Properties

Label 630.6.b.b.251.2
Level $630$
Weight $6$
Character 630.251
Analytic conductor $101.042$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,6,Mod(251,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.251");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 630.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(101.041806482\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.2
Character \(\chi\) \(=\) 630.251
Dual form 630.6.b.b.251.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{2} -16.0000 q^{4} +25.0000 q^{5} +(-121.533 - 45.1314i) q^{7} +64.0000i q^{8} -100.000i q^{10} +183.141i q^{11} +827.120i q^{13} +(-180.526 + 486.130i) q^{14} +256.000 q^{16} +371.677 q^{17} +2101.08i q^{19} -400.000 q^{20} +732.564 q^{22} -2585.70i q^{23} +625.000 q^{25} +3308.48 q^{26} +(1944.52 + 722.103i) q^{28} -6062.60i q^{29} -2884.00i q^{31} -1024.00i q^{32} -1486.71i q^{34} +(-3038.31 - 1128.29i) q^{35} -8977.29 q^{37} +8404.32 q^{38} +1600.00i q^{40} +2028.23 q^{41} +3324.34 q^{43} -2930.25i q^{44} -10342.8 q^{46} +8242.15 q^{47} +(12733.3 + 10969.9i) q^{49} -2500.00i q^{50} -13233.9i q^{52} +19163.9i q^{53} +4578.52i q^{55} +(2888.41 - 7778.08i) q^{56} -24250.4 q^{58} -5260.44 q^{59} -39384.4i q^{61} -11536.0 q^{62} -4096.00 q^{64} +20678.0i q^{65} -18191.5 q^{67} -5946.83 q^{68} +(-4513.14 + 12153.3i) q^{70} -16316.5i q^{71} -29817.8i q^{73} +35909.2i q^{74} -33617.3i q^{76} +(8265.41 - 22257.6i) q^{77} +8556.65 q^{79} +6400.00 q^{80} -8112.91i q^{82} +6848.74 q^{83} +9291.93 q^{85} -13297.4i q^{86} -11721.0 q^{88} -48923.4 q^{89} +(37329.1 - 100522. i) q^{91} +41371.2i q^{92} -32968.6i q^{94} +52527.0i q^{95} +32875.6i q^{97} +(43879.5 - 50933.2i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 384 q^{4} + 600 q^{5} - 196 q^{7} + 6144 q^{16} - 9600 q^{20} + 15000 q^{25} - 3872 q^{26} + 3136 q^{28} - 4900 q^{35} - 33512 q^{37} - 10208 q^{38} + 44968 q^{41} + 8016 q^{43} - 1312 q^{46} + 47240 q^{47}+ \cdots + 257936 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) 0 0
\(4\) −16.0000 −0.500000
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) −121.533 45.1314i −0.937448 0.348124i
\(8\) 64.0000i 0.353553i
\(9\) 0 0
\(10\) 100.000i 0.316228i
\(11\) 183.141i 0.456356i 0.973619 + 0.228178i \(0.0732768\pi\)
−0.973619 + 0.228178i \(0.926723\pi\)
\(12\) 0 0
\(13\) 827.120i 1.35741i 0.734412 + 0.678703i \(0.237458\pi\)
−0.734412 + 0.678703i \(0.762542\pi\)
\(14\) −180.526 + 486.130i −0.246161 + 0.662876i
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 371.677 0.311920 0.155960 0.987763i \(-0.450153\pi\)
0.155960 + 0.987763i \(0.450153\pi\)
\(18\) 0 0
\(19\) 2101.08i 1.33524i 0.744503 + 0.667619i \(0.232686\pi\)
−0.744503 + 0.667619i \(0.767314\pi\)
\(20\) −400.000 −0.223607
\(21\) 0 0
\(22\) 732.564 0.322692
\(23\) 2585.70i 1.01920i −0.860412 0.509599i \(-0.829794\pi\)
0.860412 0.509599i \(-0.170206\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 3308.48 0.959832
\(27\) 0 0
\(28\) 1944.52 + 722.103i 0.468724 + 0.174062i
\(29\) 6062.60i 1.33864i −0.742974 0.669320i \(-0.766586\pi\)
0.742974 0.669320i \(-0.233414\pi\)
\(30\) 0 0
\(31\) 2884.00i 0.539002i −0.963000 0.269501i \(-0.913141\pi\)
0.963000 0.269501i \(-0.0868588\pi\)
\(32\) 1024.00i 0.176777i
\(33\) 0 0
\(34\) 1486.71i 0.220561i
\(35\) −3038.31 1128.29i −0.419240 0.155686i
\(36\) 0 0
\(37\) −8977.29 −1.07805 −0.539027 0.842288i \(-0.681208\pi\)
−0.539027 + 0.842288i \(0.681208\pi\)
\(38\) 8404.32 0.944156
\(39\) 0 0
\(40\) 1600.00i 0.158114i
\(41\) 2028.23 0.188433 0.0942166 0.995552i \(-0.469965\pi\)
0.0942166 + 0.995552i \(0.469965\pi\)
\(42\) 0 0
\(43\) 3324.34 0.274179 0.137090 0.990559i \(-0.456225\pi\)
0.137090 + 0.990559i \(0.456225\pi\)
\(44\) 2930.25i 0.228178i
\(45\) 0 0
\(46\) −10342.8 −0.720681
\(47\) 8242.15 0.544246 0.272123 0.962262i \(-0.412274\pi\)
0.272123 + 0.962262i \(0.412274\pi\)
\(48\) 0 0
\(49\) 12733.3 + 10969.9i 0.757619 + 0.652697i
\(50\) 2500.00i 0.141421i
\(51\) 0 0
\(52\) 13233.9i 0.678703i
\(53\) 19163.9i 0.937120i 0.883432 + 0.468560i \(0.155227\pi\)
−0.883432 + 0.468560i \(0.844773\pi\)
\(54\) 0 0
\(55\) 4578.52i 0.204089i
\(56\) 2888.41 7778.08i 0.123080 0.331438i
\(57\) 0 0
\(58\) −24250.4 −0.946561
\(59\) −5260.44 −0.196740 −0.0983699 0.995150i \(-0.531363\pi\)
−0.0983699 + 0.995150i \(0.531363\pi\)
\(60\) 0 0
\(61\) 39384.4i 1.35519i −0.735435 0.677595i \(-0.763022\pi\)
0.735435 0.677595i \(-0.236978\pi\)
\(62\) −11536.0 −0.381132
\(63\) 0 0
\(64\) −4096.00 −0.125000
\(65\) 20678.0i 0.607051i
\(66\) 0 0
\(67\) −18191.5 −0.495086 −0.247543 0.968877i \(-0.579623\pi\)
−0.247543 + 0.968877i \(0.579623\pi\)
\(68\) −5946.83 −0.155960
\(69\) 0 0
\(70\) −4513.14 + 12153.3i −0.110086 + 0.296447i
\(71\) 16316.5i 0.384133i −0.981382 0.192067i \(-0.938481\pi\)
0.981382 0.192067i \(-0.0615190\pi\)
\(72\) 0 0
\(73\) 29817.8i 0.654891i −0.944870 0.327445i \(-0.893812\pi\)
0.944870 0.327445i \(-0.106188\pi\)
\(74\) 35909.2i 0.762300i
\(75\) 0 0
\(76\) 33617.3i 0.667619i
\(77\) 8265.41 22257.6i 0.158868 0.427810i
\(78\) 0 0
\(79\) 8556.65 0.154254 0.0771270 0.997021i \(-0.475425\pi\)
0.0771270 + 0.997021i \(0.475425\pi\)
\(80\) 6400.00 0.111803
\(81\) 0 0
\(82\) 8112.91i 0.133242i
\(83\) 6848.74 0.109123 0.0545614 0.998510i \(-0.482624\pi\)
0.0545614 + 0.998510i \(0.482624\pi\)
\(84\) 0 0
\(85\) 9291.93 0.139495
\(86\) 13297.4i 0.193874i
\(87\) 0 0
\(88\) −11721.0 −0.161346
\(89\) −48923.4 −0.654699 −0.327350 0.944903i \(-0.606155\pi\)
−0.327350 + 0.944903i \(0.606155\pi\)
\(90\) 0 0
\(91\) 37329.1 100522.i 0.472546 1.27250i
\(92\) 41371.2i 0.509599i
\(93\) 0 0
\(94\) 32968.6i 0.384840i
\(95\) 52527.0i 0.597137i
\(96\) 0 0
\(97\) 32875.6i 0.354768i 0.984142 + 0.177384i \(0.0567634\pi\)
−0.984142 + 0.177384i \(0.943237\pi\)
\(98\) 43879.5 50933.2i 0.461526 0.535718i
\(99\) 0 0
\(100\) −10000.0 −0.100000
\(101\) −32191.6 −0.314007 −0.157003 0.987598i \(-0.550183\pi\)
−0.157003 + 0.987598i \(0.550183\pi\)
\(102\) 0 0
\(103\) 166091.i 1.54260i −0.636474 0.771298i \(-0.719608\pi\)
0.636474 0.771298i \(-0.280392\pi\)
\(104\) −52935.7 −0.479916
\(105\) 0 0
\(106\) 76655.8 0.662644
\(107\) 110522.i 0.933228i −0.884461 0.466614i \(-0.845474\pi\)
0.884461 0.466614i \(-0.154526\pi\)
\(108\) 0 0
\(109\) −149577. −1.20586 −0.602931 0.797793i \(-0.706001\pi\)
−0.602931 + 0.797793i \(0.706001\pi\)
\(110\) 18314.1 0.144312
\(111\) 0 0
\(112\) −31112.3 11553.6i −0.234362 0.0870310i
\(113\) 26508.9i 0.195297i −0.995221 0.0976484i \(-0.968868\pi\)
0.995221 0.0976484i \(-0.0311321\pi\)
\(114\) 0 0
\(115\) 64642.4i 0.455799i
\(116\) 97001.5i 0.669320i
\(117\) 0 0
\(118\) 21041.8i 0.139116i
\(119\) −45170.8 16774.3i −0.292409 0.108587i
\(120\) 0 0
\(121\) 127510. 0.791739
\(122\) −157538. −0.958264
\(123\) 0 0
\(124\) 46144.0i 0.269501i
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) −305347. −1.67990 −0.839951 0.542663i \(-0.817416\pi\)
−0.839951 + 0.542663i \(0.817416\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) 0 0
\(130\) 82712.0 0.429250
\(131\) 63340.6 0.322481 0.161240 0.986915i \(-0.448451\pi\)
0.161240 + 0.986915i \(0.448451\pi\)
\(132\) 0 0
\(133\) 94824.8 255350.i 0.464828 1.25172i
\(134\) 72765.8i 0.350078i
\(135\) 0 0
\(136\) 23787.3i 0.110280i
\(137\) 181687.i 0.827034i 0.910496 + 0.413517i \(0.135700\pi\)
−0.910496 + 0.413517i \(0.864300\pi\)
\(138\) 0 0
\(139\) 120615.i 0.529498i −0.964317 0.264749i \(-0.914711\pi\)
0.964317 0.264749i \(-0.0852891\pi\)
\(140\) 48613.0 + 18052.6i 0.209620 + 0.0778429i
\(141\) 0 0
\(142\) −65266.1 −0.271623
\(143\) −151479. −0.619461
\(144\) 0 0
\(145\) 151565.i 0.598658i
\(146\) −119271. −0.463078
\(147\) 0 0
\(148\) 143637. 0.539027
\(149\) 100788.i 0.371916i 0.982558 + 0.185958i \(0.0595388\pi\)
−0.982558 + 0.185958i \(0.940461\pi\)
\(150\) 0 0
\(151\) −311412. −1.11146 −0.555728 0.831364i \(-0.687560\pi\)
−0.555728 + 0.831364i \(0.687560\pi\)
\(152\) −134469. −0.472078
\(153\) 0 0
\(154\) −89030.3 33061.6i −0.302507 0.112337i
\(155\) 72100.0i 0.241049i
\(156\) 0 0
\(157\) 189643.i 0.614026i −0.951705 0.307013i \(-0.900670\pi\)
0.951705 0.307013i \(-0.0993295\pi\)
\(158\) 34226.6i 0.109074i
\(159\) 0 0
\(160\) 25600.0i 0.0790569i
\(161\) −116696. + 314246.i −0.354807 + 0.955445i
\(162\) 0 0
\(163\) −201107. −0.592868 −0.296434 0.955053i \(-0.595797\pi\)
−0.296434 + 0.955053i \(0.595797\pi\)
\(164\) −32451.7 −0.0942166
\(165\) 0 0
\(166\) 27395.0i 0.0771615i
\(167\) −207804. −0.576583 −0.288291 0.957543i \(-0.593087\pi\)
−0.288291 + 0.957543i \(0.593087\pi\)
\(168\) 0 0
\(169\) −312834. −0.842554
\(170\) 37167.7i 0.0986378i
\(171\) 0 0
\(172\) −53189.5 −0.137090
\(173\) −632112. −1.60575 −0.802876 0.596146i \(-0.796698\pi\)
−0.802876 + 0.596146i \(0.796698\pi\)
\(174\) 0 0
\(175\) −75957.8 28207.1i −0.187490 0.0696248i
\(176\) 46884.1i 0.114089i
\(177\) 0 0
\(178\) 195694.i 0.462942i
\(179\) 285847.i 0.666809i −0.942784 0.333404i \(-0.891803\pi\)
0.942784 0.333404i \(-0.108197\pi\)
\(180\) 0 0
\(181\) 386767.i 0.877513i −0.898606 0.438756i \(-0.855419\pi\)
0.898606 0.438756i \(-0.144581\pi\)
\(182\) −402088. 149316.i −0.899793 0.334140i
\(183\) 0 0
\(184\) 165485. 0.360341
\(185\) −224432. −0.482121
\(186\) 0 0
\(187\) 68069.3i 0.142347i
\(188\) −131874. −0.272123
\(189\) 0 0
\(190\) 210108. 0.422239
\(191\) 580661.i 1.15170i −0.817555 0.575850i \(-0.804671\pi\)
0.817555 0.575850i \(-0.195329\pi\)
\(192\) 0 0
\(193\) 415215. 0.802379 0.401190 0.915995i \(-0.368597\pi\)
0.401190 + 0.915995i \(0.368597\pi\)
\(194\) 131502. 0.250859
\(195\) 0 0
\(196\) −203733. 175518.i −0.378810 0.326348i
\(197\) 463173.i 0.850310i 0.905120 + 0.425155i \(0.139780\pi\)
−0.905120 + 0.425155i \(0.860220\pi\)
\(198\) 0 0
\(199\) 748029.i 1.33902i −0.742805 0.669508i \(-0.766505\pi\)
0.742805 0.669508i \(-0.233495\pi\)
\(200\) 40000.0i 0.0707107i
\(201\) 0 0
\(202\) 128766.i 0.222036i
\(203\) −273614. + 736803.i −0.466013 + 1.25491i
\(204\) 0 0
\(205\) 50705.7 0.0842699
\(206\) −664363. −1.09078
\(207\) 0 0
\(208\) 211743.i 0.339352i
\(209\) −384794. −0.609344
\(210\) 0 0
\(211\) 494413. 0.764510 0.382255 0.924057i \(-0.375148\pi\)
0.382255 + 0.924057i \(0.375148\pi\)
\(212\) 306623.i 0.468560i
\(213\) 0 0
\(214\) −442086. −0.659892
\(215\) 83108.5 0.122617
\(216\) 0 0
\(217\) −130159. + 350500.i −0.187640 + 0.505287i
\(218\) 598306.i 0.852673i
\(219\) 0 0
\(220\) 73256.4i 0.102044i
\(221\) 307421.i 0.423403i
\(222\) 0 0
\(223\) 473758.i 0.637961i 0.947761 + 0.318981i \(0.103340\pi\)
−0.947761 + 0.318981i \(0.896660\pi\)
\(224\) −46214.6 + 124449.i −0.0615402 + 0.165719i
\(225\) 0 0
\(226\) −106035. −0.138096
\(227\) 86127.3 0.110937 0.0554684 0.998460i \(-0.482335\pi\)
0.0554684 + 0.998460i \(0.482335\pi\)
\(228\) 0 0
\(229\) 436159.i 0.549612i −0.961500 0.274806i \(-0.911386\pi\)
0.961500 0.274806i \(-0.0886136\pi\)
\(230\) −258570. −0.322298
\(231\) 0 0
\(232\) 388006. 0.473281
\(233\) 798546.i 0.963630i 0.876273 + 0.481815i \(0.160022\pi\)
−0.876273 + 0.481815i \(0.839978\pi\)
\(234\) 0 0
\(235\) 206054. 0.243394
\(236\) 84167.1 0.0983699
\(237\) 0 0
\(238\) −67097.3 + 180683.i −0.0767825 + 0.206764i
\(239\) 572680.i 0.648511i 0.945970 + 0.324256i \(0.105114\pi\)
−0.945970 + 0.324256i \(0.894886\pi\)
\(240\) 0 0
\(241\) 1.03499e6i 1.14788i 0.818898 + 0.573939i \(0.194585\pi\)
−0.818898 + 0.573939i \(0.805415\pi\)
\(242\) 510042.i 0.559844i
\(243\) 0 0
\(244\) 630151.i 0.677595i
\(245\) 318333. + 274247.i 0.338818 + 0.291895i
\(246\) 0 0
\(247\) −1.73785e6 −1.81246
\(248\) 184576. 0.190566
\(249\) 0 0
\(250\) 62500.0i 0.0632456i
\(251\) −137874. −0.138133 −0.0690664 0.997612i \(-0.522002\pi\)
−0.0690664 + 0.997612i \(0.522002\pi\)
\(252\) 0 0
\(253\) 473547. 0.465117
\(254\) 1.22139e6i 1.18787i
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −269351. −0.254382 −0.127191 0.991878i \(-0.540596\pi\)
−0.127191 + 0.991878i \(0.540596\pi\)
\(258\) 0 0
\(259\) 1.09103e6 + 405158.i 1.01062 + 0.375297i
\(260\) 330848.i 0.303525i
\(261\) 0 0
\(262\) 253362.i 0.228028i
\(263\) 933002.i 0.831750i −0.909422 0.415875i \(-0.863475\pi\)
0.909422 0.415875i \(-0.136525\pi\)
\(264\) 0 0
\(265\) 479099.i 0.419093i
\(266\) −1.02140e6 379299.i −0.885097 0.328683i
\(267\) 0 0
\(268\) 291063. 0.247543
\(269\) −1.85311e6 −1.56142 −0.780710 0.624894i \(-0.785142\pi\)
−0.780710 + 0.624894i \(0.785142\pi\)
\(270\) 0 0
\(271\) 1.87458e6i 1.55053i −0.631633 0.775267i \(-0.717615\pi\)
0.631633 0.775267i \(-0.282385\pi\)
\(272\) 95149.3 0.0779800
\(273\) 0 0
\(274\) 726750. 0.584801
\(275\) 114463.i 0.0912712i
\(276\) 0 0
\(277\) 758979. 0.594333 0.297167 0.954826i \(-0.403958\pi\)
0.297167 + 0.954826i \(0.403958\pi\)
\(278\) −482460. −0.374411
\(279\) 0 0
\(280\) 72210.3 194452.i 0.0550432 0.148224i
\(281\) 2.08335e6i 1.57397i −0.616975 0.786983i \(-0.711642\pi\)
0.616975 0.786983i \(-0.288358\pi\)
\(282\) 0 0
\(283\) 2.37135e6i 1.76007i −0.474909 0.880035i \(-0.657519\pi\)
0.474909 0.880035i \(-0.342481\pi\)
\(284\) 261065.i 0.192067i
\(285\) 0 0
\(286\) 605918.i 0.438025i
\(287\) −246496. 91536.9i −0.176646 0.0655981i
\(288\) 0 0
\(289\) −1.28171e6 −0.902706
\(290\) −606260. −0.423315
\(291\) 0 0
\(292\) 477085.i 0.327445i
\(293\) 717721. 0.488412 0.244206 0.969723i \(-0.421473\pi\)
0.244206 + 0.969723i \(0.421473\pi\)
\(294\) 0 0
\(295\) −131511. −0.0879847
\(296\) 574546.i 0.381150i
\(297\) 0 0
\(298\) 403153. 0.262984
\(299\) 2.13868e6 1.38347
\(300\) 0 0
\(301\) −404016. 150032.i −0.257029 0.0954484i
\(302\) 1.24565e6i 0.785918i
\(303\) 0 0
\(304\) 537877.i 0.333809i
\(305\) 984611.i 0.606059i
\(306\) 0 0
\(307\) 1.25243e6i 0.758416i −0.925311 0.379208i \(-0.876196\pi\)
0.925311 0.379208i \(-0.123804\pi\)
\(308\) −132247. + 356121.i −0.0794342 + 0.213905i
\(309\) 0 0
\(310\) −288400. −0.170448
\(311\) −2.90633e6 −1.70390 −0.851950 0.523623i \(-0.824580\pi\)
−0.851950 + 0.523623i \(0.824580\pi\)
\(312\) 0 0
\(313\) 653093.i 0.376803i −0.982092 0.188401i \(-0.939669\pi\)
0.982092 0.188401i \(-0.0603306\pi\)
\(314\) −758570. −0.434182
\(315\) 0 0
\(316\) −136906. −0.0771270
\(317\) 1.42372e6i 0.795749i 0.917440 + 0.397875i \(0.130252\pi\)
−0.917440 + 0.397875i \(0.869748\pi\)
\(318\) 0 0
\(319\) 1.11031e6 0.610896
\(320\) −102400. −0.0559017
\(321\) 0 0
\(322\) 1.25699e6 + 466785.i 0.675601 + 0.250886i
\(323\) 780923.i 0.416488i
\(324\) 0 0
\(325\) 516950.i 0.271481i
\(326\) 804427.i 0.419221i
\(327\) 0 0
\(328\) 129807.i 0.0666212i
\(329\) −1.00169e6 371980.i −0.510203 0.189465i
\(330\) 0 0
\(331\) −493994. −0.247829 −0.123914 0.992293i \(-0.539545\pi\)
−0.123914 + 0.992293i \(0.539545\pi\)
\(332\) −109580. −0.0545614
\(333\) 0 0
\(334\) 831214.i 0.407706i
\(335\) −454786. −0.221409
\(336\) 0 0
\(337\) −3.83194e6 −1.83799 −0.918996 0.394267i \(-0.870998\pi\)
−0.918996 + 0.394267i \(0.870998\pi\)
\(338\) 1.25134e6i 0.595775i
\(339\) 0 0
\(340\) −148671. −0.0697475
\(341\) 528178. 0.245977
\(342\) 0 0
\(343\) −1.05243e6 1.90787e6i −0.483010 0.875615i
\(344\) 212758.i 0.0969370i
\(345\) 0 0
\(346\) 2.52845e6i 1.13544i
\(347\) 1.86398e6i 0.831033i 0.909586 + 0.415517i \(0.136399\pi\)
−0.909586 + 0.415517i \(0.863601\pi\)
\(348\) 0 0
\(349\) 1.02765e6i 0.451629i −0.974170 0.225815i \(-0.927496\pi\)
0.974170 0.225815i \(-0.0725043\pi\)
\(350\) −112829. + 303831.i −0.0492322 + 0.132575i
\(351\) 0 0
\(352\) 187536. 0.0806731
\(353\) 3.74842e6 1.60108 0.800538 0.599282i \(-0.204547\pi\)
0.800538 + 0.599282i \(0.204547\pi\)
\(354\) 0 0
\(355\) 407913.i 0.171790i
\(356\) 782775. 0.327350
\(357\) 0 0
\(358\) −1.14339e6 −0.471505
\(359\) 483437.i 0.197972i −0.995089 0.0989860i \(-0.968440\pi\)
0.995089 0.0989860i \(-0.0315599\pi\)
\(360\) 0 0
\(361\) −1.93844e6 −0.782860
\(362\) −1.54707e6 −0.620495
\(363\) 0 0
\(364\) −597266. + 1.60835e6i −0.236273 + 0.636250i
\(365\) 745446.i 0.292876i
\(366\) 0 0
\(367\) 2.13555e6i 0.827647i −0.910357 0.413823i \(-0.864193\pi\)
0.910357 0.413823i \(-0.135807\pi\)
\(368\) 661939.i 0.254799i
\(369\) 0 0
\(370\) 897729.i 0.340911i
\(371\) 864896. 2.32904e6i 0.326234 0.878502i
\(372\) 0 0
\(373\) −334566. −0.124511 −0.0622557 0.998060i \(-0.519829\pi\)
−0.0622557 + 0.998060i \(0.519829\pi\)
\(374\) 272277. 0.100654
\(375\) 0 0
\(376\) 527497.i 0.192420i
\(377\) 5.01449e6 1.81708
\(378\) 0 0
\(379\) 3.03557e6 1.08553 0.542766 0.839884i \(-0.317377\pi\)
0.542766 + 0.839884i \(0.317377\pi\)
\(380\) 840432.i 0.298568i
\(381\) 0 0
\(382\) −2.32265e6 −0.814375
\(383\) 4.28661e6 1.49320 0.746598 0.665275i \(-0.231686\pi\)
0.746598 + 0.665275i \(0.231686\pi\)
\(384\) 0 0
\(385\) 206635. 556439.i 0.0710481 0.191322i
\(386\) 1.66086e6i 0.567368i
\(387\) 0 0
\(388\) 526009.i 0.177384i
\(389\) 15926.2i 0.00533627i −0.999996 0.00266814i \(-0.999151\pi\)
0.999996 0.00266814i \(-0.000849295\pi\)
\(390\) 0 0
\(391\) 961045.i 0.317908i
\(392\) −702072. + 814932.i −0.230763 + 0.267859i
\(393\) 0 0
\(394\) 1.85269e6 0.601260
\(395\) 213916. 0.0689844
\(396\) 0 0
\(397\) 441407.i 0.140560i 0.997527 + 0.0702802i \(0.0223893\pi\)
−0.997527 + 0.0702802i \(0.977611\pi\)
\(398\) −2.99212e6 −0.946828
\(399\) 0 0
\(400\) 160000. 0.0500000
\(401\) 4.55692e6i 1.41518i −0.706626 0.707588i \(-0.749784\pi\)
0.706626 0.707588i \(-0.250216\pi\)
\(402\) 0 0
\(403\) 2.38541e6 0.731646
\(404\) 515066. 0.157003
\(405\) 0 0
\(406\) 2.94721e6 + 1.09445e6i 0.887352 + 0.329521i
\(407\) 1.64411e6i 0.491977i
\(408\) 0 0
\(409\) 6.26979e6i 1.85330i −0.375931 0.926648i \(-0.622677\pi\)
0.375931 0.926648i \(-0.377323\pi\)
\(410\) 202823.i 0.0595878i
\(411\) 0 0
\(412\) 2.65745e6i 0.771298i
\(413\) 639315. + 237411.i 0.184433 + 0.0684898i
\(414\) 0 0
\(415\) 171218. 0.0488012
\(416\) 846971. 0.239958
\(417\) 0 0
\(418\) 1.53917e6i 0.430871i
\(419\) 6.15452e6 1.71261 0.856306 0.516468i \(-0.172754\pi\)
0.856306 + 0.516468i \(0.172754\pi\)
\(420\) 0 0
\(421\) 1.97389e6 0.542773 0.271387 0.962470i \(-0.412518\pi\)
0.271387 + 0.962470i \(0.412518\pi\)
\(422\) 1.97765e6i 0.540590i
\(423\) 0 0
\(424\) −1.22649e6 −0.331322
\(425\) 232298. 0.0623840
\(426\) 0 0
\(427\) −1.77748e6 + 4.78649e6i −0.471774 + 1.27042i
\(428\) 1.76834e6i 0.466614i
\(429\) 0 0
\(430\) 332434.i 0.0867031i
\(431\) 2.62571e6i 0.680853i −0.940271 0.340427i \(-0.889428\pi\)
0.940271 0.340427i \(-0.110572\pi\)
\(432\) 0 0
\(433\) 7.38978e6i 1.89414i 0.321031 + 0.947069i \(0.395971\pi\)
−0.321031 + 0.947069i \(0.604029\pi\)
\(434\) 1.40200e6 + 520636.i 0.357292 + 0.132681i
\(435\) 0 0
\(436\) 2.39323e6 0.602931
\(437\) 5.43276e6 1.36087
\(438\) 0 0
\(439\) 1.26097e6i 0.312279i 0.987735 + 0.156140i \(0.0499050\pi\)
−0.987735 + 0.156140i \(0.950095\pi\)
\(440\) −293025. −0.0721562
\(441\) 0 0
\(442\) 1.22969e6 0.299391
\(443\) 5.09227e6i 1.23283i −0.787423 0.616413i \(-0.788585\pi\)
0.787423 0.616413i \(-0.211415\pi\)
\(444\) 0 0
\(445\) −1.22309e6 −0.292790
\(446\) 1.89503e6 0.451107
\(447\) 0 0
\(448\) 497797. + 184858.i 0.117181 + 0.0435155i
\(449\) 2.77353e6i 0.649259i 0.945841 + 0.324629i \(0.105240\pi\)
−0.945841 + 0.324629i \(0.894760\pi\)
\(450\) 0 0
\(451\) 371452.i 0.0859926i
\(452\) 424142.i 0.0976484i
\(453\) 0 0
\(454\) 344509.i 0.0784442i
\(455\) 933227. 2.51305e6i 0.211329 0.569079i
\(456\) 0 0
\(457\) 1.86529e6 0.417788 0.208894 0.977938i \(-0.433014\pi\)
0.208894 + 0.977938i \(0.433014\pi\)
\(458\) −1.74464e6 −0.388634
\(459\) 0 0
\(460\) 1.03428e6i 0.227899i
\(461\) 5.92597e6 1.29870 0.649348 0.760492i \(-0.275042\pi\)
0.649348 + 0.760492i \(0.275042\pi\)
\(462\) 0 0
\(463\) 2.20120e6 0.477207 0.238604 0.971117i \(-0.423310\pi\)
0.238604 + 0.971117i \(0.423310\pi\)
\(464\) 1.55202e6i 0.334660i
\(465\) 0 0
\(466\) 3.19418e6 0.681389
\(467\) 5.26273e6 1.11666 0.558328 0.829620i \(-0.311443\pi\)
0.558328 + 0.829620i \(0.311443\pi\)
\(468\) 0 0
\(469\) 2.21085e6 + 821006.i 0.464117 + 0.172351i
\(470\) 824215.i 0.172106i
\(471\) 0 0
\(472\) 336668.i 0.0695580i
\(473\) 608823.i 0.125123i
\(474\) 0 0
\(475\) 1.31318e6i 0.267048i
\(476\) 722734. + 268389.i 0.146205 + 0.0542934i
\(477\) 0 0
\(478\) 2.29072e6 0.458567
\(479\) 8.19922e6 1.63280 0.816401 0.577485i \(-0.195966\pi\)
0.816401 + 0.577485i \(0.195966\pi\)
\(480\) 0 0
\(481\) 7.42529e6i 1.46336i
\(482\) 4.13998e6 0.811672
\(483\) 0 0
\(484\) −2.04017e6 −0.395870
\(485\) 821890.i 0.158657i
\(486\) 0 0
\(487\) −1.03249e7 −1.97271 −0.986356 0.164624i \(-0.947359\pi\)
−0.986356 + 0.164624i \(0.947359\pi\)
\(488\) 2.52060e6 0.479132
\(489\) 0 0
\(490\) 1.09699e6 1.27333e6i 0.206401 0.239580i
\(491\) 4.13669e6i 0.774370i 0.922002 + 0.387185i \(0.126553\pi\)
−0.922002 + 0.387185i \(0.873447\pi\)
\(492\) 0 0
\(493\) 2.25333e6i 0.417549i
\(494\) 6.95138e6i 1.28160i
\(495\) 0 0
\(496\) 738303.i 0.134751i
\(497\) −736389. + 1.98299e6i −0.133726 + 0.360105i
\(498\) 0 0
\(499\) −2.49758e6 −0.449022 −0.224511 0.974472i \(-0.572078\pi\)
−0.224511 + 0.974472i \(0.572078\pi\)
\(500\) −250000. −0.0447214
\(501\) 0 0
\(502\) 551495.i 0.0976747i
\(503\) −7.82815e6 −1.37956 −0.689778 0.724021i \(-0.742292\pi\)
−0.689778 + 0.724021i \(0.742292\pi\)
\(504\) 0 0
\(505\) −804790. −0.140428
\(506\) 1.89419e6i 0.328887i
\(507\) 0 0
\(508\) 4.88555e6 0.839951
\(509\) 5.65690e6 0.967797 0.483899 0.875124i \(-0.339220\pi\)
0.483899 + 0.875124i \(0.339220\pi\)
\(510\) 0 0
\(511\) −1.34572e6 + 3.62383e6i −0.227983 + 0.613926i
\(512\) 262144.i 0.0441942i
\(513\) 0 0
\(514\) 1.07740e6i 0.179875i
\(515\) 4.15227e6i 0.689870i
\(516\) 0 0
\(517\) 1.50947e6i 0.248370i
\(518\) 1.62063e6 4.36413e6i 0.265375 0.714617i
\(519\) 0 0
\(520\) −1.32339e6 −0.214625
\(521\) −8.37669e6 −1.35201 −0.676003 0.736899i \(-0.736289\pi\)
−0.676003 + 0.736899i \(0.736289\pi\)
\(522\) 0 0
\(523\) 1.22788e6i 0.196291i 0.995172 + 0.0981454i \(0.0312910\pi\)
−0.995172 + 0.0981454i \(0.968709\pi\)
\(524\) −1.01345e6 −0.161240
\(525\) 0 0
\(526\) −3.73201e6 −0.588136
\(527\) 1.07192e6i 0.168126i
\(528\) 0 0
\(529\) −249490. −0.0387627
\(530\) 1.91639e6 0.296343
\(531\) 0 0
\(532\) −1.51720e6 + 4.08559e6i −0.232414 + 0.625858i
\(533\) 1.67759e6i 0.255780i
\(534\) 0 0
\(535\) 2.76304e6i 0.417352i
\(536\) 1.16425e6i 0.175039i
\(537\) 0 0
\(538\) 7.41243e6i 1.10409i
\(539\) −2.00903e6 + 2.33199e6i −0.297862 + 0.345744i
\(540\) 0 0
\(541\) 1.32681e7 1.94902 0.974509 0.224350i \(-0.0720258\pi\)
0.974509 + 0.224350i \(0.0720258\pi\)
\(542\) −7.49833e6 −1.09639
\(543\) 0 0
\(544\) 380597.i 0.0551402i
\(545\) −3.73942e6 −0.539278
\(546\) 0 0
\(547\) −4.94583e6 −0.706758 −0.353379 0.935480i \(-0.614967\pi\)
−0.353379 + 0.935480i \(0.614967\pi\)
\(548\) 2.90700e6i 0.413517i
\(549\) 0 0
\(550\) 457852. 0.0645385
\(551\) 1.27380e7 1.78740
\(552\) 0 0
\(553\) −1.03991e6 386174.i −0.144605 0.0536995i
\(554\) 3.03591e6i 0.420257i
\(555\) 0 0
\(556\) 1.92984e6i 0.264749i
\(557\) 5.16886e6i 0.705922i −0.935638 0.352961i \(-0.885175\pi\)
0.935638 0.352961i \(-0.114825\pi\)
\(558\) 0 0
\(559\) 2.74963e6i 0.372173i
\(560\) −777808. 288841.i −0.104810 0.0389214i
\(561\) 0 0
\(562\) −8.33338e6 −1.11296
\(563\) 2.12993e6 0.283201 0.141601 0.989924i \(-0.454775\pi\)
0.141601 + 0.989924i \(0.454775\pi\)
\(564\) 0 0
\(565\) 662722.i 0.0873394i
\(566\) −9.48541e6 −1.24456
\(567\) 0 0
\(568\) 1.04426e6 0.135812
\(569\) 1.16292e7i 1.50581i 0.658131 + 0.752903i \(0.271347\pi\)
−0.658131 + 0.752903i \(0.728653\pi\)
\(570\) 0 0
\(571\) 1.36578e7 1.75304 0.876518 0.481370i \(-0.159861\pi\)
0.876518 + 0.481370i \(0.159861\pi\)
\(572\) 2.42367e6 0.309730
\(573\) 0 0
\(574\) −366147. + 985983.i −0.0463849 + 0.124908i
\(575\) 1.61606e6i 0.203839i
\(576\) 0 0
\(577\) 6.92755e6i 0.866244i 0.901335 + 0.433122i \(0.142588\pi\)
−0.901335 + 0.433122i \(0.857412\pi\)
\(578\) 5.12685e6i 0.638309i
\(579\) 0 0
\(580\) 2.42504e6i 0.299329i
\(581\) −832345. 309093.i −0.102297 0.0379883i
\(582\) 0 0
\(583\) −3.50970e6 −0.427660
\(584\) 1.90834e6 0.231539
\(585\) 0 0
\(586\) 2.87088e6i 0.345359i
\(587\) −1.63952e7 −1.96391 −0.981957 0.189102i \(-0.939442\pi\)
−0.981957 + 0.189102i \(0.939442\pi\)
\(588\) 0 0
\(589\) 6.05951e6 0.719697
\(590\) 526044.i 0.0622146i
\(591\) 0 0
\(592\) −2.29819e6 −0.269514
\(593\) 7.49183e6 0.874885 0.437443 0.899246i \(-0.355884\pi\)
0.437443 + 0.899246i \(0.355884\pi\)
\(594\) 0 0
\(595\) −1.12927e6 419358.i −0.130769 0.0485615i
\(596\) 1.61261e6i 0.185958i
\(597\) 0 0
\(598\) 8.55473e6i 0.978258i
\(599\) 5.00561e6i 0.570019i 0.958525 + 0.285010i \(0.0919968\pi\)
−0.958525 + 0.285010i \(0.908003\pi\)
\(600\) 0 0
\(601\) 1.38113e6i 0.155972i −0.996954 0.0779862i \(-0.975151\pi\)
0.996954 0.0779862i \(-0.0248490\pi\)
\(602\) −600129. + 1.61606e6i −0.0674922 + 0.181747i
\(603\) 0 0
\(604\) 4.98259e6 0.555728
\(605\) 3.18776e6 0.354077
\(606\) 0 0
\(607\) 171358.i 0.0188770i −0.999955 0.00943851i \(-0.996996\pi\)
0.999955 0.00943851i \(-0.00300441\pi\)
\(608\) 2.15151e6 0.236039
\(609\) 0 0
\(610\) −3.93844e6 −0.428549
\(611\) 6.81724e6i 0.738764i
\(612\) 0 0
\(613\) −8.89098e6 −0.955649 −0.477824 0.878455i \(-0.658574\pi\)
−0.477824 + 0.878455i \(0.658574\pi\)
\(614\) −5.00972e6 −0.536281
\(615\) 0 0
\(616\) 1.42448e6 + 528986.i 0.151254 + 0.0561685i
\(617\) 1.77883e7i 1.88115i −0.339592 0.940573i \(-0.610289\pi\)
0.339592 0.940573i \(-0.389711\pi\)
\(618\) 0 0
\(619\) 8.80341e6i 0.923473i 0.887017 + 0.461737i \(0.152773\pi\)
−0.887017 + 0.461737i \(0.847227\pi\)
\(620\) 1.15360e6i 0.120525i
\(621\) 0 0
\(622\) 1.16253e7i 1.20484i
\(623\) 5.94579e6 + 2.20798e6i 0.613747 + 0.227917i
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) −2.61237e6 −0.266440
\(627\) 0 0
\(628\) 3.03428e6i 0.307013i
\(629\) −3.33665e6 −0.336267
\(630\) 0 0
\(631\) 1.41323e7 1.41299 0.706495 0.707718i \(-0.250275\pi\)
0.706495 + 0.707718i \(0.250275\pi\)
\(632\) 547626.i 0.0545370i
\(633\) 0 0
\(634\) 5.69488e6 0.562680
\(635\) −7.63367e6 −0.751275
\(636\) 0 0
\(637\) −9.07340e6 + 1.05320e7i −0.885975 + 1.02840i
\(638\) 4.44124e6i 0.431969i
\(639\) 0 0
\(640\) 409600.i 0.0395285i
\(641\) 1.20651e7i 1.15981i −0.814683 0.579906i \(-0.803089\pi\)
0.814683 0.579906i \(-0.196911\pi\)
\(642\) 0 0
\(643\) 2.30489e6i 0.219848i 0.993940 + 0.109924i \(0.0350608\pi\)
−0.993940 + 0.109924i \(0.964939\pi\)
\(644\) 1.86714e6 5.02794e6i 0.177403 0.477722i
\(645\) 0 0
\(646\) 3.12369e6 0.294501
\(647\) −1.41536e7 −1.32925 −0.664623 0.747179i \(-0.731408\pi\)
−0.664623 + 0.747179i \(0.731408\pi\)
\(648\) 0 0
\(649\) 963402.i 0.0897833i
\(650\) 2.06780e6 0.191966
\(651\) 0 0
\(652\) 3.21771e6 0.296434
\(653\) 1.15469e7i 1.05969i 0.848093 + 0.529847i \(0.177751\pi\)
−0.848093 + 0.529847i \(0.822249\pi\)
\(654\) 0 0
\(655\) 1.58351e6 0.144218
\(656\) 519227. 0.0471083
\(657\) 0 0
\(658\) −1.48792e6 + 4.00675e6i −0.133972 + 0.360768i
\(659\) 5.64678e6i 0.506510i −0.967400 0.253255i \(-0.918499\pi\)
0.967400 0.253255i \(-0.0815011\pi\)
\(660\) 0 0
\(661\) 7.28300e6i 0.648346i −0.945998 0.324173i \(-0.894914\pi\)
0.945998 0.324173i \(-0.105086\pi\)
\(662\) 1.97598e6i 0.175241i
\(663\) 0 0
\(664\) 438319.i 0.0385807i
\(665\) 2.37062e6 6.38374e6i 0.207878 0.559785i
\(666\) 0 0
\(667\) −1.56760e7 −1.36434
\(668\) 3.32486e6 0.288291
\(669\) 0 0
\(670\) 1.81915e6i 0.156560i
\(671\) 7.21290e6 0.618449
\(672\) 0 0
\(673\) −1.14636e7 −0.975624 −0.487812 0.872949i \(-0.662205\pi\)
−0.487812 + 0.872949i \(0.662205\pi\)
\(674\) 1.53277e7i 1.29966i
\(675\) 0 0
\(676\) 5.00535e6 0.421277
\(677\) 8.05827e6 0.675725 0.337863 0.941195i \(-0.390296\pi\)
0.337863 + 0.941195i \(0.390296\pi\)
\(678\) 0 0
\(679\) 1.48372e6 3.99545e6i 0.123503 0.332577i
\(680\) 594683.i 0.0493189i
\(681\) 0 0
\(682\) 2.11271e6i 0.173932i
\(683\) 1.51467e6i 0.124241i 0.998069 + 0.0621206i \(0.0197863\pi\)
−0.998069 + 0.0621206i \(0.980214\pi\)
\(684\) 0 0
\(685\) 4.54219e6i 0.369861i
\(686\) −7.63147e6 + 4.20970e6i −0.619153 + 0.341539i
\(687\) 0 0
\(688\) 851031. 0.0685448
\(689\) −1.58509e7 −1.27205
\(690\) 0 0
\(691\) 3.15419e6i 0.251300i −0.992075 0.125650i \(-0.959898\pi\)
0.992075 0.125650i \(-0.0401016\pi\)
\(692\) 1.01138e7 0.802876
\(693\) 0 0
\(694\) 7.45594e6 0.587629
\(695\) 3.01537e6i 0.236799i
\(696\) 0 0
\(697\) 753846. 0.0587761
\(698\) −4.11060e6 −0.319350
\(699\) 0 0
\(700\) 1.21533e6 + 451314.i 0.0937448 + 0.0348124i
\(701\) 2.71147e6i 0.208406i −0.994556 0.104203i \(-0.966771\pi\)
0.994556 0.104203i \(-0.0332292\pi\)
\(702\) 0 0
\(703\) 1.88620e7i 1.43946i
\(704\) 750145.i 0.0570445i
\(705\) 0 0
\(706\) 1.49937e7i 1.13213i
\(707\) 3.91233e6 + 1.45285e6i 0.294365 + 0.109313i
\(708\) 0 0
\(709\) 1.71376e7 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(710\) −1.63165e6 −0.121474
\(711\) 0 0
\(712\) 3.13110e6i 0.231471i
\(713\) −7.45715e6 −0.549350
\(714\) 0 0
\(715\) −3.78699e6 −0.277031
\(716\) 4.57356e6i 0.333404i
\(717\) 0 0
\(718\) −1.93375e6 −0.139987
\(719\) 9.03240e6 0.651600 0.325800 0.945439i \(-0.394366\pi\)
0.325800 + 0.945439i \(0.394366\pi\)
\(720\) 0 0
\(721\) −7.49591e6 + 2.01854e7i −0.537015 + 1.44611i
\(722\) 7.75376e6i 0.553566i
\(723\) 0 0
\(724\) 6.18828e6i 0.438756i
\(725\) 3.78912e6i 0.267728i
\(726\) 0 0
\(727\) 1.44566e7i 1.01445i −0.861813 0.507226i \(-0.830671\pi\)
0.861813 0.507226i \(-0.169329\pi\)
\(728\) 6.43341e6 + 2.38906e6i 0.449896 + 0.167070i
\(729\) 0 0
\(730\) −2.98178e6 −0.207095
\(731\) 1.23558e6 0.0855220
\(732\) 0 0
\(733\) 6.38834e6i 0.439165i −0.975594 0.219583i \(-0.929530\pi\)
0.975594 0.219583i \(-0.0704695\pi\)
\(734\) −8.54221e6 −0.585234
\(735\) 0 0
\(736\) −2.64775e6 −0.180170
\(737\) 3.33160e6i 0.225935i
\(738\) 0 0
\(739\) 1.35024e7 0.909492 0.454746 0.890621i \(-0.349730\pi\)
0.454746 + 0.890621i \(0.349730\pi\)
\(740\) 3.59092e6 0.241060
\(741\) 0 0
\(742\) −9.31617e6 3.45959e6i −0.621195 0.230682i
\(743\) 1.97481e7i 1.31236i 0.754605 + 0.656179i \(0.227828\pi\)
−0.754605 + 0.656179i \(0.772172\pi\)
\(744\) 0 0
\(745\) 2.51971e6i 0.166326i
\(746\) 1.33826e6i 0.0880429i
\(747\) 0 0
\(748\) 1.08911e6i 0.0711733i
\(749\) −4.98800e6 + 1.34320e7i −0.324879 + 0.874853i
\(750\) 0 0
\(751\) −1.76700e7 −1.14324 −0.571618 0.820520i \(-0.693684\pi\)
−0.571618 + 0.820520i \(0.693684\pi\)
\(752\) 2.10999e6 0.136062
\(753\) 0 0
\(754\) 2.00580e7i 1.28487i
\(755\) −7.78529e6 −0.497058
\(756\) 0 0
\(757\) −9.97065e6 −0.632388 −0.316194 0.948695i \(-0.602405\pi\)
−0.316194 + 0.948695i \(0.602405\pi\)
\(758\) 1.21423e7i 0.767587i
\(759\) 0 0
\(760\) −3.36173e6 −0.211120
\(761\) −1.05836e7 −0.662477 −0.331238 0.943547i \(-0.607466\pi\)
−0.331238 + 0.943547i \(0.607466\pi\)
\(762\) 0 0
\(763\) 1.81784e7 + 6.75061e6i 1.13043 + 0.419789i
\(764\) 9.29058e6i 0.575850i
\(765\) 0 0
\(766\) 1.71464e7i 1.05585i
\(767\) 4.35102e6i 0.267056i
\(768\) 0 0
\(769\) 1.69866e6i 0.103584i −0.998658 0.0517918i \(-0.983507\pi\)
0.998658 0.0517918i \(-0.0164932\pi\)
\(770\) −2.22576e6 826541.i −0.135285 0.0502386i
\(771\) 0 0
\(772\) −6.64344e6 −0.401190
\(773\) −2.90176e7 −1.74668 −0.873338 0.487114i \(-0.838050\pi\)
−0.873338 + 0.487114i \(0.838050\pi\)
\(774\) 0 0
\(775\) 1.80250e6i 0.107800i
\(776\) −2.10404e6 −0.125429
\(777\) 0 0
\(778\) −63704.7 −0.00377331
\(779\) 4.26147e6i 0.251603i
\(780\) 0 0
\(781\) 2.98822e6 0.175302
\(782\) −3.84418e6 −0.224795
\(783\) 0 0
\(784\) 3.25973e6 + 2.80829e6i 0.189405 + 0.163174i
\(785\) 4.74106e6i 0.274601i
\(786\) 0 0
\(787\) 9.36084e6i 0.538738i 0.963037 + 0.269369i \(0.0868152\pi\)
−0.963037 + 0.269369i \(0.913185\pi\)
\(788\) 7.41076e6i 0.425155i
\(789\) 0 0
\(790\) 855665.i 0.0487794i
\(791\) −1.19638e6 + 3.22169e6i −0.0679875 + 0.183081i
\(792\) 0 0
\(793\) 3.25756e7 1.83954
\(794\) 1.76563e6 0.0993912
\(795\) 0 0
\(796\) 1.19685e7i 0.669508i
\(797\) −3.31540e7 −1.84880 −0.924402 0.381421i \(-0.875435\pi\)
−0.924402 + 0.381421i \(0.875435\pi\)
\(798\) 0 0
\(799\) 3.06342e6 0.169761
\(800\) 640000.i 0.0353553i
\(801\) 0 0
\(802\) −1.82277e7 −1.00068
\(803\) 5.46086e6 0.298863
\(804\) 0 0
\(805\) −2.91741e6 + 7.85616e6i −0.158675 + 0.427288i
\(806\) 9.54165e6i 0.517352i
\(807\) 0 0
\(808\) 2.06026e6i 0.111018i
\(809\) 1.18124e7i 0.634550i 0.948334 + 0.317275i \(0.102768\pi\)
−0.948334 + 0.317275i \(0.897232\pi\)
\(810\) 0 0
\(811\) 1.53715e7i 0.820660i −0.911937 0.410330i \(-0.865413\pi\)
0.911937 0.410330i \(-0.134587\pi\)
\(812\) 4.37782e6 1.17888e7i 0.233006 0.627453i
\(813\) 0 0
\(814\) −6.57643e6 −0.347880
\(815\) −5.02767e6 −0.265139
\(816\) 0 0
\(817\) 6.98471e6i 0.366094i
\(818\) −2.50792e7 −1.31048
\(819\) 0 0
\(820\) −811291. −0.0421349
\(821\) 1.16833e7i 0.604931i 0.953160 + 0.302466i \(0.0978097\pi\)
−0.953160 + 0.302466i \(0.902190\pi\)
\(822\) 0 0
\(823\) 1.40608e7 0.723619 0.361810 0.932252i \(-0.382159\pi\)
0.361810 + 0.932252i \(0.382159\pi\)
\(824\) 1.06298e7 0.545390
\(825\) 0 0
\(826\) 949645. 2.55726e6i 0.0484296 0.130414i
\(827\) 9.92625e6i 0.504686i 0.967638 + 0.252343i \(0.0812012\pi\)
−0.967638 + 0.252343i \(0.918799\pi\)
\(828\) 0 0
\(829\) 2.89630e7i 1.46372i −0.681456 0.731859i \(-0.738653\pi\)
0.681456 0.731859i \(-0.261347\pi\)
\(830\) 684874.i 0.0345077i
\(831\) 0 0
\(832\) 3.38788e6i 0.169676i
\(833\) 4.73268e6 + 4.07725e6i 0.236317 + 0.203589i
\(834\) 0 0
\(835\) −5.19509e6 −0.257856
\(836\) 6.15670e6 0.304672
\(837\) 0 0
\(838\) 2.46181e7i 1.21100i
\(839\) −4.40951e6 −0.216265 −0.108132 0.994137i \(-0.534487\pi\)
−0.108132 + 0.994137i \(0.534487\pi\)
\(840\) 0 0
\(841\) −1.62439e7 −0.791956
\(842\) 7.89558e6i 0.383799i
\(843\) 0 0
\(844\) −7.91060e6 −0.382255
\(845\) −7.82086e6 −0.376801
\(846\) 0 0
\(847\) −1.54967e7 5.75473e6i −0.742215 0.275623i
\(848\) 4.90597e6i 0.234280i
\(849\) 0 0
\(850\) 929193.i 0.0441122i
\(851\) 2.32126e7i 1.09875i
\(852\) 0 0
\(853\) 1.35591e7i 0.638056i 0.947745 + 0.319028i \(0.103356\pi\)
−0.947745 + 0.319028i \(0.896644\pi\)
\(854\) 1.91460e7 + 7.10990e6i 0.898323 + 0.333595i
\(855\) 0 0
\(856\) 7.07338e6 0.329946
\(857\) −2.32431e7 −1.08104 −0.540520 0.841331i \(-0.681773\pi\)
−0.540520 + 0.841331i \(0.681773\pi\)
\(858\) 0 0
\(859\) 3.66434e7i 1.69439i −0.531284 0.847194i \(-0.678290\pi\)
0.531284 0.847194i \(-0.321710\pi\)
\(860\) −1.32974e6 −0.0613083
\(861\) 0 0
\(862\) −1.05028e7 −0.481436
\(863\) 5.42841e6i 0.248111i −0.992275 0.124055i \(-0.960410\pi\)
0.992275 0.124055i \(-0.0395901\pi\)
\(864\) 0 0
\(865\) −1.58028e7 −0.718114
\(866\) 2.95591e7 1.33936
\(867\) 0 0
\(868\) 2.08254e6 5.60799e6i 0.0938198 0.252644i
\(869\) 1.56707e6i 0.0703947i
\(870\) 0 0
\(871\) 1.50465e7i 0.672033i
\(872\) 9.57290e6i 0.426336i
\(873\) 0 0
\(874\) 2.17310e7i 0.962281i
\(875\) −1.89895e6 705179.i −0.0838479 0.0311372i
\(876\) 0 0
\(877\) −3.12144e7 −1.37043 −0.685213 0.728343i \(-0.740291\pi\)
−0.685213 + 0.728343i \(0.740291\pi\)
\(878\) 5.04388e6 0.220815
\(879\) 0 0
\(880\) 1.17210e6i 0.0510221i
\(881\) −3.33771e7 −1.44880 −0.724400 0.689380i \(-0.757883\pi\)
−0.724400 + 0.689380i \(0.757883\pi\)
\(882\) 0 0
\(883\) −1.66178e7 −0.717254 −0.358627 0.933481i \(-0.616755\pi\)
−0.358627 + 0.933481i \(0.616755\pi\)
\(884\) 4.91874e6i 0.211701i
\(885\) 0 0
\(886\) −2.03691e7 −0.871740
\(887\) 2.94191e7 1.25551 0.627756 0.778410i \(-0.283974\pi\)
0.627756 + 0.778410i \(0.283974\pi\)
\(888\) 0 0
\(889\) 3.71095e7 + 1.37807e7i 1.57482 + 0.584814i
\(890\) 4.89234e6i 0.207034i
\(891\) 0 0
\(892\) 7.58013e6i 0.318981i
\(893\) 1.73174e7i 0.726699i
\(894\) 0 0
\(895\) 7.14618e6i 0.298206i
\(896\) 739433. 1.99119e6i 0.0307701 0.0828595i
\(897\) 0 0
\(898\) 1.10941e7 0.459095
\(899\) −1.74845e7 −0.721530
\(900\) 0 0
\(901\) 7.12280e6i 0.292307i
\(902\) 1.48581e6 0.0608059
\(903\) 0 0
\(904\) 1.69657e6 0.0690478
\(905\) 9.66919e6i 0.392436i
\(906\) 0 0
\(907\) 3.03152e6 0.122361 0.0611803 0.998127i \(-0.480514\pi\)
0.0611803 + 0.998127i \(0.480514\pi\)
\(908\) −1.37804e6 −0.0554684
\(909\) 0 0
\(910\) −1.00522e7 3.73291e6i −0.402400 0.149432i
\(911\) 7.41523e6i 0.296025i −0.988985 0.148013i \(-0.952712\pi\)
0.988985 0.148013i \(-0.0472876\pi\)
\(912\) 0 0
\(913\) 1.25428e6i 0.0497988i
\(914\) 7.46117e6i 0.295421i
\(915\) 0 0
\(916\) 6.97855e6i 0.274806i
\(917\) −7.69794e6 2.85865e6i −0.302309 0.112263i
\(918\) 0 0
\(919\) 6.94938e6 0.271430 0.135715 0.990748i \(-0.456667\pi\)
0.135715 + 0.990748i \(0.456667\pi\)
\(920\) 4.13712e6 0.161149
\(921\) 0 0
\(922\) 2.37039e7i 0.918317i
\(923\) 1.34957e7 0.521425
\(924\) 0 0
\(925\) −5.61081e6 −0.215611
\(926\) 8.80480e6i 0.337436i
\(927\) 0 0
\(928\) −6.20810e6 −0.236640
\(929\) 3.61427e7 1.37398 0.686992 0.726665i \(-0.258931\pi\)
0.686992 + 0.726665i \(0.258931\pi\)
\(930\) 0 0
\(931\) −2.30486e7 + 2.67537e7i −0.871505 + 1.01160i
\(932\) 1.27767e7i 0.481815i
\(933\) 0 0
\(934\) 2.10509e7i 0.789595i
\(935\) 1.70173e6i 0.0636593i
\(936\) 0 0
\(937\) 2.00541e6i 0.0746199i 0.999304 + 0.0373099i \(0.0118789\pi\)
−0.999304 + 0.0373099i \(0.988121\pi\)
\(938\) 3.28402e6 8.84341e6i 0.121871 0.328180i
\(939\) 0 0
\(940\) −3.29686e6 −0.121697
\(941\) −3.89595e7 −1.43430 −0.717149 0.696920i \(-0.754553\pi\)
−0.717149 + 0.696920i \(0.754553\pi\)
\(942\) 0 0
\(943\) 5.24439e6i 0.192050i
\(944\) −1.34667e6 −0.0491849
\(945\) 0 0
\(946\) 2.43529e6 0.0884755
\(947\) 4.45403e7i 1.61391i −0.590615 0.806954i \(-0.701115\pi\)
0.590615 0.806954i \(-0.298885\pi\)
\(948\) 0 0
\(949\) 2.46629e7 0.888953
\(950\) 5.25270e6 0.188831
\(951\) 0 0
\(952\) 1.07356e6 2.89093e6i 0.0383913 0.103382i
\(953\) 4.90366e7i 1.74899i 0.485031 + 0.874497i \(0.338808\pi\)
−0.485031 + 0.874497i \(0.661192\pi\)
\(954\) 0 0
\(955\) 1.45165e7i 0.515056i
\(956\) 9.16288e6i 0.324256i
\(957\) 0 0
\(958\) 3.27969e7i 1.15457i
\(959\) 8.19981e6 2.20809e7i 0.287910 0.775302i
\(960\) 0 0
\(961\) 2.03117e7 0.709476
\(962\) −2.97012e7 −1.03475
\(963\) 0 0
\(964\) 1.65599e7i 0.573939i
\(965\) 1.03804e7 0.358835
\(966\) 0 0
\(967\) −2.72533e7 −0.937246 −0.468623 0.883398i \(-0.655250\pi\)
−0.468623 + 0.883398i \(0.655250\pi\)
\(968\) 8.16067e6i 0.279922i
\(969\) 0 0
\(970\) 3.28756e6 0.112187
\(971\) −3.54321e7 −1.20600 −0.603001 0.797740i \(-0.706029\pi\)
−0.603001 + 0.797740i \(0.706029\pi\)
\(972\) 0 0
\(973\) −5.44352e6 + 1.46586e7i −0.184331 + 0.496377i
\(974\) 4.12996e7i 1.39492i
\(975\) 0 0
\(976\) 1.00824e7i 0.338797i
\(977\) 3.61918e7i 1.21304i −0.795069 0.606519i \(-0.792565\pi\)
0.795069 0.606519i \(-0.207435\pi\)
\(978\) 0 0
\(979\) 8.95988e6i 0.298776i
\(980\) −5.09332e6 4.38795e6i −0.169409 0.145947i
\(981\) 0 0
\(982\) 1.65467e7 0.547563
\(983\) −1.63741e7 −0.540473 −0.270237 0.962794i \(-0.587102\pi\)
−0.270237 + 0.962794i \(0.587102\pi\)
\(984\) 0 0
\(985\) 1.15793e7i 0.380270i
\(986\) −9.01331e6 −0.295252
\(987\) 0 0
\(988\) 2.78055e7 0.906231
\(989\) 8.59574e6i 0.279443i
\(990\) 0 0
\(991\) −4.01953e7 −1.30014 −0.650072 0.759873i \(-0.725261\pi\)
−0.650072 + 0.759873i \(0.725261\pi\)
\(992\) −2.95321e6 −0.0952831
\(993\) 0 0
\(994\) 7.93196e6 + 2.94555e6i 0.254633 + 0.0945586i
\(995\) 1.87007e7i 0.598826i
\(996\) 0 0
\(997\) 2.97471e7i 0.947778i 0.880585 + 0.473889i \(0.157150\pi\)
−0.880585 + 0.473889i \(0.842850\pi\)
\(998\) 9.99030e6i 0.317506i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.6.b.b.251.2 yes 24
3.2 odd 2 630.6.b.a.251.14 yes 24
7.6 odd 2 630.6.b.a.251.2 24
21.20 even 2 inner 630.6.b.b.251.14 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.6.b.a.251.2 24 7.6 odd 2
630.6.b.a.251.14 yes 24 3.2 odd 2
630.6.b.b.251.2 yes 24 1.1 even 1 trivial
630.6.b.b.251.14 yes 24 21.20 even 2 inner