Properties

Label 630.2.ce.c.53.4
Level $630$
Weight $2$
Character 630.53
Analytic conductor $5.031$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,2,Mod(53,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 9, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.ce (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 53.4
Character \(\chi\) \(=\) 630.53
Dual form 630.2.ce.c.107.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.258819 + 0.965926i) q^{2} +(-0.866025 - 0.500000i) q^{4} +(2.22449 + 0.227291i) q^{5} +(1.18959 + 2.36324i) q^{7} +(0.707107 - 0.707107i) q^{8} +O(q^{10})\) \(q+(-0.258819 + 0.965926i) q^{2} +(-0.866025 - 0.500000i) q^{4} +(2.22449 + 0.227291i) q^{5} +(1.18959 + 2.36324i) q^{7} +(0.707107 - 0.707107i) q^{8} +(-0.795286 + 2.08986i) q^{10} +(-1.10233 - 0.636431i) q^{11} +(2.15117 + 2.15117i) q^{13} +(-2.59060 + 0.537402i) q^{14} +(0.500000 + 0.866025i) q^{16} +(-5.80038 + 1.55421i) q^{17} +(6.20956 - 3.58509i) q^{19} +(-1.81282 - 1.30908i) q^{20} +(0.900050 - 0.900050i) q^{22} +(4.14634 + 1.11101i) q^{23} +(4.89668 + 1.01121i) q^{25} +(-2.63464 + 1.52111i) q^{26} +(0.151406 - 2.64142i) q^{28} -1.25304 q^{29} +(-2.35619 + 4.08105i) q^{31} +(-0.965926 + 0.258819i) q^{32} -6.00499i q^{34} +(2.10908 + 5.52737i) q^{35} +(-1.99953 - 0.535773i) q^{37} +(1.85578 + 6.92586i) q^{38} +(1.73367 - 1.41223i) q^{40} -0.655854i q^{41} +(7.20489 + 7.20489i) q^{43} +(0.636431 + 1.10233i) q^{44} +(-2.14630 + 3.71751i) q^{46} +(-2.80555 + 10.4704i) q^{47} +(-4.16977 + 5.62255i) q^{49} +(-2.24411 + 4.46811i) q^{50} +(-0.787384 - 2.93856i) q^{52} +(-3.55426 - 13.2647i) q^{53} +(-2.30747 - 1.66628i) q^{55} +(2.51222 + 0.829895i) q^{56} +(0.324311 - 1.21035i) q^{58} +(-0.688544 + 1.19259i) q^{59} +(-2.57772 - 4.46475i) q^{61} +(-3.33216 - 3.33216i) q^{62} -1.00000i q^{64} +(4.29631 + 5.27420i) q^{65} +(1.12287 + 4.19060i) q^{67} +(5.80038 + 1.55421i) q^{68} +(-5.88490 + 0.606624i) q^{70} +0.159361i q^{71} +(9.90347 - 2.65363i) q^{73} +(1.03503 - 1.79273i) q^{74} -7.17018 q^{76} +(0.192719 - 3.36216i) q^{77} +(-9.23605 + 5.33244i) q^{79} +(0.915403 + 2.04011i) q^{80} +(0.633506 + 0.169748i) q^{82} +(6.09168 - 6.09168i) q^{83} +(-13.2561 + 2.13894i) q^{85} +(-8.82415 + 5.09463i) q^{86} +(-1.22949 + 0.329441i) q^{88} +(-3.79369 - 6.57086i) q^{89} +(-2.52472 + 7.64274i) q^{91} +(-3.03533 - 3.03533i) q^{92} +(-9.38755 - 5.41990i) q^{94} +(14.6279 - 6.56361i) q^{95} +(10.9935 - 10.9935i) q^{97} +(-4.35175 - 5.48291i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 12 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 32 q - 12 q^{7} + 8 q^{13} + 16 q^{16} + 32 q^{22} - 16 q^{25} - 56 q^{31} + 20 q^{37} + 4 q^{40} + 24 q^{46} + 4 q^{52} + 12 q^{58} - 48 q^{61} + 8 q^{67} + 24 q^{70} + 48 q^{73} - 36 q^{82} - 136 q^{85} - 16 q^{88} - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.258819 + 0.965926i −0.183013 + 0.683013i
\(3\) 0 0
\(4\) −0.866025 0.500000i −0.433013 0.250000i
\(5\) 2.22449 + 0.227291i 0.994820 + 0.101648i
\(6\) 0 0
\(7\) 1.18959 + 2.36324i 0.449622 + 0.893219i
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) −0.795286 + 2.08986i −0.251491 + 0.660872i
\(11\) −1.10233 0.636431i −0.332365 0.191891i 0.324525 0.945877i \(-0.394795\pi\)
−0.656891 + 0.753986i \(0.728129\pi\)
\(12\) 0 0
\(13\) 2.15117 + 2.15117i 0.596628 + 0.596628i 0.939414 0.342786i \(-0.111370\pi\)
−0.342786 + 0.939414i \(0.611370\pi\)
\(14\) −2.59060 + 0.537402i −0.692366 + 0.143627i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) −5.80038 + 1.55421i −1.40680 + 0.376950i −0.880781 0.473524i \(-0.842982\pi\)
−0.526017 + 0.850474i \(0.676315\pi\)
\(18\) 0 0
\(19\) 6.20956 3.58509i 1.42457 0.822476i 0.427885 0.903833i \(-0.359259\pi\)
0.996685 + 0.0813571i \(0.0259254\pi\)
\(20\) −1.81282 1.30908i −0.405358 0.292720i
\(21\) 0 0
\(22\) 0.900050 0.900050i 0.191891 0.191891i
\(23\) 4.14634 + 1.11101i 0.864571 + 0.231661i 0.663739 0.747964i \(-0.268969\pi\)
0.200833 + 0.979626i \(0.435635\pi\)
\(24\) 0 0
\(25\) 4.89668 + 1.01121i 0.979336 + 0.202242i
\(26\) −2.63464 + 1.52111i −0.516695 + 0.298314i
\(27\) 0 0
\(28\) 0.151406 2.64142i 0.0286130 0.499181i
\(29\) −1.25304 −0.232684 −0.116342 0.993209i \(-0.537117\pi\)
−0.116342 + 0.993209i \(0.537117\pi\)
\(30\) 0 0
\(31\) −2.35619 + 4.08105i −0.423185 + 0.732978i −0.996249 0.0865329i \(-0.972421\pi\)
0.573064 + 0.819510i \(0.305755\pi\)
\(32\) −0.965926 + 0.258819i −0.170753 + 0.0457532i
\(33\) 0 0
\(34\) 6.00499i 1.02985i
\(35\) 2.10908 + 5.52737i 0.356499 + 0.934296i
\(36\) 0 0
\(37\) −1.99953 0.535773i −0.328721 0.0880805i 0.0906841 0.995880i \(-0.471095\pi\)
−0.419405 + 0.907799i \(0.637761\pi\)
\(38\) 1.85578 + 6.92586i 0.301047 + 1.12352i
\(39\) 0 0
\(40\) 1.73367 1.41223i 0.274117 0.223293i
\(41\) 0.655854i 0.102427i −0.998688 0.0512136i \(-0.983691\pi\)
0.998688 0.0512136i \(-0.0163089\pi\)
\(42\) 0 0
\(43\) 7.20489 + 7.20489i 1.09874 + 1.09874i 0.994559 + 0.104177i \(0.0332208\pi\)
0.104177 + 0.994559i \(0.466779\pi\)
\(44\) 0.636431 + 1.10233i 0.0959456 + 0.166183i
\(45\) 0 0
\(46\) −2.14630 + 3.71751i −0.316455 + 0.548116i
\(47\) −2.80555 + 10.4704i −0.409231 + 1.52727i 0.386885 + 0.922128i \(0.373551\pi\)
−0.796116 + 0.605144i \(0.793116\pi\)
\(48\) 0 0
\(49\) −4.16977 + 5.62255i −0.595681 + 0.803221i
\(50\) −2.24411 + 4.46811i −0.317365 + 0.631886i
\(51\) 0 0
\(52\) −0.787384 2.93856i −0.109191 0.407505i
\(53\) −3.55426 13.2647i −0.488215 1.82204i −0.565124 0.825006i \(-0.691172\pi\)
0.0769086 0.997038i \(-0.475495\pi\)
\(54\) 0 0
\(55\) −2.30747 1.66628i −0.311139 0.224682i
\(56\) 2.51222 + 0.829895i 0.335710 + 0.110899i
\(57\) 0 0
\(58\) 0.324311 1.21035i 0.0425842 0.158926i
\(59\) −0.688544 + 1.19259i −0.0896409 + 0.155263i −0.907359 0.420356i \(-0.861905\pi\)
0.817718 + 0.575618i \(0.195239\pi\)
\(60\) 0 0
\(61\) −2.57772 4.46475i −0.330044 0.571652i 0.652476 0.757809i \(-0.273730\pi\)
−0.982520 + 0.186157i \(0.940397\pi\)
\(62\) −3.33216 3.33216i −0.423185 0.423185i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 4.29631 + 5.27420i 0.532892 + 0.654184i
\(66\) 0 0
\(67\) 1.12287 + 4.19060i 0.137180 + 0.511964i 0.999979 + 0.00641674i \(0.00204253\pi\)
−0.862799 + 0.505547i \(0.831291\pi\)
\(68\) 5.80038 + 1.55421i 0.703399 + 0.188475i
\(69\) 0 0
\(70\) −5.88490 + 0.606624i −0.703380 + 0.0725054i
\(71\) 0.159361i 0.0189127i 0.999955 + 0.00945636i \(0.00301010\pi\)
−0.999955 + 0.00945636i \(0.996990\pi\)
\(72\) 0 0
\(73\) 9.90347 2.65363i 1.15911 0.310584i 0.372502 0.928031i \(-0.378500\pi\)
0.786612 + 0.617448i \(0.211833\pi\)
\(74\) 1.03503 1.79273i 0.120320 0.208401i
\(75\) 0 0
\(76\) −7.17018 −0.822476
\(77\) 0.192719 3.36216i 0.0219623 0.383154i
\(78\) 0 0
\(79\) −9.23605 + 5.33244i −1.03914 + 0.599946i −0.919589 0.392882i \(-0.871478\pi\)
−0.119548 + 0.992828i \(0.538145\pi\)
\(80\) 0.915403 + 2.04011i 0.102345 + 0.228091i
\(81\) 0 0
\(82\) 0.633506 + 0.169748i 0.0699591 + 0.0187455i
\(83\) 6.09168 6.09168i 0.668648 0.668648i −0.288755 0.957403i \(-0.593241\pi\)
0.957403 + 0.288755i \(0.0932412\pi\)
\(84\) 0 0
\(85\) −13.2561 + 2.13894i −1.43783 + 0.232000i
\(86\) −8.82415 + 5.09463i −0.951533 + 0.549368i
\(87\) 0 0
\(88\) −1.22949 + 0.329441i −0.131064 + 0.0351185i
\(89\) −3.79369 6.57086i −0.402130 0.696510i 0.591852 0.806046i \(-0.298397\pi\)
−0.993983 + 0.109536i \(0.965063\pi\)
\(90\) 0 0
\(91\) −2.52472 + 7.64274i −0.264663 + 0.801176i
\(92\) −3.03533 3.03533i −0.316455 0.316455i
\(93\) 0 0
\(94\) −9.38755 5.41990i −0.968251 0.559020i
\(95\) 14.6279 6.56361i 1.50079 0.673412i
\(96\) 0 0
\(97\) 10.9935 10.9935i 1.11622 1.11622i 0.123927 0.992291i \(-0.460451\pi\)
0.992291 0.123927i \(-0.0395488\pi\)
\(98\) −4.35175 5.48291i −0.439593 0.553857i
\(99\) 0 0
\(100\) −3.73504 3.32407i −0.373504 0.332407i
\(101\) −3.07715 1.77660i −0.306188 0.176778i 0.339031 0.940775i \(-0.389901\pi\)
−0.645220 + 0.763997i \(0.723234\pi\)
\(102\) 0 0
\(103\) 1.52719 5.69956i 0.150479 0.561595i −0.848971 0.528439i \(-0.822778\pi\)
0.999450 0.0331558i \(-0.0105558\pi\)
\(104\) 3.04222 0.298314
\(105\) 0 0
\(106\) 13.7326 1.33383
\(107\) 1.53230 5.71860i 0.148133 0.552838i −0.851463 0.524414i \(-0.824284\pi\)
0.999596 0.0284243i \(-0.00904895\pi\)
\(108\) 0 0
\(109\) −15.9866 9.22986i −1.53124 0.884061i −0.999305 0.0372741i \(-0.988133\pi\)
−0.531933 0.846787i \(-0.678534\pi\)
\(110\) 2.20672 1.79758i 0.210403 0.171392i
\(111\) 0 0
\(112\) −1.45183 + 2.21183i −0.137185 + 0.208998i
\(113\) −8.78952 + 8.78952i −0.826849 + 0.826849i −0.987080 0.160231i \(-0.948776\pi\)
0.160231 + 0.987080i \(0.448776\pi\)
\(114\) 0 0
\(115\) 8.97095 + 3.41385i 0.836545 + 0.318343i
\(116\) 1.08517 + 0.626522i 0.100755 + 0.0581711i
\(117\) 0 0
\(118\) −0.973749 0.973749i −0.0896409 0.0896409i
\(119\) −10.5730 11.8588i −0.969226 1.08709i
\(120\) 0 0
\(121\) −4.68991 8.12316i −0.426355 0.738469i
\(122\) 4.97978 1.33433i 0.450848 0.120804i
\(123\) 0 0
\(124\) 4.08105 2.35619i 0.366489 0.211592i
\(125\) 10.6628 + 3.36240i 0.953706 + 0.300742i
\(126\) 0 0
\(127\) 5.00250 5.00250i 0.443900 0.443900i −0.449421 0.893320i \(-0.648370\pi\)
0.893320 + 0.449421i \(0.148370\pi\)
\(128\) 0.965926 + 0.258819i 0.0853766 + 0.0228766i
\(129\) 0 0
\(130\) −6.20645 + 2.78486i −0.544342 + 0.244248i
\(131\) 16.7853 9.69100i 1.46654 0.846706i 0.467239 0.884131i \(-0.345249\pi\)
0.999299 + 0.0374245i \(0.0119154\pi\)
\(132\) 0 0
\(133\) 15.8592 + 10.4099i 1.37517 + 0.902651i
\(134\) −4.33843 −0.374783
\(135\) 0 0
\(136\) −3.00250 + 5.20048i −0.257462 + 0.445937i
\(137\) 6.13584 1.64409i 0.524220 0.140464i 0.0130023 0.999915i \(-0.495861\pi\)
0.511218 + 0.859451i \(0.329194\pi\)
\(138\) 0 0
\(139\) 7.61018i 0.645487i −0.946486 0.322744i \(-0.895395\pi\)
0.946486 0.322744i \(-0.104605\pi\)
\(140\) 0.937170 5.84138i 0.0792053 0.493687i
\(141\) 0 0
\(142\) −0.153931 0.0412458i −0.0129176 0.00346127i
\(143\) −1.00223 3.74038i −0.0838108 0.312786i
\(144\) 0 0
\(145\) −2.78738 0.284805i −0.231479 0.0236518i
\(146\) 10.2528i 0.848530i
\(147\) 0 0
\(148\) 1.46376 + 1.46376i 0.120320 + 0.120320i
\(149\) 5.05397 + 8.75374i 0.414038 + 0.717134i 0.995327 0.0965628i \(-0.0307848\pi\)
−0.581289 + 0.813697i \(0.697452\pi\)
\(150\) 0 0
\(151\) 0.957672 1.65874i 0.0779342 0.134986i −0.824424 0.565972i \(-0.808501\pi\)
0.902359 + 0.430986i \(0.141834\pi\)
\(152\) 1.85578 6.92586i 0.150524 0.561762i
\(153\) 0 0
\(154\) 3.19772 + 1.05634i 0.257679 + 0.0851225i
\(155\) −6.16890 + 8.54269i −0.495498 + 0.686165i
\(156\) 0 0
\(157\) −4.02672 15.0279i −0.321368 1.19936i −0.917913 0.396781i \(-0.870127\pi\)
0.596546 0.802579i \(-0.296539\pi\)
\(158\) −2.76027 10.3015i −0.219596 0.819542i
\(159\) 0 0
\(160\) −2.20752 + 0.356193i −0.174519 + 0.0281595i
\(161\) 2.30686 + 11.1204i 0.181806 + 0.876412i
\(162\) 0 0
\(163\) −3.02616 + 11.2938i −0.237027 + 0.884599i 0.740197 + 0.672390i \(0.234732\pi\)
−0.977224 + 0.212208i \(0.931934\pi\)
\(164\) −0.327927 + 0.567986i −0.0256068 + 0.0443523i
\(165\) 0 0
\(166\) 4.30747 + 7.46075i 0.334324 + 0.579067i
\(167\) −8.85336 8.85336i −0.685093 0.685093i 0.276050 0.961143i \(-0.410974\pi\)
−0.961143 + 0.276050i \(0.910974\pi\)
\(168\) 0 0
\(169\) 3.74491i 0.288070i
\(170\) 1.36488 13.3580i 0.104682 1.02451i
\(171\) 0 0
\(172\) −2.63717 9.84207i −0.201083 0.750450i
\(173\) 4.80092 + 1.28640i 0.365007 + 0.0978034i 0.436661 0.899626i \(-0.356161\pi\)
−0.0716536 + 0.997430i \(0.522828\pi\)
\(174\) 0 0
\(175\) 3.43529 + 12.7749i 0.259684 + 0.965694i
\(176\) 1.27286i 0.0959456i
\(177\) 0 0
\(178\) 7.32885 1.96376i 0.549320 0.147190i
\(179\) 10.2521 17.7572i 0.766281 1.32724i −0.173286 0.984872i \(-0.555438\pi\)
0.939567 0.342366i \(-0.111228\pi\)
\(180\) 0 0
\(181\) −6.09745 −0.453220 −0.226610 0.973986i \(-0.572764\pi\)
−0.226610 + 0.973986i \(0.572764\pi\)
\(182\) −6.72887 4.41678i −0.498777 0.327394i
\(183\) 0 0
\(184\) 3.71751 2.14630i 0.274058 0.158228i
\(185\) −4.32615 1.64630i −0.318065 0.121038i
\(186\) 0 0
\(187\) 7.38308 + 1.97829i 0.539905 + 0.144667i
\(188\) 7.66490 7.66490i 0.559020 0.559020i
\(189\) 0 0
\(190\) 2.55397 + 15.8283i 0.185284 + 1.14830i
\(191\) 10.2818 5.93620i 0.743965 0.429528i −0.0795444 0.996831i \(-0.525347\pi\)
0.823509 + 0.567303i \(0.192013\pi\)
\(192\) 0 0
\(193\) −14.8683 + 3.98395i −1.07024 + 0.286771i −0.750593 0.660765i \(-0.770232\pi\)
−0.319650 + 0.947536i \(0.603565\pi\)
\(194\) 7.77356 + 13.4642i 0.558109 + 0.966673i
\(195\) 0 0
\(196\) 6.42240 2.78439i 0.458743 0.198885i
\(197\) −4.63999 4.63999i −0.330585 0.330585i 0.522223 0.852809i \(-0.325103\pi\)
−0.852809 + 0.522223i \(0.825103\pi\)
\(198\) 0 0
\(199\) −8.74465 5.04873i −0.619892 0.357895i 0.156935 0.987609i \(-0.449839\pi\)
−0.776827 + 0.629714i \(0.783172\pi\)
\(200\) 4.17751 2.74744i 0.295394 0.194273i
\(201\) 0 0
\(202\) 2.51249 2.51249i 0.176778 0.176778i
\(203\) −1.49060 2.96124i −0.104620 0.207838i
\(204\) 0 0
\(205\) 0.149070 1.45894i 0.0104115 0.101897i
\(206\) 5.11009 + 2.95031i 0.356037 + 0.205558i
\(207\) 0 0
\(208\) −0.787384 + 2.93856i −0.0545953 + 0.203752i
\(209\) −9.12665 −0.631304
\(210\) 0 0
\(211\) −27.9822 −1.92637 −0.963187 0.268832i \(-0.913362\pi\)
−0.963187 + 0.268832i \(0.913362\pi\)
\(212\) −3.55426 + 13.2647i −0.244108 + 0.911022i
\(213\) 0 0
\(214\) 5.12716 + 2.96017i 0.350486 + 0.202353i
\(215\) 14.3896 + 17.6648i 0.981361 + 1.20473i
\(216\) 0 0
\(217\) −12.4474 0.713482i −0.844983 0.0484343i
\(218\) 13.0530 13.0530i 0.884061 0.884061i
\(219\) 0 0
\(220\) 1.16518 + 2.59678i 0.0785566 + 0.175075i
\(221\) −15.8210 9.13425i −1.06423 0.614436i
\(222\) 0 0
\(223\) 7.37355 + 7.37355i 0.493769 + 0.493769i 0.909492 0.415722i \(-0.136471\pi\)
−0.415722 + 0.909492i \(0.636471\pi\)
\(224\) −1.76070 1.97482i −0.117642 0.131948i
\(225\) 0 0
\(226\) −6.21513 10.7649i −0.413424 0.716072i
\(227\) 10.8596 2.90981i 0.720775 0.193131i 0.120258 0.992743i \(-0.461628\pi\)
0.600518 + 0.799611i \(0.294961\pi\)
\(228\) 0 0
\(229\) 9.38944 5.42100i 0.620472 0.358230i −0.156581 0.987665i \(-0.550047\pi\)
0.777053 + 0.629436i \(0.216714\pi\)
\(230\) −5.61938 + 7.78170i −0.370531 + 0.513110i
\(231\) 0 0
\(232\) −0.886035 + 0.886035i −0.0581711 + 0.0581711i
\(233\) −16.4685 4.41272i −1.07889 0.289087i −0.324747 0.945801i \(-0.605279\pi\)
−0.754140 + 0.656714i \(0.771946\pi\)
\(234\) 0 0
\(235\) −8.62074 + 22.6537i −0.562355 + 1.47776i
\(236\) 1.19259 0.688544i 0.0776313 0.0448204i
\(237\) 0 0
\(238\) 14.1912 7.14346i 0.919880 0.463042i
\(239\) −25.5123 −1.65026 −0.825128 0.564946i \(-0.808897\pi\)
−0.825128 + 0.564946i \(0.808897\pi\)
\(240\) 0 0
\(241\) 7.79510 13.5015i 0.502127 0.869709i −0.497870 0.867251i \(-0.665884\pi\)
0.999997 0.00245737i \(-0.000782207\pi\)
\(242\) 9.06021 2.42768i 0.582412 0.156057i
\(243\) 0 0
\(244\) 5.15545i 0.330044i
\(245\) −10.5535 + 11.5595i −0.674241 + 0.738511i
\(246\) 0 0
\(247\) 21.0700 + 5.64568i 1.34065 + 0.359226i
\(248\) 1.21966 + 4.55182i 0.0774482 + 0.289041i
\(249\) 0 0
\(250\) −6.00755 + 9.42918i −0.379951 + 0.596353i
\(251\) 10.8399i 0.684206i 0.939662 + 0.342103i \(0.111139\pi\)
−0.939662 + 0.342103i \(0.888861\pi\)
\(252\) 0 0
\(253\) −3.86356 3.86356i −0.242900 0.242900i
\(254\) 3.53730 + 6.12678i 0.221950 + 0.384428i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −3.70172 + 13.8150i −0.230907 + 0.861756i 0.749044 + 0.662520i \(0.230513\pi\)
−0.979951 + 0.199237i \(0.936154\pi\)
\(258\) 0 0
\(259\) −1.11246 5.36271i −0.0691248 0.333223i
\(260\) −1.08362 6.71575i −0.0672031 0.416493i
\(261\) 0 0
\(262\) 5.01643 + 18.7216i 0.309916 + 1.15662i
\(263\) 1.41762 + 5.29064i 0.0874144 + 0.326235i 0.995760 0.0919845i \(-0.0293210\pi\)
−0.908346 + 0.418219i \(0.862654\pi\)
\(264\) 0 0
\(265\) −4.89146 30.3150i −0.300480 1.86223i
\(266\) −14.1598 + 12.6246i −0.868195 + 0.774061i
\(267\) 0 0
\(268\) 1.12287 4.19060i 0.0685901 0.255982i
\(269\) −11.0192 + 19.0857i −0.671850 + 1.16368i 0.305530 + 0.952183i \(0.401167\pi\)
−0.977379 + 0.211495i \(0.932167\pi\)
\(270\) 0 0
\(271\) −3.14477 5.44691i −0.191031 0.330876i 0.754561 0.656230i \(-0.227850\pi\)
−0.945592 + 0.325354i \(0.894517\pi\)
\(272\) −4.24617 4.24617i −0.257462 0.257462i
\(273\) 0 0
\(274\) 6.35229i 0.383756i
\(275\) −4.75420 4.23109i −0.286689 0.255144i
\(276\) 0 0
\(277\) −5.68345 21.2109i −0.341485 1.27444i −0.896665 0.442710i \(-0.854017\pi\)
0.555180 0.831730i \(-0.312649\pi\)
\(278\) 7.35087 + 1.96966i 0.440876 + 0.118132i
\(279\) 0 0
\(280\) 5.39978 + 2.41710i 0.322699 + 0.144449i
\(281\) 12.3803i 0.738545i 0.929321 + 0.369273i \(0.120393\pi\)
−0.929321 + 0.369273i \(0.879607\pi\)
\(282\) 0 0
\(283\) 16.7878 4.49829i 0.997933 0.267395i 0.277354 0.960768i \(-0.410543\pi\)
0.720579 + 0.693372i \(0.243876\pi\)
\(284\) 0.0796807 0.138011i 0.00472818 0.00818945i
\(285\) 0 0
\(286\) 3.87233 0.228975
\(287\) 1.54994 0.780195i 0.0914899 0.0460535i
\(288\) 0 0
\(289\) 16.5064 9.52996i 0.970964 0.560586i
\(290\) 0.996527 2.61869i 0.0585181 0.153775i
\(291\) 0 0
\(292\) −9.90347 2.65363i −0.579557 0.155292i
\(293\) 19.7746 19.7746i 1.15525 1.15525i 0.169760 0.985485i \(-0.445701\pi\)
0.985485 0.169760i \(-0.0542992\pi\)
\(294\) 0 0
\(295\) −1.80272 + 2.49641i −0.104959 + 0.145347i
\(296\) −1.79273 + 1.03503i −0.104200 + 0.0601601i
\(297\) 0 0
\(298\) −9.76353 + 2.61613i −0.565586 + 0.151548i
\(299\) 6.52952 + 11.3095i 0.377612 + 0.654043i
\(300\) 0 0
\(301\) −8.45602 + 25.5977i −0.487397 + 1.47543i
\(302\) 1.35435 + 1.35435i 0.0779342 + 0.0779342i
\(303\) 0 0
\(304\) 6.20956 + 3.58509i 0.356143 + 0.205619i
\(305\) −4.71931 10.5177i −0.270227 0.602240i
\(306\) 0 0
\(307\) −7.55718 + 7.55718i −0.431311 + 0.431311i −0.889074 0.457763i \(-0.848651\pi\)
0.457763 + 0.889074i \(0.348651\pi\)
\(308\) −1.84798 + 2.81536i −0.105298 + 0.160420i
\(309\) 0 0
\(310\) −6.65497 8.16971i −0.377977 0.464009i
\(311\) 1.13329 + 0.654305i 0.0642630 + 0.0371022i 0.531787 0.846878i \(-0.321521\pi\)
−0.467524 + 0.883980i \(0.654854\pi\)
\(312\) 0 0
\(313\) 6.01619 22.4527i 0.340055 1.26910i −0.558229 0.829687i \(-0.688519\pi\)
0.898284 0.439416i \(-0.144815\pi\)
\(314\) 15.5581 0.877993
\(315\) 0 0
\(316\) 10.6649 0.599946
\(317\) −6.28546 + 23.4577i −0.353027 + 1.31751i 0.529923 + 0.848046i \(0.322221\pi\)
−0.882949 + 0.469468i \(0.844446\pi\)
\(318\) 0 0
\(319\) 1.38127 + 0.797476i 0.0773362 + 0.0446501i
\(320\) 0.227291 2.22449i 0.0127060 0.124353i
\(321\) 0 0
\(322\) −11.3386 0.649925i −0.631873 0.0362189i
\(323\) −30.4458 + 30.4458i −1.69405 + 1.69405i
\(324\) 0 0
\(325\) 8.35831 + 12.7089i 0.463636 + 0.704963i
\(326\) −10.1257 5.84610i −0.560813 0.323786i
\(327\) 0 0
\(328\) −0.463759 0.463759i −0.0256068 0.0256068i
\(329\) −28.0816 + 5.82533i −1.54819 + 0.321161i
\(330\) 0 0
\(331\) 3.47113 + 6.01217i 0.190790 + 0.330458i 0.945512 0.325586i \(-0.105562\pi\)
−0.754722 + 0.656045i \(0.772228\pi\)
\(332\) −8.32139 + 2.22971i −0.456695 + 0.122371i
\(333\) 0 0
\(334\) 10.8431 6.26027i 0.593308 0.342547i
\(335\) 1.54532 + 9.57715i 0.0844298 + 0.523256i
\(336\) 0 0
\(337\) −8.08169 + 8.08169i −0.440237 + 0.440237i −0.892092 0.451854i \(-0.850763\pi\)
0.451854 + 0.892092i \(0.350763\pi\)
\(338\) 3.61730 + 0.969254i 0.196755 + 0.0527204i
\(339\) 0 0
\(340\) 12.5496 + 4.77568i 0.680598 + 0.258998i
\(341\) 5.19461 2.99911i 0.281304 0.162411i
\(342\) 0 0
\(343\) −18.2477 3.16563i −0.985283 0.170928i
\(344\) 10.1893 0.549368
\(345\) 0 0
\(346\) −2.48514 + 4.30439i −0.133602 + 0.231405i
\(347\) −16.4333 + 4.40330i −0.882188 + 0.236381i −0.671351 0.741140i \(-0.734286\pi\)
−0.210837 + 0.977521i \(0.567619\pi\)
\(348\) 0 0
\(349\) 36.2149i 1.93854i 0.246004 + 0.969269i \(0.420883\pi\)
−0.246004 + 0.969269i \(0.579117\pi\)
\(350\) −13.2288 + 0.0118417i −0.707106 + 0.000632963i
\(351\) 0 0
\(352\) 1.22949 + 0.329441i 0.0655321 + 0.0175593i
\(353\) 2.71380 + 10.1280i 0.144441 + 0.539061i 0.999780 + 0.0209920i \(0.00668245\pi\)
−0.855339 + 0.518069i \(0.826651\pi\)
\(354\) 0 0
\(355\) −0.0362214 + 0.354497i −0.00192243 + 0.0188148i
\(356\) 7.58738i 0.402130i
\(357\) 0 0
\(358\) 14.4987 + 14.4987i 0.766281 + 0.766281i
\(359\) 14.4319 + 24.9968i 0.761686 + 1.31928i 0.941981 + 0.335667i \(0.108962\pi\)
−0.180294 + 0.983613i \(0.557705\pi\)
\(360\) 0 0
\(361\) 16.2057 28.0692i 0.852934 1.47732i
\(362\) 1.57814 5.88969i 0.0829451 0.309555i
\(363\) 0 0
\(364\) 6.00784 5.35644i 0.314896 0.280754i
\(365\) 22.6333 3.65199i 1.18468 0.191154i
\(366\) 0 0
\(367\) 0.535122 + 1.99710i 0.0279331 + 0.104248i 0.978485 0.206318i \(-0.0661481\pi\)
−0.950552 + 0.310566i \(0.899481\pi\)
\(368\) 1.11101 + 4.14634i 0.0579153 + 0.216143i
\(369\) 0 0
\(370\) 2.70989 3.75265i 0.140880 0.195091i
\(371\) 27.1195 24.1790i 1.40797 1.25531i
\(372\) 0 0
\(373\) −9.27766 + 34.6247i −0.480379 + 1.79280i 0.119644 + 0.992817i \(0.461825\pi\)
−0.600023 + 0.799982i \(0.704842\pi\)
\(374\) −3.82177 + 6.61949i −0.197619 + 0.342286i
\(375\) 0 0
\(376\) 5.41990 + 9.38755i 0.279510 + 0.484126i
\(377\) −2.69551 2.69551i −0.138826 0.138826i
\(378\) 0 0
\(379\) 4.28006i 0.219852i −0.993940 0.109926i \(-0.964939\pi\)
0.993940 0.109926i \(-0.0350614\pi\)
\(380\) −15.9500 1.62972i −0.818216 0.0836028i
\(381\) 0 0
\(382\) 3.07280 + 11.4679i 0.157218 + 0.586746i
\(383\) −5.06354 1.35677i −0.258735 0.0693278i 0.127120 0.991887i \(-0.459427\pi\)
−0.385855 + 0.922560i \(0.626093\pi\)
\(384\) 0 0
\(385\) 1.19289 7.43527i 0.0607952 0.378937i
\(386\) 15.3928i 0.783472i
\(387\) 0 0
\(388\) −15.0174 + 4.02389i −0.762391 + 0.204282i
\(389\) −14.0642 + 24.3599i −0.713082 + 1.23509i 0.250613 + 0.968087i \(0.419368\pi\)
−0.963695 + 0.267007i \(0.913965\pi\)
\(390\) 0 0
\(391\) −25.7771 −1.30360
\(392\) 1.02727 + 6.92421i 0.0518850 + 0.349726i
\(393\) 0 0
\(394\) 5.68280 3.28097i 0.286295 0.165293i
\(395\) −21.7575 + 9.76266i −1.09474 + 0.491213i
\(396\) 0 0
\(397\) −3.25806 0.872995i −0.163518 0.0438144i 0.176131 0.984367i \(-0.443642\pi\)
−0.339649 + 0.940552i \(0.610308\pi\)
\(398\) 7.13998 7.13998i 0.357895 0.357895i
\(399\) 0 0
\(400\) 1.57260 + 4.74625i 0.0786302 + 0.237313i
\(401\) 21.7433 12.5535i 1.08581 0.626891i 0.153350 0.988172i \(-0.450994\pi\)
0.932457 + 0.361281i \(0.117660\pi\)
\(402\) 0 0
\(403\) −13.8476 + 3.71046i −0.689799 + 0.184831i
\(404\) 1.77660 + 3.07715i 0.0883889 + 0.153094i
\(405\) 0 0
\(406\) 3.24613 0.673388i 0.161103 0.0334197i
\(407\) 1.86316 + 1.86316i 0.0923536 + 0.0923536i
\(408\) 0 0
\(409\) 8.80234 + 5.08203i 0.435248 + 0.251290i 0.701580 0.712591i \(-0.252478\pi\)
−0.266332 + 0.963881i \(0.585812\pi\)
\(410\) 1.37064 + 0.521591i 0.0676913 + 0.0257596i
\(411\) 0 0
\(412\) −4.17237 + 4.17237i −0.205558 + 0.205558i
\(413\) −3.63746 0.208499i −0.178988 0.0102596i
\(414\) 0 0
\(415\) 14.9354 12.1663i 0.733152 0.597219i
\(416\) −2.63464 1.52111i −0.129174 0.0745785i
\(417\) 0 0
\(418\) 2.36215 8.81567i 0.115537 0.431189i
\(419\) 21.3453 1.04279 0.521394 0.853316i \(-0.325412\pi\)
0.521394 + 0.853316i \(0.325412\pi\)
\(420\) 0 0
\(421\) 27.7202 1.35100 0.675499 0.737360i \(-0.263928\pi\)
0.675499 + 0.737360i \(0.263928\pi\)
\(422\) 7.24233 27.0287i 0.352551 1.31574i
\(423\) 0 0
\(424\) −11.8928 6.86630i −0.577565 0.333457i
\(425\) −29.9742 + 1.74504i −1.45396 + 0.0846468i
\(426\) 0 0
\(427\) 7.48483 11.4030i 0.362216 0.551829i
\(428\) −4.18631 + 4.18631i −0.202353 + 0.202353i
\(429\) 0 0
\(430\) −20.7872 + 9.32728i −1.00245 + 0.449801i
\(431\) −2.85680 1.64937i −0.137607 0.0794475i 0.429616 0.903012i \(-0.358649\pi\)
−0.567223 + 0.823564i \(0.691982\pi\)
\(432\) 0 0
\(433\) 1.33257 + 1.33257i 0.0640390 + 0.0640390i 0.738401 0.674362i \(-0.235581\pi\)
−0.674362 + 0.738401i \(0.735581\pi\)
\(434\) 3.91079 11.8386i 0.187724 0.568270i
\(435\) 0 0
\(436\) 9.22986 + 15.9866i 0.442030 + 0.765619i
\(437\) 29.7300 7.96613i 1.42218 0.381072i
\(438\) 0 0
\(439\) 10.1671 5.86996i 0.485248 0.280158i −0.237353 0.971423i \(-0.576280\pi\)
0.722601 + 0.691266i \(0.242947\pi\)
\(440\) −2.80986 + 0.453385i −0.133955 + 0.0216143i
\(441\) 0 0
\(442\) 12.9178 12.9178i 0.614436 0.614436i
\(443\) −13.2896 3.56095i −0.631410 0.169186i −0.0711005 0.997469i \(-0.522651\pi\)
−0.560309 + 0.828283i \(0.689318\pi\)
\(444\) 0 0
\(445\) −6.94551 15.4791i −0.329249 0.733778i
\(446\) −9.03072 + 5.21389i −0.427617 + 0.246885i
\(447\) 0 0
\(448\) 2.36324 1.18959i 0.111652 0.0562027i
\(449\) 11.5137 0.543366 0.271683 0.962387i \(-0.412420\pi\)
0.271683 + 0.962387i \(0.412420\pi\)
\(450\) 0 0
\(451\) −0.417406 + 0.722969i −0.0196549 + 0.0340433i
\(452\) 12.0067 3.21719i 0.564748 0.151324i
\(453\) 0 0
\(454\) 11.2427i 0.527644i
\(455\) −7.35334 + 16.4273i −0.344730 + 0.770124i
\(456\) 0 0
\(457\) 10.6667 + 2.85813i 0.498967 + 0.133698i 0.499520 0.866302i \(-0.333510\pi\)
−0.000553622 1.00000i \(0.500176\pi\)
\(458\) 2.80611 + 10.4726i 0.131121 + 0.489351i
\(459\) 0 0
\(460\) −6.06215 7.44195i −0.282649 0.346983i
\(461\) 1.01453i 0.0472512i −0.999721 0.0236256i \(-0.992479\pi\)
0.999721 0.0236256i \(-0.00752096\pi\)
\(462\) 0 0
\(463\) −12.8011 12.8011i −0.594916 0.594916i 0.344039 0.938955i \(-0.388205\pi\)
−0.938955 + 0.344039i \(0.888205\pi\)
\(464\) −0.626522 1.08517i −0.0290855 0.0503776i
\(465\) 0 0
\(466\) 8.52472 14.7653i 0.394900 0.683987i
\(467\) −2.05567 + 7.67187i −0.0951251 + 0.355012i −0.997038 0.0769053i \(-0.975496\pi\)
0.901913 + 0.431917i \(0.142163\pi\)
\(468\) 0 0
\(469\) −8.56763 + 7.63869i −0.395616 + 0.352722i
\(470\) −19.6506 14.1902i −0.906413 0.654545i
\(471\) 0 0
\(472\) 0.356417 + 1.33017i 0.0164054 + 0.0612258i
\(473\) −3.35676 12.5276i −0.154344 0.576020i
\(474\) 0 0
\(475\) 34.0315 11.2759i 1.56147 0.517372i
\(476\) 3.22710 + 15.5565i 0.147914 + 0.713032i
\(477\) 0 0
\(478\) 6.60308 24.6430i 0.302018 1.12715i
\(479\) 20.3520 35.2507i 0.929906 1.61064i 0.146431 0.989221i \(-0.453221\pi\)
0.783475 0.621424i \(-0.213445\pi\)
\(480\) 0 0
\(481\) −3.14880 5.45388i −0.143573 0.248676i
\(482\) 11.0239 + 11.0239i 0.502127 + 0.502127i
\(483\) 0 0
\(484\) 9.37982i 0.426355i
\(485\) 26.9535 21.9561i 1.22390 0.996976i
\(486\) 0 0
\(487\) 10.6050 + 39.5785i 0.480560 + 1.79347i 0.599272 + 0.800546i \(0.295457\pi\)
−0.118712 + 0.992929i \(0.537876\pi\)
\(488\) −4.97978 1.33433i −0.225424 0.0604022i
\(489\) 0 0
\(490\) −8.43419 13.1858i −0.381018 0.595672i
\(491\) 26.8998i 1.21397i −0.794714 0.606985i \(-0.792379\pi\)
0.794714 0.606985i \(-0.207621\pi\)
\(492\) 0 0
\(493\) 7.26812 1.94749i 0.327340 0.0877104i
\(494\) −10.9066 + 18.8908i −0.490712 + 0.849939i
\(495\) 0 0
\(496\) −4.71239 −0.211592
\(497\) −0.376609 + 0.189574i −0.0168932 + 0.00850357i
\(498\) 0 0
\(499\) −0.480426 + 0.277374i −0.0215068 + 0.0124170i −0.510715 0.859750i \(-0.670619\pi\)
0.489208 + 0.872167i \(0.337286\pi\)
\(500\) −7.55302 8.24330i −0.337781 0.368651i
\(501\) 0 0
\(502\) −10.4705 2.80556i −0.467321 0.125218i
\(503\) 6.68061 6.68061i 0.297874 0.297874i −0.542307 0.840181i \(-0.682449\pi\)
0.840181 + 0.542307i \(0.182449\pi\)
\(504\) 0 0
\(505\) −6.44128 4.65142i −0.286633 0.206986i
\(506\) 4.73187 2.73195i 0.210357 0.121450i
\(507\) 0 0
\(508\) −6.83354 + 1.83104i −0.303189 + 0.0812393i
\(509\) −14.5500 25.2013i −0.644916 1.11703i −0.984321 0.176386i \(-0.943559\pi\)
0.339405 0.940640i \(-0.389774\pi\)
\(510\) 0 0
\(511\) 18.0522 + 20.2475i 0.798582 + 0.895697i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) −12.3862 7.15117i −0.546332 0.315425i
\(515\) 4.69268 12.3315i 0.206784 0.543390i
\(516\) 0 0
\(517\) 9.75636 9.75636i 0.429084 0.429084i
\(518\) 5.46791 + 0.313420i 0.240246 + 0.0137709i
\(519\) 0 0
\(520\) 6.76737 + 0.691469i 0.296769 + 0.0303229i
\(521\) −16.9185 9.76787i −0.741211 0.427938i 0.0812985 0.996690i \(-0.474093\pi\)
−0.822509 + 0.568752i \(0.807427\pi\)
\(522\) 0 0
\(523\) −1.49335 + 5.57326i −0.0652996 + 0.243702i −0.990859 0.134901i \(-0.956928\pi\)
0.925559 + 0.378602i \(0.123595\pi\)
\(524\) −19.3820 −0.846706
\(525\) 0 0
\(526\) −5.47727 −0.238821
\(527\) 7.32402 27.3336i 0.319039 1.19067i
\(528\) 0 0
\(529\) −3.96080 2.28677i −0.172209 0.0994247i
\(530\) 30.5480 + 3.12130i 1.32692 + 0.135581i
\(531\) 0 0
\(532\) −8.52955 16.9448i −0.369803 0.734651i
\(533\) 1.41086 1.41086i 0.0611109 0.0611109i
\(534\) 0 0
\(535\) 4.70836 12.3727i 0.203560 0.534918i
\(536\) 3.75719 + 2.16922i 0.162286 + 0.0936958i
\(537\) 0 0
\(538\) −15.5834 15.5834i −0.671850 0.671850i
\(539\) 8.17483 3.54414i 0.352115 0.152657i
\(540\) 0 0
\(541\) −9.14490 15.8394i −0.393170 0.680991i 0.599696 0.800228i \(-0.295288\pi\)
−0.992866 + 0.119238i \(0.961955\pi\)
\(542\) 6.07524 1.62785i 0.260954 0.0699224i
\(543\) 0 0
\(544\) 5.20048 3.00250i 0.222969 0.128731i
\(545\) −33.4641 24.1653i −1.43344 1.03513i
\(546\) 0 0
\(547\) −5.93008 + 5.93008i −0.253552 + 0.253552i −0.822425 0.568873i \(-0.807379\pi\)
0.568873 + 0.822425i \(0.307379\pi\)
\(548\) −6.13584 1.64409i −0.262110 0.0702322i
\(549\) 0 0
\(550\) 5.31740 3.49711i 0.226734 0.149117i
\(551\) −7.78084 + 4.49227i −0.331475 + 0.191377i
\(552\) 0 0
\(553\) −23.5889 15.4836i −1.00310 0.658429i
\(554\) 21.9591 0.932955
\(555\) 0 0
\(556\) −3.80509 + 6.59061i −0.161372 + 0.279504i
\(557\) 11.1495 2.98750i 0.472420 0.126584i −0.0147511 0.999891i \(-0.504696\pi\)
0.487171 + 0.873307i \(0.338029\pi\)
\(558\) 0 0
\(559\) 30.9979i 1.31107i
\(560\) −3.73230 + 4.59020i −0.157719 + 0.193971i
\(561\) 0 0
\(562\) −11.9584 3.20425i −0.504436 0.135163i
\(563\) 5.23840 + 19.5500i 0.220772 + 0.823932i 0.984054 + 0.177867i \(0.0569198\pi\)
−0.763282 + 0.646065i \(0.776413\pi\)
\(564\) 0 0
\(565\) −21.5500 + 17.5544i −0.906613 + 0.738519i
\(566\) 17.3800i 0.730538i
\(567\) 0 0
\(568\) 0.112686 + 0.112686i 0.00472818 + 0.00472818i
\(569\) −15.6705 27.1421i −0.656941 1.13785i −0.981404 0.191956i \(-0.938517\pi\)
0.324463 0.945898i \(-0.394816\pi\)
\(570\) 0 0
\(571\) 11.5290 19.9688i 0.482473 0.835669i −0.517324 0.855790i \(-0.673072\pi\)
0.999798 + 0.0201210i \(0.00640514\pi\)
\(572\) −1.00223 + 3.74038i −0.0419054 + 0.156393i
\(573\) 0 0
\(574\) 0.352457 + 1.69905i 0.0147113 + 0.0709172i
\(575\) 19.1798 + 9.63307i 0.799854 + 0.401727i
\(576\) 0 0
\(577\) 4.03678 + 15.0655i 0.168053 + 0.627183i 0.997631 + 0.0687922i \(0.0219145\pi\)
−0.829578 + 0.558391i \(0.811419\pi\)
\(578\) 4.93307 + 18.4105i 0.205189 + 0.765775i
\(579\) 0 0
\(580\) 2.27154 + 1.64034i 0.0943204 + 0.0681113i
\(581\) 21.6426 + 7.14949i 0.897888 + 0.296611i
\(582\) 0 0
\(583\) −4.52409 + 16.8841i −0.187369 + 0.699269i
\(584\) 5.12641 8.87921i 0.212133 0.367424i
\(585\) 0 0
\(586\) 13.9828 + 24.2189i 0.577623 + 1.00047i
\(587\) 11.2057 + 11.2057i 0.462508 + 0.462508i 0.899477 0.436969i \(-0.143948\pi\)
−0.436969 + 0.899477i \(0.643948\pi\)
\(588\) 0 0
\(589\) 33.7887i 1.39224i
\(590\) −1.94477 2.38742i −0.0800648 0.0982883i
\(591\) 0 0
\(592\) −0.535773 1.99953i −0.0220201 0.0821803i
\(593\) −24.5541 6.57925i −1.00832 0.270177i −0.283390 0.959005i \(-0.591459\pi\)
−0.724925 + 0.688827i \(0.758126\pi\)
\(594\) 0 0
\(595\) −20.8241 28.7829i −0.853705 1.17998i
\(596\) 10.1079i 0.414038i
\(597\) 0 0
\(598\) −12.6141 + 3.37993i −0.515828 + 0.138216i
\(599\) 6.77896 11.7415i 0.276981 0.479745i −0.693652 0.720310i \(-0.743999\pi\)
0.970633 + 0.240565i \(0.0773328\pi\)
\(600\) 0 0
\(601\) −22.8479 −0.931983 −0.465992 0.884789i \(-0.654302\pi\)
−0.465992 + 0.884789i \(0.654302\pi\)
\(602\) −22.5369 14.7931i −0.918536 0.602920i
\(603\) 0 0
\(604\) −1.65874 + 0.957672i −0.0674930 + 0.0389671i
\(605\) −8.58632 19.1358i −0.349083 0.777982i
\(606\) 0 0
\(607\) −43.9900 11.7871i −1.78550 0.478423i −0.793929 0.608010i \(-0.791968\pi\)
−0.991568 + 0.129588i \(0.958635\pi\)
\(608\) −5.07008 + 5.07008i −0.205619 + 0.205619i
\(609\) 0 0
\(610\) 11.3807 1.83633i 0.460792 0.0743510i
\(611\) −28.5590 + 16.4885i −1.15537 + 0.667054i
\(612\) 0 0
\(613\) −16.8749 + 4.52161i −0.681570 + 0.182626i −0.582961 0.812500i \(-0.698106\pi\)
−0.0986088 + 0.995126i \(0.531439\pi\)
\(614\) −5.34373 9.25562i −0.215656 0.373526i
\(615\) 0 0
\(616\) −2.24113 2.51368i −0.0902978 0.101279i
\(617\) 22.6199 + 22.6199i 0.910643 + 0.910643i 0.996323 0.0856796i \(-0.0273061\pi\)
−0.0856796 + 0.996323i \(0.527306\pi\)
\(618\) 0 0
\(619\) −19.5089 11.2635i −0.784130 0.452718i 0.0537621 0.998554i \(-0.482879\pi\)
−0.837892 + 0.545836i \(0.816212\pi\)
\(620\) 9.61377 4.31373i 0.386098 0.173244i
\(621\) 0 0
\(622\) −0.925327 + 0.925327i −0.0371022 + 0.0371022i
\(623\) 11.0156 16.7820i 0.441330 0.672356i
\(624\) 0 0
\(625\) 22.9549 + 9.90315i 0.918196 + 0.396126i
\(626\) 20.1306 + 11.6224i 0.804579 + 0.464524i
\(627\) 0 0
\(628\) −4.02672 + 15.0279i −0.160684 + 0.599680i
\(629\) 12.4307 0.495646
\(630\) 0 0
\(631\) 32.0217 1.27476 0.637381 0.770549i \(-0.280018\pi\)
0.637381 + 0.770549i \(0.280018\pi\)
\(632\) −2.76027 + 10.3015i −0.109798 + 0.409771i
\(633\) 0 0
\(634\) −21.0316 12.1426i −0.835270 0.482244i
\(635\) 12.2650 9.99096i 0.486722 0.396479i
\(636\) 0 0
\(637\) −21.0650 + 3.12518i −0.834624 + 0.123824i
\(638\) −1.12780 + 1.12780i −0.0446501 + 0.0446501i
\(639\) 0 0
\(640\) 2.08986 + 0.795286i 0.0826090 + 0.0314364i
\(641\) 12.6297 + 7.29176i 0.498843 + 0.288007i 0.728236 0.685327i \(-0.240341\pi\)
−0.229392 + 0.973334i \(0.573674\pi\)
\(642\) 0 0
\(643\) 28.0979 + 28.0979i 1.10807 + 1.10807i 0.993404 + 0.114671i \(0.0365814\pi\)
0.114671 + 0.993404i \(0.463419\pi\)
\(644\) 3.56241 10.7840i 0.140379 0.424949i
\(645\) 0 0
\(646\) −21.5284 37.2883i −0.847025 1.46709i
\(647\) 6.05702 1.62297i 0.238126 0.0638057i −0.137782 0.990463i \(-0.543997\pi\)
0.375908 + 0.926657i \(0.377331\pi\)
\(648\) 0 0
\(649\) 1.51801 0.876423i 0.0595870 0.0344026i
\(650\) −14.4391 + 4.78420i −0.566350 + 0.187652i
\(651\) 0 0
\(652\) 8.26763 8.26763i 0.323786 0.323786i
\(653\) 14.9295 + 4.00035i 0.584237 + 0.156546i 0.538818 0.842422i \(-0.318871\pi\)
0.0454190 + 0.998968i \(0.485538\pi\)
\(654\) 0 0
\(655\) 39.5413 17.7423i 1.54501 0.693251i
\(656\) 0.567986 0.327927i 0.0221761 0.0128034i
\(657\) 0 0
\(658\) 1.64121 28.6324i 0.0639809 1.11621i
\(659\) 33.1206 1.29019 0.645097 0.764101i \(-0.276817\pi\)
0.645097 + 0.764101i \(0.276817\pi\)
\(660\) 0 0
\(661\) 10.9940 19.0421i 0.427616 0.740653i −0.569045 0.822307i \(-0.692687\pi\)
0.996661 + 0.0816540i \(0.0260202\pi\)
\(662\) −6.70570 + 1.79679i −0.260624 + 0.0698341i
\(663\) 0 0
\(664\) 8.61493i 0.334324i
\(665\) 32.9125 + 26.7613i 1.27629 + 1.03776i
\(666\) 0 0
\(667\) −5.19554 1.39214i −0.201172 0.0539039i
\(668\) 3.24055 + 12.0939i 0.125381 + 0.467927i
\(669\) 0 0
\(670\) −9.65078 0.986086i −0.372842 0.0380958i
\(671\) 6.56218i 0.253330i
\(672\) 0 0
\(673\) −29.8413 29.8413i −1.15030 1.15030i −0.986493 0.163806i \(-0.947623\pi\)
−0.163806 0.986493i \(-0.552377\pi\)
\(674\) −5.71461 9.89800i −0.220119 0.381257i
\(675\) 0 0
\(676\) −1.87245 + 3.24319i −0.0720175 + 0.124738i
\(677\) −2.87769 + 10.7397i −0.110599 + 0.412760i −0.998920 0.0464625i \(-0.985205\pi\)
0.888321 + 0.459222i \(0.151872\pi\)
\(678\) 0 0
\(679\) 39.0579 + 12.9025i 1.49890 + 0.495152i
\(680\) −7.86103 + 10.8859i −0.301457 + 0.417457i
\(681\) 0 0
\(682\) 1.55245 + 5.79384i 0.0594465 + 0.221857i
\(683\) 8.87917 + 33.1375i 0.339752 + 1.26797i 0.898625 + 0.438718i \(0.144567\pi\)
−0.558873 + 0.829253i \(0.688766\pi\)
\(684\) 0 0
\(685\) 14.0228 2.26264i 0.535783 0.0864511i
\(686\) 7.78062 16.8066i 0.297066 0.641679i
\(687\) 0 0
\(688\) −2.63717 + 9.84207i −0.100541 + 0.375225i
\(689\) 20.8888 36.1805i 0.795800 1.37837i
\(690\) 0 0
\(691\) −3.62966 6.28676i −0.138079 0.239160i 0.788690 0.614790i \(-0.210759\pi\)
−0.926769 + 0.375631i \(0.877426\pi\)
\(692\) −3.51452 3.51452i −0.133602 0.133602i
\(693\) 0 0
\(694\) 17.0130i 0.645806i
\(695\) 1.72973 16.9287i 0.0656123 0.642144i
\(696\) 0 0
\(697\) 1.01933 + 3.80420i 0.0386100 + 0.144094i
\(698\) −34.9809 9.37310i −1.32405 0.354777i
\(699\) 0 0
\(700\) 3.41241 12.7811i 0.128977 0.483079i
\(701\) 26.7254i 1.00940i 0.863294 + 0.504702i \(0.168398\pi\)
−0.863294 + 0.504702i \(0.831602\pi\)
\(702\) 0 0
\(703\) −14.3370 + 3.84159i −0.540730 + 0.144888i
\(704\) −0.636431 + 1.10233i −0.0239864 + 0.0415457i
\(705\) 0 0
\(706\) −10.4853 −0.394620
\(707\) 0.537973 9.38546i 0.0202326 0.352976i
\(708\) 0 0
\(709\) −28.6346 + 16.5322i −1.07540 + 0.620880i −0.929651 0.368442i \(-0.879891\pi\)
−0.145745 + 0.989322i \(0.546558\pi\)
\(710\) −0.333043 0.126738i −0.0124989 0.00475639i
\(711\) 0 0
\(712\) −7.32885 1.96376i −0.274660 0.0735950i
\(713\) −14.3037 + 14.3037i −0.535676 + 0.535676i
\(714\) 0 0
\(715\) −1.37930 8.54822i −0.0515827 0.319685i
\(716\) −17.7572 + 10.2521i −0.663619 + 0.383140i
\(717\) 0 0
\(718\) −27.8803 + 7.47050i −1.04048 + 0.278797i
\(719\) −0.519410 0.899644i −0.0193707 0.0335511i 0.856178 0.516682i \(-0.172833\pi\)
−0.875548 + 0.483131i \(0.839500\pi\)
\(720\) 0 0
\(721\) 15.2861 3.17101i 0.569286 0.118094i
\(722\) 22.9184 + 22.9184i 0.852934 + 0.852934i
\(723\) 0 0
\(724\) 5.28055 + 3.04873i 0.196250 + 0.113305i
\(725\) −6.13575 1.26709i −0.227876 0.0470586i
\(726\) 0 0
\(727\) −29.2601 + 29.2601i −1.08520 + 1.08520i −0.0891830 + 0.996015i \(0.528426\pi\)
−0.996015 + 0.0891830i \(0.971574\pi\)
\(728\) 3.61898 + 7.18948i 0.134128 + 0.266460i
\(729\) 0 0
\(730\) −2.33038 + 22.8073i −0.0862511 + 0.844135i
\(731\) −52.9890 30.5932i −1.95987 1.13153i
\(732\) 0 0
\(733\) 2.01726 7.52853i 0.0745094 0.278073i −0.918612 0.395160i \(-0.870689\pi\)
0.993122 + 0.117087i \(0.0373558\pi\)
\(734\) −2.06755 −0.0763148
\(735\) 0 0
\(736\) −4.29261 −0.158228
\(737\) 1.42926 5.33406i 0.0526474 0.196483i
\(738\) 0 0
\(739\) 6.75740 + 3.90139i 0.248575 + 0.143515i 0.619112 0.785303i \(-0.287493\pi\)
−0.370537 + 0.928818i \(0.620826\pi\)
\(740\) 2.92341 + 3.58881i 0.107467 + 0.131927i
\(741\) 0 0
\(742\) 16.3361 + 32.4534i 0.599718 + 1.19140i
\(743\) −22.5054 + 22.5054i −0.825641 + 0.825641i −0.986910 0.161269i \(-0.948441\pi\)
0.161269 + 0.986910i \(0.448441\pi\)
\(744\) 0 0
\(745\) 9.25285 + 20.6213i 0.338998 + 0.755506i
\(746\) −31.0437 17.9231i −1.13659 0.656210i
\(747\) 0 0
\(748\) −5.40479 5.40479i −0.197619 0.197619i
\(749\) 15.3372 3.18160i 0.560409 0.116253i
\(750\) 0 0
\(751\) 0.992322 + 1.71875i 0.0362103 + 0.0627182i 0.883563 0.468313i \(-0.155138\pi\)
−0.847352 + 0.531031i \(0.821805\pi\)
\(752\) −10.4704 + 2.80555i −0.381818 + 0.102308i
\(753\) 0 0
\(754\) 3.30132 1.90602i 0.120227 0.0694130i
\(755\) 2.50734 3.47217i 0.0912516 0.126365i
\(756\) 0 0
\(757\) −25.3998 + 25.3998i −0.923171 + 0.923171i −0.997252 0.0740808i \(-0.976398\pi\)
0.0740808 + 0.997252i \(0.476398\pi\)
\(758\) 4.13422 + 1.10776i 0.150162 + 0.0402357i
\(759\) 0 0
\(760\) 5.70234 14.9847i 0.206846 0.543552i
\(761\) 37.3770 21.5796i 1.35492 0.782261i 0.365982 0.930622i \(-0.380733\pi\)
0.988933 + 0.148361i \(0.0473998\pi\)
\(762\) 0 0
\(763\) 2.79491 48.7598i 0.101182 1.76522i
\(764\) −11.8724 −0.429528
\(765\) 0 0
\(766\) 2.62108 4.53985i 0.0947035 0.164031i
\(767\) −4.04665 + 1.08430i −0.146116 + 0.0391517i
\(768\) 0 0
\(769\) 21.4012i 0.771748i 0.922551 + 0.385874i \(0.126100\pi\)
−0.922551 + 0.385874i \(0.873900\pi\)
\(770\) 6.87318 + 3.07663i 0.247692 + 0.110874i
\(771\) 0 0
\(772\) 14.8683 + 3.98395i 0.535121 + 0.143385i
\(773\) 1.77969 + 6.64191i 0.0640111 + 0.238893i 0.990518 0.137386i \(-0.0438701\pi\)
−0.926506 + 0.376279i \(0.877203\pi\)
\(774\) 0 0
\(775\) −15.6643 + 17.6010i −0.562679 + 0.632245i
\(776\) 15.5471i 0.558109i
\(777\) 0 0
\(778\) −19.8897 19.8897i −0.713082 0.713082i
\(779\) −2.35130 4.07256i −0.0842439 0.145915i
\(780\) 0 0
\(781\) 0.101423 0.175669i 0.00362919 0.00628594i
\(782\) 6.67159 24.8987i 0.238576 0.890377i
\(783\) 0 0
\(784\) −6.95415 0.799850i −0.248363 0.0285661i
\(785\) −5.54168 34.3447i −0.197791 1.22581i
\(786\) 0 0
\(787\) −8.40128 31.3540i −0.299473 1.11765i −0.937599 0.347718i \(-0.886957\pi\)
0.638126 0.769932i \(-0.279710\pi\)
\(788\) 1.69835 + 6.33834i 0.0605013 + 0.225794i
\(789\) 0 0
\(790\) −3.79876 23.5429i −0.135154 0.837618i
\(791\) −31.2276 10.3158i −1.11033 0.366788i
\(792\) 0 0
\(793\) 4.05932 15.1496i 0.144151 0.537977i
\(794\) 1.68650 2.92110i 0.0598516 0.103666i
\(795\) 0 0
\(796\) 5.04873 + 8.74465i 0.178947 + 0.309946i
\(797\) −3.51487 3.51487i −0.124503 0.124503i 0.642110 0.766613i \(-0.278059\pi\)
−0.766613 + 0.642110i \(0.778059\pi\)
\(798\) 0 0
\(799\) 65.0929i 2.30282i
\(800\) −4.99155 + 0.290598i −0.176478 + 0.0102742i
\(801\) 0 0
\(802\) 6.49816 + 24.2515i 0.229458 + 0.856349i
\(803\) −12.6058 3.37770i −0.444848 0.119197i
\(804\) 0 0
\(805\) 2.60400 + 25.2615i 0.0917788 + 0.890352i
\(806\) 14.3361i 0.504968i
\(807\) 0 0
\(808\) −3.43212 + 0.919634i −0.120742 + 0.0323526i
\(809\) −27.6293 + 47.8553i −0.971393 + 1.68250i −0.280036 + 0.959989i \(0.590346\pi\)
−0.691357 + 0.722513i \(0.742987\pi\)
\(810\) 0 0
\(811\) −13.2246 −0.464380 −0.232190 0.972671i \(-0.574589\pi\)
−0.232190 + 0.972671i \(0.574589\pi\)
\(812\) −0.189718 + 3.30981i −0.00665779 + 0.116151i
\(813\) 0 0
\(814\) −2.28190 + 1.31746i −0.0799806 + 0.0461768i
\(815\) −9.29864 + 24.4351i −0.325717 + 0.855923i
\(816\) 0 0
\(817\) 70.5694 + 18.9090i 2.46891 + 0.661542i
\(818\) −7.18708 + 7.18708i −0.251290 + 0.251290i
\(819\) 0 0
\(820\) −0.858567 + 1.18894i −0.0299825 + 0.0415197i
\(821\) −14.2602 + 8.23311i −0.497683 + 0.287337i −0.727756 0.685836i \(-0.759437\pi\)
0.230073 + 0.973173i \(0.426103\pi\)
\(822\) 0 0
\(823\) 33.9396 9.09410i 1.18306 0.317000i 0.386921 0.922113i \(-0.373539\pi\)
0.796140 + 0.605112i \(0.206872\pi\)
\(824\) −2.95031 5.11009i −0.102779 0.178018i
\(825\) 0 0
\(826\) 1.14284 3.45956i 0.0397645 0.120373i
\(827\) −27.5730 27.5730i −0.958808 0.958808i 0.0403769 0.999185i \(-0.487144\pi\)
−0.999185 + 0.0403769i \(0.987144\pi\)
\(828\) 0 0
\(829\) 31.2154 + 18.0222i 1.08416 + 0.625938i 0.932014 0.362421i \(-0.118050\pi\)
0.152141 + 0.988359i \(0.451383\pi\)
\(830\) 7.88614 + 17.5754i 0.273732 + 0.610050i
\(831\) 0 0
\(832\) 2.15117 2.15117i 0.0745785 0.0745785i
\(833\) 15.4476 39.0936i 0.535228 1.35451i
\(834\) 0 0
\(835\) −17.6819 21.7065i −0.611907 0.751183i
\(836\) 7.90391 + 4.56333i 0.273363 + 0.157826i
\(837\) 0 0
\(838\) −5.52458 + 20.6180i −0.190843 + 0.712237i
\(839\) 16.9254 0.584331 0.292165 0.956368i \(-0.405624\pi\)
0.292165 + 0.956368i \(0.405624\pi\)
\(840\) 0 0
\(841\) −27.4299 −0.945858
\(842\) −7.17451 + 26.7756i −0.247250 + 0.922749i
\(843\) 0 0
\(844\) 24.2333 + 13.9911i 0.834144 + 0.481593i
\(845\) 0.851184 8.33050i 0.0292816 0.286578i
\(846\) 0 0
\(847\) 13.6179 20.7466i 0.467916 0.712861i
\(848\) 9.71042 9.71042i 0.333457 0.333457i
\(849\) 0 0
\(850\) 6.07232 29.4045i 0.208279 1.00857i
\(851\) −7.69549 4.44299i −0.263798 0.152304i
\(852\) 0 0
\(853\) −1.10865 1.10865i −0.0379596 0.0379596i 0.687872 0.725832i \(-0.258545\pi\)
−0.725832 + 0.687872i \(0.758545\pi\)
\(854\) 9.07721 + 10.1811i 0.310616 + 0.348390i
\(855\) 0 0
\(856\) −2.96017 5.12716i −0.101176 0.175243i
\(857\) 8.06522 2.16107i 0.275503 0.0738207i −0.118422 0.992963i \(-0.537784\pi\)
0.393925 + 0.919143i \(0.371117\pi\)
\(858\) 0 0
\(859\) −42.1088 + 24.3115i −1.43674 + 0.829499i −0.997621 0.0689321i \(-0.978041\pi\)
−0.439114 + 0.898431i \(0.644707\pi\)
\(860\) −3.62934 22.4929i −0.123760 0.767003i
\(861\) 0 0
\(862\) 2.33257 2.33257i 0.0794475 0.0794475i
\(863\) 13.9055 + 3.72597i 0.473349 + 0.126834i 0.487604 0.873065i \(-0.337871\pi\)
−0.0142549 + 0.999898i \(0.504538\pi\)
\(864\) 0 0
\(865\) 10.3872 + 3.95279i 0.353175 + 0.134399i
\(866\) −1.63205 + 0.942266i −0.0554594 + 0.0320195i
\(867\) 0 0
\(868\) 10.4230 + 6.84158i 0.353780 + 0.232218i
\(869\) 13.5749 0.460498
\(870\) 0 0
\(871\) −6.59923 + 11.4302i −0.223606 + 0.387297i
\(872\) −17.8307 + 4.77773i −0.603825 + 0.161794i
\(873\) 0 0
\(874\) 30.7788i 1.04111i
\(875\) 4.73813 + 29.1985i 0.160178 + 0.987088i
\(876\) 0 0
\(877\) 37.2132 + 9.97124i 1.25660 + 0.336705i 0.824882 0.565304i \(-0.191241\pi\)
0.431717 + 0.902009i \(0.357908\pi\)
\(878\) 3.03851 + 11.3399i 0.102545 + 0.382703i
\(879\) 0 0
\(880\) 0.289310 2.83147i 0.00975265 0.0954487i
\(881\) 46.3316i 1.56095i 0.625187 + 0.780475i \(0.285023\pi\)
−0.625187 + 0.780475i \(0.714977\pi\)
\(882\) 0 0
\(883\) 4.38151 + 4.38151i 0.147450 + 0.147450i 0.776978 0.629528i \(-0.216752\pi\)
−0.629528 + 0.776978i \(0.716752\pi\)
\(884\) 9.13425 + 15.8210i 0.307218 + 0.532117i
\(885\) 0 0
\(886\) 6.87922 11.9152i 0.231112 0.400298i
\(887\) −10.9098 + 40.7161i −0.366317 + 1.36711i 0.499311 + 0.866423i \(0.333587\pi\)
−0.865627 + 0.500689i \(0.833080\pi\)
\(888\) 0 0
\(889\) 17.7730 + 5.87118i 0.596087 + 0.196913i
\(890\) 16.7493 2.70257i 0.561437 0.0905904i
\(891\) 0 0
\(892\) −2.69891 10.0725i −0.0903661 0.337251i
\(893\) 20.1163 + 75.0750i 0.673166 + 2.51229i
\(894\) 0 0
\(895\) 26.8418 37.1705i 0.897222 1.24247i
\(896\) 0.537402 + 2.59060i 0.0179533 + 0.0865458i
\(897\) 0 0
\(898\) −2.97997 + 11.1214i −0.0994429 + 0.371126i
\(899\) 2.95241 5.11373i 0.0984684 0.170552i
\(900\) 0 0
\(901\) 41.2321 + 71.4161i 1.37364 + 2.37922i
\(902\) −0.590301 0.590301i −0.0196549 0.0196549i
\(903\) 0 0
\(904\) 12.4303i 0.413424i
\(905\) −13.5637 1.38590i −0.450873 0.0460688i
\(906\) 0 0
\(907\) 14.0020 + 52.2562i 0.464929 + 1.73514i 0.657124 + 0.753783i \(0.271773\pi\)
−0.192195 + 0.981357i \(0.561560\pi\)
\(908\) −10.8596 2.90981i −0.360388 0.0965656i
\(909\) 0 0
\(910\) −13.9644 11.3545i −0.462915 0.376397i
\(911\) 35.0545i 1.16141i −0.814115 0.580704i \(-0.802777\pi\)
0.814115 0.580704i \(-0.197223\pi\)
\(912\) 0 0
\(913\) −10.5920 + 2.83811i −0.350543 + 0.0939278i
\(914\) −5.52149 + 9.56350i −0.182635 + 0.316332i
\(915\) 0 0
\(916\) −10.8420 −0.358230
\(917\) 42.8697 + 28.1393i 1.41568 + 0.929243i
\(918\) 0 0
\(919\) −24.5646 + 14.1824i −0.810310 + 0.467833i −0.847064 0.531492i \(-0.821632\pi\)
0.0367535 + 0.999324i \(0.488298\pi\)
\(920\) 8.75738 3.92947i 0.288722 0.129551i
\(921\) 0 0
\(922\) 0.979957 + 0.262579i 0.0322732 + 0.00864757i
\(923\) −0.342814 + 0.342814i −0.0112839 + 0.0112839i
\(924\) 0 0
\(925\) −9.24928 4.64546i −0.304115 0.152742i
\(926\) 15.6780 9.05172i 0.515212 0.297458i
\(927\) 0 0
\(928\) 1.21035 0.324311i 0.0397316 0.0106460i
\(929\) −23.6445 40.9535i −0.775752 1.34364i −0.934371 0.356301i \(-0.884038\pi\)
0.158619 0.987340i \(-0.449296\pi\)
\(930\) 0 0
\(931\) −5.73507 + 49.8625i −0.187959 + 1.63418i
\(932\) 12.0558 + 12.0558i 0.394900 + 0.394900i
\(933\) 0 0
\(934\) −6.87841 3.97125i −0.225069 0.129943i
\(935\) 15.9739 + 6.07879i 0.522403 + 0.198798i
\(936\) 0 0
\(937\) 41.4793 41.4793i 1.35507 1.35507i 0.475182 0.879888i \(-0.342382\pi\)
0.879888 0.475182i \(-0.157618\pi\)
\(938\) −5.16094 10.2527i −0.168511 0.334764i
\(939\) 0 0
\(940\) 18.7926 15.3083i 0.612948 0.499302i
\(941\) −22.6321 13.0667i −0.737786 0.425961i 0.0834777 0.996510i \(-0.473397\pi\)
−0.821264 + 0.570549i \(0.806731\pi\)
\(942\) 0 0
\(943\) 0.728659 2.71939i 0.0237284 0.0885556i
\(944\) −1.37709 −0.0448204
\(945\) 0 0
\(946\) 12.9695 0.421676
\(947\) −7.73689 + 28.8745i −0.251415 + 0.938294i 0.718635 + 0.695388i \(0.244767\pi\)
−0.970050 + 0.242906i \(0.921899\pi\)
\(948\) 0 0
\(949\) 27.0125 + 15.5957i 0.876863 + 0.506257i
\(950\) 2.08364 + 35.7903i 0.0676022 + 1.16119i
\(951\) 0 0
\(952\) −15.8617 0.909190i −0.514080 0.0294670i
\(953\) 10.7391 10.7391i 0.347873 0.347873i −0.511444 0.859317i \(-0.670889\pi\)
0.859317 + 0.511444i \(0.170889\pi\)
\(954\) 0 0
\(955\) 24.2210 10.8680i 0.783772 0.351681i
\(956\) 22.0943 + 12.7562i 0.714582 + 0.412564i
\(957\) 0 0
\(958\) 28.7821 + 28.7821i 0.929906 + 0.929906i
\(959\) 11.1845 + 12.5446i 0.361166 + 0.405088i
\(960\) 0 0
\(961\) 4.39671 + 7.61532i 0.141829 + 0.245656i
\(962\) 6.08301 1.62994i 0.196124 0.0525513i
\(963\) 0 0
\(964\) −13.5015 + 7.79510i −0.434854 + 0.251063i
\(965\) −33.9798 + 5.48280i −1.09385 + 0.176498i
\(966\) 0 0
\(967\) −26.6517 + 26.6517i −0.857060 + 0.857060i −0.990991 0.133931i \(-0.957240\pi\)
0.133931 + 0.990991i \(0.457240\pi\)
\(968\) −9.06021 2.42768i −0.291206 0.0780285i
\(969\) 0 0
\(970\) 14.2319 + 31.7178i 0.456958 + 1.01840i
\(971\) −3.66101 + 2.11368i −0.117487 + 0.0678313i −0.557592 0.830115i \(-0.688275\pi\)
0.440105 + 0.897946i \(0.354941\pi\)
\(972\) 0 0
\(973\) 17.9847 9.05297i 0.576562 0.290225i
\(974\) −40.9747 −1.31291
\(975\) 0 0
\(976\) 2.57772 4.46475i 0.0825109 0.142913i
\(977\) −31.5835 + 8.46277i −1.01045 + 0.270748i −0.725816 0.687889i \(-0.758537\pi\)
−0.284630 + 0.958637i \(0.591871\pi\)
\(978\) 0 0
\(979\) 9.65769i 0.308661i
\(980\) 14.9194 4.73407i 0.476583 0.151224i
\(981\) 0 0
\(982\) 25.9832 + 6.96217i 0.829156 + 0.222172i
\(983\) −2.76365 10.3141i −0.0881467 0.328968i 0.907745 0.419523i \(-0.137803\pi\)
−0.995891 + 0.0905549i \(0.971136\pi\)
\(984\) 0 0
\(985\) −9.26696 11.3762i −0.295270 0.362476i
\(986\) 7.52451i 0.239629i
\(987\) 0 0
\(988\) −15.4243 15.4243i −0.490712 0.490712i
\(989\) 21.8692 + 37.8786i 0.695401 + 1.20447i
\(990\) 0 0
\(991\) 26.7818 46.3874i 0.850751 1.47354i −0.0297806 0.999556i \(-0.509481\pi\)
0.880532 0.473987i \(-0.157186\pi\)
\(992\) 1.21966 4.55182i 0.0387241 0.144520i
\(993\) 0 0
\(994\) −0.0856412 0.412841i −0.00271637 0.0130945i
\(995\) −18.3048 13.2184i −0.580302 0.419052i
\(996\) 0 0
\(997\) 1.67474 + 6.25021i 0.0530395 + 0.197946i 0.987362 0.158484i \(-0.0506605\pi\)
−0.934322 + 0.356430i \(0.883994\pi\)
\(998\) −0.143580 0.535846i −0.00454493 0.0169619i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.ce.c.53.4 32
3.2 odd 2 inner 630.2.ce.c.53.5 yes 32
5.2 odd 4 inner 630.2.ce.c.557.3 yes 32
7.2 even 3 inner 630.2.ce.c.233.6 yes 32
15.2 even 4 inner 630.2.ce.c.557.6 yes 32
21.2 odd 6 inner 630.2.ce.c.233.3 yes 32
35.2 odd 12 inner 630.2.ce.c.107.5 yes 32
105.2 even 12 inner 630.2.ce.c.107.4 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.ce.c.53.4 32 1.1 even 1 trivial
630.2.ce.c.53.5 yes 32 3.2 odd 2 inner
630.2.ce.c.107.4 yes 32 105.2 even 12 inner
630.2.ce.c.107.5 yes 32 35.2 odd 12 inner
630.2.ce.c.233.3 yes 32 21.2 odd 6 inner
630.2.ce.c.233.6 yes 32 7.2 even 3 inner
630.2.ce.c.557.3 yes 32 5.2 odd 4 inner
630.2.ce.c.557.6 yes 32 15.2 even 4 inner