623750i \(-0.214392\pi\)
0.781624 + 0.623750i \(0.214392\pi\)
\(984\) −15.0865 −0.480940
\(985\) −14.7097 −0.468689
\(986\) −161.506 −5.14341
\(987\) −1.84294 −0.0586613
\(988\) 12.1643 0.386999
\(989\) −36.4400 −1.15872
\(990\) 0 0
\(991\) 27.0159 0.858190 0.429095 0.903259i \(-0.358833\pi\)
0.429095 + 0.903259i \(0.358833\pi\)
\(992\) −36.5461 −1.16034
\(993\) −0.333792 −0.0105926
\(994\) −5.89011 −0.186823
\(995\) −1.36446 −0.0432562
\(996\) −46.1803 −1.46328
\(997\) 16.4981 0.522501 0.261251 0.965271i \(-0.415865\pi\)
0.261251 + 0.965271i \(0.415865\pi\)
\(998\) −62.3484 −1.97360
\(999\) 9.35346 0.295930
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6897.2.a.p.1.3 3
11.10 odd 2 627.2.a.e.1.1 3
33.32 even 2 1881.2.a.i.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
627.2.a.e.1.1 3 11.10 odd 2
1881.2.a.i.1.3 3 33.32 even 2
6897.2.a.p.1.3 3 1.1 even 1 trivial