Properties

Label 630.4.m.b.323.2
Level $630$
Weight $4$
Character 630.323
Analytic conductor $37.171$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,4,Mod(197,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.197");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 630.m (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.1712033036\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} - 62 x^{14} + 184 x^{13} + 5442 x^{12} + 68448 x^{11} + 1829094 x^{10} + \cdots + 101023536964 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 323.2
Root \(-13.4677 + 5.57851i\) of defining polynomial
Character \(\chi\) \(=\) 630.323
Dual form 630.4.m.b.197.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41421 - 1.41421i) q^{2} +4.00000i q^{4} +(2.41767 + 10.9158i) q^{5} +(4.94975 - 4.94975i) q^{7} +(5.65685 - 5.65685i) q^{8} +(12.0182 - 18.8564i) q^{10} +40.3451i q^{11} +(-4.00250 - 4.00250i) q^{13} -14.0000 q^{14} -16.0000 q^{16} +(24.2848 + 24.2848i) q^{17} +88.7246i q^{19} +(-43.6632 + 9.67066i) q^{20} +(57.0566 - 57.0566i) q^{22} +(100.543 - 100.543i) q^{23} +(-113.310 + 52.7816i) q^{25} +11.3208i q^{26} +(19.7990 + 19.7990i) q^{28} +131.171 q^{29} -127.843 q^{31} +(22.6274 + 22.6274i) q^{32} -68.6879i q^{34} +(65.9973 + 42.0637i) q^{35} +(11.9075 - 11.9075i) q^{37} +(125.476 - 125.476i) q^{38} +(75.4255 + 48.0728i) q^{40} +78.8741i q^{41} +(-154.322 - 154.322i) q^{43} -161.381 q^{44} -284.378 q^{46} +(-12.9636 - 12.9636i) q^{47} -49.0000i q^{49} +(234.889 + 85.5998i) q^{50} +(16.0100 - 16.0100i) q^{52} +(-196.358 + 196.358i) q^{53} +(-440.400 + 97.5411i) q^{55} -56.0000i q^{56} +(-185.504 - 185.504i) q^{58} -102.561 q^{59} -670.777 q^{61} +(180.798 + 180.798i) q^{62} -64.0000i q^{64} +(34.0138 - 53.3672i) q^{65} +(-559.907 + 559.907i) q^{67} +(-97.1393 + 97.1393i) q^{68} +(-33.8473 - 152.821i) q^{70} +688.906i q^{71} +(40.3519 + 40.3519i) q^{73} -33.6795 q^{74} -354.898 q^{76} +(199.698 + 199.698i) q^{77} -194.895i q^{79} +(-38.6827 - 174.653i) q^{80} +(111.545 - 111.545i) q^{82} +(283.254 - 283.254i) q^{83} +(-206.376 + 323.801i) q^{85} +436.488i q^{86} +(228.227 + 228.227i) q^{88} +21.4027 q^{89} -39.6227 q^{91} +(402.171 + 402.171i) q^{92} +36.6666i q^{94} +(-968.501 + 214.506i) q^{95} +(-348.520 + 348.520i) q^{97} +(-69.2965 + 69.2965i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 44 q^{5} - 24 q^{10} - 212 q^{13} - 224 q^{14} - 256 q^{16} - 32 q^{17} - 32 q^{20} + 72 q^{22} + 128 q^{23} - 268 q^{25} - 232 q^{29} - 200 q^{31} - 112 q^{35} + 900 q^{37} + 368 q^{38} - 128 q^{40}+ \cdots - 2668 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 1.41421i −0.500000 0.500000i
\(3\) 0 0
\(4\) 4.00000i 0.500000i
\(5\) 2.41767 + 10.9158i 0.216243 + 0.976340i
\(6\) 0 0
\(7\) 4.94975 4.94975i 0.267261 0.267261i
\(8\) 5.65685 5.65685i 0.250000 0.250000i
\(9\) 0 0
\(10\) 12.0182 18.8564i 0.380049 0.596291i
\(11\) 40.3451i 1.10587i 0.833226 + 0.552933i \(0.186491\pi\)
−0.833226 + 0.552933i \(0.813509\pi\)
\(12\) 0 0
\(13\) −4.00250 4.00250i −0.0853918 0.0853918i 0.663121 0.748513i \(-0.269232\pi\)
−0.748513 + 0.663121i \(0.769232\pi\)
\(14\) −14.0000 −0.267261
\(15\) 0 0
\(16\) −16.0000 −0.250000
\(17\) 24.2848 + 24.2848i 0.346467 + 0.346467i 0.858792 0.512325i \(-0.171216\pi\)
−0.512325 + 0.858792i \(0.671216\pi\)
\(18\) 0 0
\(19\) 88.7246i 1.07131i 0.844438 + 0.535653i \(0.179935\pi\)
−0.844438 + 0.535653i \(0.820065\pi\)
\(20\) −43.6632 + 9.67066i −0.488170 + 0.108121i
\(21\) 0 0
\(22\) 57.0566 57.0566i 0.552933 0.552933i
\(23\) 100.543 100.543i 0.911505 0.911505i −0.0848860 0.996391i \(-0.527053\pi\)
0.996391 + 0.0848860i \(0.0270526\pi\)
\(24\) 0 0
\(25\) −113.310 + 52.7816i −0.906478 + 0.422253i
\(26\) 11.3208i 0.0853918i
\(27\) 0 0
\(28\) 19.7990 + 19.7990i 0.133631 + 0.133631i
\(29\) 131.171 0.839927 0.419963 0.907541i \(-0.362043\pi\)
0.419963 + 0.907541i \(0.362043\pi\)
\(30\) 0 0
\(31\) −127.843 −0.740689 −0.370344 0.928895i \(-0.620760\pi\)
−0.370344 + 0.928895i \(0.620760\pi\)
\(32\) 22.6274 + 22.6274i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 68.6879i 0.346467i
\(35\) 65.9973 + 42.0637i 0.318731 + 0.203144i
\(36\) 0 0
\(37\) 11.9075 11.9075i 0.0529075 0.0529075i −0.680158 0.733066i \(-0.738089\pi\)
0.733066 + 0.680158i \(0.238089\pi\)
\(38\) 125.476 125.476i 0.535653 0.535653i
\(39\) 0 0
\(40\) 75.4255 + 48.0728i 0.298146 + 0.190024i
\(41\) 78.8741i 0.300441i 0.988653 + 0.150220i \(0.0479983\pi\)
−0.988653 + 0.150220i \(0.952002\pi\)
\(42\) 0 0
\(43\) −154.322 154.322i −0.547298 0.547298i 0.378360 0.925658i \(-0.376488\pi\)
−0.925658 + 0.378360i \(0.876488\pi\)
\(44\) −161.381 −0.552933
\(45\) 0 0
\(46\) −284.378 −0.911505
\(47\) −12.9636 12.9636i −0.0402326 0.0402326i 0.686704 0.726937i \(-0.259057\pi\)
−0.726937 + 0.686704i \(0.759057\pi\)
\(48\) 0 0
\(49\) 49.0000i 0.142857i
\(50\) 234.889 + 85.5998i 0.664365 + 0.242113i
\(51\) 0 0
\(52\) 16.0100 16.0100i 0.0426959 0.0426959i
\(53\) −196.358 + 196.358i −0.508903 + 0.508903i −0.914190 0.405286i \(-0.867172\pi\)
0.405286 + 0.914190i \(0.367172\pi\)
\(54\) 0 0
\(55\) −440.400 + 97.5411i −1.07970 + 0.239135i
\(56\) 56.0000i 0.133631i
\(57\) 0 0
\(58\) −185.504 185.504i −0.419963 0.419963i
\(59\) −102.561 −0.226309 −0.113155 0.993577i \(-0.536096\pi\)
−0.113155 + 0.993577i \(0.536096\pi\)
\(60\) 0 0
\(61\) −670.777 −1.40794 −0.703969 0.710231i \(-0.748591\pi\)
−0.703969 + 0.710231i \(0.748591\pi\)
\(62\) 180.798 + 180.798i 0.370344 + 0.370344i
\(63\) 0 0
\(64\) 64.0000i 0.125000i
\(65\) 34.0138 53.3672i 0.0649061 0.101837i
\(66\) 0 0
\(67\) −559.907 + 559.907i −1.02095 + 1.02095i −0.0211725 + 0.999776i \(0.506740\pi\)
−0.999776 + 0.0211725i \(0.993260\pi\)
\(68\) −97.1393 + 97.1393i −0.173233 + 0.173233i
\(69\) 0 0
\(70\) −33.8473 152.821i −0.0577933 0.260938i
\(71\) 688.906i 1.15152i 0.817618 + 0.575761i \(0.195294\pi\)
−0.817618 + 0.575761i \(0.804706\pi\)
\(72\) 0 0
\(73\) 40.3519 + 40.3519i 0.0646963 + 0.0646963i 0.738715 0.674018i \(-0.235433\pi\)
−0.674018 + 0.738715i \(0.735433\pi\)
\(74\) −33.6795 −0.0529075
\(75\) 0 0
\(76\) −354.898 −0.535653
\(77\) 199.698 + 199.698i 0.295555 + 0.295555i
\(78\) 0 0
\(79\) 194.895i 0.277562i −0.990323 0.138781i \(-0.955682\pi\)
0.990323 0.138781i \(-0.0443184\pi\)
\(80\) −38.6827 174.653i −0.0540607 0.244085i
\(81\) 0 0
\(82\) 111.545 111.545i 0.150220 0.150220i
\(83\) 283.254 283.254i 0.374592 0.374592i −0.494555 0.869146i \(-0.664669\pi\)
0.869146 + 0.494555i \(0.164669\pi\)
\(84\) 0 0
\(85\) −206.376 + 323.801i −0.263348 + 0.413190i
\(86\) 436.488i 0.547298i
\(87\) 0 0
\(88\) 228.227 + 228.227i 0.276466 + 0.276466i
\(89\) 21.4027 0.0254908 0.0127454 0.999919i \(-0.495943\pi\)
0.0127454 + 0.999919i \(0.495943\pi\)
\(90\) 0 0
\(91\) −39.6227 −0.0456439
\(92\) 402.171 + 402.171i 0.455752 + 0.455752i
\(93\) 0 0
\(94\) 36.6666i 0.0402326i
\(95\) −968.501 + 214.506i −1.04596 + 0.231662i
\(96\) 0 0
\(97\) −348.520 + 348.520i −0.364813 + 0.364813i −0.865581 0.500769i \(-0.833051\pi\)
0.500769 + 0.865581i \(0.333051\pi\)
\(98\) −69.2965 + 69.2965i −0.0714286 + 0.0714286i
\(99\) 0 0
\(100\) −211.126 453.239i −0.211126 0.453239i
\(101\) 471.820i 0.464830i 0.972617 + 0.232415i \(0.0746628\pi\)
−0.972617 + 0.232415i \(0.925337\pi\)
\(102\) 0 0
\(103\) −184.571 184.571i −0.176567 0.176567i 0.613291 0.789857i \(-0.289845\pi\)
−0.789857 + 0.613291i \(0.789845\pi\)
\(104\) −45.2831 −0.0426959
\(105\) 0 0
\(106\) 555.385 0.508903
\(107\) 1424.75 + 1424.75i 1.28725 + 1.28725i 0.936452 + 0.350797i \(0.114089\pi\)
0.350797 + 0.936452i \(0.385911\pi\)
\(108\) 0 0
\(109\) 226.862i 0.199352i 0.995020 + 0.0996761i \(0.0317807\pi\)
−0.995020 + 0.0996761i \(0.968219\pi\)
\(110\) 760.763 + 484.875i 0.659418 + 0.420282i
\(111\) 0 0
\(112\) −79.1960 + 79.1960i −0.0668153 + 0.0668153i
\(113\) −1027.24 + 1027.24i −0.855173 + 0.855173i −0.990765 0.135592i \(-0.956706\pi\)
0.135592 + 0.990765i \(0.456706\pi\)
\(114\) 0 0
\(115\) 1340.58 + 854.426i 1.08704 + 0.692832i
\(116\) 524.685i 0.419963i
\(117\) 0 0
\(118\) 145.043 + 145.043i 0.113155 + 0.113155i
\(119\) 240.408 0.185194
\(120\) 0 0
\(121\) −296.730 −0.222937
\(122\) 948.622 + 948.622i 0.703969 + 0.703969i
\(123\) 0 0
\(124\) 511.374i 0.370344i
\(125\) −850.099 1109.26i −0.608281 0.793722i
\(126\) 0 0
\(127\) 1226.36 1226.36i 0.856862 0.856862i −0.134105 0.990967i \(-0.542816\pi\)
0.990967 + 0.134105i \(0.0428159\pi\)
\(128\) −90.5097 + 90.5097i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) −123.576 + 27.3699i −0.0833714 + 0.0184654i
\(131\) 1245.84i 0.830915i 0.909613 + 0.415457i \(0.136378\pi\)
−0.909613 + 0.415457i \(0.863622\pi\)
\(132\) 0 0
\(133\) 439.164 + 439.164i 0.286319 + 0.286319i
\(134\) 1583.66 1.02095
\(135\) 0 0
\(136\) 274.752 0.173233
\(137\) 1415.10 + 1415.10i 0.882482 + 0.882482i 0.993786 0.111305i \(-0.0355030\pi\)
−0.111305 + 0.993786i \(0.535503\pi\)
\(138\) 0 0
\(139\) 2947.20i 1.79840i 0.437536 + 0.899201i \(0.355851\pi\)
−0.437536 + 0.899201i \(0.644149\pi\)
\(140\) −168.255 + 263.989i −0.101572 + 0.159366i
\(141\) 0 0
\(142\) 974.260 974.260i 0.575761 0.575761i
\(143\) 161.481 161.481i 0.0944319 0.0944319i
\(144\) 0 0
\(145\) 317.128 + 1431.84i 0.181628 + 0.820054i
\(146\) 114.132i 0.0646963i
\(147\) 0 0
\(148\) 47.6300 + 47.6300i 0.0264538 + 0.0264538i
\(149\) −2507.52 −1.37869 −0.689344 0.724434i \(-0.742101\pi\)
−0.689344 + 0.724434i \(0.742101\pi\)
\(150\) 0 0
\(151\) −1584.70 −0.854049 −0.427025 0.904240i \(-0.640438\pi\)
−0.427025 + 0.904240i \(0.640438\pi\)
\(152\) 501.902 + 501.902i 0.267827 + 0.267827i
\(153\) 0 0
\(154\) 564.832i 0.295555i
\(155\) −309.083 1395.51i −0.160168 0.723164i
\(156\) 0 0
\(157\) −1845.14 + 1845.14i −0.937950 + 0.937950i −0.998184 0.0602346i \(-0.980815\pi\)
0.0602346 + 0.998184i \(0.480815\pi\)
\(158\) −275.623 + 275.623i −0.138781 + 0.138781i
\(159\) 0 0
\(160\) −192.291 + 301.702i −0.0950121 + 0.149073i
\(161\) 995.322i 0.487220i
\(162\) 0 0
\(163\) 312.292 + 312.292i 0.150065 + 0.150065i 0.778147 0.628082i \(-0.216160\pi\)
−0.628082 + 0.778147i \(0.716160\pi\)
\(164\) −315.496 −0.150220
\(165\) 0 0
\(166\) −801.162 −0.374592
\(167\) −2181.85 2181.85i −1.01100 1.01100i −0.999939 0.0110606i \(-0.996479\pi\)
−0.0110606 0.999939i \(-0.503521\pi\)
\(168\) 0 0
\(169\) 2164.96i 0.985416i
\(170\) 749.784 166.064i 0.338269 0.0749209i
\(171\) 0 0
\(172\) 617.287 617.287i 0.273649 0.273649i
\(173\) −1213.15 + 1213.15i −0.533145 + 0.533145i −0.921507 0.388362i \(-0.873041\pi\)
0.388362 + 0.921507i \(0.373041\pi\)
\(174\) 0 0
\(175\) −299.599 + 822.110i −0.129415 + 0.355118i
\(176\) 645.522i 0.276466i
\(177\) 0 0
\(178\) −30.2679 30.2679i −0.0127454 0.0127454i
\(179\) 1173.65 0.490072 0.245036 0.969514i \(-0.421200\pi\)
0.245036 + 0.969514i \(0.421200\pi\)
\(180\) 0 0
\(181\) −3434.97 −1.41060 −0.705301 0.708908i \(-0.749188\pi\)
−0.705301 + 0.708908i \(0.749188\pi\)
\(182\) 56.0350 + 56.0350i 0.0228219 + 0.0228219i
\(183\) 0 0
\(184\) 1137.51i 0.455752i
\(185\) 158.768 + 101.192i 0.0630966 + 0.0402149i
\(186\) 0 0
\(187\) −979.775 + 979.775i −0.383146 + 0.383146i
\(188\) 51.8543 51.8543i 0.0201163 0.0201163i
\(189\) 0 0
\(190\) 1673.02 + 1066.31i 0.638810 + 0.407148i
\(191\) 2813.63i 1.06590i −0.846147 0.532950i \(-0.821083\pi\)
0.846147 0.532950i \(-0.178917\pi\)
\(192\) 0 0
\(193\) 572.110 + 572.110i 0.213375 + 0.213375i 0.805700 0.592324i \(-0.201790\pi\)
−0.592324 + 0.805700i \(0.701790\pi\)
\(194\) 985.763 0.364813
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) 1716.48 + 1716.48i 0.620781 + 0.620781i 0.945731 0.324950i \(-0.105347\pi\)
−0.324950 + 0.945731i \(0.605347\pi\)
\(198\) 0 0
\(199\) 171.950i 0.0612523i −0.999531 0.0306262i \(-0.990250\pi\)
0.999531 0.0306262i \(-0.00975014\pi\)
\(200\) −342.399 + 939.555i −0.121056 + 0.332183i
\(201\) 0 0
\(202\) 667.254 667.254i 0.232415 0.232415i
\(203\) 649.264 649.264i 0.224480 0.224480i
\(204\) 0 0
\(205\) −860.974 + 190.691i −0.293332 + 0.0649681i
\(206\) 522.047i 0.176567i
\(207\) 0 0
\(208\) 64.0400 + 64.0400i 0.0213480 + 0.0213480i
\(209\) −3579.61 −1.18472
\(210\) 0 0
\(211\) 4091.72 1.33500 0.667502 0.744608i \(-0.267364\pi\)
0.667502 + 0.744608i \(0.267364\pi\)
\(212\) −785.433 785.433i −0.254452 0.254452i
\(213\) 0 0
\(214\) 4029.80i 1.28725i
\(215\) 1311.45 2057.64i 0.416000 0.652698i
\(216\) 0 0
\(217\) −632.793 + 632.793i −0.197957 + 0.197957i
\(218\) 320.831 320.831i 0.0996761 0.0996761i
\(219\) 0 0
\(220\) −390.164 1761.60i −0.119568 0.539850i
\(221\) 194.400i 0.0591709i
\(222\) 0 0
\(223\) 2894.39 + 2894.39i 0.869160 + 0.869160i 0.992379 0.123220i \(-0.0393220\pi\)
−0.123220 + 0.992379i \(0.539322\pi\)
\(224\) 224.000 0.0668153
\(225\) 0 0
\(226\) 2905.47 0.855173
\(227\) −294.719 294.719i −0.0861725 0.0861725i 0.662707 0.748879i \(-0.269408\pi\)
−0.748879 + 0.662707i \(0.769408\pi\)
\(228\) 0 0
\(229\) 5417.69i 1.56337i −0.623675 0.781683i \(-0.714361\pi\)
0.623675 0.781683i \(-0.285639\pi\)
\(230\) −687.531 3104.21i −0.197106 0.889938i
\(231\) 0 0
\(232\) 742.016 742.016i 0.209982 0.209982i
\(233\) −1056.45 + 1056.45i −0.297039 + 0.297039i −0.839853 0.542814i \(-0.817359\pi\)
0.542814 + 0.839853i \(0.317359\pi\)
\(234\) 0 0
\(235\) 110.166 172.850i 0.0305807 0.0479807i
\(236\) 410.242i 0.113155i
\(237\) 0 0
\(238\) −339.988 339.988i −0.0925972 0.0925972i
\(239\) −3947.63 −1.06841 −0.534207 0.845354i \(-0.679390\pi\)
−0.534207 + 0.845354i \(0.679390\pi\)
\(240\) 0 0
\(241\) −3423.18 −0.914965 −0.457482 0.889219i \(-0.651249\pi\)
−0.457482 + 0.889219i \(0.651249\pi\)
\(242\) 419.639 + 419.639i 0.111469 + 0.111469i
\(243\) 0 0
\(244\) 2683.11i 0.703969i
\(245\) 534.875 118.466i 0.139477 0.0308918i
\(246\) 0 0
\(247\) 355.120 355.120i 0.0914808 0.0914808i
\(248\) −723.191 + 723.191i −0.185172 + 0.185172i
\(249\) 0 0
\(250\) −366.509 + 2770.95i −0.0927203 + 0.701001i
\(251\) 1277.32i 0.321210i 0.987019 + 0.160605i \(0.0513445\pi\)
−0.987019 + 0.160605i \(0.948655\pi\)
\(252\) 0 0
\(253\) 4056.41 + 4056.41i 1.00800 + 1.00800i
\(254\) −3468.66 −0.856862
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −2863.31 2863.31i −0.694975 0.694975i 0.268348 0.963322i \(-0.413522\pi\)
−0.963322 + 0.268348i \(0.913522\pi\)
\(258\) 0 0
\(259\) 117.878i 0.0282803i
\(260\) 213.469 + 136.055i 0.0509184 + 0.0324530i
\(261\) 0 0
\(262\) 1761.89 1761.89i 0.415457 0.415457i
\(263\) 750.238 750.238i 0.175900 0.175900i −0.613666 0.789566i \(-0.710306\pi\)
0.789566 + 0.613666i \(0.210306\pi\)
\(264\) 0 0
\(265\) −2618.14 1668.68i −0.606909 0.386816i
\(266\) 1242.14i 0.286319i
\(267\) 0 0
\(268\) −2239.63 2239.63i −0.510474 0.510474i
\(269\) 7027.41 1.59282 0.796410 0.604757i \(-0.206730\pi\)
0.796410 + 0.604757i \(0.206730\pi\)
\(270\) 0 0
\(271\) −4337.40 −0.972246 −0.486123 0.873891i \(-0.661589\pi\)
−0.486123 + 0.873891i \(0.661589\pi\)
\(272\) −388.557 388.557i −0.0866167 0.0866167i
\(273\) 0 0
\(274\) 4002.50i 0.882482i
\(275\) −2129.48 4571.50i −0.466954 1.00244i
\(276\) 0 0
\(277\) 2073.14 2073.14i 0.449685 0.449685i −0.445565 0.895250i \(-0.646997\pi\)
0.895250 + 0.445565i \(0.146997\pi\)
\(278\) 4167.96 4167.96i 0.899201 0.899201i
\(279\) 0 0
\(280\) 611.285 135.389i 0.130469 0.0288966i
\(281\) 2805.05i 0.595498i −0.954644 0.297749i \(-0.903764\pi\)
0.954644 0.297749i \(-0.0962359\pi\)
\(282\) 0 0
\(283\) 6499.81 + 6499.81i 1.36528 + 1.36528i 0.867042 + 0.498235i \(0.166018\pi\)
0.498235 + 0.867042i \(0.333982\pi\)
\(284\) −2755.62 −0.575761
\(285\) 0 0
\(286\) −456.738 −0.0944319
\(287\) 390.407 + 390.407i 0.0802961 + 0.0802961i
\(288\) 0 0
\(289\) 3733.49i 0.759921i
\(290\) 1576.44 2473.41i 0.319213 0.500841i
\(291\) 0 0
\(292\) −161.408 + 161.408i −0.0323482 + 0.0323482i
\(293\) 4804.81 4804.81i 0.958021 0.958021i −0.0411325 0.999154i \(-0.513097\pi\)
0.999154 + 0.0411325i \(0.0130966\pi\)
\(294\) 0 0
\(295\) −247.957 1119.53i −0.0489377 0.220955i
\(296\) 134.718i 0.0264538i
\(297\) 0 0
\(298\) 3546.18 + 3546.18i 0.689344 + 0.689344i
\(299\) −804.845 −0.155670
\(300\) 0 0
\(301\) −1527.71 −0.292543
\(302\) 2241.11 + 2241.11i 0.427025 + 0.427025i
\(303\) 0 0
\(304\) 1419.59i 0.267827i
\(305\) −1621.72 7322.08i −0.304456 1.37463i
\(306\) 0 0
\(307\) 4340.43 4340.43i 0.806911 0.806911i −0.177255 0.984165i \(-0.556722\pi\)
0.984165 + 0.177255i \(0.0567216\pi\)
\(308\) −798.793 + 798.793i −0.147777 + 0.147777i
\(309\) 0 0
\(310\) −1536.45 + 2410.66i −0.281498 + 0.441666i
\(311\) 1602.95i 0.292266i 0.989265 + 0.146133i \(0.0466828\pi\)
−0.989265 + 0.146133i \(0.953317\pi\)
\(312\) 0 0
\(313\) 1409.87 + 1409.87i 0.254602 + 0.254602i 0.822854 0.568252i \(-0.192380\pi\)
−0.568252 + 0.822854i \(0.692380\pi\)
\(314\) 5218.84 0.937950
\(315\) 0 0
\(316\) 779.579 0.138781
\(317\) −7511.16 7511.16i −1.33082 1.33082i −0.904641 0.426175i \(-0.859861\pi\)
−0.426175 0.904641i \(-0.640139\pi\)
\(318\) 0 0
\(319\) 5292.12i 0.928846i
\(320\) 698.612 154.731i 0.122042 0.0270303i
\(321\) 0 0
\(322\) −1407.60 + 1407.60i −0.243610 + 0.243610i
\(323\) −2154.66 + 2154.66i −0.371172 + 0.371172i
\(324\) 0 0
\(325\) 664.781 + 242.264i 0.113463 + 0.0413489i
\(326\) 883.294i 0.150065i
\(327\) 0 0
\(328\) 446.179 + 446.179i 0.0751101 + 0.0751101i
\(329\) −128.333 −0.0215052
\(330\) 0 0
\(331\) −2550.38 −0.423509 −0.211754 0.977323i \(-0.567918\pi\)
−0.211754 + 0.977323i \(0.567918\pi\)
\(332\) 1133.01 + 1133.01i 0.187296 + 0.187296i
\(333\) 0 0
\(334\) 6171.21i 1.01100i
\(335\) −7465.51 4758.17i −1.21756 0.776020i
\(336\) 0 0
\(337\) 1093.33 1093.33i 0.176729 0.176729i −0.613199 0.789928i \(-0.710118\pi\)
0.789928 + 0.613199i \(0.210118\pi\)
\(338\) −3061.72 + 3061.72i −0.492708 + 0.492708i
\(339\) 0 0
\(340\) −1295.20 825.504i −0.206595 0.131674i
\(341\) 5157.86i 0.819102i
\(342\) 0 0
\(343\) −242.538 242.538i −0.0381802 0.0381802i
\(344\) −1745.95 −0.273649
\(345\) 0 0
\(346\) 3431.30 0.533145
\(347\) 5694.51 + 5694.51i 0.880972 + 0.880972i 0.993633 0.112662i \(-0.0359376\pi\)
−0.112662 + 0.993633i \(0.535938\pi\)
\(348\) 0 0
\(349\) 9393.06i 1.44068i −0.693619 0.720342i \(-0.743985\pi\)
0.693619 0.720342i \(-0.256015\pi\)
\(350\) 1586.34 738.942i 0.242267 0.112852i
\(351\) 0 0
\(352\) −912.906 + 912.906i −0.138233 + 0.138233i
\(353\) −534.035 + 534.035i −0.0805207 + 0.0805207i −0.746220 0.665699i \(-0.768133\pi\)
0.665699 + 0.746220i \(0.268133\pi\)
\(354\) 0 0
\(355\) −7519.96 + 1665.54i −1.12428 + 0.249008i
\(356\) 85.6106i 0.0127454i
\(357\) 0 0
\(358\) −1659.79 1659.79i −0.245036 0.245036i
\(359\) −3069.61 −0.451275 −0.225638 0.974211i \(-0.572447\pi\)
−0.225638 + 0.974211i \(0.572447\pi\)
\(360\) 0 0
\(361\) −1013.05 −0.147697
\(362\) 4857.78 + 4857.78i 0.705301 + 0.705301i
\(363\) 0 0
\(364\) 158.491i 0.0228219i
\(365\) −342.916 + 538.031i −0.0491755 + 0.0771557i
\(366\) 0 0
\(367\) 8419.72 8419.72i 1.19756 1.19756i 0.222669 0.974894i \(-0.428523\pi\)
0.974894 0.222669i \(-0.0714769\pi\)
\(368\) −1608.68 + 1608.68i −0.227876 + 0.227876i
\(369\) 0 0
\(370\) −81.4257 367.639i −0.0114409 0.0516557i
\(371\) 1943.85i 0.272020i
\(372\) 0 0
\(373\) 2521.54 + 2521.54i 0.350027 + 0.350027i 0.860120 0.510092i \(-0.170389\pi\)
−0.510092 + 0.860120i \(0.670389\pi\)
\(374\) 2771.22 0.383146
\(375\) 0 0
\(376\) −146.666 −0.0201163
\(377\) −525.013 525.013i −0.0717229 0.0717229i
\(378\) 0 0
\(379\) 7021.86i 0.951685i −0.879530 0.475843i \(-0.842143\pi\)
0.879530 0.475843i \(-0.157857\pi\)
\(380\) −858.026 3874.00i −0.115831 0.522979i
\(381\) 0 0
\(382\) −3979.07 + 3979.07i −0.532950 + 0.532950i
\(383\) −2600.78 + 2600.78i −0.346981 + 0.346981i −0.858984 0.512003i \(-0.828904\pi\)
0.512003 + 0.858984i \(0.328904\pi\)
\(384\) 0 0
\(385\) −1697.06 + 2662.67i −0.224650 + 0.352473i
\(386\) 1618.17i 0.213375i
\(387\) 0 0
\(388\) −1394.08 1394.08i −0.182406 0.182406i
\(389\) 11198.4 1.45959 0.729794 0.683668i \(-0.239616\pi\)
0.729794 + 0.683668i \(0.239616\pi\)
\(390\) 0 0
\(391\) 4883.33 0.631612
\(392\) −277.186 277.186i −0.0357143 0.0357143i
\(393\) 0 0
\(394\) 4854.93i 0.620781i
\(395\) 2127.44 471.191i 0.270995 0.0600207i
\(396\) 0 0
\(397\) −7834.36 + 7834.36i −0.990416 + 0.990416i −0.999955 0.00953870i \(-0.996964\pi\)
0.00953870 + 0.999955i \(0.496964\pi\)
\(398\) −243.174 + 243.174i −0.0306262 + 0.0306262i
\(399\) 0 0
\(400\) 1812.96 844.505i 0.226620 0.105563i
\(401\) 15372.7i 1.91440i −0.289422 0.957201i \(-0.593463\pi\)
0.289422 0.957201i \(-0.406537\pi\)
\(402\) 0 0
\(403\) 511.693 + 511.693i 0.0632488 + 0.0632488i
\(404\) −1887.28 −0.232415
\(405\) 0 0
\(406\) −1836.40 −0.224480
\(407\) 480.409 + 480.409i 0.0585086 + 0.0585086i
\(408\) 0 0
\(409\) 2650.95i 0.320491i 0.987077 + 0.160246i \(0.0512287\pi\)
−0.987077 + 0.160246i \(0.948771\pi\)
\(410\) 1487.28 + 947.924i 0.179150 + 0.114182i
\(411\) 0 0
\(412\) 738.286 738.286i 0.0882833 0.0882833i
\(413\) −507.649 + 507.649i −0.0604837 + 0.0604837i
\(414\) 0 0
\(415\) 3776.75 + 2407.13i 0.446731 + 0.284726i
\(416\) 181.133i 0.0213480i
\(417\) 0 0
\(418\) 5062.33 + 5062.33i 0.592360 + 0.592360i
\(419\) −4280.02 −0.499028 −0.249514 0.968371i \(-0.580271\pi\)
−0.249514 + 0.968371i \(0.580271\pi\)
\(420\) 0 0
\(421\) 2639.09 0.305514 0.152757 0.988264i \(-0.451185\pi\)
0.152757 + 0.988264i \(0.451185\pi\)
\(422\) −5786.57 5786.57i −0.667502 0.667502i
\(423\) 0 0
\(424\) 2221.54i 0.254452i
\(425\) −4033.50 1469.92i −0.460361 0.167768i
\(426\) 0 0
\(427\) −3320.18 + 3320.18i −0.376287 + 0.376287i
\(428\) −5698.99 + 5698.99i −0.643624 + 0.643624i
\(429\) 0 0
\(430\) −4764.61 + 1055.28i −0.534349 + 0.118349i
\(431\) 14510.6i 1.62169i 0.585258 + 0.810847i \(0.300993\pi\)
−0.585258 + 0.810847i \(0.699007\pi\)
\(432\) 0 0
\(433\) 80.2055 + 80.2055i 0.00890168 + 0.00890168i 0.711544 0.702642i \(-0.247996\pi\)
−0.702642 + 0.711544i \(0.747996\pi\)
\(434\) 1789.81 0.197957
\(435\) 0 0
\(436\) −907.446 −0.0996761
\(437\) 8920.61 + 8920.61i 0.976501 + 0.976501i
\(438\) 0 0
\(439\) 1131.71i 0.123038i 0.998106 + 0.0615190i \(0.0195945\pi\)
−0.998106 + 0.0615190i \(0.980406\pi\)
\(440\) −1939.50 + 3043.05i −0.210141 + 0.329709i
\(441\) 0 0
\(442\) −274.923 + 274.923i −0.0295854 + 0.0295854i
\(443\) −12391.3 + 12391.3i −1.32896 + 1.32896i −0.422681 + 0.906278i \(0.638911\pi\)
−0.906278 + 0.422681i \(0.861089\pi\)
\(444\) 0 0
\(445\) 51.7445 + 233.627i 0.00551219 + 0.0248876i
\(446\) 8186.57i 0.869160i
\(447\) 0 0
\(448\) −316.784 316.784i −0.0334077 0.0334077i
\(449\) 1970.09 0.207070 0.103535 0.994626i \(-0.466985\pi\)
0.103535 + 0.994626i \(0.466985\pi\)
\(450\) 0 0
\(451\) −3182.19 −0.332247
\(452\) −4108.96 4108.96i −0.427586 0.427586i
\(453\) 0 0
\(454\) 833.590i 0.0861725i
\(455\) −95.7946 432.514i −0.00987015 0.0445639i
\(456\) 0 0
\(457\) 10123.8 10123.8i 1.03627 1.03627i 0.0369484 0.999317i \(-0.488236\pi\)
0.999317 0.0369484i \(-0.0117637\pi\)
\(458\) −7661.77 + 7661.77i −0.781683 + 0.781683i
\(459\) 0 0
\(460\) −3417.71 + 5362.34i −0.346416 + 0.543522i
\(461\) 15485.6i 1.56450i 0.622963 + 0.782252i \(0.285929\pi\)
−0.622963 + 0.782252i \(0.714071\pi\)
\(462\) 0 0
\(463\) 8726.03 + 8726.03i 0.875881 + 0.875881i 0.993105 0.117224i \(-0.0373996\pi\)
−0.117224 + 0.993105i \(0.537400\pi\)
\(464\) −2098.74 −0.209982
\(465\) 0 0
\(466\) 2988.08 0.297039
\(467\) 7409.34 + 7409.34i 0.734183 + 0.734183i 0.971446 0.237262i \(-0.0762501\pi\)
−0.237262 + 0.971446i \(0.576250\pi\)
\(468\) 0 0
\(469\) 5542.80i 0.545720i
\(470\) −400.245 + 88.6475i −0.0392807 + 0.00870001i
\(471\) 0 0
\(472\) −580.170 + 580.170i −0.0565773 + 0.0565773i
\(473\) 6226.13 6226.13i 0.605238 0.605238i
\(474\) 0 0
\(475\) −4683.02 10053.4i −0.452362 0.971116i
\(476\) 961.630i 0.0925972i
\(477\) 0 0
\(478\) 5582.79 + 5582.79i 0.534207 + 0.534207i
\(479\) 11356.0 1.08323 0.541617 0.840625i \(-0.317812\pi\)
0.541617 + 0.840625i \(0.317812\pi\)
\(480\) 0 0
\(481\) −95.3195 −0.00903575
\(482\) 4841.11 + 4841.11i 0.457482 + 0.457482i
\(483\) 0 0
\(484\) 1186.92i 0.111469i
\(485\) −4646.98 2961.77i −0.435069 0.277293i
\(486\) 0 0
\(487\) 7953.48 7953.48i 0.740054 0.740054i −0.232534 0.972588i \(-0.574702\pi\)
0.972588 + 0.232534i \(0.0747016\pi\)
\(488\) −3794.49 + 3794.49i −0.351985 + 0.351985i
\(489\) 0 0
\(490\) −923.963 588.891i −0.0851844 0.0542926i
\(491\) 10105.6i 0.928837i 0.885616 + 0.464418i \(0.153737\pi\)
−0.885616 + 0.464418i \(0.846263\pi\)
\(492\) 0 0
\(493\) 3185.47 + 3185.47i 0.291007 + 0.291007i
\(494\) −1004.43 −0.0914808
\(495\) 0 0
\(496\) 2045.49 0.185172
\(497\) 3409.91 + 3409.91i 0.307757 + 0.307757i
\(498\) 0 0
\(499\) 16871.6i 1.51358i −0.653660 0.756788i \(-0.726767\pi\)
0.653660 0.756788i \(-0.273233\pi\)
\(500\) 4437.04 3400.39i 0.396861 0.304141i
\(501\) 0 0
\(502\) 1806.40 1806.40i 0.160605 0.160605i
\(503\) −7926.80 + 7926.80i −0.702661 + 0.702661i −0.964981 0.262320i \(-0.915512\pi\)
0.262320 + 0.964981i \(0.415512\pi\)
\(504\) 0 0
\(505\) −5150.30 + 1140.70i −0.453832 + 0.100516i
\(506\) 11473.3i 1.00800i
\(507\) 0 0
\(508\) 4905.42 + 4905.42i 0.428431 + 0.428431i
\(509\) 18856.8 1.64207 0.821036 0.570877i \(-0.193397\pi\)
0.821036 + 0.570877i \(0.193397\pi\)
\(510\) 0 0
\(511\) 399.463 0.0345816
\(512\) −362.039 362.039i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 8098.67i 0.694975i
\(515\) 1568.51 2460.98i 0.134208 0.210570i
\(516\) 0 0
\(517\) 523.018 523.018i 0.0444918 0.0444918i
\(518\) −166.705 + 166.705i −0.0141401 + 0.0141401i
\(519\) 0 0
\(520\) −109.479 494.302i −0.00923268 0.0416857i
\(521\) 21317.6i 1.79259i 0.443457 + 0.896296i \(0.353752\pi\)
−0.443457 + 0.896296i \(0.646248\pi\)
\(522\) 0 0
\(523\) 11839.2 + 11839.2i 0.989848 + 0.989848i 0.999949 0.0101011i \(-0.00321533\pi\)
−0.0101011 + 0.999949i \(0.503215\pi\)
\(524\) −4983.37 −0.415457
\(525\) 0 0
\(526\) −2121.99 −0.175900
\(527\) −3104.66 3104.66i −0.256624 0.256624i
\(528\) 0 0
\(529\) 8050.68i 0.661681i
\(530\) 1342.74 + 6062.48i 0.110047 + 0.496863i
\(531\) 0 0
\(532\) −1756.66 + 1756.66i −0.143159 + 0.143159i
\(533\) 315.694 315.694i 0.0256552 0.0256552i
\(534\) 0 0
\(535\) −12107.7 + 18996.8i −0.978434 + 1.53515i
\(536\) 6334.63i 0.510474i
\(537\) 0 0
\(538\) −9938.26 9938.26i −0.796410 0.796410i
\(539\) 1976.91 0.157981
\(540\) 0 0
\(541\) −20518.6 −1.63062 −0.815309 0.579026i \(-0.803433\pi\)
−0.815309 + 0.579026i \(0.803433\pi\)
\(542\) 6134.02 + 6134.02i 0.486123 + 0.486123i
\(543\) 0 0
\(544\) 1099.01i 0.0866167i
\(545\) −2476.38 + 548.475i −0.194636 + 0.0431085i
\(546\) 0 0
\(547\) 2597.59 2597.59i 0.203044 0.203044i −0.598259 0.801303i \(-0.704141\pi\)
0.801303 + 0.598259i \(0.204141\pi\)
\(548\) −5660.39 + 5660.39i −0.441241 + 0.441241i
\(549\) 0 0
\(550\) −3453.54 + 9476.61i −0.267744 + 0.734698i
\(551\) 11638.1i 0.899819i
\(552\) 0 0
\(553\) −964.680 964.680i −0.0741815 0.0741815i
\(554\) −5863.72 −0.449685
\(555\) 0 0
\(556\) −11788.8 −0.899201
\(557\) 12709.7 + 12709.7i 0.966838 + 0.966838i 0.999468 0.0326300i \(-0.0103883\pi\)
−0.0326300 + 0.999468i \(0.510388\pi\)
\(558\) 0 0
\(559\) 1235.35i 0.0934696i
\(560\) −1055.96 673.019i −0.0796828 0.0507861i
\(561\) 0 0
\(562\) −3966.93 + 3966.93i −0.297749 + 0.297749i
\(563\) −5831.66 + 5831.66i −0.436546 + 0.436546i −0.890848 0.454302i \(-0.849889\pi\)
0.454302 + 0.890848i \(0.349889\pi\)
\(564\) 0 0
\(565\) −13696.7 8729.63i −1.01986 0.650014i
\(566\) 18384.2i 1.36528i
\(567\) 0 0
\(568\) 3897.04 + 3897.04i 0.287880 + 0.287880i
\(569\) 3671.47 0.270502 0.135251 0.990811i \(-0.456816\pi\)
0.135251 + 0.990811i \(0.456816\pi\)
\(570\) 0 0
\(571\) 6892.33 0.505140 0.252570 0.967579i \(-0.418724\pi\)
0.252570 + 0.967579i \(0.418724\pi\)
\(572\) 645.926 + 645.926i 0.0472159 + 0.0472159i
\(573\) 0 0
\(574\) 1104.24i 0.0802961i
\(575\) −6085.67 + 16699.3i −0.441374 + 1.21114i
\(576\) 0 0
\(577\) −2678.84 + 2678.84i −0.193278 + 0.193278i −0.797111 0.603833i \(-0.793639\pi\)
0.603833 + 0.797111i \(0.293639\pi\)
\(578\) −5279.96 + 5279.96i −0.379961 + 0.379961i
\(579\) 0 0
\(580\) −5727.36 + 1268.51i −0.410027 + 0.0908140i
\(581\) 2804.07i 0.200228i
\(582\) 0 0
\(583\) −7922.10 7922.10i −0.562779 0.562779i
\(584\) 456.530 0.0323482
\(585\) 0 0
\(586\) −13590.1 −0.958021
\(587\) −6205.42 6205.42i −0.436329 0.436329i 0.454446 0.890774i \(-0.349837\pi\)
−0.890774 + 0.454446i \(0.849837\pi\)
\(588\) 0 0
\(589\) 11342.9i 0.793504i
\(590\) −1232.59 + 1933.92i −0.0860085 + 0.134946i
\(591\) 0 0
\(592\) −190.520 + 190.520i −0.0132269 + 0.0132269i
\(593\) 18830.2 18830.2i 1.30398 1.30398i 0.378302 0.925682i \(-0.376508\pi\)
0.925682 0.378302i \(-0.123492\pi\)
\(594\) 0 0
\(595\) 581.225 + 2624.24i 0.0400469 + 0.180813i
\(596\) 10030.1i 0.689344i
\(597\) 0 0
\(598\) 1138.22 + 1138.22i 0.0778351 + 0.0778351i
\(599\) 26032.7 1.77574 0.887868 0.460099i \(-0.152186\pi\)
0.887868 + 0.460099i \(0.152186\pi\)
\(600\) 0 0
\(601\) −14414.1 −0.978308 −0.489154 0.872197i \(-0.662694\pi\)
−0.489154 + 0.872197i \(0.662694\pi\)
\(602\) 2160.50 + 2160.50i 0.146272 + 0.146272i
\(603\) 0 0
\(604\) 6338.82i 0.427025i
\(605\) −717.393 3239.04i −0.0482086 0.217663i
\(606\) 0 0
\(607\) 1947.35 1947.35i 0.130215 0.130215i −0.638995 0.769211i \(-0.720650\pi\)
0.769211 + 0.638995i \(0.220650\pi\)
\(608\) −2007.61 + 2007.61i −0.133913 + 0.133913i
\(609\) 0 0
\(610\) −8061.53 + 12648.4i −0.535085 + 0.839541i
\(611\) 103.774i 0.00687108i
\(612\) 0 0
\(613\) −11137.1 11137.1i −0.733804 0.733804i 0.237567 0.971371i \(-0.423650\pi\)
−0.971371 + 0.237567i \(0.923650\pi\)
\(614\) −12276.6 −0.806911
\(615\) 0 0
\(616\) 2259.33 0.147777
\(617\) −11483.9 11483.9i −0.749308 0.749308i 0.225041 0.974349i \(-0.427748\pi\)
−0.974349 + 0.225041i \(0.927748\pi\)
\(618\) 0 0
\(619\) 15622.6i 1.01442i 0.861823 + 0.507209i \(0.169323\pi\)
−0.861823 + 0.507209i \(0.830677\pi\)
\(620\) 5582.06 1236.33i 0.361582 0.0800842i
\(621\) 0 0
\(622\) 2266.91 2266.91i 0.146133 0.146133i
\(623\) 105.938 105.938i 0.00681269 0.00681269i
\(624\) 0 0
\(625\) 10053.2 11961.3i 0.643406 0.765525i
\(626\) 3987.71i 0.254602i
\(627\) 0 0
\(628\) −7380.55 7380.55i −0.468975 0.468975i
\(629\) 578.343 0.0366614
\(630\) 0 0
\(631\) −4708.65 −0.297066 −0.148533 0.988907i \(-0.547455\pi\)
−0.148533 + 0.988907i \(0.547455\pi\)
\(632\) −1102.49 1102.49i −0.0693905 0.0693905i
\(633\) 0 0
\(634\) 21244.8i 1.33082i
\(635\) 16351.6 + 10421.7i 1.02188 + 0.651298i
\(636\) 0 0
\(637\) −196.123 + 196.123i −0.0121988 + 0.0121988i
\(638\) 7484.19 7484.19i 0.464423 0.464423i
\(639\) 0 0
\(640\) −1206.81 769.164i −0.0745364 0.0475061i
\(641\) 26907.3i 1.65799i −0.559254 0.828996i \(-0.688912\pi\)
0.559254 0.828996i \(-0.311088\pi\)
\(642\) 0 0
\(643\) 14530.0 + 14530.0i 0.891148 + 0.891148i 0.994631 0.103484i \(-0.0329989\pi\)
−0.103484 + 0.994631i \(0.532999\pi\)
\(644\) 3981.29 0.243610
\(645\) 0 0
\(646\) 6094.30 0.371172
\(647\) 10879.1 + 10879.1i 0.661056 + 0.661056i 0.955629 0.294573i \(-0.0951775\pi\)
−0.294573 + 0.955629i \(0.595178\pi\)
\(648\) 0 0
\(649\) 4137.82i 0.250267i
\(650\) −597.529 1282.76i −0.0360569 0.0774059i
\(651\) 0 0
\(652\) −1249.17 + 1249.17i −0.0750324 + 0.0750324i
\(653\) −592.509 + 592.509i −0.0355079 + 0.0355079i −0.724638 0.689130i \(-0.757993\pi\)
0.689130 + 0.724638i \(0.257993\pi\)
\(654\) 0 0
\(655\) −13599.4 + 3012.03i −0.811255 + 0.179679i
\(656\) 1261.99i 0.0751101i
\(657\) 0 0
\(658\) 181.490 + 181.490i 0.0107526 + 0.0107526i
\(659\) 10388.9 0.614106 0.307053 0.951692i \(-0.400657\pi\)
0.307053 + 0.951692i \(0.400657\pi\)
\(660\) 0 0
\(661\) −18643.0 −1.09702 −0.548508 0.836145i \(-0.684804\pi\)
−0.548508 + 0.836145i \(0.684804\pi\)
\(662\) 3606.78 + 3606.78i 0.211754 + 0.211754i
\(663\) 0 0
\(664\) 3204.65i 0.187296i
\(665\) −3732.08 + 5855.59i −0.217630 + 0.341459i
\(666\) 0 0
\(667\) 13188.3 13188.3i 0.765597 0.765597i
\(668\) 8727.41 8727.41i 0.505500 0.505500i
\(669\) 0 0
\(670\) 3828.75 + 17286.9i 0.220773 + 0.996792i
\(671\) 27062.6i 1.55699i
\(672\) 0 0
\(673\) −8073.74 8073.74i −0.462436 0.462436i 0.437017 0.899453i \(-0.356035\pi\)
−0.899453 + 0.437017i \(0.856035\pi\)
\(674\) −3092.42 −0.176729
\(675\) 0 0
\(676\) 8659.84 0.492708
\(677\) 12054.0 + 12054.0i 0.684305 + 0.684305i 0.960967 0.276663i \(-0.0892284\pi\)
−0.276663 + 0.960967i \(0.589228\pi\)
\(678\) 0 0
\(679\) 3450.17i 0.195001i
\(680\) 664.257 + 2999.14i 0.0374605 + 0.169135i
\(681\) 0 0
\(682\) −7294.31 + 7294.31i −0.409551 + 0.409551i
\(683\) −2125.94 + 2125.94i −0.119102 + 0.119102i −0.764146 0.645044i \(-0.776839\pi\)
0.645044 + 0.764146i \(0.276839\pi\)
\(684\) 0 0
\(685\) −12025.7 + 18868.2i −0.670772 + 1.05243i
\(686\) 686.000i 0.0381802i
\(687\) 0 0
\(688\) 2469.15 + 2469.15i 0.136825 + 0.136825i
\(689\) 1571.85 0.0869124
\(690\) 0 0
\(691\) −13023.7 −0.716998 −0.358499 0.933530i \(-0.616711\pi\)
−0.358499 + 0.933530i \(0.616711\pi\)
\(692\) −4852.60 4852.60i −0.266572 0.266572i
\(693\) 0 0
\(694\) 16106.5i 0.880972i
\(695\) −32171.0 + 7125.34i −1.75585 + 0.388891i
\(696\) 0 0
\(697\) −1915.44 + 1915.44i −0.104093 + 0.104093i
\(698\) −13283.8 + 13283.8i −0.720342 + 0.720342i
\(699\) 0 0
\(700\) −3288.44 1198.40i −0.177559 0.0647074i
\(701\) 1567.72i 0.0844679i −0.999108 0.0422340i \(-0.986553\pi\)
0.999108 0.0422340i \(-0.0134475\pi\)
\(702\) 0 0
\(703\) 1056.49 + 1056.49i 0.0566802 + 0.0566802i
\(704\) 2582.09 0.138233
\(705\) 0 0
\(706\) 1510.48 0.0805207
\(707\) 2335.39 + 2335.39i 0.124231 + 0.124231i
\(708\) 0 0
\(709\) 24185.3i 1.28110i −0.767918 0.640548i \(-0.778707\pi\)
0.767918 0.640548i \(-0.221293\pi\)
\(710\) 12990.3 + 8279.40i 0.686642 + 0.437634i
\(711\) 0 0
\(712\) 121.072 121.072i 0.00637269 0.00637269i
\(713\) −12853.7 + 12853.7i −0.675141 + 0.675141i
\(714\) 0 0
\(715\) 2153.11 + 1372.29i 0.112618 + 0.0717774i
\(716\) 4694.61i 0.245036i
\(717\) 0 0
\(718\) 4341.08 + 4341.08i 0.225638 + 0.225638i
\(719\) 31466.9 1.63215 0.816076 0.577944i \(-0.196145\pi\)
0.816076 + 0.577944i \(0.196145\pi\)
\(720\) 0 0
\(721\) −1827.16 −0.0943788
\(722\) 1432.67 + 1432.67i 0.0738485 + 0.0738485i
\(723\) 0 0
\(724\) 13739.9i 0.705301i
\(725\) −14863.0 + 6923.42i −0.761375 + 0.354661i
\(726\) 0 0
\(727\) 23692.9 23692.9i 1.20870 1.20870i 0.237247 0.971449i \(-0.423755\pi\)
0.971449 0.237247i \(-0.0762449\pi\)
\(728\) −224.140 + 224.140i −0.0114110 + 0.0114110i
\(729\) 0 0
\(730\) 1245.85 275.934i 0.0631656 0.0139901i
\(731\) 7495.35i 0.379242i
\(732\) 0 0
\(733\) 11853.3 + 11853.3i 0.597286 + 0.597286i 0.939589 0.342304i \(-0.111207\pi\)
−0.342304 + 0.939589i \(0.611207\pi\)
\(734\) −23814.6 −1.19756
\(735\) 0 0
\(736\) 4550.04 0.227876
\(737\) −22589.5 22589.5i −1.12903 1.12903i
\(738\) 0 0
\(739\) 3369.40i 0.167720i −0.996478 0.0838601i \(-0.973275\pi\)
0.996478 0.0838601i \(-0.0267249\pi\)
\(740\) −404.766 + 635.073i −0.0201074 + 0.0315483i
\(741\) 0 0
\(742\) 2749.02 2749.02i 0.136010 0.136010i
\(743\) 1801.92 1801.92i 0.0889716 0.0889716i −0.661220 0.750192i \(-0.729961\pi\)
0.750192 + 0.661220i \(0.229961\pi\)
\(744\) 0 0
\(745\) −6062.36 27371.7i −0.298131 1.34607i
\(746\) 7131.98i 0.350027i
\(747\) 0 0
\(748\) −3919.10 3919.10i −0.191573 0.191573i
\(749\) 14104.3 0.688063
\(750\) 0 0
\(751\) 30070.1 1.46108 0.730542 0.682868i \(-0.239268\pi\)
0.730542 + 0.682868i \(0.239268\pi\)
\(752\) 207.417 + 207.417i 0.0100582 + 0.0100582i
\(753\) 0 0
\(754\) 1484.96i 0.0717229i
\(755\) −3831.29 17298.3i −0.184682 0.833842i
\(756\) 0 0
\(757\) 11817.8 11817.8i 0.567403 0.567403i −0.363997 0.931400i \(-0.618588\pi\)
0.931400 + 0.363997i \(0.118588\pi\)
\(758\) −9930.41 + 9930.41i −0.475843 + 0.475843i
\(759\) 0 0
\(760\) −4265.24 + 6692.10i −0.203574 + 0.319405i
\(761\) 21917.9i 1.04405i 0.852930 + 0.522025i \(0.174823\pi\)
−0.852930 + 0.522025i \(0.825177\pi\)
\(762\) 0 0
\(763\) 1122.91 + 1122.91i 0.0532791 + 0.0532791i
\(764\) 11254.5 0.532950
\(765\) 0 0
\(766\) 7356.12 0.346981
\(767\) 410.499 + 410.499i 0.0193250 + 0.0193250i
\(768\) 0 0
\(769\) 25770.5i 1.20846i 0.796809 + 0.604231i \(0.206520\pi\)
−0.796809 + 0.604231i \(0.793480\pi\)
\(770\) 6165.60 1365.57i 0.288562 0.0639116i
\(771\) 0 0
\(772\) −2288.44 + 2288.44i −0.106688 + 0.106688i
\(773\) −307.986 + 307.986i −0.0143305 + 0.0143305i −0.714236 0.699905i \(-0.753226\pi\)
0.699905 + 0.714236i \(0.253226\pi\)
\(774\) 0 0
\(775\) 14485.9 6747.77i 0.671418 0.312758i
\(776\) 3943.05i 0.182406i
\(777\) 0 0
\(778\) −15836.9 15836.9i −0.729794 0.729794i
\(779\) −6998.07 −0.321864
\(780\) 0 0
\(781\) −27794.0 −1.27343
\(782\) −6906.07 6906.07i −0.315806 0.315806i
\(783\) 0 0
\(784\) 784.000i 0.0357143i
\(785\) −24602.1 15680.3i −1.11858 0.712933i
\(786\) 0 0
\(787\) 811.853 811.853i 0.0367718 0.0367718i −0.688482 0.725254i \(-0.741722\pi\)
0.725254 + 0.688482i \(0.241722\pi\)
\(788\) −6865.91 + 6865.91i −0.310391 + 0.310391i
\(789\) 0 0
\(790\) −3675.01 2342.28i −0.165508 0.105487i
\(791\) 10169.1i 0.457109i
\(792\) 0 0
\(793\) 2684.79 + 2684.79i 0.120226 + 0.120226i
\(794\) 22158.9 0.990416
\(795\) 0 0
\(796\) 687.800 0.0306262
\(797\) −6554.94 6554.94i −0.291327 0.291327i 0.546277 0.837605i \(-0.316045\pi\)
−0.837605 + 0.546277i \(0.816045\pi\)
\(798\) 0 0
\(799\) 629.637i 0.0278785i
\(800\) −3758.22 1369.60i −0.166091 0.0605282i
\(801\) 0 0
\(802\) −21740.3 + 21740.3i −0.957201 + 0.957201i
\(803\) −1628.00 + 1628.00i −0.0715454 + 0.0715454i
\(804\) 0 0
\(805\) 10864.7 2406.36i 0.475692 0.105358i
\(806\) 1447.29i 0.0632488i
\(807\) 0 0
\(808\) 2669.02 + 2669.02i 0.116208 + 0.116208i
\(809\) −4231.33 −0.183888 −0.0919442 0.995764i \(-0.529308\pi\)
−0.0919442 + 0.995764i \(0.529308\pi\)
\(810\) 0 0
\(811\) 35734.6 1.54724 0.773620 0.633650i \(-0.218444\pi\)
0.773620 + 0.633650i \(0.218444\pi\)
\(812\) 2597.06 + 2597.06i 0.112240 + 0.112240i
\(813\) 0 0
\(814\) 1358.80i 0.0585086i
\(815\) −2653.90 + 4163.93i −0.114064 + 0.178965i
\(816\) 0 0
\(817\) 13692.1 13692.1i 0.586324 0.586324i
\(818\) 3749.01 3749.01i 0.160246 0.160246i
\(819\) 0 0
\(820\) −762.765 3443.90i −0.0324840 0.146666i
\(821\) 13153.2i 0.559135i −0.960126 0.279568i \(-0.909809\pi\)
0.960126 0.279568i \(-0.0901911\pi\)
\(822\) 0 0
\(823\) −4956.95 4956.95i −0.209950 0.209950i 0.594296 0.804246i \(-0.297431\pi\)
−0.804246 + 0.594296i \(0.797431\pi\)
\(824\) −2088.19 −0.0882833
\(825\) 0 0
\(826\) 1435.85 0.0604837
\(827\) −25407.4 25407.4i −1.06832 1.06832i −0.997488 0.0708322i \(-0.977435\pi\)
−0.0708322 0.997488i \(-0.522565\pi\)
\(828\) 0 0
\(829\) 43198.8i 1.80984i 0.425584 + 0.904919i \(0.360069\pi\)
−0.425584 + 0.904919i \(0.639931\pi\)
\(830\) −1936.94 8745.33i −0.0810027 0.365729i
\(831\) 0 0
\(832\) −256.160 + 256.160i −0.0106740 + 0.0106740i
\(833\) 1189.96 1189.96i 0.0494953 0.0494953i
\(834\) 0 0
\(835\) 18541.7 29091.7i 0.768458 1.20570i
\(836\) 14318.4i 0.592360i
\(837\) 0 0
\(838\) 6052.86 + 6052.86i 0.249514 + 0.249514i
\(839\) −13633.2 −0.560990 −0.280495 0.959855i \(-0.590499\pi\)
−0.280495 + 0.959855i \(0.590499\pi\)
\(840\) 0 0
\(841\) −7183.12 −0.294523
\(842\) −3732.23 3732.23i −0.152757 0.152757i
\(843\) 0 0
\(844\) 16366.9i 0.667502i
\(845\) 23632.3 5234.15i 0.962101 0.213089i
\(846\) 0 0
\(847\) −1468.74 + 1468.74i −0.0595825 + 0.0595825i
\(848\) 3141.73 3141.73i 0.127226 0.127226i
\(849\) 0 0
\(850\) 3625.45 + 7783.01i 0.146297 + 0.314065i
\(851\) 2394.42i 0.0964509i
\(852\) 0 0
\(853\) −16506.9 16506.9i −0.662585 0.662585i 0.293404 0.955989i \(-0.405212\pi\)
−0.955989 + 0.293404i \(0.905212\pi\)
\(854\) 9390.88 0.376287
\(855\) 0 0
\(856\) 16119.2 0.643624
\(857\) 8639.90 + 8639.90i 0.344380 + 0.344380i 0.858011 0.513631i \(-0.171700\pi\)
−0.513631 + 0.858011i \(0.671700\pi\)
\(858\) 0 0
\(859\) 22833.4i 0.906945i 0.891270 + 0.453473i \(0.149815\pi\)
−0.891270 + 0.453473i \(0.850185\pi\)
\(860\) 8230.58 + 5245.79i 0.326349 + 0.208000i
\(861\) 0 0
\(862\) 20521.1 20521.1i 0.810847 0.810847i
\(863\) −381.699 + 381.699i −0.0150558 + 0.0150558i −0.714595 0.699539i \(-0.753389\pi\)
0.699539 + 0.714595i \(0.253389\pi\)
\(864\) 0 0
\(865\) −16175.5 10309.5i −0.635819 0.405242i
\(866\) 226.855i 0.00890168i
\(867\) 0 0
\(868\) −2531.17 2531.17i −0.0989787 0.0989787i
\(869\) 7863.06 0.306946
\(870\) 0 0
\(871\) 4482.06 0.174361
\(872\) 1283.32 + 1283.32i 0.0498381 + 0.0498381i
\(873\) 0 0
\(874\) 25231.3i 0.976501i
\(875\) −9698.33 1282.78i −0.374701 0.0495611i
\(876\) 0 0
\(877\) 28593.5 28593.5i 1.10095 1.10095i 0.106655 0.994296i \(-0.465986\pi\)
0.994296 0.106655i \(-0.0340139\pi\)
\(878\) 1600.48 1600.48i 0.0615190 0.0615190i
\(879\) 0 0
\(880\) 7046.40 1560.66i 0.269925 0.0597838i
\(881\) 10417.9i 0.398397i 0.979959 + 0.199199i \(0.0638339\pi\)
−0.979959 + 0.199199i \(0.936166\pi\)
\(882\) 0 0
\(883\) 32942.7 + 32942.7i 1.25550 + 1.25550i 0.953217 + 0.302288i \(0.0977506\pi\)
0.302288 + 0.953217i \(0.402249\pi\)
\(884\) 777.601 0.0295854
\(885\) 0 0
\(886\) 35047.9 1.32896
\(887\) −19572.3 19572.3i −0.740893 0.740893i 0.231857 0.972750i \(-0.425520\pi\)
−0.972750 + 0.231857i \(0.925520\pi\)
\(888\) 0 0
\(889\) 12140.3i 0.458012i
\(890\) 257.221 403.577i 0.00968772 0.0151999i
\(891\) 0 0
\(892\) −11577.6 + 11577.6i −0.434580 + 0.434580i
\(893\) 1150.19 1150.19i 0.0431015 0.0431015i
\(894\) 0 0
\(895\) 2837.50 + 12811.4i 0.105974 + 0.478476i
\(896\) 896.000i 0.0334077i
\(897\) 0 0
\(898\) −2786.13 2786.13i −0.103535 0.103535i
\(899\) −16769.4 −0.622124
\(900\) 0 0
\(901\) −9537.06 −0.352636
\(902\) 4500.29 + 4500.29i 0.166123 + 0.166123i
\(903\) 0 0
\(904\) 11621.9i 0.427586i
\(905\) −8304.60 37495.4i −0.305032 1.37723i
\(906\) 0 0
\(907\) −4361.42 + 4361.42i −0.159668 + 0.159668i −0.782419 0.622752i \(-0.786015\pi\)
0.622752 + 0.782419i \(0.286015\pi\)
\(908\) 1178.87 1178.87i 0.0430863 0.0430863i
\(909\) 0 0
\(910\) −476.194 + 747.141i −0.0173469 + 0.0272170i
\(911\) 9322.91i 0.339058i 0.985525 + 0.169529i \(0.0542246\pi\)
−0.985525 + 0.169529i \(0.945775\pi\)
\(912\) 0 0
\(913\) 11427.9 + 11427.9i 0.414248 + 0.414248i
\(914\) −28634.6 −1.03627
\(915\) 0 0
\(916\) 21670.8 0.781683
\(917\) 6166.61 + 6166.61i 0.222071 + 0.222071i
\(918\) 0 0
\(919\) 27816.4i 0.998453i 0.866472 + 0.499226i \(0.166382\pi\)
−0.866472 + 0.499226i \(0.833618\pi\)
\(920\) 12416.9 2750.12i 0.444969 0.0985531i
\(921\) 0 0
\(922\) 21899.9 21899.9i 0.782252 0.782252i
\(923\) 2757.35 2757.35i 0.0983306 0.0983306i
\(924\) 0 0
\(925\) −720.739 + 1977.73i −0.0256192 + 0.0702999i
\(926\) 24680.9i 0.875881i
\(927\) 0 0
\(928\) 2968.07 + 2968.07i 0.104991 + 0.104991i
\(929\) 9230.43 0.325986 0.162993 0.986627i \(-0.447885\pi\)
0.162993 + 0.986627i \(0.447885\pi\)
\(930\) 0 0
\(931\) 4347.51 0.153044
\(932\) −4225.78 4225.78i −0.148519 0.148519i
\(933\) 0 0
\(934\) 20956.8i 0.734183i
\(935\) −13063.8 8326.27i −0.456933 0.291228i
\(936\) 0 0
\(937\) −8192.12 + 8192.12i −0.285619 + 0.285619i −0.835345 0.549726i \(-0.814732\pi\)
0.549726 + 0.835345i \(0.314732\pi\)
\(938\) 7838.70 7838.70i 0.272860 0.272860i
\(939\) 0 0
\(940\) 691.399 + 440.666i 0.0239904 + 0.0152903i
\(941\) 53096.5i 1.83942i −0.392596 0.919711i \(-0.628423\pi\)
0.392596 0.919711i \(-0.371577\pi\)
\(942\) 0 0
\(943\) 7930.22 + 7930.22i 0.273853 + 0.273853i
\(944\) 1640.97 0.0565773
\(945\) 0 0
\(946\) −17610.1 −0.605238
\(947\) 2923.75 + 2923.75i 0.100326 + 0.100326i 0.755488 0.655162i \(-0.227400\pi\)
−0.655162 + 0.755488i \(0.727400\pi\)
\(948\) 0 0
\(949\) 323.017i 0.0110491i
\(950\) −7594.81 + 20840.4i −0.259377 + 0.711739i
\(951\) 0 0
\(952\) 1359.95 1359.95i 0.0462986 0.0462986i
\(953\) 18049.1 18049.1i 0.613503 0.613503i −0.330354 0.943857i \(-0.607168\pi\)
0.943857 + 0.330354i \(0.107168\pi\)
\(954\) 0 0
\(955\) 30713.0 6802.41i 1.04068 0.230493i
\(956\) 15790.5i 0.534207i
\(957\) 0 0
\(958\) −16059.8 16059.8i −0.541617 0.541617i
\(959\) 14008.8 0.471706
\(960\) 0 0
\(961\) −13447.1 −0.451380
\(962\) 134.802 + 134.802i 0.00451787 + 0.00451787i
\(963\) 0 0
\(964\) 13692.7i 0.457482i
\(965\) −4861.88 + 7628.22i −0.162186 + 0.254467i
\(966\) 0 0
\(967\) −31317.7 + 31317.7i −1.04148 + 1.04148i −0.0423748 + 0.999102i \(0.513492\pi\)
−0.999102 + 0.0423748i \(0.986508\pi\)
\(968\) −1678.56 + 1678.56i −0.0557344 + 0.0557344i
\(969\) 0 0
\(970\) 2383.25 + 10760.4i 0.0788881 + 0.356181i
\(971\) 19092.3i 0.630999i 0.948926 + 0.315499i \(0.102172\pi\)
−0.948926 + 0.315499i \(0.897828\pi\)
\(972\) 0 0
\(973\) 14587.9 + 14587.9i 0.480643 + 0.480643i
\(974\) −22495.8 −0.740054
\(975\) 0 0
\(976\) 10732.4 0.351985
\(977\) 8060.23 + 8060.23i 0.263940 + 0.263940i 0.826653 0.562712i \(-0.190242\pi\)
−0.562712 + 0.826653i \(0.690242\pi\)
\(978\) 0 0
\(979\) 863.493i 0.0281893i
\(980\) 473.863 + 2139.50i 0.0154459 + 0.0697385i
\(981\) 0 0
\(982\) 14291.5 14291.5i 0.464418 0.464418i
\(983\) 5529.57 5529.57i 0.179416 0.179416i −0.611685 0.791101i \(-0.709508\pi\)
0.791101 + 0.611685i \(0.209508\pi\)
\(984\) 0 0
\(985\) −14586.9 + 22886.6i −0.471854 + 0.740333i
\(986\) 9009.87i 0.291007i
\(987\) 0 0
\(988\) 1420.48 + 1420.48i 0.0457404 + 0.0457404i
\(989\) −31031.8 −0.997730
\(990\) 0 0
\(991\) 5089.64 0.163146 0.0815731 0.996667i \(-0.474006\pi\)
0.0815731 + 0.996667i \(0.474006\pi\)
\(992\) −2892.77 2892.77i −0.0925861 0.0925861i
\(993\) 0 0
\(994\) 9644.68i 0.307757i
\(995\) 1876.97 415.718i 0.0598031 0.0132454i
\(996\) 0 0
\(997\) −22287.5 + 22287.5i −0.707977 + 0.707977i −0.966110 0.258132i \(-0.916893\pi\)
0.258132 + 0.966110i \(0.416893\pi\)
\(998\) −23860.0 + 23860.0i −0.756788 + 0.756788i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.4.m.b.323.2 yes 16
3.2 odd 2 630.4.m.a.323.7 yes 16
5.2 odd 4 630.4.m.a.197.7 16
15.2 even 4 inner 630.4.m.b.197.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.4.m.a.197.7 16 5.2 odd 4
630.4.m.a.323.7 yes 16 3.2 odd 2
630.4.m.b.197.2 yes 16 15.2 even 4 inner
630.4.m.b.323.2 yes 16 1.1 even 1 trivial