Properties

Label 627.2.l.a.296.61
Level $627$
Weight $2$
Character 627.296
Analytic conductor $5.007$
Analytic rank $0$
Dimension $152$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [627,2,Mod(197,627)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(627, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("627.197");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 627 = 3 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 627.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.00662020673\)
Analytic rank: \(0\)
Dimension: \(152\)
Relative dimension: \(76\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 296.61
Character \(\chi\) \(=\) 627.296
Dual form 627.2.l.a.197.61

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.873606 - 1.51313i) q^{2} +(-0.568916 - 1.63595i) q^{3} +(-0.526375 - 0.911708i) q^{4} +(3.14552 + 1.81607i) q^{5} +(-2.97241 - 0.568333i) q^{6} +1.70419i q^{7} +1.65505 q^{8} +(-2.35267 + 1.86144i) q^{9} +(5.49590 - 3.17306i) q^{10} +(-0.771949 + 3.22554i) q^{11} +(-1.19205 + 1.37981i) q^{12} +(5.39290 - 3.11359i) q^{13} +(2.57866 + 1.48879i) q^{14} +(1.18146 - 6.17911i) q^{15} +(2.49861 - 4.32772i) q^{16} +(-0.177104 + 0.306754i) q^{17} +(0.761289 + 5.18606i) q^{18} +(-3.56291 - 2.51111i) q^{19} -3.82373i q^{20} +(2.78797 - 0.969541i) q^{21} +(4.20628 + 3.98591i) q^{22} +(-2.33830 + 1.35002i) q^{23} +(-0.941582 - 2.70757i) q^{24} +(4.09621 + 7.09485i) q^{25} -10.8802i q^{26} +(4.38369 + 2.78985i) q^{27} +(1.55372 - 0.897043i) q^{28} +(-2.63722 - 4.56781i) q^{29} +(-8.31767 - 7.18581i) q^{30} +5.28855 q^{31} +(-2.71055 - 4.69481i) q^{32} +(5.71600 - 0.572189i) q^{33} +(0.309439 + 0.535964i) q^{34} +(-3.09493 + 5.36057i) q^{35} +(2.93547 + 1.16513i) q^{36} -9.00338 q^{37} +(-6.91221 + 3.19743i) q^{38} +(-8.16179 - 7.05115i) q^{39} +(5.20599 + 3.00568i) q^{40} +(-1.00090 + 1.73360i) q^{41} +(0.968548 - 5.06556i) q^{42} +(-5.97582 - 3.45014i) q^{43} +(3.34708 - 0.994050i) q^{44} +(-10.7809 + 1.58258i) q^{45} +4.71754i q^{46} +(-4.99634 + 2.88464i) q^{47} +(-8.50143 - 1.62549i) q^{48} +4.09573 q^{49} +14.3139 q^{50} +(0.602592 + 0.115217i) q^{51} +(-5.67738 - 3.27783i) q^{52} +(-4.94884 + 2.85721i) q^{53} +(8.05102 - 4.19586i) q^{54} +(-8.28598 + 8.74409i) q^{55} +2.82052i q^{56} +(-2.08105 + 7.25736i) q^{57} -9.21558 q^{58} +(-3.56425 - 2.05782i) q^{59} +(-6.25544 + 2.17538i) q^{60} +(7.30518 - 4.21765i) q^{61} +(4.62011 - 8.00227i) q^{62} +(-3.17224 - 4.00940i) q^{63} +0.522614 q^{64} +22.6180 q^{65} +(4.12773 - 9.14891i) q^{66} +(-1.49556 - 2.59038i) q^{67} +0.372893 q^{68} +(3.53886 + 3.05730i) q^{69} +(5.40750 + 9.36606i) q^{70} +(-3.24639 - 1.87430i) q^{71} +(-3.89378 + 3.08076i) q^{72} +(-9.93554 - 5.73629i) q^{73} +(-7.86541 + 13.6233i) q^{74} +(9.27642 - 10.7376i) q^{75} +(-0.413970 + 4.57012i) q^{76} +(-5.49693 - 1.31555i) q^{77} +(-17.7995 + 6.18992i) q^{78} +(-6.78568 - 3.91771i) q^{79} +(15.7189 - 9.07529i) q^{80} +(2.07011 - 8.75869i) q^{81} +(1.74878 + 3.02897i) q^{82} +2.90096 q^{83} +(-2.35146 - 2.03148i) q^{84} +(-1.11417 + 0.643268i) q^{85} +(-10.4410 + 6.02813i) q^{86} +(-5.97235 + 6.91307i) q^{87} +(-1.27761 + 5.33842i) q^{88} +(10.1340 - 5.85087i) q^{89} +(-7.02358 + 17.6954i) q^{90} +(5.30616 + 9.19053i) q^{91} +(2.46165 + 1.42123i) q^{92} +(-3.00874 - 8.65181i) q^{93} +10.0801i q^{94} +(-6.64688 - 14.3692i) q^{95} +(-6.13841 + 7.10528i) q^{96} +(-3.05823 + 5.29701i) q^{97} +(3.57806 - 6.19738i) q^{98} +(-4.18799 - 9.02556i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 152 q - 76 q^{4} - 8 q^{9} - 14 q^{15} - 76 q^{16} + 4 q^{22} + 60 q^{25} + 12 q^{27} - 16 q^{31} + 16 q^{33} - 16 q^{34} - 10 q^{36} - 16 q^{37} + 50 q^{42} - 108 q^{45} + 54 q^{48} - 80 q^{49} + 32 q^{55}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/627\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(419\) \(496\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.873606 1.51313i 0.617733 1.06994i −0.372166 0.928166i \(-0.621385\pi\)
0.989898 0.141778i \(-0.0452820\pi\)
\(3\) −0.568916 1.63595i −0.328464 0.944517i
\(4\) −0.526375 0.911708i −0.263187 0.455854i
\(5\) 3.14552 + 1.81607i 1.40672 + 0.812171i 0.995070 0.0991710i \(-0.0316191\pi\)
0.411651 + 0.911342i \(0.364952\pi\)
\(6\) −2.97241 0.568333i −1.21348 0.232021i
\(7\) 1.70419i 0.644124i 0.946719 + 0.322062i \(0.104376\pi\)
−0.946719 + 0.322062i \(0.895624\pi\)
\(8\) 1.65505 0.585147
\(9\) −2.35267 + 1.86144i −0.784223 + 0.620479i
\(10\) 5.49590 3.17306i 1.73796 1.00341i
\(11\) −0.771949 + 3.22554i −0.232751 + 0.972536i
\(12\) −1.19205 + 1.37981i −0.344114 + 0.398316i
\(13\) 5.39290 3.11359i 1.49572 0.863555i 0.495734 0.868475i \(-0.334899\pi\)
0.999988 + 0.00491948i \(0.00156593\pi\)
\(14\) 2.57866 + 1.48879i 0.689177 + 0.397896i
\(15\) 1.18146 6.17911i 0.305052 1.59544i
\(16\) 2.49861 4.32772i 0.624652 1.08193i
\(17\) −0.177104 + 0.306754i −0.0429541 + 0.0743988i −0.886703 0.462339i \(-0.847010\pi\)
0.843749 + 0.536738i \(0.180344\pi\)
\(18\) 0.761289 + 5.18606i 0.179438 + 1.22237i
\(19\) −3.56291 2.51111i −0.817388 0.576088i
\(20\) 3.82373i 0.855013i
\(21\) 2.78797 0.969541i 0.608385 0.211571i
\(22\) 4.20628 + 3.98591i 0.896782 + 0.849799i
\(23\) −2.33830 + 1.35002i −0.487570 + 0.281499i −0.723566 0.690256i \(-0.757498\pi\)
0.235996 + 0.971754i \(0.424165\pi\)
\(24\) −0.941582 2.70757i −0.192200 0.552681i
\(25\) 4.09621 + 7.09485i 0.819243 + 1.41897i
\(26\) 10.8802i 2.13379i
\(27\) 4.38369 + 2.78985i 0.843641 + 0.536907i
\(28\) 1.55372 0.897043i 0.293626 0.169525i
\(29\) −2.63722 4.56781i −0.489720 0.848220i 0.510210 0.860050i \(-0.329568\pi\)
−0.999930 + 0.0118296i \(0.996234\pi\)
\(30\) −8.31767 7.18581i −1.51859 1.31194i
\(31\) 5.28855 0.949852 0.474926 0.880026i \(-0.342475\pi\)
0.474926 + 0.880026i \(0.342475\pi\)
\(32\) −2.71055 4.69481i −0.479163 0.829934i
\(33\) 5.71600 0.572189i 0.995027 0.0996054i
\(34\) 0.309439 + 0.535964i 0.0530684 + 0.0919171i
\(35\) −3.09493 + 5.36057i −0.523138 + 0.906102i
\(36\) 2.93547 + 1.16513i 0.489246 + 0.194189i
\(37\) −9.00338 −1.48015 −0.740073 0.672526i \(-0.765209\pi\)
−0.740073 + 0.672526i \(0.765209\pi\)
\(38\) −6.91221 + 3.19743i −1.12131 + 0.518692i
\(39\) −8.16179 7.05115i −1.30693 1.12909i
\(40\) 5.20599 + 3.00568i 0.823139 + 0.475240i
\(41\) −1.00090 + 1.73360i −0.156314 + 0.270743i −0.933537 0.358482i \(-0.883294\pi\)
0.777223 + 0.629225i \(0.216628\pi\)
\(42\) 0.968548 5.06556i 0.149450 0.781633i
\(43\) −5.97582 3.45014i −0.911304 0.526141i −0.0304532 0.999536i \(-0.509695\pi\)
−0.880850 + 0.473395i \(0.843028\pi\)
\(44\) 3.34708 0.994050i 0.504592 0.149859i
\(45\) −10.7809 + 1.58258i −1.60712 + 0.235917i
\(46\) 4.71754i 0.695563i
\(47\) −4.99634 + 2.88464i −0.728791 + 0.420767i −0.817980 0.575247i \(-0.804906\pi\)
0.0891889 + 0.996015i \(0.471573\pi\)
\(48\) −8.50143 1.62549i −1.22708 0.234620i
\(49\) 4.09573 0.585105
\(50\) 14.3139 2.02429
\(51\) 0.602592 + 0.115217i 0.0843797 + 0.0161336i
\(52\) −5.67738 3.27783i −0.787310 0.454554i
\(53\) −4.94884 + 2.85721i −0.679775 + 0.392468i −0.799770 0.600306i \(-0.795045\pi\)
0.119995 + 0.992774i \(0.461712\pi\)
\(54\) 8.05102 4.19586i 1.09561 0.570984i
\(55\) −8.28598 + 8.74409i −1.11728 + 1.17905i
\(56\) 2.82052i 0.376907i
\(57\) −2.08105 + 7.25736i −0.275642 + 0.961260i
\(58\) −9.21558 −1.21007
\(59\) −3.56425 2.05782i −0.464026 0.267906i 0.249709 0.968321i \(-0.419665\pi\)
−0.713736 + 0.700415i \(0.752998\pi\)
\(60\) −6.25544 + 2.17538i −0.807574 + 0.280841i
\(61\) 7.30518 4.21765i 0.935333 0.540015i 0.0468385 0.998902i \(-0.485085\pi\)
0.888494 + 0.458888i \(0.151752\pi\)
\(62\) 4.62011 8.00227i 0.586755 1.01629i
\(63\) −3.17224 4.00940i −0.399665 0.505137i
\(64\) 0.522614 0.0653268
\(65\) 22.6180 2.80542
\(66\) 4.12773 9.14891i 0.508089 1.12615i
\(67\) −1.49556 2.59038i −0.182711 0.316465i 0.760092 0.649816i \(-0.225154\pi\)
−0.942803 + 0.333351i \(0.891821\pi\)
\(68\) 0.372893 0.0452200
\(69\) 3.53886 + 3.05730i 0.426029 + 0.368056i
\(70\) 5.40750 + 9.36606i 0.646319 + 1.11946i
\(71\) −3.24639 1.87430i −0.385275 0.222439i 0.294836 0.955548i \(-0.404735\pi\)
−0.680111 + 0.733109i \(0.738068\pi\)
\(72\) −3.89378 + 3.08076i −0.458886 + 0.363072i
\(73\) −9.93554 5.73629i −1.16287 0.671382i −0.210878 0.977512i \(-0.567632\pi\)
−0.951990 + 0.306131i \(0.900966\pi\)
\(74\) −7.86541 + 13.6233i −0.914335 + 1.58367i
\(75\) 9.27642 10.7376i 1.07115 1.23987i
\(76\) −0.413970 + 4.57012i −0.0474856 + 0.524229i
\(77\) −5.49693 1.31555i −0.626434 0.149921i
\(78\) −17.7995 + 6.18992i −2.01540 + 0.700871i
\(79\) −6.78568 3.91771i −0.763449 0.440777i 0.0670839 0.997747i \(-0.478630\pi\)
−0.830533 + 0.556970i \(0.811964\pi\)
\(80\) 15.7189 9.07529i 1.75742 1.01465i
\(81\) 2.07011 8.75869i 0.230012 0.973188i
\(82\) 1.74878 + 3.02897i 0.193120 + 0.334494i
\(83\) 2.90096 0.318422 0.159211 0.987245i \(-0.449105\pi\)
0.159211 + 0.987245i \(0.449105\pi\)
\(84\) −2.35146 2.03148i −0.256565 0.221652i
\(85\) −1.11417 + 0.643268i −0.120849 + 0.0697722i
\(86\) −10.4410 + 6.02813i −1.12588 + 0.650030i
\(87\) −5.97235 + 6.91307i −0.640303 + 0.741159i
\(88\) −1.27761 + 5.33842i −0.136194 + 0.569077i
\(89\) 10.1340 5.85087i 1.07420 0.620191i 0.144876 0.989450i \(-0.453722\pi\)
0.929327 + 0.369259i \(0.120388\pi\)
\(90\) −7.02358 + 17.6954i −0.740351 + 1.86526i
\(91\) 5.30616 + 9.19053i 0.556236 + 0.963429i
\(92\) 2.46165 + 1.42123i 0.256644 + 0.148174i
\(93\) −3.00874 8.65181i −0.311992 0.897151i
\(94\) 10.0801i 1.03969i
\(95\) −6.64688 14.3692i −0.681955 1.47425i
\(96\) −6.13841 + 7.10528i −0.626499 + 0.725180i
\(97\) −3.05823 + 5.29701i −0.310516 + 0.537830i −0.978474 0.206369i \(-0.933835\pi\)
0.667958 + 0.744199i \(0.267169\pi\)
\(98\) 3.57806 6.19738i 0.361438 0.626030i
\(99\) −4.18799 9.02556i −0.420909 0.907103i
\(100\) 4.31229 7.46910i 0.431229 0.746910i
\(101\) 4.31493 + 7.47367i 0.429351 + 0.743658i 0.996816 0.0797398i \(-0.0254089\pi\)
−0.567465 + 0.823398i \(0.692076\pi\)
\(102\) 0.700766 0.811145i 0.0693862 0.0803154i
\(103\) 9.53114 0.939131 0.469566 0.882898i \(-0.344411\pi\)
0.469566 + 0.882898i \(0.344411\pi\)
\(104\) 8.92550 5.15314i 0.875217 0.505307i
\(105\) 10.5304 + 2.01344i 1.02766 + 0.196491i
\(106\) 9.98431i 0.969762i
\(107\) 2.15811 0.208633 0.104316 0.994544i \(-0.466735\pi\)
0.104316 + 0.994544i \(0.466735\pi\)
\(108\) 0.236066 5.46515i 0.0227154 0.525885i
\(109\) 9.95573 + 5.74794i 0.953586 + 0.550553i 0.894193 0.447682i \(-0.147750\pi\)
0.0593927 + 0.998235i \(0.481084\pi\)
\(110\) 5.99227 + 20.1767i 0.571340 + 1.92377i
\(111\) 5.12216 + 14.7291i 0.486174 + 1.39802i
\(112\) 7.37526 + 4.25811i 0.696896 + 0.402353i
\(113\) 2.78933i 0.262398i 0.991356 + 0.131199i \(0.0418827\pi\)
−0.991356 + 0.131199i \(0.958117\pi\)
\(114\) 9.16330 + 9.48897i 0.858222 + 0.888724i
\(115\) −9.80691 −0.914499
\(116\) −2.77634 + 4.80876i −0.257777 + 0.446482i
\(117\) −6.89196 + 17.3638i −0.637162 + 1.60528i
\(118\) −6.22751 + 3.59545i −0.573289 + 0.330988i
\(119\) −0.522767 0.301820i −0.0479220 0.0276678i
\(120\) 1.95537 10.2267i 0.178500 0.933567i
\(121\) −9.80819 4.97990i −0.891654 0.452718i
\(122\) 14.7383i 1.33434i
\(123\) 3.40551 + 0.651142i 0.307065 + 0.0587115i
\(124\) −2.78376 4.82162i −0.249989 0.432994i
\(125\) 11.5953i 1.03712i
\(126\) −8.83803 + 1.29738i −0.787354 + 0.115580i
\(127\) −8.86864 + 5.12031i −0.786965 + 0.454354i −0.838893 0.544296i \(-0.816797\pi\)
0.0519281 + 0.998651i \(0.483463\pi\)
\(128\) 5.87766 10.1804i 0.519517 0.899830i
\(129\) −2.24452 + 11.7390i −0.197619 + 1.03356i
\(130\) 19.7592 34.2240i 1.73300 3.00164i
\(131\) −0.0180427 + 0.0312509i −0.00157640 + 0.00273041i −0.866813 0.498634i \(-0.833835\pi\)
0.865236 + 0.501365i \(0.167168\pi\)
\(132\) −3.53043 4.91013i −0.307284 0.427372i
\(133\) 4.27941 6.07188i 0.371072 0.526499i
\(134\) −5.22611 −0.451467
\(135\) 8.72244 + 16.7366i 0.750708 + 1.44046i
\(136\) −0.293116 + 0.507692i −0.0251345 + 0.0435342i
\(137\) 18.9824 10.9595i 1.62178 0.936334i 0.635333 0.772238i \(-0.280863\pi\)
0.986444 0.164096i \(-0.0524707\pi\)
\(138\) 7.71766 2.68388i 0.656971 0.228467i
\(139\) −12.4076 + 7.16352i −1.05240 + 0.607602i −0.923320 0.384033i \(-0.874535\pi\)
−0.129078 + 0.991634i \(0.541202\pi\)
\(140\) 6.51637 0.550734
\(141\) 7.56162 + 6.53265i 0.636803 + 0.550148i
\(142\) −5.67212 + 3.27480i −0.475994 + 0.274815i
\(143\) 5.87997 + 19.7985i 0.491708 + 1.65564i
\(144\) 2.17737 + 14.8327i 0.181447 + 1.23606i
\(145\) 19.1575i 1.59095i
\(146\) −17.3595 + 10.0225i −1.43668 + 0.829469i
\(147\) −2.33013 6.70042i −0.192186 0.552641i
\(148\) 4.73915 + 8.20845i 0.389556 + 0.674731i
\(149\) −8.83043 + 15.2948i −0.723417 + 1.25300i 0.236205 + 0.971703i \(0.424096\pi\)
−0.959622 + 0.281292i \(0.909237\pi\)
\(150\) −8.14341 23.4168i −0.664906 1.91198i
\(151\) 4.10478i 0.334043i 0.985953 + 0.167021i \(0.0534149\pi\)
−0.985953 + 0.167021i \(0.946585\pi\)
\(152\) −5.89678 4.15600i −0.478292 0.337096i
\(153\) −0.154335 1.05136i −0.0124772 0.0849974i
\(154\) −6.79275 + 7.16830i −0.547375 + 0.577638i
\(155\) 16.6353 + 9.60438i 1.33618 + 0.771442i
\(156\) −2.13243 + 11.1527i −0.170731 + 0.892932i
\(157\) −6.31614 + 10.9399i −0.504083 + 0.873098i 0.495906 + 0.868376i \(0.334836\pi\)
−0.999989 + 0.00472125i \(0.998497\pi\)
\(158\) −11.8560 + 6.84508i −0.943215 + 0.544565i
\(159\) 7.48973 + 6.47054i 0.593974 + 0.513147i
\(160\) 19.6902i 1.55665i
\(161\) −2.30069 3.98491i −0.181320 0.314055i
\(162\) −11.4446 10.7840i −0.899171 0.847270i
\(163\) −6.52105 −0.510768 −0.255384 0.966840i \(-0.582202\pi\)
−0.255384 + 0.966840i \(0.582202\pi\)
\(164\) 2.10739 0.164559
\(165\) 19.0189 + 8.58081i 1.48062 + 0.668015i
\(166\) 2.53430 4.38953i 0.196699 0.340693i
\(167\) −9.77888 16.9375i −0.756712 1.31066i −0.944519 0.328458i \(-0.893471\pi\)
0.187806 0.982206i \(-0.439862\pi\)
\(168\) 4.61422 1.60464i 0.355995 0.123800i
\(169\) 12.8889 22.3243i 0.991455 1.71725i
\(170\) 2.24785i 0.172402i
\(171\) 13.0566 0.724326i 0.998465 0.0553906i
\(172\) 7.26427i 0.553895i
\(173\) −3.56190 + 6.16940i −0.270806 + 0.469051i −0.969069 0.246792i \(-0.920624\pi\)
0.698262 + 0.715842i \(0.253957\pi\)
\(174\) 5.24289 + 15.0762i 0.397462 + 1.14293i
\(175\) −12.0910 + 6.98073i −0.913992 + 0.527693i
\(176\) 12.0304 + 11.4001i 0.906827 + 0.859317i
\(177\) −1.33874 + 7.00167i −0.100626 + 0.526278i
\(178\) 20.4454i 1.53245i
\(179\) 0.897550i 0.0670860i −0.999437 0.0335430i \(-0.989321\pi\)
0.999437 0.0335430i \(-0.0106791\pi\)
\(180\) 7.11764 + 8.99598i 0.530517 + 0.670521i
\(181\) −8.62795 14.9440i −0.641310 1.11078i −0.985141 0.171750i \(-0.945058\pi\)
0.343830 0.939032i \(-0.388276\pi\)
\(182\) 18.5420 1.37442
\(183\) −11.0559 9.55143i −0.817276 0.706062i
\(184\) −3.87000 + 2.23435i −0.285300 + 0.164718i
\(185\) −28.3203 16.3508i −2.08215 1.20213i
\(186\) −15.7198 3.00566i −1.15263 0.220386i
\(187\) −0.852731 0.808055i −0.0623579 0.0590909i
\(188\) 5.25989 + 3.03680i 0.383617 + 0.221481i
\(189\) −4.75444 + 7.47064i −0.345835 + 0.543409i
\(190\) −27.5493 2.49547i −1.99864 0.181040i
\(191\) 8.70784i 0.630077i −0.949079 0.315038i \(-0.897983\pi\)
0.949079 0.315038i \(-0.102017\pi\)
\(192\) −0.297324 0.854972i −0.0214575 0.0617023i
\(193\) 19.3643 + 11.1800i 1.39387 + 0.804751i 0.993741 0.111708i \(-0.0356321\pi\)
0.400129 + 0.916459i \(0.368965\pi\)
\(194\) 5.34338 + 9.25500i 0.383632 + 0.664470i
\(195\) −12.8677 37.0019i −0.921478 2.64976i
\(196\) −2.15589 3.73411i −0.153992 0.266722i
\(197\) 11.9769 0.853320 0.426660 0.904412i \(-0.359690\pi\)
0.426660 + 0.904412i \(0.359690\pi\)
\(198\) −17.3155 1.54780i −1.23056 0.109998i
\(199\) 11.7476 + 20.3474i 0.832763 + 1.44239i 0.895839 + 0.444379i \(0.146576\pi\)
−0.0630757 + 0.998009i \(0.520091\pi\)
\(200\) 6.77942 + 11.7423i 0.479378 + 0.830306i
\(201\) −3.38689 + 3.92036i −0.238893 + 0.276521i
\(202\) 15.0782 1.06090
\(203\) 7.78441 4.49433i 0.546359 0.315440i
\(204\) −0.212145 0.610035i −0.0148531 0.0427110i
\(205\) −6.29668 + 3.63539i −0.439779 + 0.253907i
\(206\) 8.32646 14.4219i 0.580132 1.00482i
\(207\) 2.98828 7.52875i 0.207700 0.523284i
\(208\) 31.1186i 2.15769i
\(209\) 10.8501 9.55386i 0.750514 0.660854i
\(210\) 12.2460 14.1749i 0.845054 0.978161i
\(211\) 1.84396 + 1.06461i 0.126944 + 0.0732910i 0.562127 0.827051i \(-0.309983\pi\)
−0.435183 + 0.900342i \(0.643316\pi\)
\(212\) 5.20989 + 3.00793i 0.357817 + 0.206586i
\(213\) −1.21934 + 6.37725i −0.0835481 + 0.436962i
\(214\) 1.88534 3.26550i 0.128879 0.223225i
\(215\) −12.5314 21.7050i −0.854633 1.48027i
\(216\) 7.25521 + 4.61733i 0.493655 + 0.314170i
\(217\) 9.01270i 0.611822i
\(218\) 17.3948 10.0429i 1.17812 0.680189i
\(219\) −3.73180 + 19.5175i −0.252172 + 1.31887i
\(220\) 12.3336 + 2.95173i 0.831531 + 0.199005i
\(221\) 2.20572i 0.148373i
\(222\) 26.7618 + 5.11692i 1.79613 + 0.343425i
\(223\) 6.45941 11.1880i 0.432554 0.749206i −0.564538 0.825407i \(-0.690946\pi\)
0.997092 + 0.0762009i \(0.0242790\pi\)
\(224\) 8.00086 4.61930i 0.534580 0.308640i
\(225\) −22.8436 9.06700i −1.52291 0.604466i
\(226\) 4.22062 + 2.43678i 0.280751 + 0.162092i
\(227\) −28.7695 −1.90950 −0.954750 0.297408i \(-0.903878\pi\)
−0.954750 + 0.297408i \(0.903878\pi\)
\(228\) 7.71201 1.92278i 0.510740 0.127339i
\(229\) −1.54986 −0.102418 −0.0512089 0.998688i \(-0.516307\pi\)
−0.0512089 + 0.998688i \(0.516307\pi\)
\(230\) −8.56738 + 14.8391i −0.564916 + 0.978464i
\(231\) 0.975120 + 9.74115i 0.0641582 + 0.640920i
\(232\) −4.36473 7.55993i −0.286559 0.496334i
\(233\) 5.39617 9.34645i 0.353515 0.612306i −0.633348 0.773867i \(-0.718320\pi\)
0.986863 + 0.161561i \(0.0516530\pi\)
\(234\) 20.2528 + 25.5975i 1.32397 + 1.67336i
\(235\) −20.9548 −1.36694
\(236\) 4.33275i 0.282038i
\(237\) −2.54871 + 13.3299i −0.165556 + 0.865869i
\(238\) −0.913385 + 0.527343i −0.0592060 + 0.0341826i
\(239\) −10.2871 −0.665418 −0.332709 0.943029i \(-0.607963\pi\)
−0.332709 + 0.943029i \(0.607963\pi\)
\(240\) −23.7894 20.5522i −1.53560 1.32664i
\(241\) −0.437927 + 0.252837i −0.0282093 + 0.0162867i −0.514038 0.857767i \(-0.671851\pi\)
0.485829 + 0.874054i \(0.338518\pi\)
\(242\) −16.1037 + 10.4906i −1.03519 + 0.674361i
\(243\) −15.5065 + 1.59636i −0.994743 + 0.102407i
\(244\) −7.69053 4.44013i −0.492336 0.284250i
\(245\) 12.8832 + 7.43813i 0.823079 + 0.475205i
\(246\) 3.96034 4.58414i 0.252502 0.292274i
\(247\) −27.0330 2.44870i −1.72007 0.155807i
\(248\) 8.75280 0.555803
\(249\) −1.65040 4.74583i −0.104590 0.300755i
\(250\) 17.5452 + 10.1298i 1.10966 + 0.640662i
\(251\) −15.5501 + 8.97786i −0.981514 + 0.566677i −0.902727 0.430214i \(-0.858438\pi\)
−0.0787871 + 0.996891i \(0.525105\pi\)
\(252\) −1.98561 + 5.00261i −0.125082 + 0.315135i
\(253\) −2.54949 8.58443i −0.160285 0.539698i
\(254\) 17.8925i 1.12268i
\(255\) 1.68622 + 1.45677i 0.105595 + 0.0912262i
\(256\) −9.74691 16.8821i −0.609182 1.05513i
\(257\) 16.5970 9.58225i 1.03529 0.597725i 0.116794 0.993156i \(-0.462738\pi\)
0.918495 + 0.395432i \(0.129405\pi\)
\(258\) 15.8018 + 13.6515i 0.983776 + 0.849905i
\(259\) 15.3435i 0.953397i
\(260\) −11.9055 20.6210i −0.738351 1.27886i
\(261\) 14.7072 + 5.83751i 0.910353 + 0.361333i
\(262\) 0.0315245 + 0.0546020i 0.00194759 + 0.00337332i
\(263\) −14.1774 + 24.5560i −0.874217 + 1.51419i −0.0166216 + 0.999862i \(0.505291\pi\)
−0.857595 + 0.514326i \(0.828042\pi\)
\(264\) 9.46024 0.947000i 0.582237 0.0582838i
\(265\) −20.7556 −1.27501
\(266\) −5.44903 11.7797i −0.334101 0.722262i
\(267\) −15.3371 13.2501i −0.938618 0.810892i
\(268\) −1.57445 + 2.72702i −0.0961747 + 0.166579i
\(269\) −12.4224 7.17205i −0.757404 0.437288i 0.0709586 0.997479i \(-0.477394\pi\)
−0.828363 + 0.560192i \(0.810728\pi\)
\(270\) 32.9447 + 1.42304i 2.00495 + 0.0866032i
\(271\) 8.69831 + 5.02197i 0.528385 + 0.305063i 0.740358 0.672212i \(-0.234656\pi\)
−0.211974 + 0.977275i \(0.567989\pi\)
\(272\) 0.885029 + 1.53292i 0.0536628 + 0.0929467i
\(273\) 12.0165 13.9092i 0.727272 0.841826i
\(274\) 38.2972i 2.31362i
\(275\) −26.0468 + 7.73563i −1.57068 + 0.466476i
\(276\) 0.924597 4.83570i 0.0556542 0.291075i
\(277\) 31.4966i 1.89245i 0.323513 + 0.946224i \(0.395136\pi\)
−0.323513 + 0.946224i \(0.604864\pi\)
\(278\) 25.0324i 1.50134i
\(279\) −12.4422 + 9.84430i −0.744896 + 0.589363i
\(280\) −5.12225 + 8.87200i −0.306113 + 0.530203i
\(281\) −7.51730 13.0203i −0.448444 0.776728i 0.549841 0.835270i \(-0.314688\pi\)
−0.998285 + 0.0585413i \(0.981355\pi\)
\(282\) 16.4906 5.73475i 0.982002 0.341500i
\(283\) 27.5872 + 15.9275i 1.63989 + 0.946790i 0.980870 + 0.194663i \(0.0623614\pi\)
0.659018 + 0.752127i \(0.270972\pi\)
\(284\) 3.94634i 0.234172i
\(285\) −19.7259 + 19.0489i −1.16846 + 1.12836i
\(286\) 35.0945 + 8.39897i 2.07518 + 0.496641i
\(287\) −2.95439 1.70572i −0.174392 0.100685i
\(288\) 15.1161 + 5.99983i 0.890727 + 0.353543i
\(289\) 8.43727 + 14.6138i 0.496310 + 0.859634i
\(290\) −28.9878 16.7361i −1.70222 0.982779i
\(291\) 10.4055 + 1.98956i 0.609983 + 0.116630i
\(292\) 12.0778i 0.706797i
\(293\) −4.06111 −0.237253 −0.118626 0.992939i \(-0.537849\pi\)
−0.118626 + 0.992939i \(0.537849\pi\)
\(294\) −12.1742 2.32774i −0.710015 0.135757i
\(295\) −7.47430 12.9459i −0.435170 0.753737i
\(296\) −14.9010 −0.866104
\(297\) −12.3828 + 11.9861i −0.718520 + 0.695506i
\(298\) 15.4286 + 26.7232i 0.893757 + 1.54803i
\(299\) −8.40682 + 14.5610i −0.486179 + 0.842087i
\(300\) −14.6724 2.80540i −0.847112 0.161970i
\(301\) 5.87970 10.1839i 0.338900 0.586992i
\(302\) 6.21107 + 3.58596i 0.357407 + 0.206349i
\(303\) 9.77173 11.3109i 0.561371 0.649794i
\(304\) −19.7697 + 9.14500i −1.13387 + 0.524502i
\(305\) 30.6382 1.75434
\(306\) −1.72567 0.684945i −0.0986500 0.0391557i
\(307\) −16.6169 9.59375i −0.948374 0.547544i −0.0557986 0.998442i \(-0.517770\pi\)
−0.892575 + 0.450898i \(0.851104\pi\)
\(308\) 1.69405 + 5.70407i 0.0965276 + 0.325020i
\(309\) −5.42242 15.5925i −0.308471 0.887025i
\(310\) 29.0653 16.7809i 1.65080 0.953090i
\(311\) 14.4857i 0.821408i −0.911769 0.410704i \(-0.865283\pi\)
0.911769 0.410704i \(-0.134717\pi\)
\(312\) −13.5081 11.6700i −0.764748 0.660682i
\(313\) 7.77063 + 13.4591i 0.439222 + 0.760755i 0.997630 0.0688120i \(-0.0219209\pi\)
−0.558408 + 0.829567i \(0.688588\pi\)
\(314\) 11.0356 + 19.1143i 0.622777 + 1.07868i
\(315\) −2.69702 18.3727i −0.151960 1.03518i
\(316\) 8.24875i 0.464028i
\(317\) −0.423867 + 0.244720i −0.0238067 + 0.0137448i −0.511856 0.859071i \(-0.671042\pi\)
0.488049 + 0.872816i \(0.337709\pi\)
\(318\) 16.3338 5.68023i 0.915957 0.318532i
\(319\) 16.7694 4.98035i 0.938908 0.278846i
\(320\) 1.64390 + 0.949104i 0.0918966 + 0.0530565i
\(321\) −1.22778 3.53056i −0.0685282 0.197057i
\(322\) −8.03959 −0.448029
\(323\) 1.40130 0.648209i 0.0779704 0.0360673i
\(324\) −9.07502 + 2.72302i −0.504168 + 0.151279i
\(325\) 44.1809 + 25.5079i 2.45072 + 1.41492i
\(326\) −5.69683 + 9.86719i −0.315518 + 0.546493i
\(327\) 3.73938 19.5572i 0.206788 1.08151i
\(328\) −1.65653 + 2.86919i −0.0914665 + 0.158425i
\(329\) −4.91597 8.51471i −0.271026 0.469431i
\(330\) 29.5989 21.2819i 1.62937 1.17153i
\(331\) 6.80848 0.374228 0.187114 0.982338i \(-0.440087\pi\)
0.187114 + 0.982338i \(0.440087\pi\)
\(332\) −1.52699 2.64483i −0.0838046 0.145154i
\(333\) 21.1820 16.7592i 1.16077 0.918399i
\(334\) −34.1715 −1.86978
\(335\) 10.8641i 0.593571i
\(336\) 2.77015 14.4881i 0.151124 0.790388i
\(337\) −27.0052 15.5915i −1.47107 0.849322i −0.471597 0.881814i \(-0.656322\pi\)
−0.999472 + 0.0324924i \(0.989656\pi\)
\(338\) −22.5197 39.0052i −1.22491 2.12160i
\(339\) 4.56321 1.58689i 0.247839 0.0861883i
\(340\) 1.17295 + 0.677200i 0.0636119 + 0.0367263i
\(341\) −4.08249 + 17.0584i −0.221079 + 0.923766i
\(342\) 10.3103 20.3891i 0.557519 1.10252i
\(343\) 18.9092i 1.02100i
\(344\) −9.89026 5.71014i −0.533247 0.307870i
\(345\) 5.57931 + 16.0436i 0.300380 + 0.863760i
\(346\) 6.22340 + 10.7792i 0.334572 + 0.579496i
\(347\) −11.6281 + 20.1404i −0.624228 + 1.08120i 0.364461 + 0.931219i \(0.381253\pi\)
−0.988690 + 0.149977i \(0.952080\pi\)
\(348\) 9.44639 + 1.80617i 0.506380 + 0.0968211i
\(349\) 30.6015i 1.63806i −0.573752 0.819029i \(-0.694512\pi\)
0.573752 0.819029i \(-0.305488\pi\)
\(350\) 24.3936i 1.30389i
\(351\) 32.3273 + 1.39637i 1.72550 + 0.0745325i
\(352\) 17.2357 5.11883i 0.918666 0.272835i
\(353\) 23.2012i 1.23488i −0.786619 0.617439i \(-0.788170\pi\)
0.786619 0.617439i \(-0.211830\pi\)
\(354\) 9.42491 + 8.14239i 0.500928 + 0.432763i
\(355\) −6.80772 11.7913i −0.361316 0.625818i
\(356\) −10.6686 6.15951i −0.565433 0.326453i
\(357\) −0.196352 + 1.02693i −0.0103920 + 0.0543510i
\(358\) −1.35811 0.784105i −0.0717783 0.0414412i
\(359\) 9.59917 16.6262i 0.506625 0.877500i −0.493346 0.869833i \(-0.664226\pi\)
0.999971 0.00766656i \(-0.00244036\pi\)
\(360\) −17.8429 + 2.61925i −0.940401 + 0.138046i
\(361\) 6.38868 + 17.8937i 0.336246 + 0.941774i
\(362\) −30.1497 −1.58463
\(363\) −2.56684 + 18.8789i −0.134724 + 0.990883i
\(364\) 5.58606 9.67533i 0.292789 0.507125i
\(365\) −20.8350 36.0873i −1.09055 1.88889i
\(366\) −24.1111 + 8.38483i −1.26031 + 0.438282i
\(367\) 0.0655163 + 0.113478i 0.00341992 + 0.00592348i 0.867730 0.497035i \(-0.165578\pi\)
−0.864310 + 0.502959i \(0.832245\pi\)
\(368\) 13.4927i 0.703355i
\(369\) −0.872214 5.94170i −0.0454056 0.309312i
\(370\) −49.4816 + 28.5682i −2.57243 + 1.48519i
\(371\) −4.86924 8.43376i −0.252798 0.437859i
\(372\) −6.30420 + 7.29719i −0.326858 + 0.378342i
\(373\) 2.77235i 0.143547i 0.997421 + 0.0717735i \(0.0228659\pi\)
−0.997421 + 0.0717735i \(0.977134\pi\)
\(374\) −1.96764 + 0.584370i −0.101744 + 0.0302171i
\(375\) 18.9694 6.59677i 0.979575 0.340656i
\(376\) −8.26917 + 4.77421i −0.426450 + 0.246211i
\(377\) −28.4446 16.4225i −1.46497 0.845801i
\(378\) 7.15055 + 13.7205i 0.367785 + 0.705705i
\(379\) 11.8167 0.606982 0.303491 0.952834i \(-0.401848\pi\)
0.303491 + 0.952834i \(0.401848\pi\)
\(380\) −9.60181 + 13.6236i −0.492562 + 0.698877i
\(381\) 13.4221 + 11.5956i 0.687635 + 0.594062i
\(382\) −13.1761 7.60722i −0.674147 0.389219i
\(383\) 10.5162 + 6.07151i 0.537351 + 0.310240i 0.744005 0.668174i \(-0.232924\pi\)
−0.206654 + 0.978414i \(0.566257\pi\)
\(384\) −19.9986 3.82377i −1.02055 0.195131i
\(385\) −14.9016 14.1209i −0.759456 0.719667i
\(386\) 33.8335 19.5338i 1.72208 0.994242i
\(387\) 20.4813 3.00657i 1.04113 0.152832i
\(388\) 6.43910 0.326896
\(389\) 5.81921 3.35972i 0.295046 0.170345i −0.345169 0.938540i \(-0.612179\pi\)
0.640215 + 0.768196i \(0.278845\pi\)
\(390\) −67.2301 12.8545i −3.40433 0.650915i
\(391\) 0.956378i 0.0483661i
\(392\) 6.77863 0.342373
\(393\) 0.0613898 + 0.0117379i 0.00309670 + 0.000592097i
\(394\) 10.4631 18.1226i 0.527124 0.913005i
\(395\) −14.2297 24.6465i −0.715973 1.24010i
\(396\) −6.02422 + 8.56906i −0.302729 + 0.430611i
\(397\) −19.7742 + 34.2499i −0.992437 + 1.71895i −0.389912 + 0.920852i \(0.627495\pi\)
−0.602525 + 0.798100i \(0.705839\pi\)
\(398\) 41.0510 2.05770
\(399\) −12.3679 3.54651i −0.619170 0.177548i
\(400\) 40.9393 2.04697
\(401\) 12.0332 + 6.94738i 0.600910 + 0.346935i 0.769399 0.638768i \(-0.220556\pi\)
−0.168490 + 0.985703i \(0.553889\pi\)
\(402\) 2.97322 + 8.54966i 0.148291 + 0.426418i
\(403\) 28.5206 16.4664i 1.42071 0.820250i
\(404\) 4.54254 7.86791i 0.226000 0.391443i
\(405\) 22.4180 23.7912i 1.11396 1.18219i
\(406\) 15.7051i 0.779431i
\(407\) 6.95015 29.0407i 0.344506 1.43950i
\(408\) 0.997318 + 0.190690i 0.0493746 + 0.00944054i
\(409\) −8.95670 + 5.17115i −0.442880 + 0.255697i −0.704819 0.709388i \(-0.748972\pi\)
0.261938 + 0.965085i \(0.415638\pi\)
\(410\) 12.7036i 0.627386i
\(411\) −28.7286 24.8193i −1.41708 1.22424i
\(412\) −5.01696 8.68962i −0.247168 0.428107i
\(413\) 3.50692 6.07417i 0.172564 0.298890i
\(414\) −8.78140 11.0988i −0.431582 0.545477i
\(415\) 9.12504 + 5.26834i 0.447930 + 0.258613i
\(416\) −29.2355 16.8791i −1.43339 0.827567i
\(417\) 18.7780 + 16.2228i 0.919564 + 0.794432i
\(418\) −4.97755 24.7639i −0.243460 1.21124i
\(419\) 6.77170i 0.330819i 0.986225 + 0.165410i \(0.0528946\pi\)
−0.986225 + 0.165410i \(0.947105\pi\)
\(420\) −3.70727 10.6605i −0.180896 0.520177i
\(421\) 4.84221 8.38695i 0.235995 0.408755i −0.723567 0.690255i \(-0.757499\pi\)
0.959561 + 0.281500i \(0.0908319\pi\)
\(422\) 3.22180 1.86010i 0.156835 0.0905485i
\(423\) 6.38516 16.0870i 0.310457 0.782175i
\(424\) −8.19056 + 4.72882i −0.397769 + 0.229652i
\(425\) −2.90183 −0.140759
\(426\) 8.58438 + 7.41623i 0.415914 + 0.359317i
\(427\) 7.18768 + 12.4494i 0.347836 + 0.602470i
\(428\) −1.13598 1.96757i −0.0549095 0.0951060i
\(429\) 29.0442 20.8830i 1.40227 1.00824i
\(430\) −43.7900 −2.11174
\(431\) 6.45736 + 11.1845i 0.311040 + 0.538738i 0.978588 0.205830i \(-0.0659893\pi\)
−0.667548 + 0.744567i \(0.732656\pi\)
\(432\) 23.0268 12.0006i 1.10788 0.577380i
\(433\) 2.59746 + 4.49893i 0.124826 + 0.216205i 0.921665 0.387987i \(-0.126829\pi\)
−0.796839 + 0.604192i \(0.793496\pi\)
\(434\) 13.6374 + 7.87355i 0.654616 + 0.377943i
\(435\) −31.3408 + 10.8990i −1.50267 + 0.522568i
\(436\) 12.1023i 0.579595i
\(437\) 11.7212 + 1.06173i 0.560701 + 0.0507894i
\(438\) 26.2724 + 22.6973i 1.25535 + 1.08452i
\(439\) 14.4785 + 8.35919i 0.691023 + 0.398962i 0.803995 0.594636i \(-0.202704\pi\)
−0.112972 + 0.993598i \(0.536037\pi\)
\(440\) −13.7137 + 14.4719i −0.653774 + 0.689920i
\(441\) −9.63591 + 7.62395i −0.458853 + 0.363045i
\(442\) 3.33755 + 1.92693i 0.158751 + 0.0916549i
\(443\) 32.6466 18.8485i 1.55109 0.895520i 0.553032 0.833160i \(-0.313471\pi\)
0.998054 0.0623594i \(-0.0198625\pi\)
\(444\) 10.7324 12.4229i 0.509339 0.589567i
\(445\) 42.5024 2.01480
\(446\) −11.2860 19.5479i −0.534406 0.925618i
\(447\) 30.0452 + 5.74472i 1.42109 + 0.271716i
\(448\) 0.890635i 0.0420785i
\(449\) 29.6615i 1.39981i 0.714235 + 0.699906i \(0.246775\pi\)
−0.714235 + 0.699906i \(0.753225\pi\)
\(450\) −33.6759 + 26.6444i −1.58750 + 1.25603i
\(451\) −4.81916 4.56668i −0.226925 0.215037i
\(452\) 2.54306 1.46823i 0.119615 0.0690599i
\(453\) 6.71523 2.33528i 0.315509 0.109721i
\(454\) −25.1332 + 43.5320i −1.17956 + 2.04306i
\(455\) 38.5454i 1.80704i
\(456\) −3.44424 + 12.0113i −0.161291 + 0.562479i
\(457\) 8.24748i 0.385801i −0.981218 0.192900i \(-0.938211\pi\)
0.981218 0.192900i \(-0.0617894\pi\)
\(458\) −1.35397 + 2.34514i −0.0632668 + 0.109581i
\(459\) −1.63217 + 0.850619i −0.0761831 + 0.0397035i
\(460\) 5.16211 + 8.94104i 0.240685 + 0.416878i
\(461\) 6.88191 11.9198i 0.320523 0.555161i −0.660073 0.751201i \(-0.729475\pi\)
0.980596 + 0.196040i \(0.0628082\pi\)
\(462\) 15.5915 + 7.03444i 0.725382 + 0.327272i
\(463\) −6.32105 −0.293764 −0.146882 0.989154i \(-0.546924\pi\)
−0.146882 + 0.989154i \(0.546924\pi\)
\(464\) −26.3576 −1.22362
\(465\) 6.24822 32.6786i 0.289754 1.51543i
\(466\) −9.42826 16.3302i −0.436756 0.756483i
\(467\) 7.84566i 0.363054i −0.983386 0.181527i \(-0.941896\pi\)
0.983386 0.181527i \(-0.0581040\pi\)
\(468\) 19.4585 2.85641i 0.899468 0.132038i
\(469\) 4.41450 2.54871i 0.203843 0.117689i
\(470\) −18.3062 + 31.7073i −0.844404 + 1.46255i
\(471\) 21.4905 + 4.10903i 0.990228 + 0.189334i
\(472\) −5.89901 3.40579i −0.271524 0.156764i
\(473\) 15.7416 16.6119i 0.723799 0.763816i
\(474\) 17.9433 + 15.5016i 0.824163 + 0.712012i
\(475\) 3.22149 35.5644i 0.147812 1.63180i
\(476\) 0.635482i 0.0291272i
\(477\) 6.32446 15.9340i 0.289577 0.729569i
\(478\) −8.98689 + 15.5657i −0.411051 + 0.711961i
\(479\) 17.4479 + 30.2207i 0.797217 + 1.38082i 0.921422 + 0.388563i \(0.127029\pi\)
−0.124205 + 0.992257i \(0.539638\pi\)
\(480\) −32.2122 + 11.2021i −1.47028 + 0.511302i
\(481\) −48.5543 + 28.0329i −2.21389 + 1.27819i
\(482\) 0.883520i 0.0402433i
\(483\) −5.21022 + 6.03090i −0.237073 + 0.274415i
\(484\) 0.622570 + 11.5635i 0.0282986 + 0.525614i
\(485\) −19.2395 + 11.1079i −0.873620 + 0.504384i
\(486\) −11.1311 + 24.8579i −0.504916 + 1.12758i
\(487\) 36.8707 1.67077 0.835385 0.549665i \(-0.185245\pi\)
0.835385 + 0.549665i \(0.185245\pi\)
\(488\) 12.0904 6.98041i 0.547307 0.315988i
\(489\) 3.70993 + 10.6681i 0.167769 + 0.482429i
\(490\) 22.5097 12.9960i 1.01689 0.587099i
\(491\) 14.8940 25.7972i 0.672157 1.16421i −0.305135 0.952309i \(-0.598701\pi\)
0.977291 0.211900i \(-0.0679652\pi\)
\(492\) −1.19893 3.44758i −0.0540517 0.155429i
\(493\) 1.86826 0.0841421
\(494\) −27.3214 + 38.7652i −1.22925 + 1.74413i
\(495\) 3.21760 35.9958i 0.144621 1.61789i
\(496\) 13.2140 22.8874i 0.593327 1.02767i
\(497\) 3.19417 5.53246i 0.143278 0.248165i
\(498\) −8.62285 1.64871i −0.386399 0.0738805i
\(499\) 5.73063 9.92573i 0.256538 0.444337i −0.708774 0.705436i \(-0.750751\pi\)
0.965312 + 0.261099i \(0.0840848\pi\)
\(500\) 10.5716 6.10349i 0.472774 0.272956i
\(501\) −22.1456 + 25.6338i −0.989391 + 1.14523i
\(502\) 31.3724i 1.40022i
\(503\) −6.82612 11.8232i −0.304362 0.527170i 0.672757 0.739863i \(-0.265110\pi\)
−0.977119 + 0.212693i \(0.931777\pi\)
\(504\) −5.25021 6.63574i −0.233863 0.295579i
\(505\) 31.3448i 1.39483i
\(506\) −15.2166 3.64170i −0.676461 0.161893i
\(507\) −43.8541 8.38501i −1.94763 0.372391i
\(508\) 9.33646 + 5.39041i 0.414239 + 0.239161i
\(509\) −25.5400 + 14.7455i −1.13204 + 0.653585i −0.944448 0.328662i \(-0.893402\pi\)
−0.187595 + 0.982247i \(0.560069\pi\)
\(510\) 3.67737 1.27884i 0.162837 0.0566279i
\(511\) 9.77573 16.9321i 0.432453 0.749030i
\(512\) −10.5492 −0.466213
\(513\) −8.61308 20.9479i −0.380277 0.924873i
\(514\) 33.4845i 1.47694i
\(515\) 29.9804 + 17.3092i 1.32110 + 0.762735i
\(516\) 11.8840 4.13276i 0.523163 0.181935i
\(517\) −5.44759 18.3427i −0.239585 0.806710i
\(518\) −23.2167 13.4042i −1.02008 0.588945i
\(519\) 12.1193 + 2.31723i 0.531976 + 0.101715i
\(520\) 37.4338 1.64158
\(521\) 38.2989i 1.67790i 0.544206 + 0.838952i \(0.316831\pi\)
−0.544206 + 0.838952i \(0.683169\pi\)
\(522\) 21.6812 17.1542i 0.948961 0.750820i
\(523\) 4.78340 2.76169i 0.209163 0.120760i −0.391759 0.920068i \(-0.628133\pi\)
0.600922 + 0.799307i \(0.294800\pi\)
\(524\) 0.0379890 0.00165956
\(525\) 18.2989 + 15.8088i 0.798628 + 0.689952i
\(526\) 24.7709 + 42.9045i 1.08006 + 1.87073i
\(527\) −0.936626 + 1.62228i −0.0408001 + 0.0706678i
\(528\) 11.8058 26.1669i 0.513780 1.13877i
\(529\) −7.85490 + 13.6051i −0.341517 + 0.591525i
\(530\) −18.1322 + 31.4059i −0.787612 + 1.36418i
\(531\) 12.2160 1.79325i 0.530130 0.0778206i
\(532\) −7.78836 0.705484i −0.337668 0.0305866i
\(533\) 12.4655i 0.539942i
\(534\) −33.4477 + 11.6317i −1.44742 + 0.503354i
\(535\) 6.78839 + 3.91928i 0.293488 + 0.169445i
\(536\) −2.47522 4.28720i −0.106913 0.185179i
\(537\) −1.46835 + 0.510630i −0.0633638 + 0.0220353i
\(538\) −21.7045 + 12.5311i −0.935747 + 0.540254i
\(539\) −3.16170 + 13.2109i −0.136184 + 0.569036i
\(540\) 10.6676 16.7621i 0.459062 0.721324i
\(541\) 18.0931 10.4461i 0.777885 0.449112i −0.0577953 0.998328i \(-0.518407\pi\)
0.835680 + 0.549216i \(0.185074\pi\)
\(542\) 15.1978 8.77445i 0.652801 0.376895i
\(543\) −19.5391 + 22.6168i −0.838505 + 0.970580i
\(544\) 1.92020 0.0823281
\(545\) 20.8773 + 36.1606i 0.894286 + 1.54895i
\(546\) −10.5488 30.3337i −0.451448 1.29816i
\(547\) 20.0363 11.5680i 0.856691 0.494611i −0.00621154 0.999981i \(-0.501977\pi\)
0.862903 + 0.505370i \(0.168644\pi\)
\(548\) −19.9837 11.5376i −0.853663 0.492863i
\(549\) −9.33579 + 23.5209i −0.398442 + 1.00385i
\(550\) −11.0496 + 46.1700i −0.471157 + 1.96870i
\(551\) −2.07406 + 22.8970i −0.0883578 + 0.975447i
\(552\) 5.85698 + 5.05997i 0.249290 + 0.215367i
\(553\) 6.67653 11.5641i 0.283915 0.491755i
\(554\) 47.6585 + 27.5156i 2.02481 + 1.16903i
\(555\) −10.6371 + 55.6329i −0.451522 + 2.36148i
\(556\) 13.0621 + 7.54140i 0.553956 + 0.319826i
\(557\) −15.2516 26.4166i −0.646232 1.11931i −0.984015 0.178083i \(-0.943010\pi\)
0.337783 0.941224i \(-0.390323\pi\)
\(558\) 4.02612 + 27.4267i 0.170439 + 1.16107i
\(559\) −42.9693 −1.81741
\(560\) 15.4660 + 26.7879i 0.653559 + 1.13200i
\(561\) −0.836807 + 1.85474i −0.0353300 + 0.0783072i
\(562\) −26.2686 −1.10807
\(563\) 34.0359 1.43444 0.717222 0.696845i \(-0.245413\pi\)
0.717222 + 0.696845i \(0.245413\pi\)
\(564\) 1.97562 10.3326i 0.0831886 0.435081i
\(565\) −5.06562 + 8.77391i −0.213112 + 0.369121i
\(566\) 48.2007 27.8287i 2.02603 1.16973i
\(567\) 14.9265 + 3.52786i 0.626853 + 0.148156i
\(568\) −5.37292 3.10206i −0.225443 0.130159i
\(569\) 17.8409 0.747929 0.373964 0.927443i \(-0.377998\pi\)
0.373964 + 0.927443i \(0.377998\pi\)
\(570\) 11.5908 + 46.4890i 0.485484 + 1.94721i
\(571\) 41.0108i 1.71625i −0.513441 0.858125i \(-0.671630\pi\)
0.513441 0.858125i \(-0.328370\pi\)
\(572\) 14.9554 15.7823i 0.625318 0.659890i
\(573\) −14.2456 + 4.95403i −0.595118 + 0.206957i
\(574\) −5.16195 + 2.98025i −0.215455 + 0.124393i
\(575\) −19.1564 11.0599i −0.798876 0.461231i
\(576\) −1.22954 + 0.972814i −0.0512308 + 0.0405339i
\(577\) −34.6605 −1.44294 −0.721468 0.692448i \(-0.756532\pi\)
−0.721468 + 0.692448i \(0.756532\pi\)
\(578\) 29.4834 1.22635
\(579\) 7.27323 38.0394i 0.302265 1.58086i
\(580\) −17.4661 + 10.0840i −0.725239 + 0.418717i
\(581\) 4.94379i 0.205103i
\(582\) 12.1008 14.0068i 0.501594 0.580601i
\(583\) −5.39580 18.1683i −0.223471 0.752454i
\(584\) −16.4438 9.49383i −0.680449 0.392857i
\(585\) −53.2127 + 42.1020i −2.20007 + 1.74070i
\(586\) −3.54781 + 6.14499i −0.146559 + 0.253847i
\(587\) −4.97862 2.87441i −0.205489 0.118639i 0.393724 0.919229i \(-0.371187\pi\)
−0.599213 + 0.800589i \(0.704520\pi\)
\(588\) −4.88231 + 5.65133i −0.201343 + 0.233057i
\(589\) −18.8426 13.2801i −0.776398 0.547198i
\(590\) −26.1184 −1.07528
\(591\) −6.81386 19.5937i −0.280285 0.805975i
\(592\) −22.4959 + 38.9641i −0.924577 + 1.60141i
\(593\) −9.39335 16.2698i −0.385739 0.668119i 0.606133 0.795363i \(-0.292720\pi\)
−0.991871 + 0.127245i \(0.959387\pi\)
\(594\) 7.31893 + 29.2079i 0.300299 + 1.19841i
\(595\) −1.09625 1.89876i −0.0449419 0.0778417i
\(596\) 18.5925 0.761577
\(597\) 26.6039 30.7944i 1.08883 1.26033i
\(598\) 14.6885 + 25.4412i 0.600657 + 1.04037i
\(599\) 16.0533 9.26841i 0.655922 0.378697i −0.134799 0.990873i \(-0.543039\pi\)
0.790721 + 0.612176i \(0.209706\pi\)
\(600\) 15.3529 17.7712i 0.626780 0.725506i
\(601\) 42.2013i 1.72143i 0.509089 + 0.860714i \(0.329982\pi\)
−0.509089 + 0.860714i \(0.670018\pi\)
\(602\) −10.2731 17.7935i −0.418699 0.725209i
\(603\) 8.34038 + 3.31042i 0.339646 + 0.134811i
\(604\) 3.74237 2.16066i 0.152275 0.0879158i
\(605\) −21.8081 33.4767i −0.886623 1.36102i
\(606\) −8.57822 24.6672i −0.348466 1.00203i
\(607\) 5.60937i 0.227677i −0.993499 0.113839i \(-0.963685\pi\)
0.993499 0.113839i \(-0.0363147\pi\)
\(608\) −2.13173 + 23.5337i −0.0864530 + 0.954418i
\(609\) −11.7812 10.1780i −0.477398 0.412434i
\(610\) 26.7657 46.3595i 1.08371 1.87704i
\(611\) −17.9632 + 31.1131i −0.726712 + 1.25870i
\(612\) −0.877295 + 0.694117i −0.0354625 + 0.0280580i
\(613\) −15.3065 8.83723i −0.618225 0.356932i 0.157953 0.987447i \(-0.449511\pi\)
−0.776178 + 0.630514i \(0.782844\pi\)
\(614\) −29.0332 + 16.7623i −1.17168 + 0.676472i
\(615\) 9.52960 + 8.23283i 0.384271 + 0.331980i
\(616\) −9.09768 2.17729i −0.366556 0.0877257i
\(617\) −11.0755 + 6.39445i −0.445883 + 0.257431i −0.706090 0.708122i \(-0.749543\pi\)
0.260207 + 0.965553i \(0.416209\pi\)
\(618\) −28.3305 5.41686i −1.13962 0.217898i
\(619\) 24.8020 0.996878 0.498439 0.866925i \(-0.333907\pi\)
0.498439 + 0.866925i \(0.333907\pi\)
\(620\) 20.2220i 0.812136i
\(621\) −14.0167 0.605449i −0.562473 0.0242958i
\(622\) −21.9187 12.6548i −0.878861 0.507411i
\(623\) 9.97100 + 17.2703i 0.399480 + 0.691919i
\(624\) −50.9085 + 17.7039i −2.03797 + 0.708722i
\(625\) −0.576856 + 0.999144i −0.0230742 + 0.0399658i
\(626\) 27.1539 1.08529
\(627\) −21.8024 12.3148i −0.870705 0.491807i
\(628\) 13.2986 0.530674
\(629\) 1.59454 2.76182i 0.0635784 0.110121i
\(630\) −30.1564 11.9695i −1.20146 0.476877i
\(631\) 16.3795 + 28.3701i 0.652057 + 1.12940i 0.982623 + 0.185613i \(0.0594272\pi\)
−0.330565 + 0.943783i \(0.607239\pi\)
\(632\) −11.2306 6.48400i −0.446730 0.257920i
\(633\) 0.692594 3.62231i 0.0275282 0.143974i
\(634\) 0.855154i 0.0339625i
\(635\) −37.1954 −1.47605
\(636\) 1.95684 10.2344i 0.0775937 0.405820i
\(637\) 22.0879 12.7524i 0.875154 0.505270i
\(638\) 7.11396 29.7252i 0.281644 1.17683i
\(639\) 11.1266 1.63333i 0.440160 0.0646135i
\(640\) 36.9767 21.3485i 1.46163 0.843873i
\(641\) −20.8814 12.0559i −0.824767 0.476179i 0.0272907 0.999628i \(-0.491312\pi\)
−0.852057 + 0.523448i \(0.824645\pi\)
\(642\) −6.41480 1.22653i −0.253172 0.0484071i
\(643\) 1.70104 2.94628i 0.0670824 0.116190i −0.830533 0.556969i \(-0.811964\pi\)
0.897616 + 0.440779i \(0.145298\pi\)
\(644\) −2.42205 + 4.19512i −0.0954422 + 0.165311i
\(645\) −28.3790 + 32.8490i −1.11742 + 1.29343i
\(646\) 0.243360 2.68663i 0.00957486 0.105704i
\(647\) 22.8749i 0.899305i −0.893203 0.449653i \(-0.851548\pi\)
0.893203 0.449653i \(-0.148452\pi\)
\(648\) 3.42613 14.4960i 0.134591 0.569458i
\(649\) 9.38901 9.90810i 0.368551 0.388927i
\(650\) 77.1935 44.5677i 3.02778 1.74809i
\(651\) 14.7443 5.12747i 0.577876 0.200961i
\(652\) 3.43252 + 5.94529i 0.134428 + 0.232836i
\(653\) 42.1264i 1.64853i −0.566201 0.824267i \(-0.691587\pi\)
0.566201 0.824267i \(-0.308413\pi\)
\(654\) −26.3258 22.7434i −1.02942 0.889339i
\(655\) −0.113508 + 0.0655337i −0.00443511 + 0.00256061i
\(656\) 5.00169 + 8.66319i 0.195283 + 0.338241i
\(657\) 34.0528 4.99879i 1.32853 0.195021i
\(658\) −17.1785 −0.669687
\(659\) 8.78735 + 15.2201i 0.342306 + 0.592892i 0.984861 0.173348i \(-0.0554586\pi\)
−0.642554 + 0.766240i \(0.722125\pi\)
\(660\) −2.18790 21.8564i −0.0851639 0.850761i
\(661\) 5.26979 + 9.12755i 0.204971 + 0.355020i 0.950124 0.311874i \(-0.100957\pi\)
−0.745152 + 0.666894i \(0.767623\pi\)
\(662\) 5.94793 10.3021i 0.231173 0.400403i
\(663\) 3.60846 1.25487i 0.140141 0.0487352i
\(664\) 4.80122 0.186324
\(665\) 24.4879 11.3275i 0.949601 0.439263i
\(666\) −6.85417 46.6920i −0.265594 1.80928i
\(667\) 12.3333 + 7.12061i 0.477546 + 0.275711i
\(668\) −10.2947 + 17.8310i −0.398314 + 0.689901i
\(669\) −21.9779 4.20223i −0.849716 0.162468i
\(670\) −16.4388 9.49097i −0.635088 0.366668i
\(671\) 7.96496 + 26.8190i 0.307484 + 1.03533i
\(672\) −12.1088 10.4610i −0.467106 0.403543i
\(673\) 24.5417i 0.946015i −0.881058 0.473007i \(-0.843168\pi\)
0.881058 0.473007i \(-0.156832\pi\)
\(674\) −47.1839 + 27.2416i −1.81745 + 1.04931i
\(675\) −1.83705 + 42.5294i −0.0707080 + 1.63696i
\(676\) −27.1376 −1.04375
\(677\) −27.2728 −1.04818 −0.524089 0.851664i \(-0.675594\pi\)
−0.524089 + 0.851664i \(0.675594\pi\)
\(678\) 1.58527 8.29105i 0.0608819 0.318416i
\(679\) −9.02712 5.21181i −0.346429 0.200011i
\(680\) −1.84401 + 1.06464i −0.0707145 + 0.0408270i
\(681\) 16.3674 + 47.0655i 0.627202 + 1.80356i
\(682\) 22.2451 + 21.0797i 0.851810 + 0.807183i
\(683\) 18.5618i 0.710247i 0.934819 + 0.355124i \(0.115561\pi\)
−0.934819 + 0.355124i \(0.884439\pi\)
\(684\) −7.53305 11.5226i −0.288033 0.440576i
\(685\) 79.6129 3.04185
\(686\) 28.6122 + 16.5192i 1.09242 + 0.630707i
\(687\) 0.881741 + 2.53550i 0.0336405 + 0.0967353i
\(688\) −29.8625 + 17.2411i −1.13850 + 0.657311i
\(689\) −17.7924 + 30.8173i −0.677836 + 1.17405i
\(690\) 29.1502 + 5.57359i 1.10973 + 0.212183i
\(691\) −2.35530 −0.0895999 −0.0447999 0.998996i \(-0.514265\pi\)
−0.0447999 + 0.998996i \(0.514265\pi\)
\(692\) 7.49959 0.285092
\(693\) 15.3813 7.13714i 0.584286 0.271118i
\(694\) 20.3167 + 35.1896i 0.771213 + 1.33578i
\(695\) −52.0378 −1.97391
\(696\) −9.88452 + 11.4414i −0.374672 + 0.433687i
\(697\) −0.354526 0.614057i −0.0134286 0.0232591i
\(698\) −46.3040 26.7336i −1.75263 1.01188i
\(699\) −18.3603 3.51053i −0.694450 0.132781i
\(700\) 12.7288 + 7.34896i 0.481102 + 0.277765i
\(701\) 8.94421 15.4918i 0.337818 0.585118i −0.646204 0.763165i \(-0.723644\pi\)
0.984022 + 0.178047i \(0.0569778\pi\)
\(702\) 30.3542 47.6955i 1.14564 1.80015i
\(703\) 32.0782 + 22.6085i 1.20985 + 0.852694i
\(704\) −0.403432 + 1.68571i −0.0152049 + 0.0635327i
\(705\) 11.9215 + 34.2810i 0.448990 + 1.29110i
\(706\) −35.1065 20.2687i −1.32125 0.762824i
\(707\) −12.7366 + 7.35346i −0.479008 + 0.276555i
\(708\) 7.08816 2.46497i 0.266389 0.0926392i
\(709\) 7.48710 + 12.9680i 0.281184 + 0.487025i 0.971677 0.236315i \(-0.0759396\pi\)
−0.690493 + 0.723339i \(0.742606\pi\)
\(710\) −23.7891 −0.892788
\(711\) 23.2570 3.41403i 0.872207 0.128036i
\(712\) 16.7723 9.68347i 0.628567 0.362903i
\(713\) −12.3662 + 7.13965i −0.463119 + 0.267382i
\(714\) 1.38235 + 1.19424i 0.0517330 + 0.0446933i
\(715\) −17.4599 + 72.9552i −0.652965 + 2.72837i
\(716\) −0.818303 + 0.472448i −0.0305814 + 0.0176562i
\(717\) 5.85250 + 16.8292i 0.218566 + 0.628499i
\(718\) −16.7718 29.0496i −0.625917 1.08412i
\(719\) −4.45558 2.57243i −0.166165 0.0959355i 0.414611 0.909999i \(-0.363918\pi\)
−0.580776 + 0.814063i \(0.697251\pi\)
\(720\) −20.0882 + 50.6108i −0.748644 + 1.88615i
\(721\) 16.2429i 0.604917i
\(722\) 32.6567 + 5.96516i 1.21536 + 0.222000i
\(723\) 0.662773 + 0.572584i 0.0246488 + 0.0212946i
\(724\) −9.08307 + 15.7323i −0.337570 + 0.584688i
\(725\) 21.6053 37.4214i 0.802399 1.38980i
\(726\) 26.3238 + 20.3766i 0.976967 + 0.756248i
\(727\) 8.84051 15.3122i 0.327877 0.567899i −0.654214 0.756310i \(-0.727000\pi\)
0.982090 + 0.188411i \(0.0603337\pi\)
\(728\) 8.78194 + 15.2108i 0.325480 + 0.563748i
\(729\) 11.4335 + 24.4597i 0.423462 + 0.905914i
\(730\) −72.8063 −2.69468
\(731\) 2.11669 1.22207i 0.0782885 0.0451999i
\(732\) −2.88857 + 15.1074i −0.106765 + 0.558385i
\(733\) 37.4213i 1.38219i 0.722766 + 0.691093i \(0.242870\pi\)
−0.722766 + 0.691093i \(0.757130\pi\)
\(734\) 0.228942 0.00845039
\(735\) 4.83895 25.3080i 0.178487 0.933500i
\(736\) 12.6762 + 7.31860i 0.467250 + 0.269767i
\(737\) 9.50986 2.82433i 0.350300 0.104036i
\(738\) −9.75253 3.87093i −0.358996 0.142491i
\(739\) −12.9424 7.47230i −0.476094 0.274873i 0.242693 0.970103i \(-0.421969\pi\)
−0.718787 + 0.695230i \(0.755303\pi\)
\(740\) 34.4265i 1.26554i
\(741\) 11.3735 + 45.6177i 0.417818 + 1.67581i
\(742\) −17.0152 −0.624647
\(743\) −4.96427 + 8.59837i −0.182121 + 0.315444i −0.942603 0.333916i \(-0.891630\pi\)
0.760481 + 0.649360i \(0.224963\pi\)
\(744\) −4.97961 14.3192i −0.182561 0.524966i
\(745\) −55.5527 + 32.0733i −2.03529 + 1.17508i
\(746\) 4.19493 + 2.42194i 0.153587 + 0.0886737i
\(747\) −6.82500 + 5.39995i −0.249714 + 0.197574i
\(748\) −0.287855 + 1.20278i −0.0105250 + 0.0439781i
\(749\) 3.67783i 0.134385i
\(750\) 6.59001 34.4661i 0.240633 1.25853i
\(751\) −17.0437 29.5205i −0.621932 1.07722i −0.989126 0.147074i \(-0.953015\pi\)
0.367193 0.930145i \(-0.380319\pi\)
\(752\) 28.8303i 1.05133i
\(753\) 23.5340 + 20.3316i 0.857628 + 0.740923i
\(754\) −49.6987 + 28.6936i −1.80992 + 1.04496i
\(755\) −7.45457 + 12.9117i −0.271300 + 0.469905i
\(756\) 9.31366 + 0.402301i 0.338735 + 0.0146315i
\(757\) 2.29611 3.97699i 0.0834537 0.144546i −0.821278 0.570529i \(-0.806738\pi\)
0.904731 + 0.425983i \(0.140072\pi\)
\(758\) 10.3231 17.8802i 0.374953 0.649437i
\(759\) −12.5933 + 9.05466i −0.457106 + 0.328663i
\(760\) −11.0009 23.7818i −0.399044 0.862655i
\(761\) 35.6275 1.29150 0.645749 0.763550i \(-0.276545\pi\)
0.645749 + 0.763550i \(0.276545\pi\)
\(762\) 29.2713 10.1794i 1.06039 0.368759i
\(763\) −9.79559 + 16.9665i −0.354624 + 0.614227i
\(764\) −7.93901 + 4.58359i −0.287223 + 0.165828i
\(765\) 1.42388 3.58736i 0.0514804 0.129701i
\(766\) 18.3740 10.6082i 0.663879 0.383291i
\(767\) −25.6289 −0.925406
\(768\) −22.0732 + 25.5500i −0.796498 + 0.921956i
\(769\) 3.72361 2.14983i 0.134277 0.0775248i −0.431357 0.902181i \(-0.641965\pi\)
0.565634 + 0.824657i \(0.308632\pi\)
\(770\) −34.3849 + 10.2120i −1.23915 + 0.368014i
\(771\) −25.1184 21.7003i −0.904616 0.781517i
\(772\) 23.5394i 0.847202i
\(773\) −8.58569 + 4.95695i −0.308806 + 0.178289i −0.646392 0.763006i \(-0.723723\pi\)
0.337586 + 0.941295i \(0.390390\pi\)
\(774\) 13.3433 33.6175i 0.479615 1.20836i
\(775\) 21.6630 + 37.5215i 0.778159 + 1.34781i
\(776\) −5.06151 + 8.76680i −0.181698 + 0.314710i
\(777\) −25.1012 + 8.72915i −0.900499 + 0.313156i
\(778\) 11.7403i 0.420910i
\(779\) 7.91937 3.66331i 0.283741 0.131252i
\(780\) −26.9617 + 31.2085i −0.965384 + 1.11744i
\(781\) 8.55167 9.02447i 0.306003 0.322921i
\(782\) −1.44712 0.835497i −0.0517490 0.0298773i
\(783\) 1.18273 27.3813i 0.0422672 0.978528i
\(784\) 10.2336 17.7252i 0.365487 0.633042i
\(785\) −39.7352 + 22.9411i −1.41821 + 0.818803i
\(786\) 0.0713914 0.0826364i 0.00254645 0.00294754i
\(787\) 17.3576i 0.618732i 0.950943 + 0.309366i \(0.100117\pi\)
−0.950943 + 0.309366i \(0.899883\pi\)
\(788\) −6.30435 10.9195i −0.224583 0.388990i
\(789\) 48.2382 + 9.22325i 1.71732 + 0.328356i
\(790\) −49.7245 −1.76912
\(791\) −4.75355 −0.169017
\(792\) −6.93132 14.9377i −0.246294 0.530789i
\(793\) 26.2641 45.4907i 0.932665 1.61542i
\(794\) 34.5497 + 59.8418i 1.22612 + 2.12371i
\(795\) 11.8082 + 33.9551i 0.418793 + 1.20426i
\(796\) 12.3673 21.4207i 0.438346 0.759237i
\(797\) 23.0045i 0.814863i −0.913236 0.407431i \(-0.866425\pi\)
0.913236 0.407431i \(-0.133575\pi\)
\(798\) −16.1710 + 15.6160i −0.572448 + 0.552801i
\(799\) 2.04353i 0.0722948i
\(800\) 22.2060 38.4619i 0.785101 1.35983i
\(801\) −12.9509 + 32.6290i −0.457599 + 1.15289i
\(802\) 21.0246 12.1385i 0.742403 0.428627i
\(803\) 26.1723 27.6194i 0.923602 0.974666i
\(804\) 5.35700 + 1.02427i 0.188927 + 0.0361233i
\(805\) 16.7129i 0.589051i
\(806\) 57.5406i 2.02678i
\(807\) −4.66585 + 24.4027i −0.164246 + 0.859014i
\(808\) 7.14140 + 12.3693i 0.251234 + 0.435150i
\(809\) −10.7210 −0.376930 −0.188465 0.982080i \(-0.560351\pi\)
−0.188465 + 0.982080i \(0.560351\pi\)
\(810\) −16.4147 54.7054i −0.576755 1.92215i
\(811\) −4.65556 + 2.68789i −0.163479 + 0.0943846i −0.579507 0.814967i \(-0.696755\pi\)
0.416028 + 0.909352i \(0.363422\pi\)
\(812\) −8.19504 4.73141i −0.287590 0.166040i
\(813\) 3.26709 17.0871i 0.114582 0.599270i
\(814\) −37.8707 35.8866i −1.32737 1.25783i
\(815\) −20.5121 11.8427i −0.718508 0.414831i
\(816\) 2.00427 2.31996i 0.0701634 0.0812150i
\(817\) 12.6276 + 27.2985i 0.441785 + 0.955052i
\(818\) 18.0702i 0.631810i
\(819\) −29.5912 11.7452i −1.03400 0.410411i
\(820\) 6.62883 + 3.82716i 0.231489 + 0.133650i
\(821\) 27.4408 + 47.5289i 0.957691 + 1.65877i 0.728087 + 0.685485i \(0.240410\pi\)
0.229603 + 0.973284i \(0.426257\pi\)
\(822\) −62.6523 + 21.7879i −2.18525 + 0.759939i
\(823\) −1.13133 1.95952i −0.0394357 0.0683047i 0.845634 0.533763i \(-0.179223\pi\)
−0.885070 + 0.465459i \(0.845889\pi\)
\(824\) 15.7745 0.549530
\(825\) 27.4735 + 38.2103i 0.956506 + 1.33031i
\(826\) −6.12734 10.6129i −0.213197 0.369269i
\(827\) −13.1262 22.7353i −0.456444 0.790584i 0.542326 0.840168i \(-0.317544\pi\)
−0.998770 + 0.0495839i \(0.984210\pi\)
\(828\) −8.43698 + 1.23851i −0.293205 + 0.0430412i
\(829\) −26.8473 −0.932446 −0.466223 0.884667i \(-0.654386\pi\)
−0.466223 + 0.884667i \(0.654386\pi\)
\(830\) 15.9434 9.20491i 0.553403 0.319507i
\(831\) 51.5269 17.9189i 1.78745 0.621600i
\(832\) 2.81841 1.62721i 0.0977107 0.0564133i
\(833\) −0.725373 + 1.25638i −0.0251327 + 0.0435311i
\(834\) 40.9517 14.2413i 1.41804 0.493136i
\(835\) 71.0365i 2.45832i
\(836\) −14.4215 4.86317i −0.498779 0.168196i
\(837\) 23.1834 + 14.7543i 0.801334 + 0.509982i
\(838\) 10.2465 + 5.91580i 0.353958 + 0.204358i
\(839\) 26.5383 + 15.3219i 0.916205 + 0.528971i 0.882422 0.470458i \(-0.155911\pi\)
0.0337827 + 0.999429i \(0.489245\pi\)
\(840\) 17.4283 + 3.33233i 0.601333 + 0.114976i
\(841\) 0.590093 1.02207i 0.0203480 0.0352438i
\(842\) −8.46036 14.6538i −0.291563 0.505002i
\(843\) −17.0239 + 19.7054i −0.586335 + 0.678690i
\(844\) 2.24154i 0.0771571i
\(845\) 81.0848 46.8143i 2.78940 1.61046i
\(846\) −18.7635 23.7152i −0.645104 0.815347i
\(847\) 8.48670 16.7150i 0.291606 0.574335i
\(848\) 28.5562i 0.980625i
\(849\) 10.3618 54.1927i 0.355615 1.85989i
\(850\) −2.53506 + 4.39085i −0.0869517 + 0.150605i
\(851\) 21.0526 12.1547i 0.721674 0.416659i
\(852\) 6.45602 2.24514i 0.221180 0.0769171i
\(853\) −30.6277 17.6829i −1.04867 0.605452i −0.126396 0.991980i \(-0.540341\pi\)
−0.922278 + 0.386528i \(0.873674\pi\)
\(854\) 25.1168 0.859479
\(855\) 42.3853 + 21.4333i 1.44955 + 0.733005i
\(856\) 3.57178 0.122081
\(857\) 7.27617 12.6027i 0.248549 0.430500i −0.714574 0.699560i \(-0.753380\pi\)
0.963124 + 0.269060i \(0.0867129\pi\)
\(858\) −6.22554 62.1912i −0.212536 2.12317i
\(859\) 0.506499 + 0.877283i 0.0172815 + 0.0299325i 0.874537 0.484959i \(-0.161166\pi\)
−0.857255 + 0.514892i \(0.827832\pi\)
\(860\) −13.1924 + 22.8499i −0.449858 + 0.779176i
\(861\) −1.10967 + 5.80365i −0.0378175 + 0.197788i
\(862\) 22.5648 0.768559
\(863\) 19.2866i 0.656522i −0.944587 0.328261i \(-0.893537\pi\)
0.944587 0.328261i \(-0.106463\pi\)
\(864\) 1.21561 28.1426i 0.0413560 0.957432i
\(865\) −22.4081 + 12.9373i −0.761898 + 0.439882i
\(866\) 9.07662 0.308436
\(867\) 19.1073 22.1170i 0.648919 0.751131i
\(868\) 8.21695 4.74406i 0.278902 0.161024i
\(869\) 17.8749 18.8632i 0.606366 0.639890i
\(870\) −10.8879 + 56.9441i −0.369133 + 1.93059i
\(871\) −16.1308 9.31311i −0.546570 0.315563i
\(872\) 16.4772 + 9.51311i 0.557988 + 0.322155i
\(873\) −2.66504 18.1548i −0.0901980 0.614448i
\(874\) 11.8463 16.8082i 0.400705 0.568545i
\(875\) −19.7607 −0.668032
\(876\) 19.7586 6.87123i 0.667582 0.232157i
\(877\) −26.0817 15.0583i −0.880718 0.508483i −0.00982272 0.999952i \(-0.503127\pi\)
−0.870895 + 0.491469i \(0.836460\pi\)
\(878\) 25.2971 14.6053i 0.853735 0.492904i
\(879\) 2.31043 + 6.64378i 0.0779289 + 0.224089i
\(880\) 17.1385 + 57.7075i 0.577740 + 1.94532i
\(881\) 32.2795i 1.08752i −0.839239 0.543762i \(-0.816999\pi\)
0.839239 0.543762i \(-0.183001\pi\)
\(882\) 3.11804 + 21.2407i 0.104990 + 0.715212i
\(883\) −20.8517 36.1161i −0.701714 1.21540i −0.967864 0.251473i \(-0.919085\pi\)
0.266150 0.963932i \(-0.414248\pi\)
\(884\) 2.01098 1.16104i 0.0676365 0.0390499i
\(885\) −16.9265 + 19.5927i −0.568980 + 0.658601i
\(886\) 65.8647i 2.21277i
\(887\) −5.38330 9.32415i −0.180754 0.313074i 0.761384 0.648301i \(-0.224520\pi\)
−0.942137 + 0.335227i \(0.891187\pi\)
\(888\) 8.47742 + 24.3773i 0.284484 + 0.818049i
\(889\) −8.72599 15.1139i −0.292660 0.506903i
\(890\) 37.1303 64.3116i 1.24461 2.15573i
\(891\) 26.6535 + 13.4385i 0.892925 + 0.450206i
\(892\) −13.6003 −0.455372
\(893\) 25.0451 + 2.26864i 0.838104 + 0.0759170i
\(894\) 34.9402 40.4437i 1.16858 1.35264i
\(895\) 1.63001 2.82326i 0.0544853 0.0943713i
\(896\) 17.3494 + 10.0167i 0.579602 + 0.334633i
\(897\) 28.6039 + 5.46914i 0.955057 + 0.182609i
\(898\) 44.8817 + 25.9124i 1.49772 + 0.864709i
\(899\) −13.9471 24.1571i −0.465162 0.805684i
\(900\) 3.75787 + 25.5994i 0.125262 + 0.853313i
\(901\) 2.02410i 0.0674326i
\(902\) −11.1200 + 3.30254i −0.370256 + 0.109962i
\(903\) −20.0055 3.82509i −0.665740 0.127291i
\(904\) 4.61647i 0.153542i
\(905\) 62.6758i 2.08341i
\(906\) 2.33288 12.2011i 0.0775049 0.405355i
\(907\) 20.9937 36.3621i 0.697084 1.20739i −0.272389 0.962187i \(-0.587814\pi\)
0.969473 0.245198i \(-0.0788529\pi\)
\(908\) 15.1436 + 26.2294i 0.502557 + 0.870454i
\(909\) −24.0634 9.55112i −0.798131 0.316791i
\(910\) 58.3242 + 33.6735i 1.93343 + 1.11626i
\(911\) 55.6095i 1.84243i 0.389058 + 0.921213i \(0.372800\pi\)
−0.389058 + 0.921213i \(0.627200\pi\)
\(912\) 26.2081 + 27.1395i 0.867835 + 0.898679i
\(913\) −2.23939 + 9.35715i −0.0741131 + 0.309677i
\(914\) −12.4795 7.20505i −0.412785 0.238322i
\(915\) −17.4305 50.1225i −0.576236 1.65700i
\(916\) 0.815809 + 1.41302i 0.0269551 + 0.0466876i
\(917\) −0.0532575 0.0307482i −0.00175872 0.00101540i
\(918\) −0.138775 + 3.21279i −0.00458027 + 0.106038i
\(919\) 5.06389i 0.167042i 0.996506 + 0.0835211i \(0.0266166\pi\)
−0.996506 + 0.0835211i \(0.973383\pi\)
\(920\) −16.2309 −0.535117
\(921\) −6.24130 + 32.6424i −0.205658 + 1.07560i
\(922\) −12.0242 20.8265i −0.395995 0.685883i
\(923\) −23.3432 −0.768352
\(924\) 8.36780 6.01652i 0.275281 0.197929i
\(925\) −36.8798 63.8776i −1.21260 2.10028i
\(926\) −5.52211 + 9.56458i −0.181468 + 0.314312i
\(927\) −22.4236 + 17.7416i −0.736489 + 0.582711i
\(928\) −14.2967 + 24.7626i −0.469311 + 0.812871i
\(929\) 0.00513951 + 0.00296729i 0.000168622 + 9.73538e-5i 0.500084 0.865977i \(-0.333302\pi\)
−0.499916 + 0.866074i \(0.666636\pi\)
\(930\) −43.9884 38.0026i −1.44244 1.24615i
\(931\) −14.5927 10.2848i −0.478258 0.337072i
\(932\) −11.3616 −0.372163
\(933\) −23.6979 + 8.24114i −0.775834 + 0.269803i
\(934\) −11.8715 6.85402i −0.388448 0.224270i
\(935\) −1.21480 4.09038i −0.0397282 0.133770i
\(936\) −11.4065 + 28.7379i −0.372834 + 0.939327i
\(937\) 19.8827 11.4793i 0.649541 0.375013i −0.138739 0.990329i \(-0.544305\pi\)
0.788280 + 0.615316i \(0.210972\pi\)
\(938\) 8.90629i 0.290801i
\(939\) 17.5976 20.3695i 0.574277 0.664733i
\(940\) 11.0301 + 19.1047i 0.359762 + 0.623125i
\(941\) −21.4985 37.2365i −0.700832 1.21388i −0.968175 0.250275i \(-0.919479\pi\)
0.267343 0.963602i \(-0.413854\pi\)
\(942\) 24.9917 28.9282i 0.814273 0.942531i
\(943\) 5.40492i 0.176008i
\(944\) −17.8114 + 10.2834i −0.579710 + 0.334696i
\(945\) −28.5224 + 14.8647i −0.927834 + 0.483549i
\(946\) −11.3840 38.3313i −0.370126 1.24626i
\(947\) 26.5443 + 15.3254i 0.862574 + 0.498007i 0.864873 0.501990i \(-0.167399\pi\)
−0.00229951 + 0.999997i \(0.500732\pi\)
\(948\) 13.4945 4.69284i 0.438282 0.152416i
\(949\) −71.4419 −2.31910
\(950\) −50.9992 35.9438i −1.65463 1.16617i
\(951\) 0.641494 + 0.554200i 0.0208019 + 0.0179712i
\(952\) −0.865204 0.499526i −0.0280414 0.0161897i
\(953\) 26.8930 46.5801i 0.871151 1.50888i 0.0103443 0.999946i \(-0.496707\pi\)
0.860807 0.508932i \(-0.169959\pi\)
\(954\) −18.5852 23.4898i −0.601717 0.760510i
\(955\) 15.8140 27.3907i 0.511730 0.886342i
\(956\) 5.41488 + 9.37885i 0.175130 + 0.303334i
\(957\) −17.6880 24.6006i −0.571772 0.795224i
\(958\) 60.9705 1.96987
\(959\) 18.6771 + 32.3497i 0.603115 + 1.04463i
\(960\) 0.617449 3.22929i 0.0199281 0.104225i
\(961\) −3.03122 −0.0977812
\(962\) 97.9587i 3.15831i
\(963\) −5.07732 + 4.01719i −0.163614 + 0.129452i
\(964\) 0.461027 + 0.266174i 0.0148487 + 0.00857290i
\(965\) 40.6072 + 70.3337i 1.30719 + 2.26412i
\(966\) 4.57385 + 13.1524i 0.147161 + 0.423171i
\(967\) −7.21321 4.16455i −0.231961 0.133923i 0.379515 0.925185i \(-0.376091\pi\)
−0.611476 + 0.791263i \(0.709424\pi\)
\(968\) −16.2330 8.24197i −0.521749 0.264907i
\(969\) −1.85766 1.92368i −0.0596766 0.0617975i
\(970\) 38.8158i 1.24630i
\(971\) −34.1584 19.7213i −1.09619 0.632888i −0.160976 0.986958i \(-0.551464\pi\)
−0.935219 + 0.354070i \(0.884797\pi\)
\(972\) 9.61765 + 13.2971i 0.308486 + 0.426505i
\(973\) −12.2080 21.1449i −0.391371 0.677874i
\(974\) 32.2105 55.7902i 1.03209 1.78763i
\(975\) 16.5944 86.7897i 0.531446 2.77949i
\(976\) 42.1530i 1.34929i
\(977\) 51.3981i 1.64437i 0.569219 + 0.822186i \(0.307246\pi\)
−0.569219 + 0.822186i \(0.692754\pi\)
\(978\) 19.3833 + 3.70613i 0.619808 + 0.118509i
\(979\) 11.0493 + 37.2042i 0.353136 + 1.18905i
\(980\) 15.6610i 0.500272i
\(981\) −34.1220 + 5.00895i −1.08943 + 0.159923i
\(982\) −26.0230 45.0731i −0.830426 1.43834i
\(983\) 23.3759 + 13.4961i 0.745576 + 0.430459i 0.824093 0.566454i \(-0.191685\pi\)
−0.0785171 + 0.996913i \(0.525019\pi\)
\(984\) 5.63628 + 1.07767i 0.179678 + 0.0343549i
\(985\) 37.6737 + 21.7509i 1.20038 + 0.693042i
\(986\) 1.63212 2.82692i 0.0519773 0.0900273i
\(987\) −11.1329 + 12.8864i −0.354363 + 0.410180i
\(988\) 11.9970 + 25.9351i 0.381675 + 0.825107i
\(989\) 18.6310 0.592432
\(990\) −51.6554 36.3148i −1.64172 1.15416i
\(991\) 24.5610 42.5409i 0.780206 1.35136i −0.151616 0.988439i \(-0.548448\pi\)
0.931822 0.362916i \(-0.118219\pi\)
\(992\) −14.3349 24.8288i −0.455133 0.788314i
\(993\) −3.87345 11.1383i −0.122920 0.353464i
\(994\) −5.58089 9.66638i −0.177015 0.306599i
\(995\) 85.3376i 2.70538i
\(996\) −3.45808 + 4.00277i −0.109573 + 0.126833i
\(997\) −21.7860 + 12.5782i −0.689970 + 0.398355i −0.803601 0.595168i \(-0.797085\pi\)
0.113631 + 0.993523i \(0.463752\pi\)
\(998\) −10.0126 17.3424i −0.316944 0.548963i
\(999\) −39.4680 25.1181i −1.24871 0.794701i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 627.2.l.a.296.61 yes 152
3.2 odd 2 inner 627.2.l.a.296.16 yes 152
11.10 odd 2 inner 627.2.l.a.296.15 yes 152
19.7 even 3 inner 627.2.l.a.197.62 yes 152
33.32 even 2 inner 627.2.l.a.296.62 yes 152
57.26 odd 6 inner 627.2.l.a.197.15 152
209.197 odd 6 inner 627.2.l.a.197.16 yes 152
627.197 even 6 inner 627.2.l.a.197.61 yes 152
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
627.2.l.a.197.15 152 57.26 odd 6 inner
627.2.l.a.197.16 yes 152 209.197 odd 6 inner
627.2.l.a.197.61 yes 152 627.197 even 6 inner
627.2.l.a.197.62 yes 152 19.7 even 3 inner
627.2.l.a.296.15 yes 152 11.10 odd 2 inner
627.2.l.a.296.16 yes 152 3.2 odd 2 inner
627.2.l.a.296.61 yes 152 1.1 even 1 trivial
627.2.l.a.296.62 yes 152 33.32 even 2 inner