Properties

Label 627.2.k.a.274.15
Level $627$
Weight $2$
Character 627.274
Analytic conductor $5.007$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [627,2,Mod(274,627)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(627, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("627.274");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 627 = 3 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 627.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.00662020673\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 274.15
Character \(\chi\) \(=\) 627.274
Dual form 627.2.k.a.373.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.460857 + 0.798227i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.575222 + 0.996315i) q^{4} +(-0.869775 + 1.50649i) q^{5} +(-0.798227 + 0.460857i) q^{6} +3.56103i q^{7} -2.90381 q^{8} +(0.500000 + 0.866025i) q^{9} +(-0.801683 - 1.38856i) q^{10} +(3.27069 + 0.550103i) q^{11} +1.15044i q^{12} +(-0.380210 - 0.658543i) q^{13} +(-2.84251 - 1.64112i) q^{14} +(-1.50649 + 0.869775i) q^{15} +(0.187793 - 0.325267i) q^{16} +(-2.52364 - 1.45702i) q^{17} -0.921713 q^{18} +(2.89874 - 3.25535i) q^{19} -2.00126 q^{20} +(-1.78051 + 3.08394i) q^{21} +(-1.94642 + 2.35723i) q^{22} +(-1.34795 - 2.33472i) q^{23} +(-2.51477 - 1.45190i) q^{24} +(0.986983 + 1.70950i) q^{25} +0.700889 q^{26} +1.00000i q^{27} +(-3.54790 + 2.04838i) q^{28} +(-1.70480 - 2.95280i) q^{29} -1.60337i q^{30} -8.14745i q^{31} +(-2.73071 - 4.72974i) q^{32} +(2.55745 + 2.11175i) q^{33} +(2.32607 - 1.34296i) q^{34} +(-5.36467 - 3.09729i) q^{35} +(-0.575222 + 0.996315i) q^{36} +9.58163i q^{37} +(1.26260 + 3.81410i) q^{38} -0.760419i q^{39} +(2.52566 - 4.37457i) q^{40} +(-3.08801 + 5.34859i) q^{41} +(-1.64112 - 2.84251i) q^{42} +(9.39702 + 5.42537i) q^{43} +(1.33330 + 3.57506i) q^{44} -1.73955 q^{45} +2.48484 q^{46} +(1.86741 + 3.23445i) q^{47} +(0.325267 - 0.187793i) q^{48} -5.68092 q^{49} -1.81943 q^{50} +(-1.45702 - 2.52364i) q^{51} +(0.437410 - 0.757617i) q^{52} +(8.50900 - 4.91267i) q^{53} +(-0.798227 - 0.460857i) q^{54} +(-3.67349 + 4.44880i) q^{55} -10.3405i q^{56} +(4.13806 - 1.36985i) q^{57} +3.14267 q^{58} +(-6.31940 - 3.64851i) q^{59} +(-1.73314 - 1.00063i) q^{60} +(2.07815 - 1.19982i) q^{61} +(6.50351 + 3.75481i) q^{62} +(-3.08394 + 1.78051i) q^{63} +5.78504 q^{64} +1.32279 q^{65} +(-2.86427 + 1.06821i) q^{66} +(-11.6810 + 6.74403i) q^{67} -3.35245i q^{68} -2.69590i q^{69} +(4.94469 - 2.85482i) q^{70} +(-7.97377 - 4.60366i) q^{71} +(-1.45190 - 2.51477i) q^{72} +(12.3555 + 7.13345i) q^{73} +(-7.64831 - 4.41576i) q^{74} +1.97397i q^{75} +(4.91077 + 1.01551i) q^{76} +(-1.95893 + 11.6470i) q^{77} +(0.606987 + 0.350444i) q^{78} +(-6.17631 + 10.6977i) q^{79} +(0.326676 + 0.565819i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-2.84626 - 4.92986i) q^{82} +0.382821i q^{83} -4.09677 q^{84} +(4.39000 - 2.53457i) q^{85} +(-8.66136 + 5.00064i) q^{86} -3.40960i q^{87} +(-9.49744 - 1.59739i) q^{88} +(12.0854 - 6.97752i) q^{89} +(0.801683 - 1.38856i) q^{90} +(2.34509 - 1.35394i) q^{91} +(1.55074 - 2.68596i) q^{92} +(4.07372 - 7.05590i) q^{93} -3.44243 q^{94} +(2.38292 + 7.19836i) q^{95} -5.46143i q^{96} +(-12.8826 - 7.43780i) q^{97} +(2.61809 - 4.53467i) q^{98} +(1.15894 + 3.10755i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 40 q^{4} + 4 q^{5} + 40 q^{9} + 4 q^{11} - 24 q^{14} + 12 q^{15} - 40 q^{16} + 48 q^{20} - 24 q^{23} - 56 q^{25} + 80 q^{26} + 6 q^{33} - 48 q^{34} + 40 q^{36} + 60 q^{38} - 4 q^{42} + 14 q^{44}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/627\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(419\) \(496\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.460857 + 0.798227i −0.325875 + 0.564432i −0.981689 0.190491i \(-0.938992\pi\)
0.655814 + 0.754922i \(0.272325\pi\)
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) 0.575222 + 0.996315i 0.287611 + 0.498157i
\(5\) −0.869775 + 1.50649i −0.388975 + 0.673725i −0.992312 0.123762i \(-0.960504\pi\)
0.603337 + 0.797487i \(0.293837\pi\)
\(6\) −0.798227 + 0.460857i −0.325875 + 0.188144i
\(7\) 3.56103i 1.34594i 0.739669 + 0.672971i \(0.234982\pi\)
−0.739669 + 0.672971i \(0.765018\pi\)
\(8\) −2.90381 −1.02665
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) −0.801683 1.38856i −0.253514 0.439100i
\(11\) 3.27069 + 0.550103i 0.986149 + 0.165862i
\(12\) 1.15044i 0.332105i
\(13\) −0.380210 0.658543i −0.105451 0.182647i 0.808471 0.588536i \(-0.200295\pi\)
−0.913922 + 0.405889i \(0.866962\pi\)
\(14\) −2.84251 1.64112i −0.759693 0.438609i
\(15\) −1.50649 + 0.869775i −0.388975 + 0.224575i
\(16\) 0.187793 0.325267i 0.0469483 0.0813169i
\(17\) −2.52364 1.45702i −0.612073 0.353380i 0.161704 0.986839i \(-0.448301\pi\)
−0.773776 + 0.633459i \(0.781634\pi\)
\(18\) −0.921713 −0.217250
\(19\) 2.89874 3.25535i 0.665017 0.746829i
\(20\) −2.00126 −0.447495
\(21\) −1.78051 + 3.08394i −0.388540 + 0.672971i
\(22\) −1.94642 + 2.35723i −0.414979 + 0.502563i
\(23\) −1.34795 2.33472i −0.281067 0.486822i 0.690581 0.723255i \(-0.257355\pi\)
−0.971648 + 0.236433i \(0.924022\pi\)
\(24\) −2.51477 1.45190i −0.513325 0.296368i
\(25\) 0.986983 + 1.70950i 0.197397 + 0.341901i
\(26\) 0.700889 0.137456
\(27\) 1.00000i 0.192450i
\(28\) −3.54790 + 2.04838i −0.670491 + 0.387108i
\(29\) −1.70480 2.95280i −0.316574 0.548322i 0.663197 0.748445i \(-0.269199\pi\)
−0.979771 + 0.200123i \(0.935866\pi\)
\(30\) 1.60337i 0.292733i
\(31\) 8.14745i 1.46332i −0.681667 0.731662i \(-0.738745\pi\)
0.681667 0.731662i \(-0.261255\pi\)
\(32\) −2.73071 4.72974i −0.482727 0.836107i
\(33\) 2.55745 + 2.11175i 0.445194 + 0.367608i
\(34\) 2.32607 1.34296i 0.398918 0.230315i
\(35\) −5.36467 3.09729i −0.906795 0.523538i
\(36\) −0.575222 + 0.996315i −0.0958704 + 0.166052i
\(37\) 9.58163i 1.57521i 0.616180 + 0.787605i \(0.288679\pi\)
−0.616180 + 0.787605i \(0.711321\pi\)
\(38\) 1.26260 + 3.81410i 0.204822 + 0.618729i
\(39\) 0.760419i 0.121765i
\(40\) 2.52566 4.37457i 0.399342 0.691680i
\(41\) −3.08801 + 5.34859i −0.482266 + 0.835309i −0.999793 0.0203579i \(-0.993519\pi\)
0.517527 + 0.855667i \(0.326853\pi\)
\(42\) −1.64112 2.84251i −0.253231 0.438609i
\(43\) 9.39702 + 5.42537i 1.43303 + 0.827362i 0.997351 0.0727391i \(-0.0231741\pi\)
0.435682 + 0.900101i \(0.356507\pi\)
\(44\) 1.33330 + 3.57506i 0.201002 + 0.538961i
\(45\) −1.73955 −0.259317
\(46\) 2.48484 0.366370
\(47\) 1.86741 + 3.23445i 0.272390 + 0.471792i 0.969473 0.245197i \(-0.0788527\pi\)
−0.697084 + 0.716990i \(0.745519\pi\)
\(48\) 0.325267 0.187793i 0.0469483 0.0271056i
\(49\) −5.68092 −0.811561
\(50\) −1.81943 −0.257306
\(51\) −1.45702 2.52364i −0.204024 0.353380i
\(52\) 0.437410 0.757617i 0.0606579 0.105063i
\(53\) 8.50900 4.91267i 1.16880 0.674808i 0.215404 0.976525i \(-0.430893\pi\)
0.953397 + 0.301717i \(0.0975599\pi\)
\(54\) −0.798227 0.460857i −0.108625 0.0627146i
\(55\) −3.67349 + 4.44880i −0.495333 + 0.599877i
\(56\) 10.3405i 1.38181i
\(57\) 4.13806 1.36985i 0.548099 0.181441i
\(58\) 3.14267 0.412653
\(59\) −6.31940 3.64851i −0.822716 0.474995i 0.0286360 0.999590i \(-0.490884\pi\)
−0.851352 + 0.524594i \(0.824217\pi\)
\(60\) −1.73314 1.00063i −0.223747 0.129181i
\(61\) 2.07815 1.19982i 0.266080 0.153622i −0.361025 0.932556i \(-0.617573\pi\)
0.627105 + 0.778935i \(0.284240\pi\)
\(62\) 6.50351 + 3.75481i 0.825947 + 0.476861i
\(63\) −3.08394 + 1.78051i −0.388540 + 0.224324i
\(64\) 5.78504 0.723131
\(65\) 1.32279 0.164072
\(66\) −2.86427 + 1.06821i −0.352567 + 0.131488i
\(67\) −11.6810 + 6.74403i −1.42706 + 0.823914i −0.996888 0.0788324i \(-0.974881\pi\)
−0.430173 + 0.902746i \(0.641547\pi\)
\(68\) 3.35245i 0.406544i
\(69\) 2.69590i 0.324548i
\(70\) 4.94469 2.85482i 0.591003 0.341216i
\(71\) −7.97377 4.60366i −0.946313 0.546354i −0.0543791 0.998520i \(-0.517318\pi\)
−0.891934 + 0.452167i \(0.850651\pi\)
\(72\) −1.45190 2.51477i −0.171108 0.296368i
\(73\) 12.3555 + 7.13345i 1.44610 + 0.834907i 0.998246 0.0591997i \(-0.0188549\pi\)
0.447855 + 0.894106i \(0.352188\pi\)
\(74\) −7.64831 4.41576i −0.889098 0.513321i
\(75\) 1.97397i 0.227934i
\(76\) 4.91077 + 1.01551i 0.563304 + 0.116487i
\(77\) −1.95893 + 11.6470i −0.223241 + 1.32730i
\(78\) 0.606987 + 0.350444i 0.0687278 + 0.0396800i
\(79\) −6.17631 + 10.6977i −0.694889 + 1.20358i 0.275329 + 0.961350i \(0.411213\pi\)
−0.970218 + 0.242233i \(0.922120\pi\)
\(80\) 0.326676 + 0.565819i 0.0365235 + 0.0632605i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −2.84626 4.92986i −0.314317 0.544412i
\(83\) 0.382821i 0.0420200i 0.999779 + 0.0210100i \(0.00668819\pi\)
−0.999779 + 0.0210100i \(0.993312\pi\)
\(84\) −4.09677 −0.446994
\(85\) 4.39000 2.53457i 0.476162 0.274912i
\(86\) −8.66136 + 5.00064i −0.933978 + 0.539233i
\(87\) 3.40960i 0.365548i
\(88\) −9.49744 1.59739i −1.01243 0.170283i
\(89\) 12.0854 6.97752i 1.28105 0.739616i 0.304011 0.952668i \(-0.401674\pi\)
0.977041 + 0.213053i \(0.0683406\pi\)
\(90\) 0.801683 1.38856i 0.0845048 0.146367i
\(91\) 2.34509 1.35394i 0.245832 0.141931i
\(92\) 1.55074 2.68596i 0.161676 0.280031i
\(93\) 4.07372 7.05590i 0.422426 0.731662i
\(94\) −3.44243 −0.355060
\(95\) 2.38292 + 7.19836i 0.244482 + 0.738536i
\(96\) 5.46143i 0.557405i
\(97\) −12.8826 7.43780i −1.30803 0.755194i −0.326266 0.945278i \(-0.605791\pi\)
−0.981768 + 0.190084i \(0.939124\pi\)
\(98\) 2.61809 4.53467i 0.264467 0.458071i
\(99\) 1.15894 + 3.10755i 0.116478 + 0.312320i
\(100\) −1.13547 + 1.96669i −0.113547 + 0.196669i
\(101\) −10.1873 + 5.88162i −1.01367 + 0.585243i −0.912264 0.409602i \(-0.865667\pi\)
−0.101406 + 0.994845i \(0.532334\pi\)
\(102\) 2.68592 0.265945
\(103\) 7.63869i 0.752662i −0.926485 0.376331i \(-0.877186\pi\)
0.926485 0.376331i \(-0.122814\pi\)
\(104\) 1.10406 + 1.91228i 0.108262 + 0.187514i
\(105\) −3.09729 5.36467i −0.302265 0.523538i
\(106\) 9.05615i 0.879611i
\(107\) 16.5490 1.59986 0.799928 0.600096i \(-0.204871\pi\)
0.799928 + 0.600096i \(0.204871\pi\)
\(108\) −0.996315 + 0.575222i −0.0958704 + 0.0553508i
\(109\) 5.29689 9.17448i 0.507350 0.878756i −0.492614 0.870248i \(-0.663959\pi\)
0.999964 0.00850765i \(-0.00270810\pi\)
\(110\) −1.85820 4.98254i −0.177173 0.475066i
\(111\) −4.79081 + 8.29793i −0.454724 + 0.787605i
\(112\) 1.15829 + 0.668737i 0.109448 + 0.0631897i
\(113\) 11.6205i 1.09317i 0.837404 + 0.546585i \(0.184072\pi\)
−0.837404 + 0.546585i \(0.815928\pi\)
\(114\) −0.813603 + 3.93441i −0.0762009 + 0.368491i
\(115\) 4.68965 0.437312
\(116\) 1.96128 3.39704i 0.182100 0.315407i
\(117\) 0.380210 0.658543i 0.0351504 0.0608823i
\(118\) 5.82468 3.36288i 0.536205 0.309578i
\(119\) 5.18850 8.98675i 0.475629 0.823814i
\(120\) 4.37457 2.52566i 0.399342 0.230560i
\(121\) 10.3948 + 3.59843i 0.944979 + 0.327130i
\(122\) 2.21178i 0.200246i
\(123\) −5.34859 + 3.08801i −0.482266 + 0.278436i
\(124\) 8.11742 4.68660i 0.728966 0.420869i
\(125\) −12.1316 −1.08508
\(126\) 3.28225i 0.292406i
\(127\) 0.110261 + 0.190978i 0.00978409 + 0.0169465i 0.870876 0.491503i \(-0.163552\pi\)
−0.861092 + 0.508449i \(0.830219\pi\)
\(128\) 2.79535 4.84170i 0.247077 0.427949i
\(129\) 5.42537 + 9.39702i 0.477678 + 0.827362i
\(130\) −0.609615 + 1.05588i −0.0534668 + 0.0926072i
\(131\) 13.7070 + 7.91373i 1.19758 + 0.691425i 0.960016 0.279946i \(-0.0903164\pi\)
0.237568 + 0.971371i \(0.423650\pi\)
\(132\) −0.632864 + 3.76274i −0.0550837 + 0.327505i
\(133\) 11.5924 + 10.3225i 1.00519 + 0.895074i
\(134\) 12.4321i 1.07397i
\(135\) −1.50649 0.869775i −0.129658 0.0748583i
\(136\) 7.32816 + 4.23092i 0.628385 + 0.362798i
\(137\) 6.82870 + 11.8277i 0.583415 + 1.01051i 0.995071 + 0.0991657i \(0.0316174\pi\)
−0.411655 + 0.911340i \(0.635049\pi\)
\(138\) 2.15194 + 1.24242i 0.183185 + 0.105762i
\(139\) 16.8645 9.73670i 1.43042 0.825856i 0.433272 0.901263i \(-0.357359\pi\)
0.997153 + 0.0754075i \(0.0240258\pi\)
\(140\) 7.12653i 0.602302i
\(141\) 3.73482i 0.314528i
\(142\) 7.34953 4.24325i 0.616759 0.356086i
\(143\) −0.881280 2.36304i −0.0736963 0.197607i
\(144\) 0.375586 0.0312989
\(145\) 5.93117 0.492557
\(146\) −11.3882 + 6.57499i −0.942496 + 0.544150i
\(147\) −4.91983 2.84046i −0.405780 0.234277i
\(148\) −9.54632 + 5.51157i −0.784702 + 0.453048i
\(149\) −8.64191 4.98941i −0.707973 0.408748i 0.102337 0.994750i \(-0.467368\pi\)
−0.810310 + 0.586002i \(0.800701\pi\)
\(150\) −1.57567 0.909715i −0.128653 0.0742779i
\(151\) −0.581930 −0.0473568 −0.0236784 0.999720i \(-0.507538\pi\)
−0.0236784 + 0.999720i \(0.507538\pi\)
\(152\) −8.41738 + 9.45291i −0.682740 + 0.766732i
\(153\) 2.91405i 0.235587i
\(154\) −8.39417 6.93127i −0.676421 0.558538i
\(155\) 12.2741 + 7.08645i 0.985878 + 0.569197i
\(156\) 0.757617 0.437410i 0.0606579 0.0350209i
\(157\) 2.10322 3.64289i 0.167856 0.290734i −0.769810 0.638273i \(-0.779649\pi\)
0.937666 + 0.347539i \(0.112982\pi\)
\(158\) −5.69278 9.86019i −0.452894 0.784435i
\(159\) 9.82535 0.779201
\(160\) 9.50043 0.751075
\(161\) 8.31399 4.80009i 0.655234 0.378300i
\(162\) −0.460857 0.798227i −0.0362083 0.0627146i
\(163\) −0.700790 −0.0548901 −0.0274450 0.999623i \(-0.508737\pi\)
−0.0274450 + 0.999623i \(0.508737\pi\)
\(164\) −7.10517 −0.554820
\(165\) −5.40574 + 2.01603i −0.420836 + 0.156948i
\(166\) −0.305578 0.176425i −0.0237174 0.0136933i
\(167\) 3.80474 + 6.58999i 0.294419 + 0.509949i 0.974850 0.222864i \(-0.0715405\pi\)
−0.680430 + 0.732813i \(0.738207\pi\)
\(168\) 5.17027 8.95517i 0.398895 0.690906i
\(169\) 6.21088 10.7576i 0.477760 0.827505i
\(170\) 4.67229i 0.358348i
\(171\) 4.26859 + 0.882707i 0.326427 + 0.0675023i
\(172\) 12.4832i 0.951834i
\(173\) −3.35033 + 5.80294i −0.254721 + 0.441189i −0.964820 0.262913i \(-0.915317\pi\)
0.710099 + 0.704102i \(0.248650\pi\)
\(174\) 2.72164 + 1.57134i 0.206327 + 0.119123i
\(175\) −6.08759 + 3.51467i −0.460179 + 0.265684i
\(176\) 0.793143 0.960542i 0.0597854 0.0724036i
\(177\) −3.64851 6.31940i −0.274239 0.474995i
\(178\) 12.8625i 0.964088i
\(179\) 14.1949i 1.06098i 0.847691 + 0.530490i \(0.177992\pi\)
−0.847691 + 0.530490i \(0.822008\pi\)
\(180\) −1.00063 1.73314i −0.0745824 0.129181i
\(181\) 16.5699 9.56662i 1.23163 0.711081i 0.264260 0.964452i \(-0.414872\pi\)
0.967369 + 0.253370i \(0.0815390\pi\)
\(182\) 2.49588i 0.185007i
\(183\) 2.39964 0.177387
\(184\) 3.91418 + 6.77956i 0.288557 + 0.499796i
\(185\) −14.4347 8.33386i −1.06126 0.612718i
\(186\) 3.75481 + 6.50351i 0.275316 + 0.476861i
\(187\) −7.45252 6.15373i −0.544982 0.450005i
\(188\) −2.14835 + 3.72105i −0.156685 + 0.271386i
\(189\) −3.56103 −0.259027
\(190\) −6.84411 1.41530i −0.496524 0.102677i
\(191\) 6.73902 0.487619 0.243809 0.969823i \(-0.421603\pi\)
0.243809 + 0.969823i \(0.421603\pi\)
\(192\) 5.01000 + 2.89252i 0.361565 + 0.208750i
\(193\) 3.86243 6.68993i 0.278024 0.481552i −0.692870 0.721063i \(-0.743654\pi\)
0.970894 + 0.239511i \(0.0769872\pi\)
\(194\) 11.8741 6.85551i 0.852511 0.492197i
\(195\) 1.14557 + 0.661394i 0.0820358 + 0.0473634i
\(196\) −3.26780 5.65999i −0.233414 0.404285i
\(197\) 10.8986i 0.776496i −0.921555 0.388248i \(-0.873080\pi\)
0.921555 0.388248i \(-0.126920\pi\)
\(198\) −3.01463 0.507037i −0.214241 0.0360336i
\(199\) 0.119894 + 0.207662i 0.00849903 + 0.0147208i 0.870244 0.492622i \(-0.163961\pi\)
−0.861745 + 0.507342i \(0.830628\pi\)
\(200\) −2.86601 4.96407i −0.202657 0.351013i
\(201\) −13.4881 −0.951374
\(202\) 10.8423i 0.762863i
\(203\) 10.5150 6.07085i 0.738009 0.426090i
\(204\) 1.67623 2.90331i 0.117359 0.203272i
\(205\) −5.37175 9.30414i −0.375179 0.649829i
\(206\) 6.09741 + 3.52034i 0.424826 + 0.245274i
\(207\) 1.34795 2.33472i 0.0936889 0.162274i
\(208\) −0.285603 −0.0198030
\(209\) 11.2716 9.05262i 0.779676 0.626183i
\(210\) 5.70963 0.394002
\(211\) −2.47356 + 4.28433i −0.170287 + 0.294946i −0.938520 0.345224i \(-0.887803\pi\)
0.768233 + 0.640170i \(0.221136\pi\)
\(212\) 9.78914 + 5.65176i 0.672321 + 0.388165i
\(213\) −4.60366 7.97377i −0.315438 0.546354i
\(214\) −7.62673 + 13.2099i −0.521353 + 0.903009i
\(215\) −16.3466 + 9.43771i −1.11483 + 0.643646i
\(216\) 2.90381i 0.197579i
\(217\) 29.0133 1.96955
\(218\) 4.88221 + 8.45624i 0.330665 + 0.572729i
\(219\) 7.13345 + 12.3555i 0.482034 + 0.834907i
\(220\) −6.54548 1.10090i −0.441296 0.0742225i
\(221\) 2.21590i 0.149057i
\(222\) −4.41576 7.64831i −0.296366 0.513321i
\(223\) 0.0411307 + 0.0237468i 0.00275432 + 0.00159020i 0.501377 0.865229i \(-0.332827\pi\)
−0.498622 + 0.866819i \(0.666160\pi\)
\(224\) 16.8427 9.72415i 1.12535 0.649722i
\(225\) −0.986983 + 1.70950i −0.0657989 + 0.113967i
\(226\) −9.27583 5.35541i −0.617019 0.356236i
\(227\) 23.8084 1.58022 0.790110 0.612965i \(-0.210023\pi\)
0.790110 + 0.612965i \(0.210023\pi\)
\(228\) 3.74510 + 3.33484i 0.248025 + 0.220855i
\(229\) −13.7094 −0.905943 −0.452972 0.891525i \(-0.649636\pi\)
−0.452972 + 0.891525i \(0.649636\pi\)
\(230\) −2.16126 + 3.74341i −0.142509 + 0.246833i
\(231\) −7.51999 + 9.10714i −0.494779 + 0.599206i
\(232\) 4.95041 + 8.57437i 0.325010 + 0.562935i
\(233\) −16.7872 9.69209i −1.09977 0.634950i −0.163606 0.986526i \(-0.552313\pi\)
−0.936159 + 0.351576i \(0.885646\pi\)
\(234\) 0.350444 + 0.606987i 0.0229093 + 0.0396800i
\(235\) −6.49690 −0.423811
\(236\) 8.39482i 0.546456i
\(237\) −10.6977 + 6.17631i −0.694889 + 0.401194i
\(238\) 4.78231 + 8.28321i 0.309991 + 0.536921i
\(239\) 6.51378i 0.421342i 0.977557 + 0.210671i \(0.0675648\pi\)
−0.977557 + 0.210671i \(0.932435\pi\)
\(240\) 0.653352i 0.0421737i
\(241\) −4.77370 8.26830i −0.307501 0.532608i 0.670314 0.742078i \(-0.266160\pi\)
−0.977815 + 0.209470i \(0.932826\pi\)
\(242\) −7.66286 + 6.63903i −0.492587 + 0.426773i
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) 2.39080 + 1.38033i 0.153055 + 0.0883666i
\(245\) 4.94113 8.55828i 0.315677 0.546769i
\(246\) 5.69252i 0.362942i
\(247\) −3.24592 0.671228i −0.206533 0.0427092i
\(248\) 23.6586i 1.50232i
\(249\) −0.191410 + 0.331532i −0.0121301 + 0.0210100i
\(250\) 5.59091 9.68374i 0.353600 0.612453i
\(251\) 10.3954 + 18.0054i 0.656153 + 1.13649i 0.981603 + 0.190931i \(0.0611508\pi\)
−0.325450 + 0.945559i \(0.605516\pi\)
\(252\) −3.54790 2.04838i −0.223497 0.129036i
\(253\) −3.12438 8.37764i −0.196428 0.526697i
\(254\) −0.203258 −0.0127536
\(255\) 5.06913 0.317441
\(256\) 8.36156 + 14.4826i 0.522597 + 0.905165i
\(257\) 1.24210 0.717125i 0.0774799 0.0447330i −0.460760 0.887525i \(-0.652423\pi\)
0.538239 + 0.842792i \(0.319090\pi\)
\(258\) −10.0013 −0.622652
\(259\) −34.1205 −2.12014
\(260\) 0.760897 + 1.31791i 0.0471888 + 0.0817335i
\(261\) 1.70480 2.95280i 0.105525 0.182774i
\(262\) −12.6339 + 7.29418i −0.780525 + 0.450636i
\(263\) −20.4430 11.8028i −1.26057 0.727789i −0.287384 0.957816i \(-0.592786\pi\)
−0.973184 + 0.230026i \(0.926119\pi\)
\(264\) −7.42633 6.13210i −0.457059 0.377405i
\(265\) 17.0917i 1.04993i
\(266\) −13.5821 + 4.49617i −0.832774 + 0.275678i
\(267\) 13.9550 0.854035
\(268\) −13.4383 7.75863i −0.820878 0.473934i
\(269\) −15.0418 8.68439i −0.917115 0.529496i −0.0344012 0.999408i \(-0.510952\pi\)
−0.882713 + 0.469912i \(0.844286\pi\)
\(270\) 1.38856 0.801683i 0.0845048 0.0487889i
\(271\) −27.8457 16.0767i −1.69150 0.976590i −0.953306 0.302005i \(-0.902344\pi\)
−0.738197 0.674585i \(-0.764322\pi\)
\(272\) −0.947845 + 0.547239i −0.0574715 + 0.0331812i
\(273\) 2.70788 0.163888
\(274\) −12.5882 −0.760482
\(275\) 2.28771 + 6.13419i 0.137954 + 0.369906i
\(276\) 2.68596 1.55074i 0.161676 0.0933437i
\(277\) 2.81009i 0.168842i −0.996430 0.0844209i \(-0.973096\pi\)
0.996430 0.0844209i \(-0.0269040\pi\)
\(278\) 17.9489i 1.07650i
\(279\) 7.05590 4.07372i 0.422426 0.243887i
\(280\) 15.5780 + 8.99394i 0.930961 + 0.537491i
\(281\) 5.39343 + 9.34170i 0.321745 + 0.557279i 0.980848 0.194774i \(-0.0623972\pi\)
−0.659103 + 0.752053i \(0.729064\pi\)
\(282\) −2.98123 1.72121i −0.177530 0.102497i
\(283\) −12.7052 7.33533i −0.755244 0.436040i 0.0723415 0.997380i \(-0.476953\pi\)
−0.827586 + 0.561340i \(0.810286\pi\)
\(284\) 10.5925i 0.628550i
\(285\) −1.53551 + 7.42542i −0.0909560 + 0.439844i
\(286\) 2.29239 + 0.385561i 0.135552 + 0.0227987i
\(287\) −19.0465 10.9965i −1.12428 0.649102i
\(288\) 2.73071 4.72974i 0.160909 0.278702i
\(289\) −4.25416 7.36843i −0.250245 0.433437i
\(290\) −2.73342 + 4.73442i −0.160512 + 0.278015i
\(291\) −7.43780 12.8826i −0.436011 0.755194i
\(292\) 16.4133i 0.960514i
\(293\) 24.6753 1.44154 0.720772 0.693172i \(-0.243787\pi\)
0.720772 + 0.693172i \(0.243787\pi\)
\(294\) 4.53467 2.61809i 0.264467 0.152690i
\(295\) 10.9929 6.34676i 0.640032 0.369523i
\(296\) 27.8232i 1.61719i
\(297\) −0.550103 + 3.27069i −0.0319202 + 0.189784i
\(298\) 7.96536 4.59880i 0.461421 0.266402i
\(299\) −1.02501 + 1.77536i −0.0592777 + 0.102672i
\(300\) −1.96669 + 1.13547i −0.113547 + 0.0655564i
\(301\) −19.3199 + 33.4631i −1.11358 + 1.92878i
\(302\) 0.268186 0.464512i 0.0154324 0.0267297i
\(303\) −11.7632 −0.675780
\(304\) −0.514496 1.55420i −0.0295083 0.0891394i
\(305\) 4.17430i 0.239020i
\(306\) 2.32607 + 1.34296i 0.132973 + 0.0767718i
\(307\) −11.3606 + 19.6771i −0.648382 + 1.12303i 0.335127 + 0.942173i \(0.391221\pi\)
−0.983509 + 0.180858i \(0.942113\pi\)
\(308\) −12.7309 + 4.74791i −0.725411 + 0.270537i
\(309\) 3.81934 6.61530i 0.217275 0.376331i
\(310\) −11.3132 + 6.53167i −0.642546 + 0.370974i
\(311\) 15.6415 0.886949 0.443474 0.896287i \(-0.353746\pi\)
0.443474 + 0.896287i \(0.353746\pi\)
\(312\) 2.20811i 0.125010i
\(313\) −0.911080 1.57804i −0.0514973 0.0891959i 0.839128 0.543935i \(-0.183066\pi\)
−0.890625 + 0.454739i \(0.849733\pi\)
\(314\) 1.93857 + 3.35770i 0.109400 + 0.189486i
\(315\) 6.19459i 0.349025i
\(316\) −14.2110 −0.799431
\(317\) −6.44615 + 3.72169i −0.362052 + 0.209031i −0.669981 0.742379i \(-0.733698\pi\)
0.307929 + 0.951409i \(0.400364\pi\)
\(318\) −4.52808 + 7.84286i −0.253922 + 0.439806i
\(319\) −3.95152 10.5955i −0.221243 0.593234i
\(320\) −5.03169 + 8.71514i −0.281280 + 0.487191i
\(321\) 14.3319 + 8.27452i 0.799928 + 0.461839i
\(322\) 8.84860i 0.493113i
\(323\) −12.0585 + 3.99180i −0.670953 + 0.222110i
\(324\) −1.15044 −0.0639136
\(325\) 0.750521 1.29994i 0.0416314 0.0721077i
\(326\) 0.322963 0.559389i 0.0178873 0.0309817i
\(327\) 9.17448 5.29689i 0.507350 0.292919i
\(328\) 8.96698 15.5313i 0.495119 0.857570i
\(329\) −11.5180 + 6.64989i −0.635005 + 0.366621i
\(330\) 0.882017 5.24411i 0.0485534 0.288679i
\(331\) 11.4878i 0.631429i −0.948854 0.315715i \(-0.897756\pi\)
0.948854 0.315715i \(-0.102244\pi\)
\(332\) −0.381410 + 0.220207i −0.0209326 + 0.0120854i
\(333\) −8.29793 + 4.79081i −0.454724 + 0.262535i
\(334\) −7.01375 −0.383775
\(335\) 23.4631i 1.28193i
\(336\) 0.668737 + 1.15829i 0.0364826 + 0.0631897i
\(337\) 1.35777 2.35172i 0.0739624 0.128107i −0.826672 0.562684i \(-0.809769\pi\)
0.900635 + 0.434577i \(0.143102\pi\)
\(338\) 5.72465 + 9.91539i 0.311380 + 0.539326i
\(339\) −5.81027 + 10.0637i −0.315571 + 0.546585i
\(340\) 5.05045 + 2.91588i 0.273899 + 0.158136i
\(341\) 4.48194 26.6477i 0.242711 1.44306i
\(342\) −2.67181 + 3.00050i −0.144475 + 0.162248i
\(343\) 4.69726i 0.253628i
\(344\) −27.2871 15.7542i −1.47122 0.849411i
\(345\) 4.06136 + 2.34483i 0.218656 + 0.126241i
\(346\) −3.08804 5.34864i −0.166014 0.287545i
\(347\) −21.3494 12.3261i −1.14610 0.661700i −0.198164 0.980169i \(-0.563498\pi\)
−0.947933 + 0.318469i \(0.896831\pi\)
\(348\) 3.39704 1.96128i 0.182100 0.105136i
\(349\) 21.1011i 1.12952i −0.825256 0.564759i \(-0.808969\pi\)
0.825256 0.564759i \(-0.191031\pi\)
\(350\) 6.47904i 0.346319i
\(351\) 0.658543 0.380210i 0.0351504 0.0202941i
\(352\) −6.32947 16.9717i −0.337362 0.904592i
\(353\) −12.7521 −0.678727 −0.339364 0.940655i \(-0.610212\pi\)
−0.339364 + 0.940655i \(0.610212\pi\)
\(354\) 6.72576 0.357470
\(355\) 13.8708 8.00830i 0.736184 0.425036i
\(356\) 13.9036 + 8.02725i 0.736890 + 0.425444i
\(357\) 8.98675 5.18850i 0.475629 0.274605i
\(358\) −11.3308 6.54183i −0.598850 0.345746i
\(359\) 9.75636 + 5.63284i 0.514921 + 0.297290i 0.734854 0.678225i \(-0.237251\pi\)
−0.219933 + 0.975515i \(0.570584\pi\)
\(360\) 5.05132 0.266228
\(361\) −2.19461 18.8728i −0.115506 0.993307i
\(362\) 17.6354i 0.926894i
\(363\) 7.20292 + 8.31372i 0.378055 + 0.436357i
\(364\) 2.69790 + 1.55763i 0.141408 + 0.0816420i
\(365\) −21.4930 + 12.4090i −1.12499 + 0.649516i
\(366\) −1.10589 + 1.91546i −0.0578059 + 0.100123i
\(367\) 0.313272 + 0.542603i 0.0163527 + 0.0283237i 0.874086 0.485771i \(-0.161461\pi\)
−0.857733 + 0.514095i \(0.828128\pi\)
\(368\) −1.01254 −0.0527825
\(369\) −6.17602 −0.321511
\(370\) 13.3046 7.68143i 0.691675 0.399338i
\(371\) 17.4942 + 30.3008i 0.908252 + 1.57314i
\(372\) 9.37319 0.485977
\(373\) −7.00152 −0.362525 −0.181262 0.983435i \(-0.558018\pi\)
−0.181262 + 0.983435i \(0.558018\pi\)
\(374\) 8.34662 3.11281i 0.431593 0.160960i
\(375\) −10.5062 6.06578i −0.542540 0.313236i
\(376\) −5.42259 9.39221i −0.279649 0.484366i
\(377\) −1.29636 + 2.24537i −0.0667661 + 0.115642i
\(378\) 1.64112 2.84251i 0.0844103 0.146203i
\(379\) 8.96742i 0.460625i 0.973117 + 0.230313i \(0.0739749\pi\)
−0.973117 + 0.230313i \(0.926025\pi\)
\(380\) −5.80112 + 6.51479i −0.297591 + 0.334202i
\(381\) 0.220522i 0.0112977i
\(382\) −3.10572 + 5.37927i −0.158903 + 0.275227i
\(383\) 17.6276 + 10.1773i 0.900730 + 0.520037i 0.877437 0.479692i \(-0.159252\pi\)
0.0232929 + 0.999729i \(0.492585\pi\)
\(384\) 4.84170 2.79535i 0.247077 0.142650i
\(385\) −15.8423 13.0814i −0.807399 0.666690i
\(386\) 3.56005 + 6.16619i 0.181202 + 0.313851i
\(387\) 10.8507i 0.551574i
\(388\) 17.1135i 0.868809i
\(389\) 5.34578 + 9.25916i 0.271042 + 0.469458i 0.969129 0.246555i \(-0.0792985\pi\)
−0.698087 + 0.716013i \(0.745965\pi\)
\(390\) −1.05588 + 0.609615i −0.0534668 + 0.0308691i
\(391\) 7.85598i 0.397294i
\(392\) 16.4963 0.833189
\(393\) 7.91373 + 13.7070i 0.399195 + 0.691425i
\(394\) 8.69959 + 5.02271i 0.438279 + 0.253040i
\(395\) −10.7440 18.6091i −0.540589 0.936328i
\(396\) −2.42945 + 2.94220i −0.122084 + 0.147851i
\(397\) −8.85962 + 15.3453i −0.444651 + 0.770159i −0.998028 0.0627725i \(-0.980006\pi\)
0.553377 + 0.832931i \(0.313339\pi\)
\(398\) −0.221015 −0.0110785
\(399\) 4.87806 + 14.7357i 0.244208 + 0.737710i
\(400\) 0.741395 0.0370697
\(401\) −2.18175 1.25963i −0.108951 0.0629032i 0.444534 0.895762i \(-0.353369\pi\)
−0.553486 + 0.832859i \(0.686703\pi\)
\(402\) 6.21606 10.7665i 0.310029 0.536986i
\(403\) −5.36544 + 3.09774i −0.267272 + 0.154309i
\(404\) −11.7199 6.76648i −0.583086 0.336645i
\(405\) −0.869775 1.50649i −0.0432195 0.0748583i
\(406\) 11.1912i 0.555408i
\(407\) −5.27089 + 31.3385i −0.261268 + 1.55339i
\(408\) 4.23092 + 7.32816i 0.209462 + 0.362798i
\(409\) −5.76427 9.98401i −0.285025 0.493678i 0.687590 0.726099i \(-0.258669\pi\)
−0.972615 + 0.232421i \(0.925335\pi\)
\(410\) 9.90242 0.489045
\(411\) 13.6574i 0.673670i
\(412\) 7.61054 4.39395i 0.374944 0.216474i
\(413\) 12.9924 22.5036i 0.639316 1.10733i
\(414\) 1.24242 + 2.15194i 0.0610617 + 0.105762i
\(415\) −0.576717 0.332968i −0.0283099 0.0163447i
\(416\) −2.07649 + 3.59658i −0.101808 + 0.176337i
\(417\) 19.4734 0.953616
\(418\) 2.03143 + 13.1693i 0.0993607 + 0.644131i
\(419\) 3.35421 0.163864 0.0819320 0.996638i \(-0.473891\pi\)
0.0819320 + 0.996638i \(0.473891\pi\)
\(420\) 3.56327 6.17176i 0.173870 0.301151i
\(421\) 5.32185 + 3.07257i 0.259371 + 0.149748i 0.624048 0.781386i \(-0.285487\pi\)
−0.364677 + 0.931134i \(0.618820\pi\)
\(422\) −2.27991 3.94893i −0.110984 0.192231i
\(423\) −1.86741 + 3.23445i −0.0907965 + 0.157264i
\(424\) −24.7085 + 14.2655i −1.19995 + 0.692792i
\(425\) 5.75223i 0.279024i
\(426\) 8.48651 0.411173
\(427\) 4.27260 + 7.40036i 0.206766 + 0.358129i
\(428\) 9.51938 + 16.4880i 0.460137 + 0.796980i
\(429\) 0.418309 2.48709i 0.0201962 0.120078i
\(430\) 17.3977i 0.838993i
\(431\) 7.72284 + 13.3764i 0.371996 + 0.644317i 0.989873 0.141959i \(-0.0453401\pi\)
−0.617876 + 0.786275i \(0.712007\pi\)
\(432\) 0.325267 + 0.187793i 0.0156494 + 0.00903521i
\(433\) 13.3342 7.69849i 0.640800 0.369966i −0.144123 0.989560i \(-0.546036\pi\)
0.784923 + 0.619594i \(0.212703\pi\)
\(434\) −13.3710 + 23.1592i −0.641827 + 1.11168i
\(435\) 5.13655 + 2.96559i 0.246279 + 0.142189i
\(436\) 12.1876 0.583678
\(437\) −11.5077 2.37969i −0.550487 0.113836i
\(438\) −13.1500 −0.628330
\(439\) 0.808369 1.40014i 0.0385814 0.0668249i −0.846090 0.533040i \(-0.821049\pi\)
0.884671 + 0.466215i \(0.154383\pi\)
\(440\) 10.6671 12.9185i 0.508534 0.615864i
\(441\) −2.84046 4.91983i −0.135260 0.234277i
\(442\) −1.76879 1.02121i −0.0841328 0.0485741i
\(443\) −15.5582 26.9477i −0.739195 1.28032i −0.952858 0.303416i \(-0.901873\pi\)
0.213664 0.976907i \(-0.431460\pi\)
\(444\) −11.0231 −0.523135
\(445\) 24.2755i 1.15077i
\(446\) −0.0379107 + 0.0218878i −0.00179512 + 0.00103642i
\(447\) −4.98941 8.64191i −0.235991 0.408748i
\(448\) 20.6007i 0.973292i
\(449\) 23.2893i 1.09909i −0.835465 0.549544i \(-0.814801\pi\)
0.835465 0.549544i \(-0.185199\pi\)
\(450\) −0.909715 1.57567i −0.0428844 0.0742779i
\(451\) −13.0422 + 15.7948i −0.614132 + 0.743749i
\(452\) −11.5777 + 6.68440i −0.544570 + 0.314408i
\(453\) −0.503966 0.290965i −0.0236784 0.0136707i
\(454\) −10.9723 + 19.0045i −0.514954 + 0.891927i
\(455\) 4.71048i 0.220831i
\(456\) −12.0161 + 3.97777i −0.562706 + 0.186276i
\(457\) 20.0009i 0.935603i −0.883833 0.467802i \(-0.845046\pi\)
0.883833 0.467802i \(-0.154954\pi\)
\(458\) 6.31807 10.9432i 0.295224 0.511343i
\(459\) 1.45702 2.52364i 0.0680081 0.117793i
\(460\) 2.69759 + 4.67237i 0.125776 + 0.217850i
\(461\) −4.35044 2.51173i −0.202620 0.116983i 0.395257 0.918571i \(-0.370656\pi\)
−0.597877 + 0.801588i \(0.703989\pi\)
\(462\) −3.80393 10.1997i −0.176975 0.474535i
\(463\) −18.3132 −0.851087 −0.425544 0.904938i \(-0.639917\pi\)
−0.425544 + 0.904938i \(0.639917\pi\)
\(464\) −1.28060 −0.0594504
\(465\) 7.08645 + 12.2741i 0.328626 + 0.569197i
\(466\) 15.4730 8.93332i 0.716771 0.413828i
\(467\) 5.86763 0.271521 0.135761 0.990742i \(-0.456652\pi\)
0.135761 + 0.990742i \(0.456652\pi\)
\(468\) 0.874821 0.0404386
\(469\) −24.0157 41.5964i −1.10894 1.92074i
\(470\) 2.99414 5.18600i 0.138109 0.239212i
\(471\) 3.64289 2.10322i 0.167856 0.0969115i
\(472\) 18.3503 + 10.5946i 0.844642 + 0.487654i
\(473\) 27.7502 + 22.9140i 1.27596 + 1.05359i
\(474\) 11.3856i 0.522956i
\(475\) 8.42604 + 1.74243i 0.386613 + 0.0799484i
\(476\) 11.9382 0.547185
\(477\) 8.50900 + 4.91267i 0.389600 + 0.224936i
\(478\) −5.19948 3.00192i −0.237819 0.137305i
\(479\) 1.68573 0.973257i 0.0770230 0.0444692i −0.460994 0.887403i \(-0.652507\pi\)
0.538017 + 0.842934i \(0.319174\pi\)
\(480\) 8.22761 + 4.75022i 0.375537 + 0.216817i
\(481\) 6.30991 3.64303i 0.287707 0.166108i
\(482\) 8.79997 0.400828
\(483\) 9.60017 0.436823
\(484\) 2.39414 + 12.4264i 0.108824 + 0.564835i
\(485\) 22.4100 12.9384i 1.01759 0.587503i
\(486\) 0.921713i 0.0418098i
\(487\) 19.8947i 0.901515i −0.892646 0.450758i \(-0.851154\pi\)
0.892646 0.450758i \(-0.148846\pi\)
\(488\) −6.03456 + 3.48405i −0.273171 + 0.157716i
\(489\) −0.606902 0.350395i −0.0274450 0.0158454i
\(490\) 4.55430 + 7.88828i 0.205742 + 0.356356i
\(491\) 11.5059 + 6.64296i 0.519256 + 0.299792i 0.736630 0.676296i \(-0.236416\pi\)
−0.217374 + 0.976088i \(0.569749\pi\)
\(492\) −6.15326 3.55258i −0.277410 0.160163i
\(493\) 9.93574i 0.447483i
\(494\) 2.03169 2.28164i 0.0914102 0.102656i
\(495\) −5.68952 0.956932i −0.255725 0.0430109i
\(496\) −2.65010 1.53004i −0.118993 0.0687006i
\(497\) 16.3938 28.3948i 0.735361 1.27368i
\(498\) −0.176425 0.305578i −0.00790581 0.0136933i
\(499\) −9.65043 + 16.7150i −0.432012 + 0.748268i −0.997047 0.0768000i \(-0.975530\pi\)
0.565034 + 0.825068i \(0.308863\pi\)
\(500\) −6.97835 12.0869i −0.312081 0.540540i
\(501\) 7.60947i 0.339966i
\(502\) −19.1632 −0.855295
\(503\) 25.6498 14.8089i 1.14367 0.660296i 0.196331 0.980538i \(-0.437097\pi\)
0.947336 + 0.320241i \(0.103764\pi\)
\(504\) 8.95517 5.17027i 0.398895 0.230302i
\(505\) 20.4627i 0.910580i
\(506\) 8.12715 + 1.36692i 0.361296 + 0.0607671i
\(507\) 10.7576 6.21088i 0.477760 0.275835i
\(508\) −0.126849 + 0.219710i −0.00562803 + 0.00974803i
\(509\) 14.1179 8.15098i 0.625765 0.361286i −0.153345 0.988173i \(-0.549005\pi\)
0.779110 + 0.626887i \(0.215671\pi\)
\(510\) −2.33614 + 4.04632i −0.103446 + 0.179174i
\(511\) −25.4024 + 43.9983i −1.12374 + 1.94637i
\(512\) −4.23250 −0.187052
\(513\) 3.25535 + 2.89874i 0.143727 + 0.127983i
\(514\) 1.32197i 0.0583095i
\(515\) 11.5076 + 6.64394i 0.507087 + 0.292767i
\(516\) −6.24159 + 10.8108i −0.274771 + 0.475917i
\(517\) 4.32843 + 11.6061i 0.190364 + 0.510437i
\(518\) 15.7246 27.2359i 0.690901 1.19668i
\(519\) −5.80294 + 3.35033i −0.254721 + 0.147063i
\(520\) −3.84112 −0.168444
\(521\) 8.06667i 0.353407i −0.984264 0.176704i \(-0.943457\pi\)
0.984264 0.176704i \(-0.0565434\pi\)
\(522\) 1.57134 + 2.72164i 0.0687756 + 0.119123i
\(523\) −13.2304 22.9157i −0.578525 1.00204i −0.995649 0.0931853i \(-0.970295\pi\)
0.417124 0.908850i \(-0.363038\pi\)
\(524\) 18.2086i 0.795447i
\(525\) −7.02935 −0.306786
\(526\) 18.8426 10.8788i 0.821575 0.474336i
\(527\) −11.8710 + 20.5612i −0.517110 + 0.895661i
\(528\) 1.16715 0.435282i 0.0507938 0.0189432i
\(529\) 7.86607 13.6244i 0.342003 0.592366i
\(530\) −13.6430 7.87682i −0.592616 0.342147i
\(531\) 7.29702i 0.316664i
\(532\) −3.61625 + 17.4874i −0.156784 + 0.758175i
\(533\) 4.69636 0.203422
\(534\) −6.43127 + 11.1393i −0.278308 + 0.482044i
\(535\) −14.3939 + 24.9310i −0.622304 + 1.07786i
\(536\) 33.9194 19.5833i 1.46509 0.845872i
\(537\) −7.09747 + 12.2932i −0.306278 + 0.530490i
\(538\) 13.8642 8.00451i 0.597729 0.345099i
\(539\) −18.5805 3.12510i −0.800320 0.134607i
\(540\) 2.00126i 0.0861204i
\(541\) 8.95945 5.17274i 0.385197 0.222393i −0.294880 0.955534i \(-0.595280\pi\)
0.680077 + 0.733141i \(0.261946\pi\)
\(542\) 25.6657 14.8181i 1.10244 0.636492i
\(543\) 19.1332 0.821086
\(544\) 15.9149i 0.682344i
\(545\) 9.21420 + 15.9595i 0.394693 + 0.683628i
\(546\) −1.24794 + 2.16150i −0.0534070 + 0.0925036i
\(547\) 7.58218 + 13.1327i 0.324191 + 0.561515i 0.981348 0.192238i \(-0.0615747\pi\)
−0.657158 + 0.753753i \(0.728241\pi\)
\(548\) −7.85605 + 13.6071i −0.335594 + 0.581265i
\(549\) 2.07815 + 1.19982i 0.0886934 + 0.0512072i
\(550\) −5.95078 1.00087i −0.253742 0.0426774i
\(551\) −14.5542 3.00968i −0.620029 0.128217i
\(552\) 7.82837i 0.333197i
\(553\) −38.0947 21.9940i −1.61995 0.935280i
\(554\) 2.24309 + 1.29505i 0.0952997 + 0.0550213i
\(555\) −8.33386 14.4347i −0.353753 0.612718i
\(556\) 19.4016 + 11.2015i 0.822812 + 0.475051i
\(557\) 29.3386 16.9387i 1.24312 0.717715i 0.273390 0.961903i \(-0.411855\pi\)
0.969728 + 0.244189i \(0.0785216\pi\)
\(558\) 7.50961i 0.317907i
\(559\) 8.25112i 0.348985i
\(560\) −2.01490 + 1.16330i −0.0851450 + 0.0491585i
\(561\) −3.37721 9.05555i −0.142586 0.382325i
\(562\) −9.94239 −0.419395
\(563\) −24.4907 −1.03216 −0.516080 0.856541i \(-0.672609\pi\)
−0.516080 + 0.856541i \(0.672609\pi\)
\(564\) −3.72105 + 2.14835i −0.156685 + 0.0904619i
\(565\) −17.5063 10.1073i −0.736495 0.425216i
\(566\) 11.7105 6.76107i 0.492230 0.284189i
\(567\) −3.08394 1.78051i −0.129513 0.0747746i
\(568\) 23.1543 + 13.3681i 0.971532 + 0.560914i
\(569\) 1.27774 0.0535658 0.0267829 0.999641i \(-0.491474\pi\)
0.0267829 + 0.999641i \(0.491474\pi\)
\(570\) −5.21952 4.64774i −0.218622 0.194672i
\(571\) 0.409674i 0.0171443i −0.999963 0.00857215i \(-0.997271\pi\)
0.999963 0.00857215i \(-0.00272863\pi\)
\(572\) 1.84740 2.23731i 0.0772436 0.0935465i
\(573\) 5.83617 + 3.36951i 0.243809 + 0.140763i
\(574\) 17.5554 10.1356i 0.732748 0.423052i
\(575\) 2.66081 4.60865i 0.110963 0.192194i
\(576\) 2.89252 + 5.01000i 0.120522 + 0.208750i
\(577\) 44.2314 1.84138 0.920689 0.390296i \(-0.127627\pi\)
0.920689 + 0.390296i \(0.127627\pi\)
\(578\) 7.84223 0.326194
\(579\) 6.68993 3.86243i 0.278024 0.160517i
\(580\) 3.41174 + 5.90931i 0.141665 + 0.245371i
\(581\) −1.36324 −0.0565565
\(582\) 13.7110 0.568340
\(583\) 30.5327 11.3870i 1.26454 0.471601i
\(584\) −35.8780 20.7141i −1.48464 0.857157i
\(585\) 0.661394 + 1.14557i 0.0273453 + 0.0473634i
\(586\) −11.3718 + 19.6965i −0.469763 + 0.813654i
\(587\) 4.34110 7.51901i 0.179176 0.310343i −0.762422 0.647080i \(-0.775990\pi\)
0.941599 + 0.336737i \(0.109323\pi\)
\(588\) 6.53559i 0.269523i
\(589\) −26.5228 23.6173i −1.09285 0.973135i
\(590\) 11.6998i 0.481673i
\(591\) 5.44932 9.43850i 0.224155 0.388248i
\(592\) 3.11659 + 1.79937i 0.128091 + 0.0739535i
\(593\) −26.3345 + 15.2042i −1.08143 + 0.624362i −0.931281 0.364302i \(-0.881308\pi\)
−0.150146 + 0.988664i \(0.547974\pi\)
\(594\) −2.35723 1.94642i −0.0967184 0.0798628i
\(595\) 9.02566 + 15.6329i 0.370016 + 0.640887i
\(596\) 11.4801i 0.470242i
\(597\) 0.239787i 0.00981384i
\(598\) −0.944762 1.63638i −0.0386342 0.0669164i
\(599\) 3.20926 1.85287i 0.131127 0.0757061i −0.433002 0.901393i \(-0.642546\pi\)
0.564129 + 0.825687i \(0.309212\pi\)
\(600\) 5.73201i 0.234008i
\(601\) 45.8624 1.87077 0.935383 0.353637i \(-0.115055\pi\)
0.935383 + 0.353637i \(0.115055\pi\)
\(602\) −17.8074 30.8433i −0.725776 1.25708i
\(603\) −11.6810 6.74403i −0.475687 0.274638i
\(604\) −0.334739 0.579785i −0.0136203 0.0235911i
\(605\) −14.4621 + 12.5298i −0.587969 + 0.509411i
\(606\) 5.42116 9.38973i 0.220220 0.381432i
\(607\) −19.5511 −0.793557 −0.396778 0.917914i \(-0.629872\pi\)
−0.396778 + 0.917914i \(0.629872\pi\)
\(608\) −23.3126 4.82084i −0.945450 0.195511i
\(609\) 12.1417 0.492006
\(610\) −3.33204 1.92375i −0.134910 0.0778905i
\(611\) 1.42001 2.45954i 0.0574476 0.0995022i
\(612\) 2.90331 1.67623i 0.117359 0.0677574i
\(613\) 19.1210 + 11.0395i 0.772288 + 0.445881i 0.833690 0.552232i \(-0.186224\pi\)
−0.0614021 + 0.998113i \(0.519557\pi\)
\(614\) −10.4712 18.1366i −0.422583 0.731935i
\(615\) 10.7435i 0.433219i
\(616\) 5.68836 33.8207i 0.229191 1.36267i
\(617\) 13.2725 + 22.9887i 0.534331 + 0.925488i 0.999195 + 0.0401065i \(0.0127697\pi\)
−0.464864 + 0.885382i \(0.653897\pi\)
\(618\) 3.52034 + 6.09741i 0.141609 + 0.245274i
\(619\) −27.2310 −1.09451 −0.547254 0.836967i \(-0.684327\pi\)
−0.547254 + 0.836967i \(0.684327\pi\)
\(620\) 16.3051i 0.654830i
\(621\) 2.33472 1.34795i 0.0936889 0.0540913i
\(622\) −7.20849 + 12.4855i −0.289034 + 0.500622i
\(623\) 24.8471 + 43.0365i 0.995480 + 1.72422i
\(624\) −0.247340 0.142802i −0.00990151 0.00571664i
\(625\) 5.61682 9.72861i 0.224673 0.389144i
\(626\) 1.67951 0.0671267
\(627\) 14.2878 2.20398i 0.570602 0.0880184i
\(628\) 4.83929 0.193109
\(629\) 13.9607 24.1806i 0.556648 0.964143i
\(630\) 4.94469 + 2.85482i 0.197001 + 0.113739i
\(631\) 13.0878 + 22.6688i 0.521018 + 0.902430i 0.999701 + 0.0244424i \(0.00778102\pi\)
−0.478683 + 0.877988i \(0.658886\pi\)
\(632\) 17.9348 31.0640i 0.713408 1.23566i
\(633\) −4.28433 + 2.47356i −0.170287 + 0.0983153i
\(634\) 6.86066i 0.272471i
\(635\) −0.383609 −0.0152231
\(636\) 5.65176 + 9.78914i 0.224107 + 0.388165i
\(637\) 2.15994 + 3.74113i 0.0855800 + 0.148229i
\(638\) 10.2787 + 1.72880i 0.406938 + 0.0684437i
\(639\) 9.20732i 0.364236i
\(640\) 4.86266 + 8.42237i 0.192213 + 0.332923i
\(641\) 5.07826 + 2.93193i 0.200579 + 0.115804i 0.596926 0.802297i \(-0.296389\pi\)
−0.396346 + 0.918101i \(0.629722\pi\)
\(642\) −13.2099 + 7.62673i −0.521353 + 0.301003i
\(643\) −13.7171 + 23.7588i −0.540951 + 0.936954i 0.457899 + 0.889004i \(0.348602\pi\)
−0.998850 + 0.0479501i \(0.984731\pi\)
\(644\) 9.56479 + 5.52223i 0.376906 + 0.217607i
\(645\) −18.8754 −0.743219
\(646\) 2.37088 11.4651i 0.0932810 0.451087i
\(647\) −8.38224 −0.329540 −0.164770 0.986332i \(-0.552688\pi\)
−0.164770 + 0.986332i \(0.552688\pi\)
\(648\) 1.45190 2.51477i 0.0570361 0.0987895i
\(649\) −18.6617 15.4095i −0.732537 0.604874i
\(650\) 0.691765 + 1.19817i 0.0271333 + 0.0469962i
\(651\) 25.1263 + 14.5066i 0.984775 + 0.568560i
\(652\) −0.403110 0.698207i −0.0157870 0.0273439i
\(653\) 15.8771 0.621321 0.310660 0.950521i \(-0.399450\pi\)
0.310660 + 0.950521i \(0.399450\pi\)
\(654\) 9.76442i 0.381819i
\(655\) −23.8440 + 13.7663i −0.931661 + 0.537895i
\(656\) 1.15981 + 2.00886i 0.0452831 + 0.0784327i
\(657\) 14.2669i 0.556604i
\(658\) 12.2586i 0.477890i
\(659\) −23.0867 39.9873i −0.899330 1.55769i −0.828352 0.560208i \(-0.810721\pi\)
−0.0709779 0.997478i \(-0.522612\pi\)
\(660\) −5.11810 4.22615i −0.199222 0.164503i
\(661\) −18.1760 + 10.4939i −0.706966 + 0.408167i −0.809937 0.586518i \(-0.800499\pi\)
0.102971 + 0.994684i \(0.467165\pi\)
\(662\) 9.16991 + 5.29425i 0.356399 + 0.205767i
\(663\) −1.10795 + 1.91902i −0.0430292 + 0.0745287i
\(664\) 1.11164i 0.0431399i
\(665\) −25.6336 + 8.48563i −0.994027 + 0.329059i
\(666\) 8.83151i 0.342214i
\(667\) −4.59597 + 7.96045i −0.177957 + 0.308230i
\(668\) −4.37714 + 7.58143i −0.169357 + 0.293334i
\(669\) 0.0237468 + 0.0411307i 0.000918105 + 0.00159020i
\(670\) 18.7289 + 10.8131i 0.723561 + 0.417748i
\(671\) 7.45701 2.78104i 0.287875 0.107361i
\(672\) 19.4483 0.750235
\(673\) 20.6869 0.797420 0.398710 0.917077i \(-0.369458\pi\)
0.398710 + 0.917077i \(0.369458\pi\)
\(674\) 1.25147 + 2.16762i 0.0482050 + 0.0834934i
\(675\) −1.70950 + 0.986983i −0.0657989 + 0.0379890i
\(676\) 14.2906 0.549637
\(677\) −16.0938 −0.618535 −0.309268 0.950975i \(-0.600084\pi\)
−0.309268 + 0.950975i \(0.600084\pi\)
\(678\) −5.35541 9.27583i −0.205673 0.356236i
\(679\) 26.4862 45.8754i 1.01645 1.76054i
\(680\) −12.7477 + 7.35989i −0.488852 + 0.282239i
\(681\) 20.6187 + 11.9042i 0.790110 + 0.456170i
\(682\) 19.2054 + 15.8584i 0.735413 + 0.607249i
\(683\) 1.75157i 0.0670218i 0.999438 + 0.0335109i \(0.0106689\pi\)
−0.999438 + 0.0335109i \(0.989331\pi\)
\(684\) 1.57593 + 4.76061i 0.0602573 + 0.182026i
\(685\) −23.7577 −0.907737
\(686\) −3.74948 2.16476i −0.143156 0.0826511i
\(687\) −11.8727 6.85471i −0.452972 0.261523i
\(688\) 3.52939 2.03770i 0.134557 0.0776865i
\(689\) −6.47041 3.73569i −0.246503 0.142319i
\(690\) −3.74341 + 2.16126i −0.142509 + 0.0822776i
\(691\) −7.03102 −0.267473 −0.133736 0.991017i \(-0.542698\pi\)
−0.133736 + 0.991017i \(0.542698\pi\)
\(692\) −7.70874 −0.293042
\(693\) −11.0661 + 4.12702i −0.420365 + 0.156772i
\(694\) 19.6780 11.3611i 0.746968 0.431262i
\(695\) 33.8749i 1.28495i
\(696\) 9.90082i 0.375290i
\(697\) 15.5860 8.99860i 0.590363 0.340846i
\(698\) 16.8435 + 9.72459i 0.637536 + 0.368081i
\(699\) −9.69209 16.7872i −0.366588 0.634950i
\(700\) −7.00344 4.04344i −0.264705 0.152828i
\(701\) −42.6064 24.5988i −1.60922 0.929085i −0.989544 0.144228i \(-0.953930\pi\)
−0.619678 0.784857i \(-0.712737\pi\)
\(702\) 0.700889i 0.0264533i
\(703\) 31.1916 + 27.7747i 1.17641 + 1.04754i
\(704\) 18.9211 + 3.18237i 0.713114 + 0.119940i
\(705\) −5.62648 3.24845i −0.211906 0.122344i
\(706\) 5.87690 10.1791i 0.221180 0.383095i
\(707\) −20.9446 36.2771i −0.787703 1.36434i
\(708\) 4.19741 7.27013i 0.157748 0.273228i
\(709\) −8.84136 15.3137i −0.332044 0.575117i 0.650868 0.759191i \(-0.274405\pi\)
−0.982913 + 0.184073i \(0.941072\pi\)
\(710\) 14.7627i 0.554034i
\(711\) −12.3526 −0.463259
\(712\) −35.0937 + 20.2614i −1.31519 + 0.759327i
\(713\) −19.0220 + 10.9823i −0.712379 + 0.411292i
\(714\) 9.56462i 0.357947i
\(715\) 4.32642 + 0.727670i 0.161799 + 0.0272133i
\(716\) −14.1426 + 8.16525i −0.528535 + 0.305150i
\(717\) −3.25689 + 5.64110i −0.121631 + 0.210671i
\(718\) −8.99256 + 5.19186i −0.335599 + 0.193758i
\(719\) −4.53413 + 7.85334i −0.169094 + 0.292880i −0.938102 0.346360i \(-0.887418\pi\)
0.769007 + 0.639240i \(0.220751\pi\)
\(720\) −0.326676 + 0.565819i −0.0121745 + 0.0210868i
\(721\) 27.2016 1.01304
\(722\) 16.0762 + 6.94587i 0.598294 + 0.258498i
\(723\) 9.54741i 0.355072i
\(724\) 19.0627 + 11.0059i 0.708461 + 0.409030i
\(725\) 3.36522 5.82873i 0.124981 0.216474i
\(726\) −9.95575 + 1.91814i −0.369492 + 0.0711887i
\(727\) 15.3944 26.6639i 0.570948 0.988911i −0.425521 0.904948i \(-0.639909\pi\)
0.996469 0.0839621i \(-0.0267575\pi\)
\(728\) −6.80968 + 3.93157i −0.252384 + 0.145714i
\(729\) −1.00000 −0.0370370
\(730\) 22.8751i 0.846644i
\(731\) −15.8098 27.3834i −0.584747 1.01281i
\(732\) 1.38033 + 2.39080i 0.0510185 + 0.0883666i
\(733\) 30.4920i 1.12625i −0.826373 0.563123i \(-0.809600\pi\)
0.826373 0.563123i \(-0.190400\pi\)
\(734\) −0.577494 −0.0213157
\(735\) 8.55828 4.94113i 0.315677 0.182256i
\(736\) −7.36173 + 12.7509i −0.271357 + 0.470004i
\(737\) −41.9148 + 15.6318i −1.54395 + 0.575806i
\(738\) 2.84626 4.92986i 0.104772 0.181471i
\(739\) −19.5991 11.3156i −0.720965 0.416249i 0.0941426 0.995559i \(-0.469989\pi\)
−0.815108 + 0.579309i \(0.803322\pi\)
\(740\) 19.1753i 0.704898i
\(741\) −2.47543 2.20426i −0.0909373 0.0809755i
\(742\) −32.2492 −1.18391
\(743\) −22.5162 + 38.9992i −0.826039 + 1.43074i 0.0750840 + 0.997177i \(0.476078\pi\)
−0.901123 + 0.433564i \(0.857256\pi\)
\(744\) −11.8293 + 20.4890i −0.433683 + 0.751162i
\(745\) 15.0330 8.67933i 0.550768 0.317986i
\(746\) 3.22670 5.58880i 0.118138 0.204621i
\(747\) −0.331532 + 0.191410i −0.0121301 + 0.00700334i
\(748\) 1.84419 10.9648i 0.0674304 0.400913i
\(749\) 58.9316i 2.15331i
\(750\) 9.68374 5.59091i 0.353600 0.204151i
\(751\) 13.8390 7.98994i 0.504991 0.291557i −0.225781 0.974178i \(-0.572493\pi\)
0.730772 + 0.682621i \(0.239160\pi\)
\(752\) 1.40275 0.0511529
\(753\) 20.7908i 0.757660i
\(754\) −1.19488 2.06959i −0.0435148 0.0753698i
\(755\) 0.506148 0.876674i 0.0184206 0.0319054i
\(756\) −2.04838 3.54790i −0.0744990 0.129036i
\(757\) −11.5239 + 19.9601i −0.418845 + 0.725460i −0.995824 0.0912987i \(-0.970898\pi\)
0.576979 + 0.816759i \(0.304232\pi\)
\(758\) −7.15804 4.13269i −0.259992 0.150106i
\(759\) 1.48302 8.81744i 0.0538303 0.320053i
\(760\) −6.91953 20.9026i −0.250998 0.758218i
\(761\) 3.20452i 0.116164i −0.998312 0.0580819i \(-0.981502\pi\)
0.998312 0.0580819i \(-0.0184985\pi\)
\(762\) −0.176027 0.101629i −0.00637678 0.00368163i
\(763\) 32.6706 + 18.8624i 1.18275 + 0.682863i
\(764\) 3.87644 + 6.71419i 0.140245 + 0.242911i
\(765\) 4.39000 + 2.53457i 0.158721 + 0.0916374i
\(766\) −16.2476 + 9.38057i −0.587050 + 0.338934i
\(767\) 5.54879i 0.200355i
\(768\) 16.7231i 0.603444i
\(769\) 23.4919 13.5631i 0.847140 0.489096i −0.0125450 0.999921i \(-0.503993\pi\)
0.859685 + 0.510825i \(0.170660\pi\)
\(770\) 17.7430 6.61712i 0.639412 0.238464i
\(771\) 1.43425 0.0516533
\(772\) 8.88703 0.319851
\(773\) 11.8135 6.82050i 0.424900 0.245316i −0.272271 0.962221i \(-0.587775\pi\)
0.697172 + 0.716904i \(0.254441\pi\)
\(774\) −8.66136 5.00064i −0.311326 0.179744i
\(775\) 13.9281 8.04139i 0.500312 0.288855i
\(776\) 37.4087 + 21.5979i 1.34289 + 0.775320i
\(777\) −29.5492 17.0602i −1.06007 0.612032i
\(778\) −9.85455 −0.353303
\(779\) 8.46019 + 25.5567i 0.303118 + 0.915664i
\(780\) 1.52179i 0.0544890i
\(781\) −23.5472 19.4435i −0.842586 0.695744i
\(782\) −6.27085 3.62048i −0.224245 0.129468i
\(783\) 2.95280 1.70480i 0.105525 0.0609246i
\(784\) −1.06684 + 1.84782i −0.0381014 + 0.0659936i
\(785\) 3.65866 + 6.33699i 0.130583 + 0.226177i
\(786\) −14.5884 −0.520350
\(787\) −22.6377 −0.806948 −0.403474 0.914991i \(-0.632197\pi\)
−0.403474 + 0.914991i \(0.632197\pi\)
\(788\) 10.8585 6.26914i 0.386817 0.223329i
\(789\) −11.8028 20.4430i −0.420189 0.727789i
\(790\) 19.8058 0.704657
\(791\) −41.3811 −1.47134
\(792\) −3.36534 9.02372i −0.119582 0.320644i
\(793\) −1.58027 0.912368i −0.0561170 0.0323991i
\(794\) −8.16602 14.1440i −0.289801 0.501951i
\(795\) −8.54584 + 14.8018i −0.303090 + 0.524967i
\(796\) −0.137931 + 0.238903i −0.00488883 + 0.00846771i
\(797\) 26.0393i 0.922359i −0.887307 0.461179i \(-0.847427\pi\)
0.887307 0.461179i \(-0.152573\pi\)
\(798\) −14.0106 2.89726i −0.495968 0.102562i
\(799\) 10.8834i 0.385028i
\(800\) 5.39034 9.33634i 0.190577 0.330089i
\(801\) 12.0854 + 6.97752i 0.427017 + 0.246539i
\(802\) 2.01095 1.16102i 0.0710091 0.0409971i
\(803\) 36.4868 + 30.1281i 1.28759 + 1.06320i
\(804\) −7.75863 13.4383i −0.273626 0.473934i
\(805\) 16.7000i 0.588597i
\(806\) 5.71045i 0.201142i
\(807\) −8.68439 15.0418i −0.305705 0.529496i
\(808\) 29.5818 17.0791i 1.04068 0.600840i
\(809\) 41.4286i 1.45655i −0.685284 0.728276i \(-0.740322\pi\)
0.685284 0.728276i \(-0.259678\pi\)
\(810\) 1.60337 0.0563365
\(811\) 6.24712 + 10.8203i 0.219366 + 0.379953i 0.954614 0.297845i \(-0.0962677\pi\)
−0.735248 + 0.677798i \(0.762934\pi\)
\(812\) 12.0969 + 6.98417i 0.424519 + 0.245096i
\(813\) −16.0767 27.8457i −0.563834 0.976590i
\(814\) −22.5861 18.6499i −0.791643 0.653679i
\(815\) 0.609529 1.05574i 0.0213509 0.0369808i
\(816\) −1.09448 −0.0383144
\(817\) 44.9010 14.8639i 1.57089 0.520020i
\(818\) 10.6260 0.371530
\(819\) 2.34509 + 1.35394i 0.0819440 + 0.0473104i
\(820\) 6.17990 10.7039i 0.215811 0.373796i
\(821\) −34.8303 + 20.1093i −1.21559 + 0.701819i −0.963971 0.266008i \(-0.914295\pi\)
−0.251616 + 0.967827i \(0.580962\pi\)
\(822\) −10.9017 6.29411i −0.380241 0.219532i
\(823\) 14.5960 + 25.2809i 0.508783 + 0.881238i 0.999948 + 0.0101715i \(0.00323774\pi\)
−0.491165 + 0.871066i \(0.663429\pi\)
\(824\) 22.1813i 0.772721i
\(825\) −1.08588 + 6.45622i −0.0378057 + 0.224777i
\(826\) 11.9753 + 20.7418i 0.416674 + 0.721701i
\(827\) −14.6809 25.4281i −0.510505 0.884221i −0.999926 0.0121734i \(-0.996125\pi\)
0.489420 0.872048i \(-0.337208\pi\)
\(828\) 3.10148 0.107784
\(829\) 43.5967i 1.51417i −0.653314 0.757087i \(-0.726622\pi\)
0.653314 0.757087i \(-0.273378\pi\)
\(830\) 0.531568 0.306901i 0.0184510 0.0106527i
\(831\) 1.40504 2.43361i 0.0487404 0.0844209i
\(832\) −2.19953 3.80970i −0.0762550 0.132078i
\(833\) 14.3366 + 8.27724i 0.496734 + 0.286790i
\(834\) −8.97444 + 15.5442i −0.310760 + 0.538251i
\(835\) −13.2371 −0.458087
\(836\) 15.5030 + 6.02283i 0.536181 + 0.208304i
\(837\) 8.14745 0.281617
\(838\) −1.54581 + 2.67742i −0.0533991 + 0.0924900i
\(839\) −7.27332 4.19925i −0.251103 0.144974i 0.369166 0.929363i \(-0.379643\pi\)
−0.620269 + 0.784389i \(0.712977\pi\)
\(840\) 8.99394 + 15.5780i 0.310320 + 0.537491i
\(841\) 8.68731 15.0469i 0.299562 0.518857i
\(842\) −4.90522 + 2.83203i −0.169045 + 0.0975981i
\(843\) 10.7869i 0.371519i
\(844\) −5.69139 −0.195906
\(845\) 10.8041 + 18.7133i 0.371674 + 0.643758i
\(846\) −1.72121 2.98123i −0.0591766 0.102497i
\(847\) −12.8141 + 37.0161i −0.440298 + 1.27189i
\(848\) 3.69027i 0.126724i
\(849\) −7.33533 12.7052i −0.251748 0.436040i
\(850\) 4.59159 + 2.65095i 0.157490 + 0.0909269i
\(851\) 22.3704 12.9155i 0.766847 0.442739i
\(852\) 5.29626 9.17339i 0.181447 0.314275i
\(853\) −1.78074 1.02811i −0.0609715 0.0352019i 0.469204 0.883090i \(-0.344541\pi\)
−0.530176 + 0.847888i \(0.677874\pi\)
\(854\) −7.87623 −0.269519
\(855\) −5.04250 + 5.66284i −0.172450 + 0.193665i
\(856\) −48.0552 −1.64249
\(857\) 25.1045 43.4822i 0.857553 1.48533i −0.0167033 0.999860i \(-0.505317\pi\)
0.874256 0.485465i \(-0.161350\pi\)
\(858\) 1.79248 + 1.48010i 0.0611944 + 0.0505297i
\(859\) −0.524915 0.909180i −0.0179099 0.0310208i 0.856932 0.515430i \(-0.172368\pi\)
−0.874841 + 0.484409i \(0.839035\pi\)
\(860\) −18.8059 10.8576i −0.641274 0.370240i
\(861\) −10.9965 19.0465i −0.374759 0.649102i
\(862\) −14.2365 −0.484897
\(863\) 37.9950i 1.29336i 0.762760 + 0.646682i \(0.223844\pi\)
−0.762760 + 0.646682i \(0.776156\pi\)
\(864\) 4.72974 2.73071i 0.160909 0.0929008i
\(865\) −5.82806 10.0945i −0.198160 0.343223i
\(866\) 14.1916i 0.482250i
\(867\) 8.50832i 0.288958i
\(868\) 16.6891 + 28.9064i 0.566465 + 0.981146i
\(869\) −26.0856 + 31.5911i −0.884893 + 1.07166i
\(870\) −4.73442 + 2.73342i −0.160512 + 0.0926716i
\(871\) 8.88246 + 5.12829i 0.300971 + 0.173765i
\(872\) −15.3811 + 26.6409i −0.520871 + 0.902175i
\(873\) 14.8756i 0.503462i
\(874\) 7.20292 8.08904i 0.243642 0.273616i
\(875\) 43.2008i 1.46045i
\(876\) −8.20664 + 14.2143i −0.277277 + 0.480257i
\(877\) −15.0434 + 26.0560i −0.507980 + 0.879848i 0.491977 + 0.870608i \(0.336274\pi\)
−0.999957 + 0.00923952i \(0.997059\pi\)
\(878\) 0.745085 + 1.29052i 0.0251454 + 0.0435531i
\(879\) 21.3694 + 12.3376i 0.720772 + 0.416138i
\(880\) 0.757195 + 2.03032i 0.0255250 + 0.0684421i
\(881\) 32.9899 1.11146 0.555729 0.831364i \(-0.312439\pi\)
0.555729 + 0.831364i \(0.312439\pi\)
\(882\) 5.23618 0.176311
\(883\) −0.678521 1.17523i −0.0228340 0.0395497i 0.854383 0.519644i \(-0.173936\pi\)
−0.877217 + 0.480095i \(0.840602\pi\)
\(884\) −2.20773 + 1.27463i −0.0742541 + 0.0428706i
\(885\) 12.6935 0.426688
\(886\) 28.6805 0.963540
\(887\) 16.9999 + 29.4447i 0.570801 + 0.988657i 0.996484 + 0.0837841i \(0.0267006\pi\)
−0.425683 + 0.904872i \(0.639966\pi\)
\(888\) 13.9116 24.0956i 0.466843 0.808595i
\(889\) −0.680078 + 0.392643i −0.0228091 + 0.0131688i
\(890\) −19.3774 11.1875i −0.649530 0.375006i
\(891\) −2.11175 + 2.55745i −0.0707462 + 0.0856776i
\(892\) 0.0546388i 0.00182944i
\(893\) 15.9424 + 3.29675i 0.533492 + 0.110322i
\(894\) 9.19761 0.307614
\(895\) −21.3846 12.3464i −0.714808 0.412695i
\(896\) 17.2414 + 9.95434i 0.575995 + 0.332551i
\(897\) −1.77536 + 1.02501i −0.0592777 + 0.0342240i
\(898\) 18.5901 + 10.7330i 0.620360 + 0.358165i
\(899\) −24.0578 + 13.8898i −0.802373 + 0.463250i
\(900\) −2.27094 −0.0756980
\(901\) −28.6315 −0.953855
\(902\) −6.59728 17.6898i −0.219665 0.589005i
\(903\) −33.4631 + 19.3199i −1.11358 + 0.642926i
\(904\) 33.7438i 1.12230i
\(905\) 33.2832i 1.10637i
\(906\) 0.464512 0.268186i 0.0154324 0.00890989i
\(907\) −14.4855 8.36322i −0.480984 0.277696i 0.239842 0.970812i \(-0.422904\pi\)
−0.720826 + 0.693116i \(0.756238\pi\)
\(908\) 13.6951 + 23.7207i 0.454489 + 0.787198i
\(909\) −10.1873 5.88162i −0.337890 0.195081i
\(910\) −3.76004 2.17086i −0.124644 0.0719632i
\(911\) 22.9652i 0.760870i 0.924808 + 0.380435i \(0.124226\pi\)
−0.924808 + 0.380435i \(0.875774\pi\)
\(912\) 0.331533 1.60322i 0.0109782 0.0530880i
\(913\) −0.210591 + 1.25209i −0.00696954 + 0.0414380i
\(914\) 15.9653 + 9.21755i 0.528084 + 0.304890i
\(915\) −2.08715 + 3.61505i −0.0689991 + 0.119510i
\(916\) −7.88596 13.6589i −0.260559 0.451302i
\(917\) −28.1810 + 48.8109i −0.930619 + 1.61188i
\(918\) 1.34296 + 2.32607i 0.0443242 + 0.0767718i
\(919\) 27.3889i 0.903478i −0.892150 0.451739i \(-0.850804\pi\)
0.892150 0.451739i \(-0.149196\pi\)
\(920\) −13.6178 −0.448967
\(921\) −19.6771 + 11.3606i −0.648382 + 0.374344i
\(922\) 4.00986 2.31509i 0.132058 0.0762436i
\(923\) 7.00142i 0.230455i
\(924\) −13.3992 2.25365i −0.440803 0.0741395i
\(925\) −16.3798 + 9.45690i −0.538566 + 0.310941i
\(926\) 8.43976 14.6181i 0.277348 0.480381i
\(927\) 6.61530 3.81934i 0.217275 0.125444i
\(928\) −9.31065 + 16.1265i −0.305637 + 0.529379i
\(929\) 14.2065 24.6064i 0.466101 0.807311i −0.533149 0.846021i \(-0.678992\pi\)
0.999250 + 0.0387104i \(0.0123250\pi\)
\(930\) −13.0633 −0.428364
\(931\) −16.4675 + 18.4934i −0.539701 + 0.606097i
\(932\) 22.3004i 0.730475i
\(933\) 13.5459 + 7.82076i 0.443474 + 0.256040i
\(934\) −2.70413 + 4.68370i −0.0884820 + 0.153255i
\(935\) 15.7526 5.87482i 0.515164 0.192127i
\(936\) −1.10406 + 1.91228i −0.0360872 + 0.0625048i
\(937\) 27.5277 15.8931i 0.899289 0.519205i 0.0223196 0.999751i \(-0.492895\pi\)
0.876969 + 0.480546i \(0.159562\pi\)
\(938\) 44.2711 1.44550
\(939\) 1.82216i 0.0594639i
\(940\) −3.73716 6.47296i −0.121893 0.211125i
\(941\) 0.191016 + 0.330850i 0.00622696 + 0.0107854i 0.869122 0.494598i \(-0.164685\pi\)
−0.862895 + 0.505383i \(0.831351\pi\)
\(942\) 3.87714i 0.126324i
\(943\) 16.6499 0.542196
\(944\) −2.37348 + 1.37033i −0.0772503 + 0.0446005i
\(945\) 3.09729 5.36467i 0.100755 0.174513i
\(946\) −31.0795 + 11.5909i −1.01048 + 0.376852i
\(947\) −11.5767 + 20.0514i −0.376191 + 0.651583i −0.990505 0.137480i \(-0.956100\pi\)
0.614313 + 0.789062i \(0.289433\pi\)
\(948\) −12.3071 7.10550i −0.399716 0.230776i
\(949\) 10.8488i 0.352168i
\(950\) −5.27405 + 5.92288i −0.171113 + 0.192164i
\(951\) −7.44338 −0.241368
\(952\) −15.0664 + 26.0958i −0.488305 + 0.845769i
\(953\) −6.84988 + 11.8643i −0.221889 + 0.384324i −0.955382 0.295374i \(-0.904556\pi\)
0.733492 + 0.679698i \(0.237889\pi\)
\(954\) −7.84286 + 4.52808i −0.253922 + 0.146602i
\(955\) −5.86144 + 10.1523i −0.189672 + 0.328521i
\(956\) −6.48978 + 3.74687i −0.209894 + 0.121183i
\(957\) 1.87563 11.1517i 0.0606306 0.360484i
\(958\) 1.79413i 0.0579656i
\(959\) −42.1186 + 24.3172i −1.36008 + 0.785244i
\(960\) −8.71514 + 5.03169i −0.281280 + 0.162397i
\(961\) −35.3809 −1.14132
\(962\) 6.71565i 0.216521i
\(963\) 8.27452 + 14.3319i 0.266643 + 0.461839i
\(964\) 5.49188 9.51222i 0.176882 0.306368i
\(965\) 6.71889 + 11.6375i 0.216289 + 0.374623i
\(966\) −4.42430 + 7.66312i −0.142350 + 0.246557i
\(967\) 21.9309 + 12.6618i 0.705251 + 0.407177i 0.809300 0.587395i \(-0.199847\pi\)
−0.104049 + 0.994572i \(0.533180\pi\)
\(968\) −30.1844 10.4491i −0.970164 0.335848i
\(969\) −12.4389 2.57225i −0.399594 0.0826326i
\(970\) 23.8510i 0.765810i
\(971\) 18.1277 + 10.4660i 0.581745 + 0.335871i 0.761827 0.647781i \(-0.224303\pi\)
−0.180082 + 0.983652i \(0.557636\pi\)
\(972\) −0.996315 0.575222i −0.0319568 0.0184503i
\(973\) 34.6727 + 60.0548i 1.11155 + 1.92527i
\(974\) 15.8805 + 9.16861i 0.508844 + 0.293781i
\(975\) 1.29994 0.750521i 0.0416314 0.0240359i
\(976\) 0.901274i 0.0288491i
\(977\) 18.7966i 0.601356i 0.953726 + 0.300678i \(0.0972130\pi\)
−0.953726 + 0.300678i \(0.902787\pi\)
\(978\) 0.559389 0.322963i 0.0178873 0.0103272i
\(979\) 43.3660 16.1730i 1.38598 0.516893i
\(980\) 11.3690 0.363169
\(981\) 10.5938 0.338233
\(982\) −10.6052 + 6.12290i −0.338425 + 0.195390i
\(983\) −32.1895 18.5846i −1.02669 0.592758i −0.110653 0.993859i \(-0.535294\pi\)
−0.916034 + 0.401102i \(0.868627\pi\)
\(984\) 15.5313 8.96698i 0.495119 0.285857i
\(985\) 16.4187 + 9.47937i 0.523145 + 0.302038i
\(986\) −7.93098 4.57895i −0.252574 0.145824i
\(987\) −13.2998 −0.423337
\(988\) −1.19837 3.62006i −0.0381252 0.115169i
\(989\) 29.2525i 0.930176i
\(990\) 3.38590 4.10052i 0.107611 0.130323i
\(991\) 45.9133 + 26.5080i 1.45848 + 0.842056i 0.998937 0.0460983i \(-0.0146788\pi\)
0.459546 + 0.888154i \(0.348012\pi\)
\(992\) −38.5353 + 22.2484i −1.22350 + 0.706386i
\(993\) 5.74392 9.94877i 0.182278 0.315715i
\(994\) 15.1103 + 26.1719i 0.479271 + 0.830122i
\(995\) −0.417122 −0.0132237
\(996\) −0.440414 −0.0139551
\(997\) −28.1440 + 16.2489i −0.891328 + 0.514608i −0.874377 0.485248i \(-0.838729\pi\)
−0.0169514 + 0.999856i \(0.505396\pi\)
\(998\) −8.89493 15.4065i −0.281564 0.487683i
\(999\) −9.58163 −0.303149
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 627.2.k.a.274.15 80
11.10 odd 2 inner 627.2.k.a.274.26 yes 80
19.12 odd 6 inner 627.2.k.a.373.26 yes 80
209.164 even 6 inner 627.2.k.a.373.15 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
627.2.k.a.274.15 80 1.1 even 1 trivial
627.2.k.a.274.26 yes 80 11.10 odd 2 inner
627.2.k.a.373.15 yes 80 209.164 even 6 inner
627.2.k.a.373.26 yes 80 19.12 odd 6 inner