Properties

Label 63.8.p.a.26.7
Level $63$
Weight $8$
Character 63.26
Analytic conductor $19.680$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,8,Mod(17,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.17");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 63.p (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.6802566055\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 26.7
Character \(\chi\) \(=\) 63.26
Dual form 63.8.p.a.17.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-6.63630 - 3.83147i) q^{2} +(-34.6397 - 59.9977i) q^{4} +(101.591 - 175.960i) q^{5} +(-81.3062 + 903.843i) q^{7} +1511.74i q^{8} +(-1348.37 + 778.484i) q^{10} +(-3728.43 + 2152.61i) q^{11} -9584.21i q^{13} +(4002.62 - 5686.65i) q^{14} +(1358.31 - 2352.66i) q^{16} +(15657.1 + 27118.9i) q^{17} +(-31502.4 - 18187.9i) q^{19} -14076.3 q^{20} +32990.7 q^{22} +(85080.4 + 49121.2i) q^{23} +(18421.1 + 31906.3i) q^{25} +(-36721.6 + 63603.7i) q^{26} +(57044.9 - 26430.6i) q^{28} +30169.2i q^{29} +(239293. - 138156. i) q^{31} +(149550. - 86342.7i) q^{32} -239959. i q^{34} +(150781. + 106129. i) q^{35} +(-107721. + 186579. i) q^{37} +(139373. + 241401. i) q^{38} +(266006. + 153579. i) q^{40} +142227. q^{41} +885738. q^{43} +(258303. + 149132. i) q^{44} +(-376413. - 651966. i) q^{46} +(-127756. + 221279. i) q^{47} +(-810322. - 146976. i) q^{49} -282320. i q^{50} +(-575030. + 331994. i) q^{52} +(179581. - 103681. i) q^{53} +874742. i q^{55} +(-1.36638e6 - 122914. i) q^{56} +(115592. - 200212. i) q^{58} +(375721. + 650768. i) q^{59} +(-778906. - 449702. i) q^{61} -2.11736e6 q^{62} -1.67101e6 q^{64} +(-1.68644e6 - 973667. i) q^{65} +(1.15568e6 + 2.00169e6i) q^{67} +(1.08471e6 - 1.87878e6i) q^{68} +(-593996. - 1.28201e6i) q^{70} -1.18333e6i q^{71} +(-1.22477e6 + 707118. i) q^{73} +(1.42974e6 - 825462. i) q^{74} +2.52009e6i q^{76} +(-1.64248e6 - 3.54494e6i) q^{77} +(-2.10977e6 + 3.65423e6i) q^{79} +(-275983. - 478017. i) q^{80} +(-943858. - 544937. i) q^{82} +4.02734e6 q^{83} +6.36247e6 q^{85} +(-5.87802e6 - 3.39368e6i) q^{86} +(-3.25419e6 - 5.63642e6i) q^{88} +(-3.83319e6 + 6.63929e6i) q^{89} +(8.66262e6 + 779255. i) q^{91} -6.80617e6i q^{92} +(1.69565e6 - 978985. i) q^{94} +(-6.40070e6 + 3.69544e6i) q^{95} +7.42958e6i q^{97} +(4.81440e6 + 4.08010e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 1024 q^{4} - 2074 q^{7} + 1248 q^{10} - 59708 q^{16} - 105330 q^{19} + 544 q^{22} - 56250 q^{25} + 556220 q^{28} + 86862 q^{31} + 591034 q^{37} - 3036324 q^{40} - 837332 q^{43} + 3896752 q^{46} + 6626454 q^{49}+ \cdots + 96093708 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −6.63630 3.83147i −0.586572 0.338657i 0.177169 0.984180i \(-0.443306\pi\)
−0.763741 + 0.645523i \(0.776639\pi\)
\(3\) 0 0
\(4\) −34.6397 59.9977i −0.270622 0.468732i
\(5\) 101.591 175.960i 0.363462 0.629535i −0.625066 0.780572i \(-0.714928\pi\)
0.988528 + 0.151037i \(0.0482613\pi\)
\(6\) 0 0
\(7\) −81.3062 + 903.843i −0.0895943 + 0.995978i
\(8\) 1511.74i 1.04391i
\(9\) 0 0
\(10\) −1348.37 + 778.484i −0.426393 + 0.246178i
\(11\) −3728.43 + 2152.61i −0.844602 + 0.487631i −0.858826 0.512268i \(-0.828806\pi\)
0.0142238 + 0.999899i \(0.495472\pi\)
\(12\) 0 0
\(13\) 9584.21i 1.20991i −0.796258 0.604957i \(-0.793190\pi\)
0.796258 0.604957i \(-0.206810\pi\)
\(14\) 4002.62 5686.65i 0.389849 0.553871i
\(15\) 0 0
\(16\) 1358.31 2352.66i 0.0829046 0.143595i
\(17\) 15657.1 + 27118.9i 0.772931 + 1.33876i 0.935950 + 0.352133i \(0.114543\pi\)
−0.163019 + 0.986623i \(0.552123\pi\)
\(18\) 0 0
\(19\) −31502.4 18187.9i −1.05367 0.608338i −0.129997 0.991514i \(-0.541497\pi\)
−0.923675 + 0.383177i \(0.874830\pi\)
\(20\) −14076.3 −0.393444
\(21\) 0 0
\(22\) 32990.7 0.660560
\(23\) 85080.4 + 49121.2i 1.45808 + 0.841825i 0.998917 0.0465257i \(-0.0148150\pi\)
0.459166 + 0.888350i \(0.348148\pi\)
\(24\) 0 0
\(25\) 18421.1 + 31906.3i 0.235791 + 0.408401i
\(26\) −36721.6 + 63603.7i −0.409746 + 0.709701i
\(27\) 0 0
\(28\) 57044.9 26430.6i 0.491093 0.227538i
\(29\) 30169.2i 0.229705i 0.993383 + 0.114852i \(0.0366395\pi\)
−0.993383 + 0.114852i \(0.963360\pi\)
\(30\) 0 0
\(31\) 239293. 138156.i 1.44266 0.832922i 0.444636 0.895712i \(-0.353333\pi\)
0.998027 + 0.0627900i \(0.0199998\pi\)
\(32\) 149550. 86342.7i 0.806792 0.465801i
\(33\) 0 0
\(34\) 239959.i 1.04703i
\(35\) 150781. + 106129.i 0.594439 + 0.418403i
\(36\) 0 0
\(37\) −107721. + 186579.i −0.349619 + 0.605559i −0.986182 0.165667i \(-0.947022\pi\)
0.636562 + 0.771225i \(0.280356\pi\)
\(38\) 139373. + 241401.i 0.412036 + 0.713668i
\(39\) 0 0
\(40\) 266006. + 153579.i 0.657176 + 0.379421i
\(41\) 142227. 0.322283 0.161141 0.986931i \(-0.448482\pi\)
0.161141 + 0.986931i \(0.448482\pi\)
\(42\) 0 0
\(43\) 885738. 1.69889 0.849445 0.527676i \(-0.176937\pi\)
0.849445 + 0.527676i \(0.176937\pi\)
\(44\) 258303. + 149132.i 0.457136 + 0.263928i
\(45\) 0 0
\(46\) −376413. 651966.i −0.570180 0.987581i
\(47\) −127756. + 221279.i −0.179489 + 0.310884i −0.941706 0.336438i \(-0.890778\pi\)
0.762217 + 0.647322i \(0.224111\pi\)
\(48\) 0 0
\(49\) −810322. 146976.i −0.983946 0.178468i
\(50\) 282320.i 0.319409i
\(51\) 0 0
\(52\) −575030. + 331994.i −0.567125 + 0.327430i
\(53\) 179581. 103681.i 0.165690 0.0956610i −0.414862 0.909884i \(-0.636170\pi\)
0.580552 + 0.814223i \(0.302837\pi\)
\(54\) 0 0
\(55\) 874742.i 0.708942i
\(56\) −1.36638e6 122914.i −1.03971 0.0935282i
\(57\) 0 0
\(58\) 115592. 200212.i 0.0777913 0.134738i
\(59\) 375721. + 650768.i 0.238168 + 0.412519i 0.960189 0.279353i \(-0.0901198\pi\)
−0.722021 + 0.691871i \(0.756786\pi\)
\(60\) 0 0
\(61\) −778906. 449702.i −0.439370 0.253671i 0.263960 0.964534i \(-0.414971\pi\)
−0.703331 + 0.710863i \(0.748305\pi\)
\(62\) −2.11736e6 −1.12830
\(63\) 0 0
\(64\) −1.67101e6 −0.796797
\(65\) −1.68644e6 973667.i −0.761683 0.439758i
\(66\) 0 0
\(67\) 1.15568e6 + 2.00169e6i 0.469434 + 0.813083i 0.999389 0.0349423i \(-0.0111247\pi\)
−0.529956 + 0.848025i \(0.677791\pi\)
\(68\) 1.08471e6 1.87878e6i 0.418345 0.724594i
\(69\) 0 0
\(70\) −593996. 1.28201e6i −0.206986 0.446735i
\(71\) 1.18333e6i 0.392375i −0.980566 0.196188i \(-0.937144\pi\)
0.980566 0.196188i \(-0.0628562\pi\)
\(72\) 0 0
\(73\) −1.22477e6 + 707118.i −0.368488 + 0.212746i −0.672797 0.739827i \(-0.734907\pi\)
0.304310 + 0.952573i \(0.401574\pi\)
\(74\) 1.42974e6 825462.i 0.410154 0.236802i
\(75\) 0 0
\(76\) 2.52009e6i 0.658519i
\(77\) −1.64248e6 3.54494e6i −0.409999 0.884894i
\(78\) 0 0
\(79\) −2.10977e6 + 3.65423e6i −0.481438 + 0.833875i −0.999773 0.0213027i \(-0.993219\pi\)
0.518335 + 0.855178i \(0.326552\pi\)
\(80\) −275983. 478017.i −0.0602654 0.104383i
\(81\) 0 0
\(82\) −943858. 544937.i −0.189042 0.109143i
\(83\) 4.02734e6 0.773117 0.386558 0.922265i \(-0.373664\pi\)
0.386558 + 0.922265i \(0.373664\pi\)
\(84\) 0 0
\(85\) 6.36247e6 1.12372
\(86\) −5.87802e6 3.39368e6i −0.996521 0.575342i
\(87\) 0 0
\(88\) −3.25419e6 5.63642e6i −0.509042 0.881687i
\(89\) −3.83319e6 + 6.63929e6i −0.576363 + 0.998289i 0.419530 + 0.907742i \(0.362195\pi\)
−0.995892 + 0.0905476i \(0.971138\pi\)
\(90\) 0 0
\(91\) 8.66262e6 + 779255.i 1.20505 + 0.108401i
\(92\) 6.80617e6i 0.911267i
\(93\) 0 0
\(94\) 1.69565e6 978985.i 0.210566 0.121571i
\(95\) −6.40070e6 + 3.69544e6i −0.765940 + 0.442216i
\(96\) 0 0
\(97\) 7.42958e6i 0.826538i 0.910609 + 0.413269i \(0.135613\pi\)
−0.910609 + 0.413269i \(0.864387\pi\)
\(98\) 4.81440e6 + 4.08010e6i 0.516715 + 0.437905i
\(99\) 0 0
\(100\) 1.27620e6 2.21045e6i 0.127620 0.221045i
\(101\) 2.41174e6 + 4.17726e6i 0.232920 + 0.403428i 0.958666 0.284534i \(-0.0918388\pi\)
−0.725746 + 0.687962i \(0.758505\pi\)
\(102\) 0 0
\(103\) −1.28033e7 7.39201e6i −1.15450 0.666549i −0.204518 0.978863i \(-0.565563\pi\)
−0.949979 + 0.312314i \(0.898896\pi\)
\(104\) 1.44888e7 1.26304
\(105\) 0 0
\(106\) −1.58901e6 −0.129585
\(107\) 1.66277e7 + 9.60000e6i 1.31217 + 0.757579i 0.982454 0.186503i \(-0.0597153\pi\)
0.329711 + 0.944082i \(0.393049\pi\)
\(108\) 0 0
\(109\) −3.91522e6 6.78136e6i −0.289577 0.501562i 0.684132 0.729358i \(-0.260181\pi\)
−0.973709 + 0.227797i \(0.926848\pi\)
\(110\) 3.35155e6 5.80505e6i 0.240088 0.415845i
\(111\) 0 0
\(112\) 2.01600e6 + 1.41898e6i 0.135590 + 0.0954365i
\(113\) 2.28548e7i 1.49006i 0.667032 + 0.745029i \(0.267564\pi\)
−0.667032 + 0.745029i \(0.732436\pi\)
\(114\) 0 0
\(115\) 1.72868e7 9.98052e6i 1.05992 0.611943i
\(116\) 1.81008e6 1.04505e6i 0.107670 0.0621633i
\(117\) 0 0
\(118\) 5.75825e6i 0.322629i
\(119\) −2.57843e7 + 1.19466e7i −1.40262 + 0.649878i
\(120\) 0 0
\(121\) −476103. + 824634.i −0.0244316 + 0.0423168i
\(122\) 3.44604e6 + 5.96871e6i 0.171815 + 0.297592i
\(123\) 0 0
\(124\) −1.65781e7 9.57136e6i −0.780834 0.450814i
\(125\) 2.33592e7 1.06973
\(126\) 0 0
\(127\) 3.26982e7 1.41648 0.708240 0.705971i \(-0.249489\pi\)
0.708240 + 0.705971i \(0.249489\pi\)
\(128\) −8.05310e6 4.64946e6i −0.339413 0.195960i
\(129\) 0 0
\(130\) 7.46115e6 + 1.29231e7i 0.297855 + 0.515899i
\(131\) 2.55808e6 4.43072e6i 0.0994178 0.172197i −0.812026 0.583621i \(-0.801635\pi\)
0.911444 + 0.411425i \(0.134969\pi\)
\(132\) 0 0
\(133\) 1.90003e7 2.69944e7i 0.700294 0.994931i
\(134\) 1.77118e7i 0.635909i
\(135\) 0 0
\(136\) −4.09968e7 + 2.36695e7i −1.39754 + 0.806868i
\(137\) −1.02151e7 + 5.89768e6i −0.339406 + 0.195956i −0.660009 0.751257i \(-0.729448\pi\)
0.320603 + 0.947214i \(0.396114\pi\)
\(138\) 0 0
\(139\) 1.30571e7i 0.412379i 0.978512 + 0.206189i \(0.0661063\pi\)
−0.978512 + 0.206189i \(0.933894\pi\)
\(140\) 1.14449e6 1.27227e7i 0.0352503 0.391862i
\(141\) 0 0
\(142\) −4.53389e6 + 7.85293e6i −0.132881 + 0.230156i
\(143\) 2.06311e7 + 3.57341e7i 0.589992 + 1.02190i
\(144\) 0 0
\(145\) 5.30858e6 + 3.06491e6i 0.144607 + 0.0834890i
\(146\) 1.08372e7 0.288192
\(147\) 0 0
\(148\) 1.49257e7 0.378459
\(149\) −6.80993e7 3.93171e7i −1.68652 0.973711i −0.957152 0.289585i \(-0.906483\pi\)
−0.729364 0.684125i \(-0.760184\pi\)
\(150\) 0 0
\(151\) 7.58072e6 + 1.31302e7i 0.179181 + 0.310350i 0.941600 0.336733i \(-0.109322\pi\)
−0.762419 + 0.647083i \(0.775989\pi\)
\(152\) 2.74954e7 4.76234e7i 0.635049 1.09994i
\(153\) 0 0
\(154\) −2.68235e6 + 2.98184e7i −0.0591824 + 0.657903i
\(155\) 5.61415e7i 1.21094i
\(156\) 0 0
\(157\) 6.29277e6 3.63313e6i 0.129776 0.0749259i −0.433707 0.901054i \(-0.642795\pi\)
0.563482 + 0.826128i \(0.309461\pi\)
\(158\) 2.80021e7 1.61670e7i 0.564796 0.326085i
\(159\) 0 0
\(160\) 3.50865e7i 0.677205i
\(161\) −5.13154e7 + 7.29055e7i −0.969075 + 1.37680i
\(162\) 0 0
\(163\) −3.59595e7 + 6.22836e7i −0.650364 + 1.12646i 0.332671 + 0.943043i \(0.392050\pi\)
−0.983035 + 0.183420i \(0.941283\pi\)
\(164\) −4.92668e6 8.53326e6i −0.0872170 0.151064i
\(165\) 0 0
\(166\) −2.67266e7 1.54306e7i −0.453488 0.261822i
\(167\) −4.92749e7 −0.818688 −0.409344 0.912380i \(-0.634242\pi\)
−0.409344 + 0.912380i \(0.634242\pi\)
\(168\) 0 0
\(169\) −2.91086e7 −0.463892
\(170\) −4.22233e7 2.43776e7i −0.659145 0.380557i
\(171\) 0 0
\(172\) −3.06817e7 5.31422e7i −0.459758 0.796324i
\(173\) 1.47003e7 2.54616e7i 0.215856 0.373874i −0.737681 0.675149i \(-0.764079\pi\)
0.953537 + 0.301276i \(0.0974125\pi\)
\(174\) 0 0
\(175\) −3.03361e7 + 1.40556e7i −0.427884 + 0.198252i
\(176\) 1.16957e7i 0.161707i
\(177\) 0 0
\(178\) 5.08765e7 2.93735e7i 0.676156 0.390379i
\(179\) 1.06254e7 6.13456e6i 0.138471 0.0799462i −0.429164 0.903227i \(-0.641192\pi\)
0.567635 + 0.823280i \(0.307858\pi\)
\(180\) 0 0
\(181\) 2.63116e7i 0.329816i 0.986309 + 0.164908i \(0.0527328\pi\)
−0.986309 + 0.164908i \(0.947267\pi\)
\(182\) −5.45021e7 3.83620e7i −0.670136 0.471684i
\(183\) 0 0
\(184\) −7.42585e7 + 1.28619e8i −0.878787 + 1.52210i
\(185\) 2.18870e7 + 3.79094e7i 0.254147 + 0.440195i
\(186\) 0 0
\(187\) −1.16753e8 6.74074e7i −1.30564 0.753810i
\(188\) 1.77017e7 0.194295
\(189\) 0 0
\(190\) 5.66359e7 0.599038
\(191\) −2.75328e7 1.58961e7i −0.285913 0.165072i 0.350184 0.936681i \(-0.386119\pi\)
−0.636097 + 0.771609i \(0.719452\pi\)
\(192\) 0 0
\(193\) 1.59404e7 + 2.76095e7i 0.159606 + 0.276445i 0.934727 0.355368i \(-0.115644\pi\)
−0.775121 + 0.631813i \(0.782311\pi\)
\(194\) 2.84662e7 4.93049e7i 0.279913 0.484824i
\(195\) 0 0
\(196\) 1.92511e7 + 5.37086e7i 0.182624 + 0.509504i
\(197\) 1.73350e8i 1.61544i 0.589564 + 0.807722i \(0.299300\pi\)
−0.589564 + 0.807722i \(0.700700\pi\)
\(198\) 0 0
\(199\) 1.52428e8 8.80043e7i 1.37113 0.791623i 0.380060 0.924962i \(-0.375903\pi\)
0.991070 + 0.133339i \(0.0425700\pi\)
\(200\) −4.82341e7 + 2.78480e7i −0.426333 + 0.246144i
\(201\) 0 0
\(202\) 3.69621e7i 0.315520i
\(203\) −2.72682e7 2.45294e6i −0.228781 0.0205802i
\(204\) 0 0
\(205\) 1.44489e7 2.50262e7i 0.117138 0.202888i
\(206\) 5.66445e7 + 9.81112e7i 0.451463 + 0.781958i
\(207\) 0 0
\(208\) −2.25484e7 1.30183e7i −0.173738 0.100307i
\(209\) 1.56606e8 1.18658
\(210\) 0 0
\(211\) 2.87790e7 0.210905 0.105453 0.994424i \(-0.466371\pi\)
0.105453 + 0.994424i \(0.466371\pi\)
\(212\) −1.24413e7 7.18297e6i −0.0896787 0.0517760i
\(213\) 0 0
\(214\) −7.35642e7 1.27417e8i −0.513119 0.888749i
\(215\) 8.99827e7 1.55855e8i 0.617482 1.06951i
\(216\) 0 0
\(217\) 1.05415e8 + 2.27517e8i 0.700318 + 1.51149i
\(218\) 6.00042e7i 0.392269i
\(219\) 0 0
\(220\) 5.24825e7 3.03008e7i 0.332304 0.191856i
\(221\) 2.59913e8 1.50061e8i 1.61978 0.935180i
\(222\) 0 0
\(223\) 2.62590e8i 1.58566i −0.609442 0.792831i \(-0.708606\pi\)
0.609442 0.792831i \(-0.291394\pi\)
\(224\) 6.58809e7 + 1.42190e8i 0.391644 + 0.845280i
\(225\) 0 0
\(226\) 8.75676e7 1.51671e8i 0.504619 0.874026i
\(227\) 1.05849e8 + 1.83335e8i 0.600612 + 1.04029i 0.992728 + 0.120375i \(0.0384098\pi\)
−0.392116 + 0.919916i \(0.628257\pi\)
\(228\) 0 0
\(229\) 1.48331e8 + 8.56391e7i 0.816223 + 0.471246i 0.849112 0.528213i \(-0.177138\pi\)
−0.0328895 + 0.999459i \(0.510471\pi\)
\(230\) −1.52960e8 −0.828956
\(231\) 0 0
\(232\) −4.56079e7 −0.239791
\(233\) −3.17369e8 1.83233e8i −1.64369 0.948983i −0.979507 0.201411i \(-0.935447\pi\)
−0.664180 0.747572i \(-0.731219\pi\)
\(234\) 0 0
\(235\) 2.59576e7 + 4.49599e7i 0.130475 + 0.225989i
\(236\) 2.60297e7 4.50847e7i 0.128907 0.223274i
\(237\) 0 0
\(238\) 2.16885e8 + 1.95102e7i 1.04282 + 0.0938083i
\(239\) 1.87637e8i 0.889047i 0.895767 + 0.444524i \(0.146627\pi\)
−0.895767 + 0.444524i \(0.853373\pi\)
\(240\) 0 0
\(241\) 1.89388e8 1.09343e8i 0.871550 0.503190i 0.00368718 0.999993i \(-0.498826\pi\)
0.867863 + 0.496803i \(0.165493\pi\)
\(242\) 6.31912e6 3.64835e6i 0.0286618 0.0165479i
\(243\) 0 0
\(244\) 6.23101e7i 0.274596i
\(245\) −1.08183e8 + 1.27653e8i −0.469979 + 0.554562i
\(246\) 0 0
\(247\) −1.74317e8 + 3.01925e8i −0.736037 + 1.27485i
\(248\) 2.08856e8 + 3.61749e8i 0.869493 + 1.50601i
\(249\) 0 0
\(250\) −1.55019e8 8.95002e7i −0.627472 0.362271i
\(251\) 3.26802e8 1.30445 0.652224 0.758026i \(-0.273836\pi\)
0.652224 + 0.758026i \(0.273836\pi\)
\(252\) 0 0
\(253\) −4.22956e8 −1.64200
\(254\) −2.16995e8 1.25282e8i −0.830868 0.479702i
\(255\) 0 0
\(256\) 1.42573e8 + 2.46943e8i 0.531125 + 0.919936i
\(257\) 2.29354e8 3.97253e8i 0.842830 1.45983i −0.0446617 0.999002i \(-0.514221\pi\)
0.887492 0.460823i \(-0.152446\pi\)
\(258\) 0 0
\(259\) −1.59880e8 1.12533e8i −0.571799 0.402468i
\(260\) 1.34910e8i 0.476033i
\(261\) 0 0
\(262\) −3.39523e7 + 1.96024e7i −0.116631 + 0.0673371i
\(263\) −1.79191e8 + 1.03456e8i −0.607393 + 0.350679i −0.771945 0.635690i \(-0.780716\pi\)
0.164551 + 0.986369i \(0.447382\pi\)
\(264\) 0 0
\(265\) 4.21323e7i 0.139077i
\(266\) −2.29520e8 + 1.06344e8i −0.747714 + 0.346439i
\(267\) 0 0
\(268\) 8.00645e7 1.38676e8i 0.254079 0.440077i
\(269\) −2.86680e8 4.96544e8i −0.897975 1.55534i −0.830079 0.557646i \(-0.811705\pi\)
−0.0678961 0.997692i \(-0.521629\pi\)
\(270\) 0 0
\(271\) −1.61433e8 9.32034e7i −0.492720 0.284472i 0.232982 0.972481i \(-0.425152\pi\)
−0.725702 + 0.688009i \(0.758485\pi\)
\(272\) 8.50688e7 0.256318
\(273\) 0 0
\(274\) 9.03871e7 0.265448
\(275\) −1.37364e8 7.93072e7i −0.398298 0.229958i
\(276\) 0 0
\(277\) −2.36522e8 4.09669e8i −0.668641 1.15812i −0.978284 0.207267i \(-0.933543\pi\)
0.309643 0.950853i \(-0.399790\pi\)
\(278\) 5.00280e7 8.66511e7i 0.139655 0.241890i
\(279\) 0 0
\(280\) −1.60439e8 + 2.27941e8i −0.436774 + 0.620539i
\(281\) 2.65063e7i 0.0712650i 0.999365 + 0.0356325i \(0.0113446\pi\)
−0.999365 + 0.0356325i \(0.988655\pi\)
\(282\) 0 0
\(283\) 220075. 127060.i 0.000577190 0.000333241i −0.499711 0.866192i \(-0.666561\pi\)
0.500289 + 0.865859i \(0.333227\pi\)
\(284\) −7.09970e7 + 4.09902e7i −0.183919 + 0.106186i
\(285\) 0 0
\(286\) 3.16190e8i 0.799220i
\(287\) −1.15639e7 + 1.28550e8i −0.0288747 + 0.320987i
\(288\) 0 0
\(289\) −2.85121e8 + 4.93845e8i −0.694844 + 1.20351i
\(290\) −2.34862e7 4.06793e7i −0.0565483 0.0979446i
\(291\) 0 0
\(292\) 8.48509e7 + 4.89887e7i 0.199442 + 0.115148i
\(293\) −5.08362e8 −1.18069 −0.590346 0.807151i \(-0.701009\pi\)
−0.590346 + 0.807151i \(0.701009\pi\)
\(294\) 0 0
\(295\) 1.52679e8 0.346260
\(296\) −2.82059e8 1.62847e8i −0.632147 0.364970i
\(297\) 0 0
\(298\) 3.01285e8 + 5.21841e8i 0.659509 + 1.14230i
\(299\) 4.70788e8 8.15429e8i 1.01854 1.76416i
\(300\) 0 0
\(301\) −7.20159e7 + 8.00568e8i −0.152211 + 1.69206i
\(302\) 1.16181e8i 0.242723i
\(303\) 0 0
\(304\) −8.55799e7 + 4.94096e7i −0.174709 + 0.100868i
\(305\) −1.58259e8 + 9.13711e7i −0.319389 + 0.184399i
\(306\) 0 0
\(307\) 2.89078e8i 0.570204i −0.958497 0.285102i \(-0.907973\pi\)
0.958497 0.285102i \(-0.0920274\pi\)
\(308\) −1.55793e8 + 2.21340e8i −0.303823 + 0.431652i
\(309\) 0 0
\(310\) −2.15105e8 + 3.72572e8i −0.410094 + 0.710304i
\(311\) 1.43038e8 + 2.47749e8i 0.269644 + 0.467036i 0.968770 0.247962i \(-0.0797608\pi\)
−0.699126 + 0.714998i \(0.746427\pi\)
\(312\) 0 0
\(313\) −5.80645e8 3.35235e8i −1.07030 0.617938i −0.142036 0.989861i \(-0.545365\pi\)
−0.928263 + 0.371924i \(0.878698\pi\)
\(314\) −5.56809e7 −0.101497
\(315\) 0 0
\(316\) 2.92327e8 0.521152
\(317\) 1.77425e8 + 1.02437e8i 0.312830 + 0.180612i 0.648192 0.761477i \(-0.275525\pi\)
−0.335362 + 0.942089i \(0.608859\pi\)
\(318\) 0 0
\(319\) −6.49425e7 1.12484e8i −0.112011 0.194009i
\(320\) −1.69759e8 + 2.94031e8i −0.289606 + 0.501612i
\(321\) 0 0
\(322\) 6.19880e8 2.87209e8i 1.03469 0.479406i
\(323\) 1.13908e9i 1.88081i
\(324\) 0 0
\(325\) 3.05797e8 1.76552e8i 0.494130 0.285286i
\(326\) 4.77276e8 2.75555e8i 0.762970 0.440501i
\(327\) 0 0
\(328\) 2.15010e8i 0.336434i
\(329\) −1.89615e8 1.33463e8i −0.293553 0.206621i
\(330\) 0 0
\(331\) 1.46132e8 2.53108e8i 0.221487 0.383626i −0.733773 0.679395i \(-0.762242\pi\)
0.955260 + 0.295769i \(0.0955758\pi\)
\(332\) −1.39506e8 2.41631e8i −0.209223 0.362384i
\(333\) 0 0
\(334\) 3.27003e8 + 1.88795e8i 0.480219 + 0.277255i
\(335\) 4.69624e8 0.682486
\(336\) 0 0
\(337\) 4.81745e8 0.685665 0.342833 0.939396i \(-0.388614\pi\)
0.342833 + 0.939396i \(0.388614\pi\)
\(338\) 1.93173e8 + 1.11529e8i 0.272106 + 0.157101i
\(339\) 0 0
\(340\) −2.20394e8 3.81734e8i −0.304105 0.526725i
\(341\) −5.94793e8 + 1.03021e9i −0.812317 + 1.40697i
\(342\) 0 0
\(343\) 1.98727e8 7.20454e8i 0.265906 0.963999i
\(344\) 1.33900e9i 1.77349i
\(345\) 0 0
\(346\) −1.95111e8 + 1.12647e8i −0.253230 + 0.146202i
\(347\) 2.69954e8 1.55858e8i 0.346846 0.200252i −0.316449 0.948609i \(-0.602491\pi\)
0.663295 + 0.748358i \(0.269157\pi\)
\(348\) 0 0
\(349\) 3.79572e8i 0.477975i −0.971023 0.238988i \(-0.923184\pi\)
0.971023 0.238988i \(-0.0768155\pi\)
\(350\) 2.55173e8 + 2.29544e7i 0.318124 + 0.0286172i
\(351\) 0 0
\(352\) −3.71725e8 + 6.43846e8i −0.454279 + 0.786834i
\(353\) 3.53235e8 + 6.11821e8i 0.427417 + 0.740308i 0.996643 0.0818730i \(-0.0260902\pi\)
−0.569225 + 0.822181i \(0.692757\pi\)
\(354\) 0 0
\(355\) −2.08219e8 1.20215e8i −0.247014 0.142614i
\(356\) 5.31122e8 0.623907
\(357\) 0 0
\(358\) −9.40176e7 −0.108298
\(359\) 3.27619e7 + 1.89151e7i 0.0373713 + 0.0215763i 0.518569 0.855036i \(-0.326465\pi\)
−0.481198 + 0.876612i \(0.659798\pi\)
\(360\) 0 0
\(361\) 2.14663e8 + 3.71808e8i 0.240150 + 0.415952i
\(362\) 1.00812e8 1.74612e8i 0.111695 0.193461i
\(363\) 0 0
\(364\) −2.53317e8 5.46730e8i −0.275302 0.594180i
\(365\) 2.87347e8i 0.309301i
\(366\) 0 0
\(367\) 8.63337e7 4.98448e7i 0.0911694 0.0526367i −0.453722 0.891143i \(-0.649904\pi\)
0.544892 + 0.838507i \(0.316571\pi\)
\(368\) 2.31131e8 1.33444e8i 0.241764 0.139582i
\(369\) 0 0
\(370\) 3.35437e8i 0.344275i
\(371\) 7.91106e7 + 1.70743e8i 0.0804314 + 0.173594i
\(372\) 0 0
\(373\) 6.52577e8 1.13030e9i 0.651105 1.12775i −0.331750 0.943367i \(-0.607639\pi\)
0.982855 0.184379i \(-0.0590275\pi\)
\(374\) 5.16539e8 + 8.94672e8i 0.510567 + 0.884328i
\(375\) 0 0
\(376\) −3.34517e8 1.93133e8i −0.324534 0.187370i
\(377\) 2.89148e8 0.277923
\(378\) 0 0
\(379\) −1.49723e8 −0.141270 −0.0706352 0.997502i \(-0.522503\pi\)
−0.0706352 + 0.997502i \(0.522503\pi\)
\(380\) 4.43436e8 + 2.56018e8i 0.414561 + 0.239347i
\(381\) 0 0
\(382\) 1.21811e8 + 2.10982e8i 0.111806 + 0.193653i
\(383\) −2.24323e8 + 3.88539e8i −0.204023 + 0.353378i −0.949821 0.312794i \(-0.898735\pi\)
0.745798 + 0.666172i \(0.232068\pi\)
\(384\) 0 0
\(385\) −7.90630e8 7.11219e7i −0.706091 0.0635171i
\(386\) 2.44300e8i 0.216206i
\(387\) 0 0
\(388\) 4.45757e8 2.57358e8i 0.387425 0.223680i
\(389\) −1.31524e9 + 7.59357e8i −1.13288 + 0.654067i −0.944657 0.328060i \(-0.893605\pi\)
−0.188220 + 0.982127i \(0.560272\pi\)
\(390\) 0 0
\(391\) 3.07639e9i 2.60269i
\(392\) 2.22190e8 1.22500e9i 0.186304 1.02715i
\(393\) 0 0
\(394\) 6.64185e8 1.15040e9i 0.547082 0.947574i
\(395\) 4.28666e8 + 7.42472e8i 0.349969 + 0.606164i
\(396\) 0 0
\(397\) 1.36885e9 + 7.90303e8i 1.09796 + 0.633909i 0.935685 0.352836i \(-0.114783\pi\)
0.162278 + 0.986745i \(0.448116\pi\)
\(398\) −1.34874e9 −1.07236
\(399\) 0 0
\(400\) 1.00086e8 0.0781925
\(401\) 2.88198e8 + 1.66391e8i 0.223196 + 0.128862i 0.607429 0.794374i \(-0.292201\pi\)
−0.384233 + 0.923236i \(0.625534\pi\)
\(402\) 0 0
\(403\) −1.32412e9 2.29344e9i −1.00776 1.74550i
\(404\) 1.67084e8 2.89398e8i 0.126067 0.218354i
\(405\) 0 0
\(406\) 1.71562e8 + 1.20756e8i 0.127227 + 0.0895502i
\(407\) 9.27529e8i 0.681941i
\(408\) 0 0
\(409\) −8.71218e8 + 5.02998e8i −0.629645 + 0.363525i −0.780614 0.625013i \(-0.785094\pi\)
0.150970 + 0.988538i \(0.451760\pi\)
\(410\) −1.91775e8 + 1.10721e8i −0.137419 + 0.0793390i
\(411\) 0 0
\(412\) 1.02423e9i 0.721532i
\(413\) −6.18740e8 + 2.86681e8i −0.432198 + 0.200251i
\(414\) 0 0
\(415\) 4.09141e8 7.08652e8i 0.280999 0.486704i
\(416\) −8.27527e8 1.43332e9i −0.563580 0.976149i
\(417\) 0 0
\(418\) −1.03928e9 6.00031e8i −0.696013 0.401843i
\(419\) 2.34842e9 1.55965 0.779825 0.625997i \(-0.215308\pi\)
0.779825 + 0.625997i \(0.215308\pi\)
\(420\) 0 0
\(421\) 1.77244e9 1.15767 0.578834 0.815445i \(-0.303508\pi\)
0.578834 + 0.815445i \(0.303508\pi\)
\(422\) −1.90986e8 1.10266e8i −0.123711 0.0714247i
\(423\) 0 0
\(424\) 1.56739e8 + 2.71480e8i 0.0998613 + 0.172965i
\(425\) −5.76844e8 + 9.99123e8i −0.364500 + 0.631332i
\(426\) 0 0
\(427\) 4.69790e8 6.67446e8i 0.292016 0.414876i
\(428\) 1.33016e9i 0.820072i
\(429\) 0 0
\(430\) −1.19431e9 + 6.89532e8i −0.724395 + 0.418230i
\(431\) 5.03292e8 2.90576e8i 0.302795 0.174819i −0.340903 0.940099i \(-0.610733\pi\)
0.643698 + 0.765280i \(0.277399\pi\)
\(432\) 0 0
\(433\) 1.71570e9i 1.01563i 0.861467 + 0.507814i \(0.169546\pi\)
−0.861467 + 0.507814i \(0.830454\pi\)
\(434\) 1.72155e8 1.91376e9i 0.101089 1.12376i
\(435\) 0 0
\(436\) −2.71244e8 + 4.69808e8i −0.156732 + 0.271468i
\(437\) −1.78682e9 3.09487e9i −1.02423 1.77401i
\(438\) 0 0
\(439\) 1.58466e9 + 9.14906e8i 0.893946 + 0.516120i 0.875231 0.483705i \(-0.160709\pi\)
0.0187148 + 0.999825i \(0.494043\pi\)
\(440\) −1.32238e9 −0.740070
\(441\) 0 0
\(442\) −2.29982e9 −1.26682
\(443\) 1.23432e9 + 7.12636e8i 0.674551 + 0.389452i 0.797799 0.602923i \(-0.205998\pi\)
−0.123248 + 0.992376i \(0.539331\pi\)
\(444\) 0 0
\(445\) 7.78834e8 + 1.34898e9i 0.418972 + 0.725681i
\(446\) −1.00610e9 + 1.74262e9i −0.536996 + 0.930104i
\(447\) 0 0
\(448\) 1.35863e8 1.51033e9i 0.0713885 0.793593i
\(449\) 4.59393e8i 0.239509i −0.992804 0.119755i \(-0.961789\pi\)
0.992804 0.119755i \(-0.0382108\pi\)
\(450\) 0 0
\(451\) −5.30282e8 + 3.06159e8i −0.272201 + 0.157155i
\(452\) 1.37124e9 7.91683e8i 0.698438 0.403243i
\(453\) 0 0
\(454\) 1.62222e9i 0.813607i
\(455\) 1.01716e9 1.44511e9i 0.506232 0.719220i
\(456\) 0 0
\(457\) −1.31427e9 + 2.27639e9i −0.644139 + 1.11568i 0.340361 + 0.940295i \(0.389451\pi\)
−0.984500 + 0.175386i \(0.943883\pi\)
\(458\) −6.56248e8 1.13665e9i −0.319182 0.552840i
\(459\) 0 0
\(460\) −1.19762e9 6.91444e8i −0.573674 0.331211i
\(461\) −2.53767e9 −1.20637 −0.603186 0.797601i \(-0.706102\pi\)
−0.603186 + 0.797601i \(0.706102\pi\)
\(462\) 0 0
\(463\) −7.97346e8 −0.373348 −0.186674 0.982422i \(-0.559771\pi\)
−0.186674 + 0.982422i \(0.559771\pi\)
\(464\) 7.09778e7 + 4.09790e7i 0.0329845 + 0.0190436i
\(465\) 0 0
\(466\) 1.40411e9 + 2.43198e9i 0.642760 + 1.11329i
\(467\) −1.98580e9 + 3.43950e9i −0.902248 + 1.56274i −0.0776793 + 0.996978i \(0.524751\pi\)
−0.824569 + 0.565761i \(0.808582\pi\)
\(468\) 0 0
\(469\) −1.90318e9 + 8.81800e8i −0.851872 + 0.394698i
\(470\) 3.97823e8i 0.176745i
\(471\) 0 0
\(472\) −9.83791e8 + 5.67992e8i −0.430632 + 0.248625i
\(473\) −3.30241e9 + 1.90665e9i −1.43489 + 0.828432i
\(474\) 0 0
\(475\) 1.34017e9i 0.573761i
\(476\) 1.60993e9 + 1.13317e9i 0.684199 + 0.481582i
\(477\) 0 0
\(478\) 7.18924e8 1.24521e9i 0.301082 0.521490i
\(479\) −3.05274e8 5.28750e8i −0.126916 0.219825i 0.795564 0.605869i \(-0.207174\pi\)
−0.922480 + 0.386044i \(0.873841\pi\)
\(480\) 0 0
\(481\) 1.78821e9 + 1.03242e9i 0.732674 + 0.423009i
\(482\) −1.67578e9 −0.681636
\(483\) 0 0
\(484\) 6.59682e7 0.0264470
\(485\) 1.30731e9 + 7.54776e8i 0.520335 + 0.300415i
\(486\) 0 0
\(487\) −1.09923e9 1.90391e9i −0.431256 0.746958i 0.565725 0.824594i \(-0.308596\pi\)
−0.996982 + 0.0776358i \(0.975263\pi\)
\(488\) 6.79832e8 1.17750e9i 0.264809 0.458662i
\(489\) 0 0
\(490\) 1.20703e9 4.32644e8i 0.463483 0.166128i
\(491\) 3.07424e8i 0.117207i −0.998281 0.0586033i \(-0.981335\pi\)
0.998281 0.0586033i \(-0.0186647\pi\)
\(492\) 0 0
\(493\) −8.18155e8 + 4.72362e8i −0.307519 + 0.177546i
\(494\) 2.31363e9 1.33578e9i 0.863476 0.498528i
\(495\) 0 0
\(496\) 7.50635e8i 0.276212i
\(497\) 1.06954e9 + 9.62120e7i 0.390797 + 0.0351546i
\(498\) 0 0
\(499\) 1.18719e9 2.05628e9i 0.427730 0.740850i −0.568941 0.822378i \(-0.692647\pi\)
0.996671 + 0.0815282i \(0.0259801\pi\)
\(500\) −8.09156e8 1.40150e9i −0.289492 0.501416i
\(501\) 0 0
\(502\) −2.16876e9 1.25213e9i −0.765153 0.441761i
\(503\) 1.50595e9 0.527623 0.263812 0.964574i \(-0.415020\pi\)
0.263812 + 0.964574i \(0.415020\pi\)
\(504\) 0 0
\(505\) 9.80042e8 0.338630
\(506\) 2.80686e9 + 1.62054e9i 0.963151 + 0.556075i
\(507\) 0 0
\(508\) −1.13265e9 1.96182e9i −0.383331 0.663950i
\(509\) −5.18772e8 + 8.98540e8i −0.174367 + 0.302013i −0.939942 0.341334i \(-0.889121\pi\)
0.765575 + 0.643347i \(0.222455\pi\)
\(510\) 0 0
\(511\) −5.39543e8 1.16449e9i −0.178876 0.386066i
\(512\) 9.94793e8i 0.327558i
\(513\) 0 0
\(514\) −3.04412e9 + 1.75753e9i −0.988761 + 0.570861i
\(515\) −2.60140e9 + 1.50192e9i −0.839232 + 0.484531i
\(516\) 0 0
\(517\) 1.10003e9i 0.350098i
\(518\) 6.29841e8 + 1.35938e9i 0.199103 + 0.429720i
\(519\) 0 0
\(520\) 1.47193e9 2.54946e9i 0.459067 0.795127i
\(521\) 1.15239e9 + 1.99599e9i 0.356999 + 0.618340i 0.987458 0.157882i \(-0.0504667\pi\)
−0.630459 + 0.776222i \(0.717133\pi\)
\(522\) 0 0
\(523\) 3.91811e9 + 2.26212e9i 1.19763 + 0.691449i 0.960025 0.279914i \(-0.0903058\pi\)
0.237600 + 0.971363i \(0.423639\pi\)
\(524\) −3.54444e8 −0.107619
\(525\) 0 0
\(526\) 1.58555e9 0.475040
\(527\) 7.49329e9 + 4.32625e9i 2.23016 + 1.28758i
\(528\) 0 0
\(529\) 3.12337e9 + 5.40984e9i 0.917338 + 1.58888i
\(530\) −1.61428e8 + 2.79602e8i −0.0470993 + 0.0815784i
\(531\) 0 0
\(532\) −2.27777e9 2.04899e8i −0.655871 0.0589996i
\(533\) 1.36313e9i 0.389935i
\(534\) 0 0
\(535\) 3.37844e9 1.95054e9i 0.953845 0.550703i
\(536\) −3.02603e9 + 1.74708e9i −0.848784 + 0.490046i
\(537\) 0 0
\(538\) 4.39362e9i 1.21642i
\(539\) 3.33761e9 1.19632e9i 0.918069 0.329068i
\(540\) 0 0
\(541\) 2.15400e9 3.73084e9i 0.584864 1.01301i −0.410028 0.912073i \(-0.634481\pi\)
0.994892 0.100942i \(-0.0321856\pi\)
\(542\) 7.14212e8 + 1.23705e9i 0.192677 + 0.333726i
\(543\) 0 0
\(544\) 4.68304e9 + 2.70376e9i 1.24719 + 0.720064i
\(545\) −1.59100e9 −0.421001
\(546\) 0 0
\(547\) −3.29693e9 −0.861298 −0.430649 0.902519i \(-0.641715\pi\)
−0.430649 + 0.902519i \(0.641715\pi\)
\(548\) 7.07694e8 + 4.08587e8i 0.183702 + 0.106060i
\(549\) 0 0
\(550\) 6.07726e8 + 1.05261e9i 0.155754 + 0.269773i
\(551\) 5.48714e8 9.50400e8i 0.139738 0.242034i
\(552\) 0 0
\(553\) −3.13131e9 2.20401e9i −0.787387 0.554212i
\(554\) 3.62491e9i 0.905761i
\(555\) 0 0
\(556\) 7.83398e8 4.52295e8i 0.193295 0.111599i
\(557\) 1.68019e9 9.70056e8i 0.411969 0.237850i −0.279666 0.960097i \(-0.590224\pi\)
0.691635 + 0.722247i \(0.256891\pi\)
\(558\) 0 0
\(559\) 8.48909e9i 2.05551i
\(560\) 4.54491e8 2.10580e8i 0.109362 0.0506709i
\(561\) 0 0
\(562\) 1.01558e8 1.75903e8i 0.0241344 0.0418020i
\(563\) −3.54664e9 6.14296e9i −0.837602 1.45077i −0.891894 0.452244i \(-0.850624\pi\)
0.0542922 0.998525i \(-0.482710\pi\)
\(564\) 0 0
\(565\) 4.02154e9 + 2.32184e9i 0.938044 + 0.541580i
\(566\) −1.94731e6 −0.000451417
\(567\) 0 0
\(568\) 1.78889e9 0.409604
\(569\) −5.71838e9 3.30151e9i −1.30131 0.751310i −0.320679 0.947188i \(-0.603911\pi\)
−0.980628 + 0.195877i \(0.937245\pi\)
\(570\) 0 0
\(571\) −1.13120e9 1.95929e9i −0.254280 0.440426i 0.710420 0.703778i \(-0.248505\pi\)
−0.964700 + 0.263352i \(0.915172\pi\)
\(572\) 1.42931e9 2.47563e9i 0.319330 0.553096i
\(573\) 0 0
\(574\) 5.69279e8 8.08793e8i 0.125642 0.178503i
\(575\) 3.61947e9i 0.793977i
\(576\) 0 0
\(577\) 3.16618e9 1.82800e9i 0.686153 0.396150i −0.116016 0.993247i \(-0.537013\pi\)
0.802169 + 0.597097i \(0.203679\pi\)
\(578\) 3.78430e9 2.18487e9i 0.815152 0.470628i
\(579\) 0 0
\(580\) 4.24670e8i 0.0903760i
\(581\) −3.27448e8 + 3.64008e9i −0.0692668 + 0.770007i
\(582\) 0 0
\(583\) −4.46371e8 + 7.73138e8i −0.0932946 + 0.161591i
\(584\) −1.06898e9 1.85153e9i −0.222088 0.384667i
\(585\) 0 0
\(586\) 3.37364e9 + 1.94777e9i 0.692560 + 0.399850i
\(587\) 3.24417e9 0.662019 0.331009 0.943627i \(-0.392611\pi\)
0.331009 + 0.943627i \(0.392611\pi\)
\(588\) 0 0
\(589\) −1.00511e10 −2.02679
\(590\) −1.01322e9 5.84985e8i −0.203106 0.117264i
\(591\) 0 0
\(592\) 2.92638e8 + 5.06863e8i 0.0579701 + 0.100407i
\(593\) −4.47929e9 + 7.75836e9i −0.882101 + 1.52784i −0.0330992 + 0.999452i \(0.510538\pi\)
−0.849001 + 0.528391i \(0.822796\pi\)
\(594\) 0 0
\(595\) −5.17308e8 + 5.75068e9i −0.100679 + 1.11921i
\(596\) 5.44773e9i 1.05403i
\(597\) 0 0
\(598\) −6.24858e9 + 3.60762e9i −1.19489 + 0.689869i
\(599\) 5.26078e9 3.03731e9i 1.00013 0.577425i 0.0918429 0.995774i \(-0.470724\pi\)
0.908287 + 0.418348i \(0.137391\pi\)
\(600\) 0 0
\(601\) 9.23837e9i 1.73594i 0.496616 + 0.867970i \(0.334576\pi\)
−0.496616 + 0.867970i \(0.665424\pi\)
\(602\) 3.54527e9 5.03688e9i 0.662311 0.940966i
\(603\) 0 0
\(604\) 5.25187e8 9.09651e8i 0.0969806 0.167975i
\(605\) 9.67353e7 + 1.67550e8i 0.0177599 + 0.0307611i
\(606\) 0 0
\(607\) −7.86096e9 4.53853e9i −1.42664 0.823673i −0.429789 0.902929i \(-0.641412\pi\)
−0.996854 + 0.0792567i \(0.974745\pi\)
\(608\) −6.28157e9 −1.13346
\(609\) 0 0
\(610\) 1.40034e9 0.249793
\(611\) 2.12079e9 + 1.22444e9i 0.376143 + 0.217166i
\(612\) 0 0
\(613\) −1.57364e9 2.72562e9i −0.275926 0.477919i 0.694442 0.719549i \(-0.255651\pi\)
−0.970368 + 0.241630i \(0.922318\pi\)
\(614\) −1.10759e9 + 1.91841e9i −0.193104 + 0.334465i
\(615\) 0 0
\(616\) 5.35903e9 2.48300e9i 0.923748 0.428001i
\(617\) 1.10094e10i 1.88698i −0.331406 0.943488i \(-0.607523\pi\)
0.331406 0.943488i \(-0.392477\pi\)
\(618\) 0 0
\(619\) −1.81934e9 + 1.05040e9i −0.308316 + 0.178007i −0.646173 0.763191i \(-0.723631\pi\)
0.337857 + 0.941198i \(0.390298\pi\)
\(620\) −3.36836e9 + 1.94472e9i −0.567607 + 0.327708i
\(621\) 0 0
\(622\) 2.19218e9i 0.365267i
\(623\) −5.68921e9 4.00442e9i −0.942636 0.663486i
\(624\) 0 0
\(625\) 9.33930e8 1.61761e9i 0.153015 0.265030i
\(626\) 2.56889e9 + 4.44945e9i 0.418538 + 0.724929i
\(627\) 0 0
\(628\) −4.35959e8 2.51701e8i −0.0702403 0.0405533i
\(629\) −6.74642e9 −1.08093
\(630\) 0 0
\(631\) −7.15955e9 −1.13444 −0.567222 0.823565i \(-0.691982\pi\)
−0.567222 + 0.823565i \(0.691982\pi\)
\(632\) −5.52424e9 3.18942e9i −0.870488 0.502577i
\(633\) 0 0
\(634\) −7.84965e8 1.35960e9i −0.122331 0.211884i
\(635\) 3.32183e9 5.75358e9i 0.514837 0.891724i
\(636\) 0 0
\(637\) −1.40865e9 + 7.76629e9i −0.215931 + 1.19049i
\(638\) 9.95301e8i 0.151734i
\(639\) 0 0
\(640\) −1.63624e9 + 9.44684e8i −0.246727 + 0.142448i
\(641\) −4.96416e9 + 2.86606e9i −0.744463 + 0.429816i −0.823690 0.567041i \(-0.808088\pi\)
0.0792269 + 0.996857i \(0.474755\pi\)
\(642\) 0 0
\(643\) 4.97543e9i 0.738061i −0.929417 0.369030i \(-0.879690\pi\)
0.929417 0.369030i \(-0.120310\pi\)
\(644\) 6.15171e9 + 5.53384e8i 0.907602 + 0.0816443i
\(645\) 0 0
\(646\) −4.36435e9 + 7.55928e9i −0.636951 + 1.10323i
\(647\) −2.91869e9 5.05532e9i −0.423665 0.733810i 0.572629 0.819814i \(-0.305923\pi\)
−0.996295 + 0.0860044i \(0.972590\pi\)
\(648\) 0 0
\(649\) −2.80170e9 1.61756e9i −0.402314 0.232276i
\(650\) −2.70582e9 −0.386457
\(651\) 0 0
\(652\) 4.98249e9 0.704012
\(653\) −2.00968e8 1.16029e8i −0.0282443 0.0163068i 0.485811 0.874064i \(-0.338524\pi\)
−0.514056 + 0.857757i \(0.671858\pi\)
\(654\) 0 0
\(655\) −5.19754e8 9.00240e8i −0.0722692 0.125174i
\(656\) 1.93188e8 3.34611e8i 0.0267187 0.0462782i
\(657\) 0 0
\(658\) 7.46982e8 + 1.61220e9i 0.102216 + 0.220612i
\(659\) 1.47334e9i 0.200541i −0.994960 0.100270i \(-0.968029\pi\)
0.994960 0.100270i \(-0.0319708\pi\)
\(660\) 0 0
\(661\) 6.53789e9 3.77465e9i 0.880506 0.508360i 0.00968068 0.999953i \(-0.496918\pi\)
0.870825 + 0.491593i \(0.163585\pi\)
\(662\) −1.93955e9 + 1.11980e9i −0.259836 + 0.150016i
\(663\) 0 0
\(664\) 6.08829e9i 0.807062i
\(665\) −2.81969e9 6.08569e9i −0.371813 0.802479i
\(666\) 0 0
\(667\) −1.48195e9 + 2.56681e9i −0.193371 + 0.334929i
\(668\) 1.70687e9 + 2.95638e9i 0.221555 + 0.383745i
\(669\) 0 0
\(670\) −3.11657e9 1.79935e9i −0.400327 0.231129i
\(671\) 3.87213e9 0.494791
\(672\) 0 0
\(673\) 2.47252e9 0.312671 0.156336 0.987704i \(-0.450032\pi\)
0.156336 + 0.987704i \(0.450032\pi\)
\(674\) −3.19700e9 1.84579e9i −0.402192 0.232206i
\(675\) 0 0
\(676\) 1.00831e9 + 1.74645e9i 0.125540 + 0.217441i
\(677\) 2.50932e9 4.34627e9i 0.310811 0.538340i −0.667727 0.744406i \(-0.732733\pi\)
0.978538 + 0.206066i \(0.0660661\pi\)
\(678\) 0 0
\(679\) −6.71517e9 6.04070e8i −0.823214 0.0740531i
\(680\) 9.61841e9i 1.17306i
\(681\) 0 0
\(682\) 7.89445e9 4.55786e9i 0.952964 0.550194i
\(683\) 4.40892e9 2.54549e9i 0.529493 0.305703i −0.211317 0.977418i \(-0.567775\pi\)
0.740810 + 0.671715i \(0.234442\pi\)
\(684\) 0 0
\(685\) 2.39660e9i 0.284891i
\(686\) −4.07921e9 + 4.01973e9i −0.482438 + 0.475403i
\(687\) 0 0
\(688\) 1.20311e9 2.08384e9i 0.140846 0.243952i
\(689\) −9.93703e8 1.72114e9i −0.115742 0.200470i
\(690\) 0 0
\(691\) 9.87316e9 + 5.70027e9i 1.13837 + 0.657238i 0.946026 0.324090i \(-0.105058\pi\)
0.192343 + 0.981328i \(0.438391\pi\)
\(692\) −2.03685e9 −0.233662
\(693\) 0 0
\(694\) −2.38866e9 −0.271267
\(695\) 2.29754e9 + 1.32648e9i 0.259607 + 0.149884i
\(696\) 0 0
\(697\) 2.22686e9 + 3.85703e9i 0.249102 + 0.431458i
\(698\) −1.45432e9 + 2.51896e9i −0.161870 + 0.280367i
\(699\) 0 0
\(700\) 1.89414e9 + 1.33321e9i 0.208722 + 0.146912i
\(701\) 5.86499e8i 0.0643064i 0.999483 + 0.0321532i \(0.0102364\pi\)
−0.999483 + 0.0321532i \(0.989764\pi\)
\(702\) 0 0
\(703\) 6.78695e9 3.91845e9i 0.736768 0.425373i
\(704\) 6.23023e9 3.59703e9i 0.672977 0.388543i
\(705\) 0 0
\(706\) 5.41364e9i 0.578992i
\(707\) −3.97168e9 + 1.84020e9i −0.422674 + 0.195838i
\(708\) 0 0
\(709\) −3.17119e9 + 5.49266e9i −0.334165 + 0.578790i −0.983324 0.181862i \(-0.941787\pi\)
0.649159 + 0.760652i \(0.275121\pi\)
\(710\) 9.21203e8 + 1.59557e9i 0.0965943 + 0.167306i
\(711\) 0 0
\(712\) −1.00369e10 5.79479e9i −1.04212 0.601669i
\(713\) 2.71456e10 2.80470
\(714\) 0 0
\(715\) 8.38371e9 0.857759
\(716\) −7.36119e8 4.24999e8i −0.0749467 0.0432705i
\(717\) 0 0
\(718\) −1.44945e8 2.51052e8i −0.0146140 0.0253121i
\(719\) 8.28036e9 1.43420e10i 0.830803 1.43899i −0.0665986 0.997780i \(-0.521215\pi\)
0.897402 0.441214i \(-0.145452\pi\)
\(720\) 0 0
\(721\) 7.72220e9 1.09712e10i 0.767305 1.09013i
\(722\) 3.28990e9i 0.325314i
\(723\) 0 0
\(724\) 1.57863e9 9.11425e8i 0.154595 0.0892557i
\(725\) −9.62588e8 + 5.55750e8i −0.0938118 + 0.0541623i
\(726\) 0 0
\(727\) 4.61865e9i 0.445804i −0.974841 0.222902i \(-0.928447\pi\)
0.974841 0.222902i \(-0.0715530\pi\)
\(728\) −1.17803e9 + 1.30956e10i −0.113161 + 1.25796i
\(729\) 0 0
\(730\) 1.10096e9 1.90692e9i 0.104747 0.181427i
\(731\) 1.38681e10 + 2.40203e10i 1.31313 + 2.27440i
\(732\) 0 0
\(733\) −7.18124e9 4.14609e9i −0.673496 0.388843i 0.123904 0.992294i \(-0.460459\pi\)
−0.797400 + 0.603451i \(0.793792\pi\)
\(734\) −7.63915e8 −0.0713032
\(735\) 0 0
\(736\) 1.69650e10 1.56849
\(737\) −8.61772e9 4.97545e9i −0.792969 0.457821i
\(738\) 0 0
\(739\) −3.06492e9 5.30860e9i −0.279360 0.483866i 0.691866 0.722026i \(-0.256789\pi\)
−0.971226 + 0.238160i \(0.923456\pi\)
\(740\) 1.51632e9 2.62633e9i 0.137556 0.238253i
\(741\) 0 0
\(742\) 1.29196e8 1.43621e9i 0.0116101 0.129064i
\(743\) 6.48159e9i 0.579723i −0.957069 0.289862i \(-0.906391\pi\)
0.957069 0.289862i \(-0.0936093\pi\)
\(744\) 0 0
\(745\) −1.38365e10 + 7.98852e9i −1.22597 + 0.707814i
\(746\) −8.66140e9 + 5.00066e9i −0.763839 + 0.441003i
\(747\) 0 0
\(748\) 9.33988e9i 0.815992i
\(749\) −1.00288e10 + 1.42483e10i −0.872095 + 1.23901i
\(750\) 0 0
\(751\) −2.40290e9 + 4.16195e9i −0.207012 + 0.358556i −0.950772 0.309891i \(-0.899707\pi\)
0.743760 + 0.668447i \(0.233041\pi\)
\(752\) 3.47063e8 + 6.01132e8i 0.0297609 + 0.0515474i
\(753\) 0 0
\(754\) −1.91887e9 1.10786e9i −0.163022 0.0941207i
\(755\) 3.08052e9 0.260502
\(756\) 0 0
\(757\) −2.66592e8 −0.0223364 −0.0111682 0.999938i \(-0.503555\pi\)
−0.0111682 + 0.999938i \(0.503555\pi\)
\(758\) 9.93607e8 + 5.73659e8i 0.0828652 + 0.0478423i
\(759\) 0 0
\(760\) −5.58655e9 9.67619e9i −0.461632 0.799570i
\(761\) −1.16854e10 + 2.02396e10i −0.961160 + 1.66478i −0.241563 + 0.970385i \(0.577660\pi\)
−0.719597 + 0.694392i \(0.755673\pi\)
\(762\) 0 0
\(763\) 6.44762e9 2.98738e9i 0.525489 0.243475i
\(764\) 2.20254e9i 0.178689i
\(765\) 0 0
\(766\) 2.97735e9 1.71898e9i 0.239348 0.138188i
\(767\) 6.23709e9 3.60099e9i 0.499113 0.288163i
\(768\) 0 0
\(769\) 1.30604e10i 1.03565i −0.855486 0.517826i \(-0.826741\pi\)
0.855486 0.517826i \(-0.173259\pi\)
\(770\) 4.97435e9 + 3.50126e9i 0.392662 + 0.276380i
\(771\) 0 0
\(772\) 1.10434e9 1.91277e9i 0.0863857 0.149624i
\(773\) 7.20449e9 + 1.24785e10i 0.561016 + 0.971708i 0.997408 + 0.0719514i \(0.0229227\pi\)
−0.436392 + 0.899756i \(0.643744\pi\)
\(774\) 0 0
\(775\) 8.81611e9 + 5.08998e9i 0.680332 + 0.392790i
\(776\) −1.12316e10 −0.862830
\(777\) 0 0
\(778\) 1.16378e10 0.886018
\(779\) −4.48047e9 2.58680e9i −0.339580 0.196057i
\(780\) 0 0
\(781\) 2.54725e9 + 4.41197e9i 0.191334 + 0.331401i
\(782\) 1.17871e10 2.04158e10i 0.881420 1.52666i
\(783\) 0 0
\(784\) −1.44645e9 + 1.70677e9i −0.107201 + 0.126494i
\(785\) 1.47637e9i 0.108931i
\(786\) 0 0
\(787\) −1.25825e10 + 7.26451e9i −0.920144 + 0.531245i −0.883681 0.468090i \(-0.844942\pi\)
−0.0364627 + 0.999335i \(0.511609\pi\)
\(788\) 1.04006e10 6.00478e9i 0.757210 0.437175i
\(789\) 0 0
\(790\) 6.56969e9i 0.474078i
\(791\) −2.06572e10 1.85824e9i −1.48407 0.133501i
\(792\) 0 0
\(793\) −4.31004e9 + 7.46520e9i −0.306920 + 0.531600i
\(794\) −6.05605e9 1.04894e10i −0.429356 0.743666i
\(795\) 0 0
\(796\) −1.05601e10 6.09688e9i −0.742117 0.428462i
\(797\) 1.98952e10 1.39202 0.696010 0.718032i \(-0.254957\pi\)
0.696010 + 0.718032i \(0.254957\pi\)
\(798\) 0 0
\(799\) −8.00115e9 −0.554930
\(800\) 5.50976e9 + 3.18106e9i 0.380468 + 0.219663i
\(801\) 0 0
\(802\) −1.27505e9 2.20845e9i −0.0872802 0.151174i
\(803\) 3.04430e9 5.27289e9i 0.207484 0.359372i
\(804\) 0 0
\(805\) 7.61530e9 + 1.64360e10i 0.514519 + 1.11048i
\(806\) 2.02933e10i 1.36515i
\(807\) 0 0
\(808\) −6.31493e9 + 3.64593e9i −0.421142 + 0.243147i
\(809\) −7.27450e9 + 4.19994e9i −0.483040 + 0.278883i −0.721683 0.692224i \(-0.756631\pi\)
0.238642 + 0.971108i \(0.423298\pi\)
\(810\) 0 0
\(811\) 8.93491e9i 0.588190i −0.955776 0.294095i \(-0.904982\pi\)
0.955776 0.294095i \(-0.0950182\pi\)
\(812\) 7.97390e8 + 1.72100e9i 0.0522667 + 0.112806i
\(813\) 0 0
\(814\) −3.55380e9 + 6.15536e9i −0.230944 + 0.400008i
\(815\) 7.30630e9 + 1.26549e10i 0.472765 + 0.818854i
\(816\) 0 0
\(817\) −2.79028e10 1.61097e10i −1.79007 1.03350i
\(818\) 7.70889e9 0.492442
\(819\) 0 0
\(820\) −2.00202e9 −0.126800
\(821\) −2.29606e10 1.32563e10i −1.44805 0.836030i −0.449681 0.893189i \(-0.648462\pi\)
−0.998365 + 0.0571599i \(0.981796\pi\)
\(822\) 0 0
\(823\) 1.19616e10 + 2.07180e10i 0.747977 + 1.29553i 0.948791 + 0.315905i \(0.102308\pi\)
−0.200814 + 0.979629i \(0.564359\pi\)
\(824\) 1.11748e10 1.93553e10i 0.695816 1.20519i
\(825\) 0 0
\(826\) 5.20456e9 + 4.68181e8i 0.321332 + 0.0289057i
\(827\) 1.66831e10i 1.02567i −0.858487 0.512836i \(-0.828595\pi\)
0.858487 0.512836i \(-0.171405\pi\)
\(828\) 0 0
\(829\) 2.73726e10 1.58036e10i 1.66869 0.963416i 0.700338 0.713811i \(-0.253032\pi\)
0.968348 0.249605i \(-0.0803009\pi\)
\(830\) −5.43036e9 + 3.13522e9i −0.329652 + 0.190324i
\(831\) 0 0
\(832\) 1.60153e10i 0.964056i
\(833\) −8.70147e9 2.42763e10i −0.521597 1.45521i
\(834\) 0 0
\(835\) −5.00588e9 + 8.67044e9i −0.297562 + 0.515393i
\(836\) −5.42478e9 9.39599e9i −0.321115 0.556187i
\(837\) 0 0
\(838\) −1.55848e10 8.99791e9i −0.914847 0.528187i
\(839\) 4.44026e9 0.259562 0.129781 0.991543i \(-0.458573\pi\)
0.129781 + 0.991543i \(0.458573\pi\)
\(840\) 0 0
\(841\) 1.63397e10 0.947236
\(842\) −1.17624e10 6.79105e9i −0.679055 0.392053i
\(843\) 0 0
\(844\) −9.96897e8 1.72668e9i −0.0570757 0.0988581i
\(845\) −2.95716e9 + 5.12195e9i −0.168607 + 0.292036i
\(846\) 0 0
\(847\) −7.06630e8 4.97370e8i −0.0399577 0.0281247i
\(848\) 5.63325e8i 0.0317229i
\(849\) 0 0
\(850\) 7.65622e9 4.42032e9i 0.427610 0.246881i
\(851\) −1.83300e10 + 1.05828e10i −1.01955 + 0.588637i
\(852\) 0 0
\(853\) 1.08633e10i 0.599297i 0.954050 + 0.299649i \(0.0968694\pi\)
−0.954050 + 0.299649i \(0.903131\pi\)
\(854\) −5.67496e9 + 2.62938e9i −0.311789 + 0.144461i
\(855\) 0 0
\(856\) −1.45127e10 + 2.51367e10i −0.790843 + 1.36978i
\(857\) −3.97818e9 6.89041e9i −0.215899 0.373949i 0.737651 0.675182i \(-0.235935\pi\)
−0.953550 + 0.301233i \(0.902602\pi\)
\(858\) 0 0
\(859\) −1.18829e9 6.86061e8i −0.0639657 0.0369306i 0.467676 0.883900i \(-0.345091\pi\)
−0.531642 + 0.846969i \(0.678425\pi\)
\(860\) −1.24679e10 −0.668418
\(861\) 0 0
\(862\) −4.45333e9 −0.236815
\(863\) 1.35439e9 + 7.81958e8i 0.0717309 + 0.0414138i 0.535436 0.844576i \(-0.320147\pi\)
−0.463706 + 0.885989i \(0.653480\pi\)
\(864\) 0 0
\(865\) −2.98682e9 5.17333e9i −0.156911 0.271778i
\(866\) 6.57367e9 1.13859e10i 0.343950 0.595738i
\(867\) 0 0
\(868\) 9.99891e9 1.42058e10i 0.518960 0.737303i
\(869\) 1.81661e10i 0.939056i
\(870\) 0 0
\(871\) 1.91846e10 1.10762e10i 0.983761 0.567975i
\(872\) 1.02517e10 5.91880e9i 0.523584 0.302291i
\(873\) 0 0
\(874\) 2.73846e10i 1.38745i
\(875\) −1.89925e9 + 2.11131e10i −0.0958415 + 1.06543i
\(876\) 0 0
\(877\) 2.04854e9 3.54817e9i 0.102552 0.177626i −0.810183 0.586177i \(-0.800632\pi\)
0.912736 + 0.408551i \(0.133966\pi\)
\(878\) −7.01087e9 1.21432e10i −0.349576 0.605483i
\(879\) 0 0
\(880\) 2.05797e9 + 1.18817e9i 0.101800 + 0.0587745i
\(881\) 3.07305e9 0.151410 0.0757048 0.997130i \(-0.475879\pi\)
0.0757048 + 0.997130i \(0.475879\pi\)
\(882\) 0 0
\(883\) 2.92284e9 0.142870 0.0714352 0.997445i \(-0.477242\pi\)
0.0714352 + 0.997445i \(0.477242\pi\)
\(884\) −1.80066e10 1.03961e10i −0.876697 0.506161i
\(885\) 0 0
\(886\) −5.46088e9 9.45853e9i −0.263782 0.456884i
\(887\) −1.22352e10 + 2.11919e10i −0.588677 + 1.01962i 0.405729 + 0.913993i \(0.367018\pi\)
−0.994406 + 0.105625i \(0.966316\pi\)
\(888\) 0 0
\(889\) −2.65856e9 + 2.95540e10i −0.126909 + 1.41078i
\(890\) 1.19363e10i 0.567552i
\(891\) 0 0
\(892\) −1.57548e10 + 9.09602e9i −0.743250 + 0.429116i
\(893\) 8.04921e9 4.64722e9i 0.378245 0.218380i
\(894\) 0 0
\(895\) 2.49286e9i 0.116230i
\(896\) 4.85715e9 6.90071e9i 0.225581 0.320491i
\(897\) 0 0
\(898\) −1.76015e9 + 3.04867e9i −0.0811115 + 0.140489i
\(899\) 4.16805e9 + 7.21928e9i 0.191326 + 0.331387i
\(900\) 0 0
\(901\) 5.62345e9 + 3.24670e9i 0.256133 + 0.147879i
\(902\) 4.69215e9 0.212887
\(903\) 0 0
\(904\) −3.45505e10 −1.55548
\(905\) 4.62980e9 + 2.67301e9i 0.207631 + 0.119876i
\(906\) 0 0
\(907\) −2.10777e10 3.65077e10i −0.937990 1.62465i −0.769214 0.638992i \(-0.779352\pi\)
−0.168776 0.985654i \(-0.553982\pi\)
\(908\) 7.33312e9 1.27013e10i 0.325078 0.563052i
\(909\) 0 0
\(910\) −1.22871e10 + 5.69298e9i −0.540510 + 0.250435i
\(911\) 2.63292e10i 1.15378i 0.816822 + 0.576890i \(0.195734\pi\)
−0.816822 + 0.576890i \(0.804266\pi\)
\(912\) 0 0
\(913\) −1.50157e10 + 8.66930e9i −0.652976 + 0.376996i
\(914\) 1.74438e10 1.00712e10i 0.755667 0.436284i
\(915\) 0 0
\(916\) 1.18660e10i 0.510119i
\(917\) 3.79669e9 + 2.67234e9i 0.162597 + 0.114446i
\(918\) 0 0
\(919\) 5.64393e9 9.77557e9i 0.239871 0.415468i −0.720806 0.693136i \(-0.756228\pi\)
0.960677 + 0.277668i \(0.0895617\pi\)
\(920\) 1.50880e10 + 2.61331e10i 0.638812 + 1.10645i
\(921\) 0 0
\(922\) 1.68407e10 + 9.72299e9i 0.707624 + 0.408547i
\(923\) −1.13413e10 −0.474740
\(924\) 0 0
\(925\) −7.93740e9 −0.329748
\(926\) 5.29143e9 + 3.05501e9i 0.218995 + 0.126437i
\(927\) 0 0
\(928\) 2.60489e9 + 4.51180e9i 0.106997 + 0.185324i
\(929\) 8.91191e9 1.54359e10i 0.364683 0.631650i −0.624042 0.781391i \(-0.714511\pi\)
0.988725 + 0.149741i \(0.0478440\pi\)
\(930\) 0 0
\(931\) 2.28539e10 + 1.93681e10i 0.928187 + 0.786618i
\(932\) 2.53886e10i 1.02726i
\(933\) 0 0
\(934\) 2.63567e10 1.52171e10i 1.05847 0.611106i
\(935\) −2.37221e10 + 1.36959e10i −0.949100 + 0.547963i
\(936\) 0 0
\(937\) 2.99942e10i 1.19110i −0.803317 0.595551i \(-0.796934\pi\)
0.803317 0.595551i \(-0.203066\pi\)
\(938\) 1.60086e10 + 1.44007e9i 0.633351 + 0.0569738i
\(939\) 0 0
\(940\) 1.79833e9 3.11479e9i 0.0706189 0.122315i
\(941\) 1.74811e10 + 3.02781e10i 0.683918 + 1.18458i 0.973776 + 0.227511i \(0.0730586\pi\)
−0.289858 + 0.957070i \(0.593608\pi\)
\(942\) 0 0
\(943\) 1.21007e10 + 6.98634e9i 0.469915 + 0.271306i
\(944\) 2.04138e9 0.0789809
\(945\) 0 0
\(946\) 2.92211e10 1.12222
\(947\) −3.40657e10 1.96678e10i −1.30344 0.752543i −0.322450 0.946586i \(-0.604507\pi\)
−0.980993 + 0.194043i \(0.937840\pi\)
\(948\) 0 0
\(949\) 6.77717e9 + 1.17384e10i 0.257405 + 0.445838i
\(950\) −5.13481e9 + 8.89375e9i −0.194308 + 0.336552i
\(951\) 0 0
\(952\) −1.80602e10 3.89791e10i −0.678412 1.46421i
\(953\) 2.56610e10i 0.960390i 0.877162 + 0.480195i \(0.159434\pi\)
−0.877162 + 0.480195i \(0.840566\pi\)
\(954\) 0 0
\(955\) −5.59416e9 + 3.22979e9i −0.207837 + 0.119995i
\(956\) 1.12578e10 6.49967e9i 0.416725 0.240596i
\(957\) 0 0
\(958\) 4.67859e9i 0.171924i
\(959\) −4.50003e9 9.71235e9i −0.164759 0.355598i
\(960\) 0 0
\(961\) 2.44179e10 4.22930e10i 0.887517 1.53722i
\(962\) −7.91140e9 1.37029e10i −0.286511 0.496251i
\(963\) 0 0
\(964\) −1.31207e10 7.57522e9i −0.471722 0.272349i
\(965\) 6.47758e9 0.232042
\(966\) 0 0
\(967\) −3.78121e10 −1.34474 −0.672370 0.740216i \(-0.734723\pi\)
−0.672370 + 0.740216i \(0.734723\pi\)
\(968\) −1.24663e9 7.19744e8i −0.0441748 0.0255043i
\(969\) 0 0
\(970\) −5.78381e9 1.00178e10i −0.203476 0.352430i
\(971\) −2.21273e10 + 3.83257e10i −0.775643 + 1.34345i 0.158790 + 0.987312i \(0.449241\pi\)
−0.934433 + 0.356140i \(0.884093\pi\)
\(972\) 0 0
\(973\) −1.18016e10 1.06163e9i −0.410720 0.0369468i
\(974\) 1.68466e10i 0.584192i
\(975\) 0 0
\(976\) −2.11599e9 + 1.22167e9i −0.0728516 + 0.0420609i
\(977\) 4.46379e10 2.57717e10i 1.53134 0.884122i 0.532044 0.846716i \(-0.321424\pi\)
0.999300 0.0374057i \(-0.0119094\pi\)
\(978\) 0 0
\(979\) 3.30055e10i 1.12421i
\(980\) 1.14063e10 + 2.06888e9i 0.387128 + 0.0702171i
\(981\) 0 0
\(982\) −1.17788e9 + 2.04016e9i −0.0396929 + 0.0687501i
\(983\) 6.65368e9 + 1.15245e10i 0.223421 + 0.386977i 0.955845 0.293873i \(-0.0949441\pi\)
−0.732423 + 0.680849i \(0.761611\pi\)
\(984\) 0 0
\(985\) 3.05027e10 + 1.76107e10i 1.01698 + 0.587153i
\(986\) 7.23937e9 0.240509
\(987\) 0 0
\(988\) 2.41531e10 0.796752
\(989\) 7.53589e10 + 4.35085e10i 2.47712 + 1.43017i
\(990\) 0 0
\(991\) 2.54726e10 + 4.41199e10i 0.831412 + 1.44005i 0.896919 + 0.442196i \(0.145800\pi\)
−0.0655067 + 0.997852i \(0.520866\pi\)
\(992\) 2.38575e10 4.13225e10i 0.775952 1.34399i
\(993\) 0 0
\(994\) −6.72919e9 4.73642e9i −0.217325 0.152967i
\(995\) 3.57617e10i 1.15090i
\(996\) 0 0
\(997\) 2.69607e9 1.55658e9i 0.0861585 0.0497436i −0.456302 0.889825i \(-0.650826\pi\)
0.542460 + 0.840081i \(0.317493\pi\)
\(998\) −1.57572e10 + 9.09740e9i −0.501789 + 0.289708i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.8.p.a.26.7 yes 36
3.2 odd 2 inner 63.8.p.a.26.12 yes 36
7.2 even 3 441.8.c.a.440.10 36
7.3 odd 6 inner 63.8.p.a.17.12 yes 36
7.5 odd 6 441.8.c.a.440.28 36
21.2 odd 6 441.8.c.a.440.27 36
21.5 even 6 441.8.c.a.440.9 36
21.17 even 6 inner 63.8.p.a.17.7 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.8.p.a.17.7 36 21.17 even 6 inner
63.8.p.a.17.12 yes 36 7.3 odd 6 inner
63.8.p.a.26.7 yes 36 1.1 even 1 trivial
63.8.p.a.26.12 yes 36 3.2 odd 2 inner
441.8.c.a.440.9 36 21.5 even 6
441.8.c.a.440.10 36 7.2 even 3
441.8.c.a.440.27 36 21.2 odd 6
441.8.c.a.440.28 36 7.5 odd 6