Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [63,10,Mod(37,63)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(63, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("63.37");
S:= CuspForms(chi, 10);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 63 = 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 63.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(32.4472576783\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 | −19.4807 | + | 33.7415i | 0 | −502.994 | − | 871.211i | 1238.29 | − | 2144.78i | 0 | 6002.22 | − | 2080.12i | 19246.4 | 0 | 48245.5 | + | 83563.7i | ||||||||
37.2 | −18.8691 | + | 32.6823i | 0 | −456.088 | − | 789.967i | −419.379 | + | 726.386i | 0 | −6230.19 | − | 1240.29i | 15101.9 | 0 | −15826.6 | − | 27412.5i | ||||||||
37.3 | −15.9183 | + | 27.5713i | 0 | −250.784 | − | 434.371i | −502.573 | + | 870.481i | 0 | 3102.35 | + | 5543.38i | −332.099 | 0 | −16000.2 | − | 27713.2i | ||||||||
37.4 | −8.00111 | + | 13.8583i | 0 | 127.964 | + | 221.641i | 413.923 | − | 716.935i | 0 | −4764.21 | − | 4201.89i | −12288.6 | 0 | 6623.68 | + | 11472.6i | ||||||||
37.5 | −7.52085 | + | 13.0265i | 0 | 142.874 | + | 247.464i | −693.972 | + | 1202.00i | 0 | 5243.90 | − | 3585.40i | −11999.5 | 0 | −10438.5 | − | 18080.1i | ||||||||
37.6 | −4.60827 | + | 7.98176i | 0 | 213.528 | + | 369.841i | 895.962 | − | 1551.85i | 0 | −1495.06 | + | 6174.01i | −8654.85 | 0 | 8257.68 | + | 14302.7i | ||||||||
37.7 | 4.60827 | − | 7.98176i | 0 | 213.528 | + | 369.841i | −895.962 | + | 1551.85i | 0 | −1495.06 | + | 6174.01i | 8654.85 | 0 | 8257.68 | + | 14302.7i | ||||||||
37.8 | 7.52085 | − | 13.0265i | 0 | 142.874 | + | 247.464i | 693.972 | − | 1202.00i | 0 | 5243.90 | − | 3585.40i | 11999.5 | 0 | −10438.5 | − | 18080.1i | ||||||||
37.9 | 8.00111 | − | 13.8583i | 0 | 127.964 | + | 221.641i | −413.923 | + | 716.935i | 0 | −4764.21 | − | 4201.89i | 12288.6 | 0 | 6623.68 | + | 11472.6i | ||||||||
37.10 | 15.9183 | − | 27.5713i | 0 | −250.784 | − | 434.371i | 502.573 | − | 870.481i | 0 | 3102.35 | + | 5543.38i | 332.099 | 0 | −16000.2 | − | 27713.2i | ||||||||
37.11 | 18.8691 | − | 32.6823i | 0 | −456.088 | − | 789.967i | 419.379 | − | 726.386i | 0 | −6230.19 | − | 1240.29i | −15101.9 | 0 | −15826.6 | − | 27412.5i | ||||||||
37.12 | 19.4807 | − | 33.7415i | 0 | −502.994 | − | 871.211i | −1238.29 | + | 2144.78i | 0 | 6002.22 | − | 2080.12i | −19246.4 | 0 | 48245.5 | + | 83563.7i | ||||||||
46.1 | −19.4807 | − | 33.7415i | 0 | −502.994 | + | 871.211i | 1238.29 | + | 2144.78i | 0 | 6002.22 | + | 2080.12i | 19246.4 | 0 | 48245.5 | − | 83563.7i | ||||||||
46.2 | −18.8691 | − | 32.6823i | 0 | −456.088 | + | 789.967i | −419.379 | − | 726.386i | 0 | −6230.19 | + | 1240.29i | 15101.9 | 0 | −15826.6 | + | 27412.5i | ||||||||
46.3 | −15.9183 | − | 27.5713i | 0 | −250.784 | + | 434.371i | −502.573 | − | 870.481i | 0 | 3102.35 | − | 5543.38i | −332.099 | 0 | −16000.2 | + | 27713.2i | ||||||||
46.4 | −8.00111 | − | 13.8583i | 0 | 127.964 | − | 221.641i | 413.923 | + | 716.935i | 0 | −4764.21 | + | 4201.89i | −12288.6 | 0 | 6623.68 | − | 11472.6i | ||||||||
46.5 | −7.52085 | − | 13.0265i | 0 | 142.874 | − | 247.464i | −693.972 | − | 1202.00i | 0 | 5243.90 | + | 3585.40i | −11999.5 | 0 | −10438.5 | + | 18080.1i | ||||||||
46.6 | −4.60827 | − | 7.98176i | 0 | 213.528 | − | 369.841i | 895.962 | + | 1551.85i | 0 | −1495.06 | − | 6174.01i | −8654.85 | 0 | 8257.68 | − | 14302.7i | ||||||||
46.7 | 4.60827 | + | 7.98176i | 0 | 213.528 | − | 369.841i | −895.962 | − | 1551.85i | 0 | −1495.06 | − | 6174.01i | 8654.85 | 0 | 8257.68 | − | 14302.7i | ||||||||
46.8 | 7.52085 | + | 13.0265i | 0 | 142.874 | − | 247.464i | 693.972 | + | 1202.00i | 0 | 5243.90 | + | 3585.40i | 11999.5 | 0 | −10438.5 | + | 18080.1i | ||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
21.h | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 63.10.e.d | ✓ | 24 |
3.b | odd | 2 | 1 | inner | 63.10.e.d | ✓ | 24 |
7.c | even | 3 | 1 | inner | 63.10.e.d | ✓ | 24 |
21.h | odd | 6 | 1 | inner | 63.10.e.d | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
63.10.e.d | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
63.10.e.d | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
63.10.e.d | ✓ | 24 | 7.c | even | 3 | 1 | inner |
63.10.e.d | ✓ | 24 | 21.h | odd | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{24} + 4523 T_{2}^{22} + 12970695 T_{2}^{20} + 22852156502 T_{2}^{18} + 29380521307660 T_{2}^{16} + \cdots + 11\!\cdots\!00 \) acting on \(S_{10}^{\mathrm{new}}(63, [\chi])\).