Properties

Label 63.8.p.a.17.13
Level $63$
Weight $8$
Character 63.17
Analytic conductor $19.680$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,8,Mod(17,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.17");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 63.p (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.6802566055\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.13
Character \(\chi\) \(=\) 63.17
Dual form 63.8.p.a.26.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(6.95719 - 4.01673i) q^{2} +(-31.7317 + 54.9609i) q^{4} +(-79.8320 - 138.273i) q^{5} +(726.865 - 543.333i) q^{7} +1538.12i q^{8} +(-1110.81 - 641.328i) q^{10} +(263.758 + 152.281i) q^{11} -7181.21i q^{13} +(2874.51 - 6699.69i) q^{14} +(2116.54 + 3665.96i) q^{16} +(11932.8 - 20668.2i) q^{17} +(41545.4 - 23986.3i) q^{19} +10132.8 q^{20} +2446.69 q^{22} +(-36696.9 + 21186.9i) q^{23} +(26316.2 - 45581.0i) q^{25} +(-28845.0 - 49961.0i) q^{26} +(6797.39 + 57190.0i) q^{28} -225444. i q^{29} +(89168.9 + 51481.7i) q^{31} +(-141052. - 81436.2i) q^{32} -191724. i q^{34} +(-133155. - 57130.6i) q^{35} +(217757. + 377165. i) q^{37} +(192693. - 333754. i) q^{38} +(212680. - 122791. i) q^{40} -262195. q^{41} -26102.5 q^{43} +(-16739.0 + 9664.26i) q^{44} +(-170205. + 294803. i) q^{46} +(-147468. - 255422. i) q^{47} +(233123. - 789859. i) q^{49} -422821. i q^{50} +(394686. + 227872. i) q^{52} +(749984. + 433003. i) q^{53} -48627.6i q^{55} +(835708. + 1.11800e6i) q^{56} +(-905550. - 1.56846e6i) q^{58} +(-624984. + 1.08250e6i) q^{59} +(-570860. + 329586. i) q^{61} +827153. q^{62} -1.85026e6 q^{64} +(-992968. + 573290. i) q^{65} +(-490387. + 849376. i) q^{67} +(757297. + 1.31168e6i) q^{68} +(-1.15587e6 + 137382. i) q^{70} +1.65029e6i q^{71} +(1.73722e6 + 1.00298e6i) q^{73} +(3.02995e6 + 1.74934e6i) q^{74} +3.04450e6i q^{76} +(274456. - 32620.8i) q^{77} +(558983. + 968188. i) q^{79} +(337936. - 585322. i) q^{80} +(-1.82414e6 + 1.05317e6i) q^{82} -7.99427e6 q^{83} -3.81048e6 q^{85} +(-181600. + 104847. i) q^{86} +(-234226. + 405690. i) q^{88} +(4.33239e6 + 7.50393e6i) q^{89} +(-3.90179e6 - 5.21977e6i) q^{91} -2.68919e6i q^{92} +(-2.05192e6 - 1.18468e6i) q^{94} +(-6.63331e6 - 3.82974e6i) q^{95} +8.18016e6i q^{97} +(-1.55078e6 - 6.43159e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 1024 q^{4} - 2074 q^{7} + 1248 q^{10} - 59708 q^{16} - 105330 q^{19} + 544 q^{22} - 56250 q^{25} + 556220 q^{28} + 86862 q^{31} + 591034 q^{37} - 3036324 q^{40} - 837332 q^{43} + 3896752 q^{46} + 6626454 q^{49}+ \cdots + 96093708 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 6.95719 4.01673i 0.614934 0.355032i −0.159960 0.987124i \(-0.551136\pi\)
0.774894 + 0.632091i \(0.217803\pi\)
\(3\) 0 0
\(4\) −31.7317 + 54.9609i −0.247904 + 0.429382i
\(5\) −79.8320 138.273i −0.285616 0.494701i 0.687143 0.726523i \(-0.258865\pi\)
−0.972758 + 0.231822i \(0.925531\pi\)
\(6\) 0 0
\(7\) 726.865 543.333i 0.800960 0.598718i
\(8\) 1538.12i 1.06212i
\(9\) 0 0
\(10\) −1110.81 641.328i −0.351270 0.202806i
\(11\) 263.758 + 152.281i 0.0597491 + 0.0344962i 0.529577 0.848262i \(-0.322351\pi\)
−0.469828 + 0.882758i \(0.655684\pi\)
\(12\) 0 0
\(13\) 7181.21i 0.906559i −0.891369 0.453279i \(-0.850254\pi\)
0.891369 0.453279i \(-0.149746\pi\)
\(14\) 2874.51 6699.69i 0.279973 0.652539i
\(15\) 0 0
\(16\) 2116.54 + 3665.96i 0.129184 + 0.223752i
\(17\) 11932.8 20668.2i 0.589076 1.02031i −0.405277 0.914194i \(-0.632825\pi\)
0.994354 0.106116i \(-0.0338416\pi\)
\(18\) 0 0
\(19\) 41545.4 23986.3i 1.38959 0.802279i 0.396319 0.918113i \(-0.370288\pi\)
0.993269 + 0.115834i \(0.0369542\pi\)
\(20\) 10132.8 0.283221
\(21\) 0 0
\(22\) 2446.69 0.0489891
\(23\) −36696.9 + 21186.9i −0.628900 + 0.363095i −0.780326 0.625373i \(-0.784947\pi\)
0.151426 + 0.988469i \(0.451613\pi\)
\(24\) 0 0
\(25\) 26316.2 45581.0i 0.336847 0.583437i
\(26\) −28845.0 49961.0i −0.321858 0.557474i
\(27\) 0 0
\(28\) 6797.39 + 57190.0i 0.0585179 + 0.492342i
\(29\) 225444.i 1.71651i −0.513223 0.858255i \(-0.671549\pi\)
0.513223 0.858255i \(-0.328451\pi\)
\(30\) 0 0
\(31\) 89168.9 + 51481.7i 0.537585 + 0.310375i 0.744100 0.668068i \(-0.232879\pi\)
−0.206514 + 0.978444i \(0.566212\pi\)
\(32\) −141052. 81436.2i −0.760945 0.439332i
\(33\) 0 0
\(34\) 191724.i 0.836565i
\(35\) −133155. 57130.6i −0.524953 0.225232i
\(36\) 0 0
\(37\) 217757. + 377165.i 0.706749 + 1.22413i 0.966057 + 0.258330i \(0.0831723\pi\)
−0.259308 + 0.965795i \(0.583494\pi\)
\(38\) 192693. 333754.i 0.569670 0.986697i
\(39\) 0 0
\(40\) 212680. 122791.i 0.525432 0.303358i
\(41\) −262195. −0.594129 −0.297065 0.954857i \(-0.596008\pi\)
−0.297065 + 0.954857i \(0.596008\pi\)
\(42\) 0 0
\(43\) −26102.5 −0.0500659 −0.0250329 0.999687i \(-0.507969\pi\)
−0.0250329 + 0.999687i \(0.507969\pi\)
\(44\) −16739.0 + 9664.26i −0.0296241 + 0.0171035i
\(45\) 0 0
\(46\) −170205. + 294803.i −0.257821 + 0.446560i
\(47\) −147468. 255422.i −0.207183 0.358852i 0.743643 0.668577i \(-0.233096\pi\)
−0.950826 + 0.309725i \(0.899763\pi\)
\(48\) 0 0
\(49\) 233123. 789859.i 0.283073 0.959098i
\(50\) 422821.i 0.478367i
\(51\) 0 0
\(52\) 394686. + 227872.i 0.389260 + 0.224739i
\(53\) 749984. + 433003.i 0.691968 + 0.399508i 0.804349 0.594157i \(-0.202514\pi\)
−0.112381 + 0.993665i \(0.535848\pi\)
\(54\) 0 0
\(55\) 48627.6i 0.0394106i
\(56\) 835708. + 1.11800e6i 0.635911 + 0.850716i
\(57\) 0 0
\(58\) −905550. 1.56846e6i −0.609417 1.05554i
\(59\) −624984. + 1.08250e6i −0.396175 + 0.686195i −0.993250 0.115990i \(-0.962996\pi\)
0.597075 + 0.802185i \(0.296329\pi\)
\(60\) 0 0
\(61\) −570860. + 329586.i −0.322014 + 0.185915i −0.652290 0.757969i \(-0.726192\pi\)
0.330276 + 0.943884i \(0.392858\pi\)
\(62\) 827153. 0.440773
\(63\) 0 0
\(64\) −1.85026e6 −0.882275
\(65\) −992968. + 573290.i −0.448475 + 0.258927i
\(66\) 0 0
\(67\) −490387. + 849376.i −0.199195 + 0.345015i −0.948267 0.317472i \(-0.897166\pi\)
0.749073 + 0.662487i \(0.230499\pi\)
\(68\) 757297. + 1.31168e6i 0.292069 + 0.505878i
\(69\) 0 0
\(70\) −1.15587e6 + 137382.i −0.402776 + 0.0478725i
\(71\) 1.65029e6i 0.547213i 0.961842 + 0.273607i \(0.0882166\pi\)
−0.961842 + 0.273607i \(0.911783\pi\)
\(72\) 0 0
\(73\) 1.73722e6 + 1.00298e6i 0.522665 + 0.301761i 0.738025 0.674774i \(-0.235759\pi\)
−0.215359 + 0.976535i \(0.569092\pi\)
\(74\) 3.02995e6 + 1.74934e6i 0.869208 + 0.501838i
\(75\) 0 0
\(76\) 3.04450e6i 0.795552i
\(77\) 274456. 32620.8i 0.0685101 0.00814285i
\(78\) 0 0
\(79\) 558983. + 968188.i 0.127557 + 0.220935i 0.922730 0.385448i \(-0.125953\pi\)
−0.795173 + 0.606383i \(0.792620\pi\)
\(80\) 337936. 585322.i 0.0737937 0.127814i
\(81\) 0 0
\(82\) −1.82414e6 + 1.05317e6i −0.365350 + 0.210935i
\(83\) −7.99427e6 −1.53464 −0.767318 0.641267i \(-0.778409\pi\)
−0.767318 + 0.641267i \(0.778409\pi\)
\(84\) 0 0
\(85\) −3.81048e6 −0.672998
\(86\) −181600. + 104847.i −0.0307872 + 0.0177750i
\(87\) 0 0
\(88\) −234226. + 405690.i −0.0366391 + 0.0634608i
\(89\) 4.33239e6 + 7.50393e6i 0.651423 + 1.12830i 0.982778 + 0.184791i \(0.0591608\pi\)
−0.331355 + 0.943506i \(0.607506\pi\)
\(90\) 0 0
\(91\) −3.90179e6 5.21977e6i −0.542773 0.726117i
\(92\) 2.68919e6i 0.360051i
\(93\) 0 0
\(94\) −2.05192e6 1.18468e6i −0.254808 0.147114i
\(95\) −6.63331e6 3.82974e6i −0.793776 0.458287i
\(96\) 0 0
\(97\) 8.18016e6i 0.910040i 0.890481 + 0.455020i \(0.150368\pi\)
−0.890481 + 0.455020i \(0.849632\pi\)
\(98\) −1.55078e6 6.43159e6i −0.166440 0.690283i
\(99\) 0 0
\(100\) 1.67012e6 + 2.89272e6i 0.167012 + 0.289272i
\(101\) 3.68757e6 6.38706e6i 0.356136 0.616845i −0.631176 0.775640i \(-0.717427\pi\)
0.987312 + 0.158794i \(0.0507607\pi\)
\(102\) 0 0
\(103\) 1.82216e7 1.05203e7i 1.64307 0.948630i 0.663343 0.748315i \(-0.269137\pi\)
0.979732 0.200315i \(-0.0641964\pi\)
\(104\) 1.10455e7 0.962875
\(105\) 0 0
\(106\) 6.95703e6 0.567353
\(107\) −8.09275e6 + 4.67235e6i −0.638636 + 0.368716i −0.784089 0.620649i \(-0.786869\pi\)
0.145453 + 0.989365i \(0.453536\pi\)
\(108\) 0 0
\(109\) 1.06731e7 1.84863e7i 0.789401 1.36728i −0.136934 0.990580i \(-0.543725\pi\)
0.926335 0.376702i \(-0.122942\pi\)
\(110\) −195324. 338311.i −0.0139920 0.0242349i
\(111\) 0 0
\(112\) 3.53028e6 + 1.51467e6i 0.237435 + 0.101872i
\(113\) 2.69564e7i 1.75747i −0.477311 0.878735i \(-0.658388\pi\)
0.477311 0.878735i \(-0.341612\pi\)
\(114\) 0 0
\(115\) 5.85917e6 + 3.38279e6i 0.359247 + 0.207411i
\(116\) 1.23906e7 + 7.15373e6i 0.737039 + 0.425530i
\(117\) 0 0
\(118\) 1.00416e7i 0.562620i
\(119\) −2.55618e6 2.15065e7i −0.139052 1.16992i
\(120\) 0 0
\(121\) −9.69721e6 1.67961e7i −0.497620 0.861903i
\(122\) −2.64772e6 + 4.58599e6i −0.132012 + 0.228651i
\(123\) 0 0
\(124\) −5.65896e6 + 3.26720e6i −0.266539 + 0.153886i
\(125\) −2.08773e7 −0.956067
\(126\) 0 0
\(127\) −1.47613e7 −0.639456 −0.319728 0.947509i \(-0.603592\pi\)
−0.319728 + 0.947509i \(0.603592\pi\)
\(128\) 5.18197e6 2.99181e6i 0.218404 0.126095i
\(129\) 0 0
\(130\) −4.60551e6 + 7.97698e6i −0.183855 + 0.318447i
\(131\) 4.04219e6 + 7.00128e6i 0.157097 + 0.272100i 0.933821 0.357742i \(-0.116453\pi\)
−0.776724 + 0.629841i \(0.783120\pi\)
\(132\) 0 0
\(133\) 1.71654e7 4.00078e7i 0.632664 1.47456i
\(134\) 7.87902e6i 0.282882i
\(135\) 0 0
\(136\) 3.17901e7 + 1.83540e7i 1.08369 + 0.625670i
\(137\) −2.20103e7 1.27077e7i −0.731315 0.422225i 0.0875880 0.996157i \(-0.472084\pi\)
−0.818903 + 0.573932i \(0.805417\pi\)
\(138\) 0 0
\(139\) 2.69509e7i 0.851181i 0.904916 + 0.425590i \(0.139934\pi\)
−0.904916 + 0.425590i \(0.860066\pi\)
\(140\) 7.36519e6 5.50549e6i 0.226849 0.169570i
\(141\) 0 0
\(142\) 6.62878e6 + 1.14814e7i 0.194278 + 0.336500i
\(143\) 1.09356e6 1.89410e6i 0.0312728 0.0541661i
\(144\) 0 0
\(145\) −3.11729e7 + 1.79977e7i −0.849159 + 0.490262i
\(146\) 1.61149e7 0.428540
\(147\) 0 0
\(148\) −2.76391e7 −0.700823
\(149\) −4.89787e7 + 2.82779e7i −1.21299 + 0.700318i −0.963409 0.268037i \(-0.913625\pi\)
−0.249577 + 0.968355i \(0.580292\pi\)
\(150\) 0 0
\(151\) −1.22411e7 + 2.12022e7i −0.289335 + 0.501143i −0.973651 0.228042i \(-0.926768\pi\)
0.684316 + 0.729186i \(0.260101\pi\)
\(152\) 3.68936e7 + 6.39017e7i 0.852117 + 1.47591i
\(153\) 0 0
\(154\) 1.77841e6 1.32936e6i 0.0392383 0.0293306i
\(155\) 1.64395e7i 0.354592i
\(156\) 0 0
\(157\) −1.26855e7 7.32399e6i −0.261613 0.151042i 0.363457 0.931611i \(-0.381596\pi\)
−0.625070 + 0.780569i \(0.714930\pi\)
\(158\) 7.77791e6 + 4.49058e6i 0.156878 + 0.0905737i
\(159\) 0 0
\(160\) 2.60049e7i 0.501920i
\(161\) −1.51621e7 + 3.53386e7i −0.286331 + 0.667359i
\(162\) 0 0
\(163\) −2.68526e7 4.65100e7i −0.485657 0.841182i 0.514207 0.857666i \(-0.328086\pi\)
−0.999864 + 0.0164836i \(0.994753\pi\)
\(164\) 8.31989e6 1.44105e7i 0.147287 0.255108i
\(165\) 0 0
\(166\) −5.56176e7 + 3.21108e7i −0.943700 + 0.544846i
\(167\) 5.46056e7 0.907255 0.453628 0.891191i \(-0.350130\pi\)
0.453628 + 0.891191i \(0.350130\pi\)
\(168\) 0 0
\(169\) 1.11787e7 0.178151
\(170\) −2.65102e7 + 1.53057e7i −0.413849 + 0.238936i
\(171\) 0 0
\(172\) 828276. 1.43462e6i 0.0124115 0.0214974i
\(173\) 3.36215e7 + 5.82342e7i 0.493692 + 0.855100i 0.999974 0.00726861i \(-0.00231369\pi\)
−0.506282 + 0.862368i \(0.668980\pi\)
\(174\) 0 0
\(175\) −5.63731e6 4.74297e7i −0.0795131 0.668986i
\(176\) 1.28924e6i 0.0178253i
\(177\) 0 0
\(178\) 6.02826e7 + 3.48041e7i 0.801164 + 0.462552i
\(179\) 8.34579e7 + 4.81845e7i 1.08763 + 0.627945i 0.932945 0.360019i \(-0.117230\pi\)
0.154687 + 0.987964i \(0.450563\pi\)
\(180\) 0 0
\(181\) 4.99829e7i 0.626537i −0.949665 0.313269i \(-0.898576\pi\)
0.949665 0.313269i \(-0.101424\pi\)
\(182\) −4.81119e7 2.06425e7i −0.591565 0.253812i
\(183\) 0 0
\(184\) −3.25879e7 5.64440e7i −0.385651 0.667967i
\(185\) 3.47679e7 6.02197e7i 0.403717 0.699259i
\(186\) 0 0
\(187\) 6.29475e6 3.63428e6i 0.0703936 0.0406418i
\(188\) 1.87176e7 0.205446
\(189\) 0 0
\(190\) −6.15323e7 −0.650827
\(191\) −1.44720e8 + 8.35540e7i −1.50283 + 0.867662i −0.502840 + 0.864380i \(0.667711\pi\)
−0.999995 + 0.00328204i \(0.998955\pi\)
\(192\) 0 0
\(193\) −9.90822e6 + 1.71615e7i −0.0992076 + 0.171833i −0.911357 0.411617i \(-0.864964\pi\)
0.812149 + 0.583450i \(0.198297\pi\)
\(194\) 3.28575e7 + 5.69109e7i 0.323094 + 0.559615i
\(195\) 0 0
\(196\) 3.60140e7 + 3.78762e7i 0.341645 + 0.359311i
\(197\) 6.22113e6i 0.0579746i −0.999580 0.0289873i \(-0.990772\pi\)
0.999580 0.0289873i \(-0.00922824\pi\)
\(198\) 0 0
\(199\) 5.38158e6 + 3.10706e6i 0.0484088 + 0.0279488i 0.524009 0.851713i \(-0.324436\pi\)
−0.475600 + 0.879662i \(0.657769\pi\)
\(200\) 7.01088e7 + 4.04773e7i 0.619680 + 0.357773i
\(201\) 0 0
\(202\) 5.92480e7i 0.505759i
\(203\) −1.22491e8 1.63868e8i −1.02771 1.37486i
\(204\) 0 0
\(205\) 2.09315e7 + 3.62545e7i 0.169693 + 0.293916i
\(206\) 8.45143e7 1.46383e8i 0.673589 1.16669i
\(207\) 0 0
\(208\) 2.63260e7 1.51993e7i 0.202845 0.117112i
\(209\) 1.46106e7 0.110702
\(210\) 0 0
\(211\) 2.38902e8 1.75078 0.875388 0.483421i \(-0.160606\pi\)
0.875388 + 0.483421i \(0.160606\pi\)
\(212\) −4.75965e7 + 2.74798e7i −0.343083 + 0.198079i
\(213\) 0 0
\(214\) −3.75352e7 + 6.50129e7i −0.261813 + 0.453473i
\(215\) 2.08381e6 + 3.60927e6i 0.0142996 + 0.0247676i
\(216\) 0 0
\(217\) 9.27854e7 1.10281e7i 0.616411 0.0732643i
\(218\) 1.71484e8i 1.12105i
\(219\) 0 0
\(220\) 2.67261e6 + 1.54303e6i 0.0169222 + 0.00977004i
\(221\) −1.48423e8 8.56920e7i −0.924971 0.534032i
\(222\) 0 0
\(223\) 1.65228e8i 0.997741i 0.866677 + 0.498870i \(0.166252\pi\)
−0.866677 + 0.498870i \(0.833748\pi\)
\(224\) −1.46772e8 + 1.74448e7i −0.872522 + 0.103705i
\(225\) 0 0
\(226\) −1.08277e8 1.87541e8i −0.623959 1.08073i
\(227\) 1.72318e8 2.98463e8i 0.977777 1.69356i 0.307327 0.951604i \(-0.400566\pi\)
0.670450 0.741955i \(-0.266101\pi\)
\(228\) 0 0
\(229\) −2.64418e8 + 1.52662e8i −1.45501 + 0.840053i −0.998759 0.0497957i \(-0.984143\pi\)
−0.456255 + 0.889849i \(0.650810\pi\)
\(230\) 5.43511e7 0.294551
\(231\) 0 0
\(232\) 3.46759e8 1.82314
\(233\) −7.08819e7 + 4.09237e7i −0.367104 + 0.211948i −0.672193 0.740376i \(-0.734647\pi\)
0.305088 + 0.952324i \(0.401314\pi\)
\(234\) 0 0
\(235\) −2.35453e7 + 4.07817e7i −0.118350 + 0.204988i
\(236\) −3.96636e7 6.86994e7i −0.196427 0.340221i
\(237\) 0 0
\(238\) −1.04170e8 1.39357e8i −0.500867 0.670055i
\(239\) 1.50479e8i 0.712990i 0.934297 + 0.356495i \(0.116028\pi\)
−0.934297 + 0.356495i \(0.883972\pi\)
\(240\) 0 0
\(241\) 2.74860e8 + 1.58690e8i 1.26489 + 0.730283i 0.974016 0.226480i \(-0.0727217\pi\)
0.290871 + 0.956762i \(0.406055\pi\)
\(242\) −1.34931e8 7.79022e7i −0.612007 0.353343i
\(243\) 0 0
\(244\) 4.18333e7i 0.184356i
\(245\) −1.27827e8 + 3.08214e7i −0.555317 + 0.133897i
\(246\) 0 0
\(247\) −1.72250e8 2.98347e8i −0.727313 1.25974i
\(248\) −7.91848e7 + 1.37152e8i −0.329656 + 0.570981i
\(249\) 0 0
\(250\) −1.45247e8 + 8.38584e7i −0.587918 + 0.339435i
\(251\) 1.79103e8 0.714898 0.357449 0.933933i \(-0.383647\pi\)
0.357449 + 0.933933i \(0.383647\pi\)
\(252\) 0 0
\(253\) −1.29055e7 −0.0501016
\(254\) −1.02697e8 + 5.92921e7i −0.393223 + 0.227028i
\(255\) 0 0
\(256\) 1.42452e8 2.46733e8i 0.530673 0.919153i
\(257\) 2.01176e8 + 3.48446e8i 0.739281 + 1.28047i 0.952820 + 0.303537i \(0.0981677\pi\)
−0.213539 + 0.976935i \(0.568499\pi\)
\(258\) 0 0
\(259\) 3.63206e8 + 1.55834e8i 1.29898 + 0.557331i
\(260\) 7.27659e7i 0.256756i
\(261\) 0 0
\(262\) 5.62445e7 + 3.24728e7i 0.193208 + 0.111549i
\(263\) 3.59842e8 + 2.07755e8i 1.21974 + 0.704216i 0.964862 0.262757i \(-0.0846319\pi\)
0.254876 + 0.966974i \(0.417965\pi\)
\(264\) 0 0
\(265\) 1.38270e8i 0.456423i
\(266\) −4.12776e7 3.47290e8i −0.134471 1.13138i
\(267\) 0 0
\(268\) −3.11216e7 5.39043e7i −0.0987622 0.171061i
\(269\) 1.59733e8 2.76666e8i 0.500337 0.866610i −0.499663 0.866220i \(-0.666543\pi\)
1.00000 0.000389513i \(-0.000123986\pi\)
\(270\) 0 0
\(271\) −4.03209e8 + 2.32793e8i −1.23066 + 0.710521i −0.967167 0.254141i \(-0.918207\pi\)
−0.263491 + 0.964662i \(0.584874\pi\)
\(272\) 1.01025e8 0.304396
\(273\) 0 0
\(274\) −2.04173e8 −0.599614
\(275\) 1.38822e7 8.01491e6i 0.0402527 0.0232399i
\(276\) 0 0
\(277\) −1.34447e8 + 2.32869e8i −0.380078 + 0.658314i −0.991073 0.133320i \(-0.957436\pi\)
0.610995 + 0.791634i \(0.290769\pi\)
\(278\) 1.08255e8 + 1.87503e8i 0.302197 + 0.523420i
\(279\) 0 0
\(280\) 8.78734e7 2.04808e8i 0.239224 0.557564i
\(281\) 4.37912e8i 1.17737i 0.808361 + 0.588687i \(0.200355\pi\)
−0.808361 + 0.588687i \(0.799645\pi\)
\(282\) 0 0
\(283\) −3.77294e8 2.17831e8i −0.989526 0.571303i −0.0843931 0.996433i \(-0.526895\pi\)
−0.905132 + 0.425130i \(0.860228\pi\)
\(284\) −9.07015e7 5.23665e7i −0.234963 0.135656i
\(285\) 0 0
\(286\) 1.75702e7i 0.0444115i
\(287\) −1.90580e8 + 1.42459e8i −0.475873 + 0.355716i
\(288\) 0 0
\(289\) −7.96147e7 1.37897e8i −0.194022 0.336056i
\(290\) −1.44584e8 + 2.50426e8i −0.348118 + 0.602958i
\(291\) 0 0
\(292\) −1.10250e8 + 6.36526e7i −0.259142 + 0.149615i
\(293\) 6.77845e8 1.57432 0.787162 0.616747i \(-0.211550\pi\)
0.787162 + 0.616747i \(0.211550\pi\)
\(294\) 0 0
\(295\) 1.99575e8 0.452615
\(296\) −5.80124e8 + 3.34935e8i −1.30017 + 0.750653i
\(297\) 0 0
\(298\) −2.27170e8 + 3.93469e8i −0.497271 + 0.861299i
\(299\) 1.52148e8 + 2.63528e8i 0.329167 + 0.570135i
\(300\) 0 0
\(301\) −1.89730e7 + 1.41823e7i −0.0401008 + 0.0299754i
\(302\) 1.96677e8i 0.410894i
\(303\) 0 0
\(304\) 1.75865e8 + 1.01536e8i 0.359023 + 0.207282i
\(305\) 9.11458e7 + 5.26231e7i 0.183945 + 0.106201i
\(306\) 0 0
\(307\) 4.20196e8i 0.828833i 0.910087 + 0.414417i \(0.136014\pi\)
−0.910087 + 0.414417i \(0.863986\pi\)
\(308\) −6.91608e6 + 1.61194e7i −0.0134875 + 0.0314357i
\(309\) 0 0
\(310\) −6.60333e7 1.14373e8i −0.125892 0.218051i
\(311\) −7.09821e6 + 1.22945e7i −0.0133810 + 0.0231765i −0.872638 0.488367i \(-0.837593\pi\)
0.859257 + 0.511543i \(0.170926\pi\)
\(312\) 0 0
\(313\) −9.76677e7 + 5.63885e7i −0.180030 + 0.103941i −0.587307 0.809364i \(-0.699812\pi\)
0.407277 + 0.913305i \(0.366479\pi\)
\(314\) −1.17674e8 −0.214500
\(315\) 0 0
\(316\) −7.09500e7 −0.126487
\(317\) −4.66188e8 + 2.69154e8i −0.821965 + 0.474562i −0.851094 0.525014i \(-0.824060\pi\)
0.0291284 + 0.999576i \(0.490727\pi\)
\(318\) 0 0
\(319\) 3.43309e7 5.94628e7i 0.0592131 0.102560i
\(320\) 1.47710e8 + 2.55842e8i 0.251992 + 0.436462i
\(321\) 0 0
\(322\) 3.64603e7 + 3.06760e8i 0.0608590 + 0.512039i
\(323\) 1.14489e9i 1.89041i
\(324\) 0 0
\(325\) −3.27327e8 1.88982e8i −0.528920 0.305372i
\(326\) −3.73637e8 2.15719e8i −0.597294 0.344848i
\(327\) 0 0
\(328\) 4.03286e8i 0.631037i
\(329\) −2.45968e8 1.05533e8i −0.380797 0.163382i
\(330\) 0 0
\(331\) 5.74472e8 + 9.95014e8i 0.870704 + 1.50810i 0.861270 + 0.508148i \(0.169670\pi\)
0.00943450 + 0.999955i \(0.496997\pi\)
\(332\) 2.53672e8 4.39372e8i 0.380442 0.658945i
\(333\) 0 0
\(334\) 3.79901e8 2.19336e8i 0.557903 0.322105i
\(335\) 1.56594e8 0.227572
\(336\) 0 0
\(337\) −8.39038e8 −1.19420 −0.597100 0.802167i \(-0.703680\pi\)
−0.597100 + 0.802167i \(0.703680\pi\)
\(338\) 7.77725e7 4.49020e7i 0.109551 0.0632495i
\(339\) 0 0
\(340\) 1.20913e8 2.09428e8i 0.166839 0.288973i
\(341\) 1.56794e7 + 2.71574e7i 0.0214135 + 0.0370893i
\(342\) 0 0
\(343\) −2.59707e8 7.00784e8i −0.347500 0.937680i
\(344\) 4.01486e7i 0.0531760i
\(345\) 0 0
\(346\) 4.67823e8 + 2.70097e8i 0.607176 + 0.350553i
\(347\) 2.28377e8 + 1.31854e8i 0.293426 + 0.169410i 0.639486 0.768803i \(-0.279147\pi\)
−0.346060 + 0.938213i \(0.612481\pi\)
\(348\) 0 0
\(349\) 2.59046e8i 0.326203i 0.986609 + 0.163102i \(0.0521498\pi\)
−0.986609 + 0.163102i \(0.947850\pi\)
\(350\) −2.29732e8 3.07334e8i −0.286407 0.383153i
\(351\) 0 0
\(352\) −2.48023e7 4.29589e7i −0.0303105 0.0524994i
\(353\) 1.02389e7 1.77344e7i 0.0123892 0.0214588i −0.859764 0.510691i \(-0.829390\pi\)
0.872154 + 0.489232i \(0.162723\pi\)
\(354\) 0 0
\(355\) 2.28191e8 1.31746e8i 0.270707 0.156293i
\(356\) −5.49897e8 −0.645961
\(357\) 0 0
\(358\) 7.74177e8 0.891763
\(359\) 1.09229e9 6.30633e8i 1.24597 0.719360i 0.275666 0.961254i \(-0.411102\pi\)
0.970303 + 0.241893i \(0.0777684\pi\)
\(360\) 0 0
\(361\) 7.03747e8 1.21893e9i 0.787302 1.36365i
\(362\) −2.00768e8 3.47741e8i −0.222441 0.385279i
\(363\) 0 0
\(364\) 4.10694e8 4.88135e7i 0.446337 0.0530499i
\(365\) 3.20280e8i 0.344751i
\(366\) 0 0
\(367\) 1.33421e9 + 7.70308e8i 1.40894 + 0.813454i 0.995286 0.0969786i \(-0.0309179\pi\)
0.413657 + 0.910433i \(0.364251\pi\)
\(368\) −1.55341e8 8.96861e7i −0.162487 0.0938119i
\(369\) 0 0
\(370\) 5.58613e8i 0.573331i
\(371\) 7.80402e8 9.27556e7i 0.793431 0.0943042i
\(372\) 0 0
\(373\) −7.48555e8 1.29654e9i −0.746866 1.29361i −0.949318 0.314318i \(-0.898224\pi\)
0.202452 0.979292i \(-0.435109\pi\)
\(374\) 2.91959e7 5.05687e7i 0.0288583 0.0499840i
\(375\) 0 0
\(376\) 3.92868e8 2.26822e8i 0.381144 0.220054i
\(377\) −1.61896e9 −1.55612
\(378\) 0 0
\(379\) −1.37753e8 −0.129976 −0.0649880 0.997886i \(-0.520701\pi\)
−0.0649880 + 0.997886i \(0.520701\pi\)
\(380\) 4.20972e8 2.43049e8i 0.393560 0.227222i
\(381\) 0 0
\(382\) −6.71228e8 + 1.16260e9i −0.616096 + 1.06711i
\(383\) −7.13509e8 1.23583e9i −0.648939 1.12400i −0.983377 0.181578i \(-0.941880\pi\)
0.334437 0.942418i \(-0.391454\pi\)
\(384\) 0 0
\(385\) −2.64209e7 3.53457e7i −0.0235958 0.0315663i
\(386\) 1.59195e8i 0.140888i
\(387\) 0 0
\(388\) −4.49589e8 2.59570e8i −0.390755 0.225603i
\(389\) 2.67684e8 + 1.54547e8i 0.230568 + 0.133118i 0.610834 0.791759i \(-0.290834\pi\)
−0.380266 + 0.924877i \(0.624168\pi\)
\(390\) 0 0
\(391\) 1.01128e9i 0.855564i
\(392\) 1.21489e9 + 3.58569e8i 1.01868 + 0.300657i
\(393\) 0 0
\(394\) −2.49886e7 4.32816e7i −0.0205829 0.0356506i
\(395\) 8.92495e7 1.54585e8i 0.0728645 0.126205i
\(396\) 0 0
\(397\) 1.17021e9 6.75624e8i 0.938640 0.541924i 0.0491060 0.998794i \(-0.484363\pi\)
0.889534 + 0.456870i \(0.151029\pi\)
\(398\) 4.99209e7 0.0396910
\(399\) 0 0
\(400\) 2.22797e8 0.174060
\(401\) −1.38715e9 + 8.00873e8i −1.07428 + 0.620238i −0.929349 0.369203i \(-0.879631\pi\)
−0.144935 + 0.989441i \(0.546297\pi\)
\(402\) 0 0
\(403\) 3.69701e8 6.40341e8i 0.281373 0.487353i
\(404\) 2.34026e8 + 4.05345e8i 0.176575 + 0.305837i
\(405\) 0 0
\(406\) −1.51041e9 6.48043e8i −1.12009 0.480577i
\(407\) 1.32641e8i 0.0975206i
\(408\) 0 0
\(409\) −1.05325e9 6.08091e8i −0.761199 0.439478i 0.0685273 0.997649i \(-0.478170\pi\)
−0.829726 + 0.558171i \(0.811503\pi\)
\(410\) 2.91249e8 + 1.68153e8i 0.208700 + 0.120493i
\(411\) 0 0
\(412\) 1.33530e9i 0.940676i
\(413\) 1.33881e8 + 1.12641e9i 0.0935174 + 0.786812i
\(414\) 0 0
\(415\) 6.38198e8 + 1.10539e9i 0.438316 + 0.759186i
\(416\) −5.84810e8 + 1.01292e9i −0.398280 + 0.689841i
\(417\) 0 0
\(418\) 1.01649e8 5.86869e7i 0.0680746 0.0393029i
\(419\) −7.97541e8 −0.529668 −0.264834 0.964294i \(-0.585317\pi\)
−0.264834 + 0.964294i \(0.585317\pi\)
\(420\) 0 0
\(421\) −1.28327e9 −0.838170 −0.419085 0.907947i \(-0.637649\pi\)
−0.419085 + 0.907947i \(0.637649\pi\)
\(422\) 1.66208e9 9.59605e8i 1.07661 0.621583i
\(423\) 0 0
\(424\) −6.66009e8 + 1.15356e9i −0.424326 + 0.734954i
\(425\) −6.28053e8 1.08782e9i −0.396858 0.687378i
\(426\) 0 0
\(427\) −2.35863e8 + 5.49732e8i −0.146610 + 0.341706i
\(428\) 5.93047e8i 0.365625i
\(429\) 0 0
\(430\) 2.89949e7 + 1.67402e7i 0.0175866 + 0.0101536i
\(431\) −2.10960e8 1.21798e8i −0.126920 0.0732773i 0.435196 0.900336i \(-0.356679\pi\)
−0.562116 + 0.827059i \(0.690012\pi\)
\(432\) 0 0
\(433\) 1.56537e9i 0.926634i 0.886193 + 0.463317i \(0.153341\pi\)
−0.886193 + 0.463317i \(0.846659\pi\)
\(434\) 6.01229e8 4.49419e8i 0.353041 0.263899i
\(435\) 0 0
\(436\) 6.77350e8 + 1.17321e9i 0.391391 + 0.677909i
\(437\) −1.01639e9 + 1.76044e9i −0.582607 + 1.00911i
\(438\) 0 0
\(439\) 2.35511e8 1.35972e8i 0.132857 0.0767051i −0.432098 0.901826i \(-0.642227\pi\)
0.564955 + 0.825121i \(0.308893\pi\)
\(440\) 7.47948e7 0.0418588
\(441\) 0 0
\(442\) −1.37681e9 −0.758395
\(443\) 1.39258e9 8.04009e8i 0.761041 0.439387i −0.0686281 0.997642i \(-0.521862\pi\)
0.829670 + 0.558255i \(0.188529\pi\)
\(444\) 0 0
\(445\) 6.91727e8 1.19811e9i 0.372113 0.644519i
\(446\) 6.63679e8 + 1.14953e9i 0.354230 + 0.613545i
\(447\) 0 0
\(448\) −1.34489e9 + 1.00531e9i −0.706667 + 0.528234i
\(449\) 2.83900e9i 1.48014i 0.672528 + 0.740072i \(0.265208\pi\)
−0.672528 + 0.740072i \(0.734792\pi\)
\(450\) 0 0
\(451\) −6.91561e7 3.99273e7i −0.0354987 0.0204952i
\(452\) 1.48155e9 + 8.55373e8i 0.754626 + 0.435683i
\(453\) 0 0
\(454\) 2.76862e9i 1.38857i
\(455\) −4.10267e8 + 9.56217e8i −0.204186 + 0.475901i
\(456\) 0 0
\(457\) 3.38203e8 + 5.85785e8i 0.165757 + 0.287099i 0.936924 0.349534i \(-0.113660\pi\)
−0.771167 + 0.636633i \(0.780327\pi\)
\(458\) −1.22641e9 + 2.12420e9i −0.596492 + 1.03316i
\(459\) 0 0
\(460\) −3.71843e8 + 2.14683e8i −0.178118 + 0.102836i
\(461\) −2.87578e9 −1.36711 −0.683553 0.729901i \(-0.739566\pi\)
−0.683553 + 0.729901i \(0.739566\pi\)
\(462\) 0 0
\(463\) −1.89874e9 −0.889062 −0.444531 0.895763i \(-0.646630\pi\)
−0.444531 + 0.895763i \(0.646630\pi\)
\(464\) 8.26470e8 4.77163e8i 0.384073 0.221745i
\(465\) 0 0
\(466\) −3.28759e8 + 5.69427e8i −0.150497 + 0.260668i
\(467\) 2.67750e8 + 4.63757e8i 0.121652 + 0.210708i 0.920419 0.390932i \(-0.127847\pi\)
−0.798767 + 0.601640i \(0.794514\pi\)
\(468\) 0 0
\(469\) 1.05048e8 + 8.83825e8i 0.0470200 + 0.395604i
\(470\) 3.78301e8i 0.168072i
\(471\) 0 0
\(472\) −1.66502e9 9.61297e8i −0.728822 0.420786i
\(473\) −6.88474e6 3.97491e6i −0.00299139 0.00172708i
\(474\) 0 0
\(475\) 2.52491e9i 1.08098i
\(476\) 1.26313e9 + 5.41948e8i 0.536813 + 0.230321i
\(477\) 0 0
\(478\) 6.04434e8 + 1.04691e9i 0.253134 + 0.438442i
\(479\) 1.26132e8 2.18467e8i 0.0524386 0.0908263i −0.838615 0.544725i \(-0.816634\pi\)
0.891053 + 0.453899i \(0.149967\pi\)
\(480\) 0 0
\(481\) 2.70850e9 1.56376e9i 1.10974 0.640709i
\(482\) 2.54967e9 1.03710
\(483\) 0 0
\(484\) 1.23084e9 0.493448
\(485\) 1.13110e9 6.53038e8i 0.450198 0.259922i
\(486\) 0 0
\(487\) 9.22439e8 1.59771e9i 0.361898 0.626826i −0.626375 0.779522i \(-0.715462\pi\)
0.988273 + 0.152696i \(0.0487955\pi\)
\(488\) −5.06942e8 8.78048e8i −0.197464 0.342018i
\(489\) 0 0
\(490\) −7.65514e8 + 7.27877e8i −0.293946 + 0.279494i
\(491\) 1.15345e9i 0.439758i −0.975527 0.219879i \(-0.929434\pi\)
0.975527 0.219879i \(-0.0705663\pi\)
\(492\) 0 0
\(493\) −4.65954e9 2.69019e9i −1.75137 1.01116i
\(494\) −2.39676e9 1.38377e9i −0.894499 0.516439i
\(495\) 0 0
\(496\) 4.35853e8i 0.160381i
\(497\) 8.96657e8 + 1.19954e9i 0.327627 + 0.438296i
\(498\) 0 0
\(499\) 2.30062e9 + 3.98480e9i 0.828884 + 1.43567i 0.898914 + 0.438125i \(0.144357\pi\)
−0.0700301 + 0.997545i \(0.522310\pi\)
\(500\) 6.62471e8 1.14743e9i 0.237013 0.410518i
\(501\) 0 0
\(502\) 1.24605e9 7.19407e8i 0.439615 0.253812i
\(503\) 2.63052e9 0.921623 0.460812 0.887498i \(-0.347558\pi\)
0.460812 + 0.887498i \(0.347558\pi\)
\(504\) 0 0
\(505\) −1.17755e9 −0.406872
\(506\) −8.97857e7 + 5.18378e7i −0.0308092 + 0.0177877i
\(507\) 0 0
\(508\) 4.68400e8 8.11293e8i 0.158524 0.274571i
\(509\) −2.82600e9 4.89477e9i −0.949860 1.64521i −0.745714 0.666266i \(-0.767891\pi\)
−0.204146 0.978940i \(-0.565442\pi\)
\(510\) 0 0
\(511\) 1.80767e9 2.14853e8i 0.599304 0.0712310i
\(512\) 1.52286e9i 0.501435i
\(513\) 0 0
\(514\) 2.79923e9 + 1.61614e9i 0.909218 + 0.524937i
\(515\) −2.90934e9 1.67971e9i −0.938576 0.541887i
\(516\) 0 0
\(517\) 8.98261e7i 0.0285881i
\(518\) 3.15284e9 3.74734e8i 0.996660 0.118459i
\(519\) 0 0
\(520\) −8.81787e8 1.52730e9i −0.275012 0.476335i
\(521\) −1.79442e9 + 3.10803e9i −0.555895 + 0.962839i 0.441938 + 0.897045i \(0.354291\pi\)
−0.997833 + 0.0657930i \(0.979042\pi\)
\(522\) 0 0
\(523\) 2.27933e9 1.31597e9i 0.696707 0.402244i −0.109413 0.993996i \(-0.534897\pi\)
0.806120 + 0.591752i \(0.201564\pi\)
\(524\) −5.13062e8 −0.155780
\(525\) 0 0
\(526\) 3.33798e9 1.00008
\(527\) 2.12807e9 1.22864e9i 0.633358 0.365669i
\(528\) 0 0
\(529\) −8.04640e8 + 1.39368e9i −0.236323 + 0.409324i
\(530\) −5.55394e8 9.61971e8i −0.162045 0.280670i
\(531\) 0 0
\(532\) 1.65418e9 + 2.21294e9i 0.476311 + 0.637205i
\(533\) 1.88288e9i 0.538613i
\(534\) 0 0
\(535\) 1.29212e9 + 7.46007e8i 0.364809 + 0.210622i
\(536\) −1.30644e9 7.54272e8i −0.366448 0.211569i
\(537\) 0 0
\(538\) 2.56643e9i 0.710544i
\(539\) 1.81768e8 1.72832e8i 0.0499986 0.0475404i
\(540\) 0 0
\(541\) −8.25492e8 1.42979e9i −0.224142 0.388225i 0.731920 0.681391i \(-0.238625\pi\)
−0.956062 + 0.293166i \(0.905291\pi\)
\(542\) −1.87013e9 + 3.23916e9i −0.504516 + 0.873847i
\(543\) 0 0
\(544\) −3.36628e9 + 1.94353e9i −0.896509 + 0.517600i
\(545\) −3.40822e9 −0.901861
\(546\) 0 0
\(547\) 1.64567e9 0.429919 0.214959 0.976623i \(-0.431038\pi\)
0.214959 + 0.976623i \(0.431038\pi\)
\(548\) 1.39685e9 8.06472e8i 0.362592 0.209342i
\(549\) 0 0
\(550\) 6.43875e7 1.11522e8i 0.0165018 0.0285820i
\(551\) −5.40757e9 9.36619e9i −1.37712 2.38524i
\(552\) 0 0
\(553\) 9.32353e8 + 4.00028e8i 0.234446 + 0.100589i
\(554\) 2.16015e9i 0.539760i
\(555\) 0 0
\(556\) −1.48125e9 8.55198e8i −0.365482 0.211011i
\(557\) −6.27401e8 3.62230e8i −0.153834 0.0888160i 0.421107 0.907011i \(-0.361642\pi\)
−0.574941 + 0.818195i \(0.694975\pi\)
\(558\) 0 0
\(559\) 1.87447e8i 0.0453877i
\(560\) −7.23907e7 6.09061e8i −0.0174191 0.146556i
\(561\) 0 0
\(562\) 1.75898e9 + 3.04664e9i 0.418006 + 0.724008i
\(563\) 3.19980e9 5.54222e9i 0.755690 1.30889i −0.189341 0.981911i \(-0.560635\pi\)
0.945031 0.326982i \(-0.106032\pi\)
\(564\) 0 0
\(565\) −3.72735e9 + 2.15199e9i −0.869421 + 0.501961i
\(566\) −3.49987e9 −0.811324
\(567\) 0 0
\(568\) −2.53834e9 −0.581206
\(569\) 5.32872e9 3.07654e9i 1.21263 0.700115i 0.249302 0.968426i \(-0.419799\pi\)
0.963332 + 0.268311i \(0.0864655\pi\)
\(570\) 0 0
\(571\) 7.05090e8 1.22125e9i 0.158496 0.274523i −0.775831 0.630941i \(-0.782669\pi\)
0.934326 + 0.356418i \(0.116002\pi\)
\(572\) 6.94011e7 + 1.20206e8i 0.0155053 + 0.0268560i
\(573\) 0 0
\(574\) −7.53683e8 + 1.75662e9i −0.166340 + 0.387692i
\(575\) 2.23024e9i 0.489231i
\(576\) 0 0
\(577\) −1.05307e9 6.07993e8i −0.228215 0.131760i 0.381533 0.924355i \(-0.375396\pi\)
−0.609748 + 0.792595i \(0.708729\pi\)
\(578\) −1.10779e9 6.39582e8i −0.238621 0.137768i
\(579\) 0 0
\(580\) 2.28439e9i 0.486152i
\(581\) −5.81075e9 + 4.34355e9i −1.22918 + 0.918815i
\(582\) 0 0
\(583\) 1.31876e8 + 2.28416e8i 0.0275630 + 0.0477405i
\(584\) −1.54270e9 + 2.67204e9i −0.320507 + 0.555134i
\(585\) 0 0
\(586\) 4.71590e9 2.72272e9i 0.968105 0.558936i
\(587\) 7.81812e9 1.59540 0.797698 0.603057i \(-0.206051\pi\)
0.797698 + 0.603057i \(0.206051\pi\)
\(588\) 0 0
\(589\) 4.93942e9 0.996029
\(590\) 1.38848e9 8.01639e8i 0.278329 0.160693i
\(591\) 0 0
\(592\) −9.21782e8 + 1.59657e9i −0.182601 + 0.316274i
\(593\) 2.46375e9 + 4.26734e9i 0.485183 + 0.840361i 0.999855 0.0170260i \(-0.00541981\pi\)
−0.514672 + 0.857387i \(0.672086\pi\)
\(594\) 0 0
\(595\) −2.76971e9 + 2.07036e9i −0.539044 + 0.402936i
\(596\) 3.58922e9i 0.694446i
\(597\) 0 0
\(598\) 2.11704e9 + 1.22228e9i 0.404833 + 0.233730i
\(599\) 6.19146e9 + 3.57464e9i 1.17706 + 0.679577i 0.955333 0.295531i \(-0.0954966\pi\)
0.221729 + 0.975108i \(0.428830\pi\)
\(600\) 0 0
\(601\) 4.83270e9i 0.908091i −0.890978 0.454046i \(-0.849980\pi\)
0.890978 0.454046i \(-0.150020\pi\)
\(602\) −7.50319e7 + 1.74878e8i −0.0140171 + 0.0326700i
\(603\) 0 0
\(604\) −7.76862e8 1.34556e9i −0.143455 0.248471i
\(605\) −1.54829e9 + 2.68173e9i −0.284256 + 0.492346i
\(606\) 0 0
\(607\) −3.22185e9 + 1.86014e9i −0.584716 + 0.337586i −0.763005 0.646392i \(-0.776277\pi\)
0.178289 + 0.983978i \(0.442944\pi\)
\(608\) −7.81340e9 −1.40987
\(609\) 0 0
\(610\) 8.45491e8 0.150819
\(611\) −1.83424e9 + 1.05900e9i −0.325320 + 0.187824i
\(612\) 0 0
\(613\) −2.90251e7 + 5.02729e7i −0.00508934 + 0.00881500i −0.868559 0.495586i \(-0.834953\pi\)
0.863470 + 0.504401i \(0.168287\pi\)
\(614\) 1.68781e9 + 2.92338e9i 0.294263 + 0.509678i
\(615\) 0 0
\(616\) 5.01745e7 + 4.22145e8i 0.00864869 + 0.0727660i
\(617\) 6.85458e9i 1.17485i 0.809278 + 0.587425i \(0.199858\pi\)
−0.809278 + 0.587425i \(0.800142\pi\)
\(618\) 0 0
\(619\) −8.14512e9 4.70259e9i −1.38032 0.796929i −0.388124 0.921607i \(-0.626877\pi\)
−0.992197 + 0.124679i \(0.960210\pi\)
\(620\) 9.03532e8 + 5.21655e8i 0.152255 + 0.0879047i
\(621\) 0 0
\(622\) 1.14047e8i 0.0190027i
\(623\) 7.22619e9 + 3.10041e9i 1.19730 + 0.513702i
\(624\) 0 0
\(625\) −3.89280e8 6.74253e8i −0.0637797 0.110470i
\(626\) −4.52995e8 + 7.84611e8i −0.0738046 + 0.127833i
\(627\) 0 0
\(628\) 8.05066e8 4.64805e8i 0.129710 0.0748880i
\(629\) 1.03938e10 1.66532
\(630\) 0 0
\(631\) 2.44762e9 0.387830 0.193915 0.981018i \(-0.437881\pi\)
0.193915 + 0.981018i \(0.437881\pi\)
\(632\) −1.48918e9 + 8.59781e8i −0.234660 + 0.135481i
\(633\) 0 0
\(634\) −2.16224e9 + 3.74511e9i −0.336970 + 0.583649i
\(635\) 1.17842e9 + 2.04109e9i 0.182639 + 0.316339i
\(636\) 0 0
\(637\) −5.67214e9 1.67410e9i −0.869479 0.256622i
\(638\) 5.51592e8i 0.0840902i
\(639\) 0 0
\(640\) −8.27374e8 4.77684e8i −0.124759 0.0720296i
\(641\) −2.36346e9 1.36454e9i −0.354441 0.204637i 0.312198 0.950017i \(-0.398935\pi\)
−0.666640 + 0.745380i \(0.732268\pi\)
\(642\) 0 0
\(643\) 1.18675e10i 1.76044i 0.474564 + 0.880221i \(0.342606\pi\)
−0.474564 + 0.880221i \(0.657394\pi\)
\(644\) −1.46112e9 1.95468e9i −0.215569 0.288386i
\(645\) 0 0
\(646\) −4.59874e9 7.96525e9i −0.671158 1.16248i
\(647\) 5.67492e9 9.82924e9i 0.823748 1.42677i −0.0791240 0.996865i \(-0.525212\pi\)
0.902872 0.429909i \(-0.141454\pi\)
\(648\) 0 0
\(649\) −3.29689e8 + 1.90346e8i −0.0473422 + 0.0273330i
\(650\) −3.03636e9 −0.433668
\(651\) 0 0
\(652\) 3.40831e9 0.481585
\(653\) −6.36961e9 + 3.67750e9i −0.895193 + 0.516840i −0.875638 0.482969i \(-0.839558\pi\)
−0.0195554 + 0.999809i \(0.506225\pi\)
\(654\) 0 0
\(655\) 6.45392e8 1.11785e9i 0.0897386 0.155432i
\(656\) −5.54947e8 9.61196e8i −0.0767517 0.132938i
\(657\) 0 0
\(658\) −2.13514e9 + 2.53775e8i −0.292171 + 0.0347263i
\(659\) 1.12262e10i 1.52804i 0.645192 + 0.764020i \(0.276777\pi\)
−0.645192 + 0.764020i \(0.723223\pi\)
\(660\) 0 0
\(661\) −1.82029e8 1.05094e8i −0.0245151 0.0141538i 0.487692 0.873016i \(-0.337839\pi\)
−0.512207 + 0.858862i \(0.671172\pi\)
\(662\) 7.99341e9 + 4.61500e9i 1.07085 + 0.618257i
\(663\) 0 0
\(664\) 1.22961e10i 1.62997i
\(665\) −6.90235e9 + 8.20387e8i −0.910167 + 0.108179i
\(666\) 0 0
\(667\) 4.77648e9 + 8.27310e9i 0.623257 + 1.07951i
\(668\) −1.73273e9 + 3.00117e9i −0.224912 + 0.389559i
\(669\) 0 0
\(670\) 1.08946e9 6.28998e8i 0.139942 0.0807956i
\(671\) −2.00759e8 −0.0256534
\(672\) 0 0
\(673\) −1.43053e10 −1.80903 −0.904513 0.426447i \(-0.859765\pi\)
−0.904513 + 0.426447i \(0.859765\pi\)
\(674\) −5.83734e9 + 3.37019e9i −0.734354 + 0.423979i
\(675\) 0 0
\(676\) −3.54720e8 + 6.14393e8i −0.0441644 + 0.0764950i
\(677\) 2.58103e9 + 4.47047e9i 0.319692 + 0.553723i 0.980424 0.196899i \(-0.0630871\pi\)
−0.660731 + 0.750622i \(0.729754\pi\)
\(678\) 0 0
\(679\) 4.44455e9 + 5.94587e9i 0.544858 + 0.728906i
\(680\) 5.86096e9i 0.714805i
\(681\) 0 0
\(682\) 2.18168e8 + 1.25960e8i 0.0263358 + 0.0152050i
\(683\) 1.30876e9 + 7.55611e8i 0.157176 + 0.0907457i 0.576525 0.817079i \(-0.304408\pi\)
−0.419349 + 0.907825i \(0.637742\pi\)
\(684\) 0 0
\(685\) 4.05792e9i 0.482376i
\(686\) −4.62169e9 3.83231e9i −0.546597 0.453238i
\(687\) 0 0
\(688\) −5.52470e7 9.56906e7i −0.00646769 0.0112024i
\(689\) 3.10949e9 5.38579e9i 0.362178 0.627310i
\(690\) 0 0
\(691\) 4.35968e8 2.51706e8i 0.0502668 0.0290216i −0.474656 0.880171i \(-0.657428\pi\)
0.524923 + 0.851150i \(0.324094\pi\)
\(692\) −4.26747e9 −0.489553
\(693\) 0 0
\(694\) 2.11848e9 0.240584
\(695\) 3.72659e9 2.15155e9i 0.421080 0.243111i
\(696\) 0 0
\(697\) −3.12872e9 + 5.41911e9i −0.349987 + 0.606196i
\(698\) 1.04052e9 + 1.80223e9i 0.115813 + 0.200594i
\(699\) 0 0
\(700\) 2.78566e9 + 1.19519e9i 0.306962 + 0.131703i
\(701\) 7.97507e9i 0.874422i −0.899359 0.437211i \(-0.855966\pi\)
0.899359 0.437211i \(-0.144034\pi\)
\(702\) 0 0
\(703\) 1.80936e10 + 1.04463e10i 1.96418 + 1.13402i
\(704\) −4.88023e8 2.81760e8i −0.0527152 0.0304351i
\(705\) 0 0
\(706\) 1.64509e8i 0.0175943i
\(707\) −7.89931e8 6.64611e9i −0.0840662 0.707293i
\(708\) 0 0
\(709\) −2.59137e9 4.48839e9i −0.273066 0.472965i 0.696579 0.717480i \(-0.254705\pi\)
−0.969645 + 0.244515i \(0.921371\pi\)
\(710\) 1.05838e9 1.83316e9i 0.110978 0.192219i
\(711\) 0 0
\(712\) −1.15419e10 + 6.66372e9i −1.19839 + 0.691890i
\(713\) −4.36296e9 −0.450783
\(714\) 0 0
\(715\) −3.49205e8 −0.0357280
\(716\) −5.29652e9 + 3.05795e9i −0.539256 + 0.311340i
\(717\) 0 0
\(718\) 5.06617e9 8.77487e9i 0.510793 0.884719i
\(719\) −2.43940e9 4.22517e9i −0.244755 0.423929i 0.717307 0.696757i \(-0.245374\pi\)
−0.962063 + 0.272828i \(0.912041\pi\)
\(720\) 0 0
\(721\) 7.52867e9 1.75472e10i 0.748075 1.74355i
\(722\) 1.13071e10i 1.11807i
\(723\) 0 0
\(724\) 2.74711e9 + 1.58604e9i 0.269024 + 0.155321i
\(725\) −1.02760e10 5.93284e9i −1.00148 0.578202i
\(726\) 0 0
\(727\) 1.25987e10i 1.21606i 0.793915 + 0.608029i \(0.208040\pi\)
−0.793915 + 0.608029i \(0.791960\pi\)
\(728\) 8.02861e9 6.00139e9i 0.771224 0.576491i
\(729\) 0 0
\(730\) −1.28648e9 2.22825e9i −0.122398 0.211999i
\(731\) −3.11476e8 + 5.39492e8i −0.0294926 + 0.0510827i
\(732\) 0 0
\(733\) 9.42671e9 5.44251e9i 0.884089 0.510429i 0.0120847 0.999927i \(-0.496153\pi\)
0.872005 + 0.489498i \(0.162820\pi\)
\(734\) 1.23765e10 1.15521
\(735\) 0 0
\(736\) 6.90153e9 0.638077
\(737\) −2.58687e8 + 1.49353e8i −0.0238034 + 0.0137429i
\(738\) 0 0
\(739\) −8.17785e8 + 1.41645e9i −0.0745390 + 0.129105i −0.900886 0.434056i \(-0.857082\pi\)
0.826347 + 0.563162i \(0.190415\pi\)
\(740\) 2.20649e9 + 3.82175e9i 0.200166 + 0.346698i
\(741\) 0 0
\(742\) 5.05683e9 3.77998e9i 0.454427 0.339685i
\(743\) 1.01867e10i 0.911110i −0.890208 0.455555i \(-0.849441\pi\)
0.890208 0.455555i \(-0.150559\pi\)
\(744\) 0 0
\(745\) 7.82014e9 + 4.51496e9i 0.692896 + 0.400043i
\(746\) −1.04157e10 6.01349e9i −0.918547 0.530324i
\(747\) 0 0
\(748\) 4.61287e8i 0.0403010i
\(749\) −3.34370e9 + 7.79323e9i −0.290764 + 0.677690i
\(750\) 0 0
\(751\) −5.96289e9 1.03280e10i −0.513709 0.889769i −0.999874 0.0159023i \(-0.994938\pi\)
0.486165 0.873867i \(-0.338395\pi\)
\(752\) 6.24244e8 1.08122e9i 0.0535293 0.0927155i
\(753\) 0 0
\(754\) −1.12634e10 + 6.50295e9i −0.956910 + 0.552472i
\(755\) 3.90893e9 0.330555
\(756\) 0 0
\(757\) −2.63914e8 −0.0221119 −0.0110560 0.999939i \(-0.503519\pi\)
−0.0110560 + 0.999939i \(0.503519\pi\)
\(758\) −9.58372e8 + 5.53316e8i −0.0799267 + 0.0461457i
\(759\) 0 0
\(760\) 5.89059e9 1.02028e10i 0.486756 0.843086i
\(761\) 7.19322e9 + 1.24590e10i 0.591667 + 1.02480i 0.994008 + 0.109307i \(0.0348633\pi\)
−0.402341 + 0.915490i \(0.631803\pi\)
\(762\) 0 0
\(763\) −2.28633e9 1.92361e10i −0.186339 1.56777i
\(764\) 1.06052e10i 0.860387i
\(765\) 0 0
\(766\) −9.92804e9 5.73195e9i −0.798110 0.460789i
\(767\) 7.77369e9 + 4.48814e9i 0.622076 + 0.359156i
\(768\) 0 0
\(769\) 8.88927e9i 0.704894i 0.935832 + 0.352447i \(0.114650\pi\)
−0.935832 + 0.352447i \(0.885350\pi\)
\(770\) −3.25790e8 1.39781e8i −0.0257170 0.0110339i
\(771\) 0 0
\(772\) −6.28809e8 1.08913e9i −0.0491879 0.0851959i
\(773\) 2.11439e9 3.66223e9i 0.164648 0.285179i −0.771882 0.635766i \(-0.780684\pi\)
0.936530 + 0.350587i \(0.114018\pi\)
\(774\) 0 0
\(775\) 4.69317e9 2.70960e9i 0.362168 0.209098i
\(776\) −1.25820e10 −0.966573
\(777\) 0 0
\(778\) 2.48310e9 0.189045
\(779\) −1.08930e10 + 6.28908e9i −0.825594 + 0.476657i
\(780\) 0 0
\(781\) −2.51308e8 + 4.35278e8i −0.0188768 + 0.0326955i
\(782\) 4.06204e9 + 7.03566e9i 0.303753 + 0.526116i
\(783\) 0 0
\(784\) 3.38900e9 8.17152e8i 0.251169 0.0605615i
\(785\) 2.33875e9i 0.172560i
\(786\) 0 0
\(787\) 4.97780e9 + 2.87393e9i 0.364020 + 0.210167i 0.670843 0.741599i \(-0.265932\pi\)
−0.306823 + 0.951767i \(0.599266\pi\)
\(788\) 3.41919e8 + 1.97407e8i 0.0248933 + 0.0143721i
\(789\) 0 0
\(790\) 1.43397e9i 0.103477i
\(791\) −1.46463e10 1.95937e10i −1.05223 1.40766i
\(792\) 0 0
\(793\) 2.36683e9 + 4.09947e9i 0.168543 + 0.291925i
\(794\) 5.42760e9 9.40088e9i 0.384801 0.666495i
\(795\) 0 0
\(796\) −3.41534e8 + 1.97184e8i −0.0240015 + 0.0138572i
\(797\) 2.43832e10 1.70603 0.853015 0.521886i \(-0.174771\pi\)
0.853015 + 0.521886i \(0.174771\pi\)
\(798\) 0 0
\(799\) −7.03882e9 −0.488187
\(800\) −7.42389e9 + 4.28618e9i −0.512645 + 0.295975i
\(801\) 0 0
\(802\) −6.43379e9 + 1.11436e10i −0.440409 + 0.762811i
\(803\) 3.05470e8 + 5.29090e8i 0.0208192 + 0.0360599i
\(804\) 0 0
\(805\) 6.09680e9 7.24643e8i 0.411924 0.0489597i
\(806\) 5.93996e9i 0.399587i
\(807\) 0 0
\(808\) 9.82404e9 + 5.67191e9i 0.655164 + 0.378259i
\(809\) 1.28248e10 + 7.40442e9i 0.851593 + 0.491667i 0.861188 0.508286i \(-0.169721\pi\)
−0.00959498 + 0.999954i \(0.503054\pi\)
\(810\) 0 0
\(811\) 4.46501e9i 0.293934i −0.989141 0.146967i \(-0.953049\pi\)
0.989141 0.146967i \(-0.0469510\pi\)
\(812\) 1.28932e10 1.53243e9i 0.845111 0.100447i
\(813\) 0 0
\(814\) 5.32782e8 + 9.22806e8i 0.0346230 + 0.0599687i
\(815\) −4.28739e9 + 7.42598e9i −0.277422 + 0.480510i
\(816\) 0 0
\(817\) −1.08444e9 + 6.26101e8i −0.0695709 + 0.0401668i
\(818\) −9.77017e9 −0.624116
\(819\) 0 0
\(820\) −2.65677e9 −0.168270
\(821\) −6.94286e9 + 4.00846e9i −0.437862 + 0.252800i −0.702690 0.711496i \(-0.748018\pi\)
0.264828 + 0.964296i \(0.414685\pi\)
\(822\) 0 0
\(823\) 1.83110e9 3.17156e9i 0.114502 0.198323i −0.803079 0.595873i \(-0.796806\pi\)
0.917581 + 0.397550i \(0.130139\pi\)
\(824\) 1.61814e10 + 2.80270e10i 1.00756 + 1.74514i
\(825\) 0 0
\(826\) 5.45592e9 + 7.29887e9i 0.336851 + 0.450636i
\(827\) 1.72516e10i 1.06062i 0.847804 + 0.530309i \(0.177924\pi\)
−0.847804 + 0.530309i \(0.822076\pi\)
\(828\) 0 0
\(829\) 3.98486e9 + 2.30066e9i 0.242925 + 0.140253i 0.616520 0.787339i \(-0.288542\pi\)
−0.373595 + 0.927592i \(0.621875\pi\)
\(830\) 8.88013e9 + 5.12695e9i 0.539071 + 0.311233i
\(831\) 0 0
\(832\) 1.32871e10i 0.799834i
\(833\) −1.35432e10 1.42435e10i −0.811826 0.853804i
\(834\) 0 0
\(835\) −4.35928e9 7.55049e9i −0.259126 0.448820i
\(836\) −4.63619e8 + 8.03012e8i −0.0274435 + 0.0475335i
\(837\) 0 0
\(838\) −5.54864e9 + 3.20351e9i −0.325711 + 0.188049i
\(839\) 3.40305e9 0.198931 0.0994654 0.995041i \(-0.468287\pi\)
0.0994654 + 0.995041i \(0.468287\pi\)
\(840\) 0 0
\(841\) −3.35753e10 −1.94641
\(842\) −8.92798e9 + 5.15457e9i −0.515420 + 0.297578i
\(843\) 0 0
\(844\) −7.58076e9 + 1.31303e10i −0.434024 + 0.751752i
\(845\) −8.92421e8 1.54572e9i −0.0508828 0.0881316i
\(846\) 0 0
\(847\) −1.61744e10 6.93966e9i −0.914611 0.392415i
\(848\) 3.66588e9i 0.206439i
\(849\) 0 0
\(850\) −8.73896e9 5.04544e9i −0.488083 0.281795i
\(851\) −1.59820e10 9.22719e9i −0.888949 0.513235i
\(852\) 0 0
\(853\) 2.15871e10i 1.19089i 0.803395 + 0.595446i \(0.203025\pi\)
−0.803395 + 0.595446i \(0.796975\pi\)
\(854\) 5.67180e8 + 4.77199e9i 0.0311615 + 0.262178i
\(855\) 0 0
\(856\) −7.18662e9 1.24476e10i −0.391621 0.678308i
\(857\) 3.33532e9 5.77695e9i 0.181011 0.313520i −0.761214 0.648501i \(-0.775396\pi\)
0.942225 + 0.334980i \(0.108730\pi\)
\(858\) 0 0
\(859\) −1.62268e10 + 9.36854e9i −0.873487 + 0.504308i −0.868505 0.495680i \(-0.834919\pi\)
−0.00498155 + 0.999988i \(0.501586\pi\)
\(860\) −2.64492e8 −0.0141797
\(861\) 0 0
\(862\) −1.95692e9 −0.104063
\(863\) −2.17945e10 + 1.25831e10i −1.15427 + 0.666420i −0.949925 0.312478i \(-0.898841\pi\)
−0.204349 + 0.978898i \(0.565508\pi\)
\(864\) 0 0
\(865\) 5.36815e9 9.29790e9i 0.282012 0.488460i
\(866\) 6.28766e9 + 1.08905e10i 0.328985 + 0.569819i
\(867\) 0 0
\(868\) −2.33812e9 + 5.44951e9i −0.121352 + 0.282839i
\(869\) 3.40490e8i 0.0176009i
\(870\) 0 0
\(871\) 6.09955e9 + 3.52157e9i 0.312776 + 0.180582i
\(872\) 2.84341e10 + 1.64164e10i 1.45222 + 0.838439i
\(873\) 0 0
\(874\) 1.63303e10i 0.827378i
\(875\) −1.51749e10 + 1.13433e10i −0.765771 + 0.572415i
\(876\) 0 0
\(877\) −4.67159e9 8.09143e9i −0.233865 0.405067i 0.725077 0.688668i \(-0.241804\pi\)
−0.958942 + 0.283601i \(0.908471\pi\)
\(878\) 1.09233e9 1.89197e9i 0.0544656 0.0943372i
\(879\) 0 0
\(880\) 1.78267e8 1.02922e8i 0.00881821 0.00509120i
\(881\) −3.97329e9 −0.195765 −0.0978825 0.995198i \(-0.531207\pi\)
−0.0978825 + 0.995198i \(0.531207\pi\)
\(882\) 0 0
\(883\) 1.04774e10 0.512143 0.256072 0.966658i \(-0.417572\pi\)
0.256072 + 0.966658i \(0.417572\pi\)
\(884\) 9.41942e9 5.43831e9i 0.458608 0.264777i
\(885\) 0 0
\(886\) 6.45898e9 1.11873e10i 0.311994 0.540389i
\(887\) 1.07525e10 + 1.86238e10i 0.517339 + 0.896057i 0.999797 + 0.0201380i \(0.00641055\pi\)
−0.482459 + 0.875919i \(0.660256\pi\)
\(888\) 0 0
\(889\) −1.07294e10 + 8.02028e9i −0.512178 + 0.382854i
\(890\) 1.11139e10i 0.528449i
\(891\) 0 0
\(892\) −9.08111e9 5.24298e9i −0.428412 0.247344i
\(893\) −1.22532e10 7.07441e9i −0.575799 0.332437i
\(894\) 0 0
\(895\) 1.53866e10i 0.717403i
\(896\) 2.14104e9 4.99017e9i 0.0994368 0.231759i
\(897\) 0 0
\(898\) 1.14035e10 + 1.97515e10i 0.525499 + 0.910191i
\(899\) 1.16063e10 2.01026e10i 0.532762 0.922771i
\(900\) 0 0
\(901\) 1.78988e10 1.03339e10i 0.815244 0.470682i
\(902\) −6.41509e8 −0.0291058
\(903\) 0 0
\(904\) 4.14621e10 1.86664
\(905\) −6.91130e9 + 3.99024e9i −0.309948 + 0.178949i
\(906\) 0 0
\(907\) −4.43980e8 + 7.68996e8i −0.0197578 + 0.0342215i −0.875735 0.482792i \(-0.839623\pi\)
0.855977 + 0.517013i \(0.172956\pi\)
\(908\) 1.09359e10 + 1.89415e10i 0.484789 + 0.839679i
\(909\) 0 0
\(910\) 9.86567e8 + 8.30051e9i 0.0433992 + 0.365140i
\(911\) 3.55236e9i 0.155669i 0.996966 + 0.0778346i \(0.0248006\pi\)
−0.996966 + 0.0778346i \(0.975199\pi\)
\(912\) 0 0
\(913\) −2.10855e9 1.21737e9i −0.0916932 0.0529391i
\(914\) 4.70589e9 + 2.71695e9i 0.203859 + 0.117698i
\(915\) 0 0
\(916\) 1.93769e10i 0.833010i
\(917\) 6.74215e9 + 2.89273e9i 0.288739 + 0.123884i
\(918\) 0 0
\(919\) −1.01152e10 1.75200e10i −0.429902 0.744612i 0.566962 0.823744i \(-0.308119\pi\)
−0.996864 + 0.0791317i \(0.974785\pi\)
\(920\) −5.20312e9 + 9.01207e9i −0.220296 + 0.381564i
\(921\) 0 0
\(922\) −2.00073e10 + 1.15512e10i −0.840680 + 0.485367i
\(923\) 1.18511e10 0.496081
\(924\) 0 0
\(925\) 2.29221e10 0.952266
\(926\) −1.32099e10 + 7.62674e9i −0.546715 + 0.315646i
\(927\) 0 0
\(928\) −1.83593e10 + 3.17993e10i −0.754117 + 1.30617i
\(929\) −2.21346e10 3.83383e10i −0.905768 1.56884i −0.819883 0.572531i \(-0.805962\pi\)
−0.0858848 0.996305i \(-0.527372\pi\)
\(930\) 0 0
\(931\) −9.26059e9 3.84068e10i −0.376110 1.55985i
\(932\) 5.19431e9i 0.210171i
\(933\) 0 0
\(934\) 3.72558e9 + 2.15096e9i 0.149616 + 0.0863811i
\(935\) −1.00505e9 5.80263e8i −0.0402110 0.0232158i
\(936\) 0 0
\(937\) 1.52361e10i 0.605042i −0.953143 0.302521i \(-0.902172\pi\)
0.953143 0.302521i \(-0.0978283\pi\)
\(938\) 4.28093e9 + 5.72698e9i 0.169367 + 0.226577i
\(939\) 0 0
\(940\) −1.49426e9 2.58814e9i −0.0586786 0.101634i
\(941\) 1.55682e10 2.69650e10i 0.609082 1.05496i −0.382310 0.924034i \(-0.624871\pi\)
0.991392 0.130927i \(-0.0417952\pi\)
\(942\) 0 0
\(943\) 9.62173e9 5.55511e9i 0.373648 0.215726i
\(944\) −5.29122e9 −0.204717
\(945\) 0 0
\(946\) −6.38646e7 −0.00245268
\(947\) 4.14053e10 2.39053e10i 1.58428 0.914682i 0.590051 0.807366i \(-0.299108\pi\)
0.994225 0.107316i \(-0.0342257\pi\)
\(948\) 0 0
\(949\) 7.20263e9 1.24753e10i 0.273564 0.473827i
\(950\) −1.01419e10 1.75663e10i −0.383784 0.664733i
\(951\) 0 0
\(952\) 3.30795e10 3.93170e9i 1.24259 0.147690i
\(953\) 2.23812e10i 0.837640i 0.908069 + 0.418820i \(0.137556\pi\)
−0.908069 + 0.418820i \(0.862444\pi\)
\(954\) 0 0
\(955\) 2.31065e10 + 1.33406e10i 0.858466 + 0.495636i
\(956\) −8.27046e9 4.77495e9i −0.306145 0.176753i
\(957\) 0 0
\(958\) 2.02655e9i 0.0744696i
\(959\) −2.29030e10 + 2.72217e9i −0.838548 + 0.0996666i
\(960\) 0 0
\(961\) −8.45558e9 1.46455e10i −0.307335 0.532319i
\(962\) 1.25624e10 2.17587e10i 0.454945 0.787988i
\(963\) 0 0
\(964\) −1.74435e10 + 1.00710e10i −0.627141 + 0.362080i
\(965\) 3.16397e9 0.113341
\(966\) 0 0
\(967\) −2.29570e10 −0.816437 −0.408218 0.912884i \(-0.633850\pi\)
−0.408218 + 0.912884i \(0.633850\pi\)
\(968\) 2.58343e10 1.49154e10i 0.915445 0.528533i
\(969\) 0 0
\(970\) 5.24616e9 9.08662e9i 0.184561 0.319670i
\(971\) −1.71932e10 2.97795e10i −0.602684 1.04388i −0.992413 0.122950i \(-0.960765\pi\)
0.389729 0.920930i \(-0.372569\pi\)
\(972\) 0 0
\(973\) 1.46433e10 + 1.95897e10i 0.509618 + 0.681762i
\(974\) 1.48208e10i 0.513942i
\(975\) 0 0
\(976\) −2.41650e9 1.39517e9i −0.0831979 0.0480343i
\(977\) −1.61184e10 9.30598e9i −0.552957 0.319250i 0.197357 0.980332i \(-0.436764\pi\)
−0.750314 + 0.661082i \(0.770098\pi\)
\(978\) 0 0
\(979\) 2.63896e9i 0.0898864i
\(980\) 2.36219e9 8.00350e9i 0.0801721 0.271637i
\(981\) 0 0
\(982\) −4.63311e9 8.02478e9i −0.156129 0.270423i
\(983\) −2.47227e10 + 4.28211e10i −0.830156 + 1.43787i 0.0677590 + 0.997702i \(0.478415\pi\)
−0.897915 + 0.440170i \(0.854918\pi\)
\(984\) 0 0
\(985\) −8.60215e8 + 4.96646e8i −0.0286801 + 0.0165585i
\(986\) −4.32230e10 −1.43597
\(987\) 0 0
\(988\) 2.18632e10 0.721214
\(989\) 9.57879e8 5.53031e8i 0.0314864 0.0181787i
\(990\) 0 0
\(991\) 4.05406e9 7.02184e9i 0.132322 0.229189i −0.792249 0.610198i \(-0.791090\pi\)
0.924571 + 0.381009i \(0.124423\pi\)
\(992\) −8.38494e9 1.45231e10i −0.272715 0.472357i
\(993\) 0 0
\(994\) 1.10564e10 + 4.74379e9i 0.357078 + 0.153205i
\(995\) 9.92171e8i 0.0319305i
\(996\) 0 0
\(997\) 3.72231e10 + 2.14907e10i 1.18954 + 0.686781i 0.958202 0.286093i \(-0.0923565\pi\)
0.231338 + 0.972874i \(0.425690\pi\)
\(998\) 3.20118e10 + 1.84820e10i 1.01942 + 0.588562i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.8.p.a.17.13 yes 36
3.2 odd 2 inner 63.8.p.a.17.6 36
7.3 odd 6 441.8.c.a.440.16 36
7.4 even 3 441.8.c.a.440.22 36
7.5 odd 6 inner 63.8.p.a.26.6 yes 36
21.5 even 6 inner 63.8.p.a.26.13 yes 36
21.11 odd 6 441.8.c.a.440.15 36
21.17 even 6 441.8.c.a.440.21 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.8.p.a.17.6 36 3.2 odd 2 inner
63.8.p.a.17.13 yes 36 1.1 even 1 trivial
63.8.p.a.26.6 yes 36 7.5 odd 6 inner
63.8.p.a.26.13 yes 36 21.5 even 6 inner
441.8.c.a.440.15 36 21.11 odd 6
441.8.c.a.440.16 36 7.3 odd 6
441.8.c.a.440.21 36 21.17 even 6
441.8.c.a.440.22 36 7.4 even 3