Properties

Label 637.2.f.k.393.1
Level $637$
Weight $2$
Character 637.393
Analytic conductor $5.086$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(295,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.295");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 7x^{10} - 2x^{9} + 33x^{8} - 11x^{7} + 55x^{6} + 17x^{5} + 47x^{4} + x^{3} + 8x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 393.1
Root \(0.217953 - 0.377506i\) of defining polynomial
Character \(\chi\) \(=\) 637.393
Dual form 637.2.f.k.295.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.929081 - 1.60921i) q^{2} +(-1.14703 - 1.98672i) q^{3} +(-0.726381 + 1.25813i) q^{4} -0.197362 q^{5} +(-2.13137 + 3.69165i) q^{6} -1.01686 q^{8} +(-1.13137 + 1.95960i) q^{9} +(0.183365 + 0.317598i) q^{10} +(2.09137 + 3.62236i) q^{11} +3.33274 q^{12} +(-2.72221 + 2.36423i) q^{13} +(0.226381 + 0.392104i) q^{15} +(2.39750 + 4.15260i) q^{16} +(-0.420653 + 0.728592i) q^{17} +4.20455 q^{18} +(-0.675876 + 1.17065i) q^{19} +(0.143360 - 0.248307i) q^{20} +(3.88610 - 6.73092i) q^{22} +(2.05760 + 3.56386i) q^{23} +(1.16637 + 2.02021i) q^{24} -4.96105 q^{25} +(6.33370 + 2.18406i) q^{26} -1.69131 q^{27} +(4.11931 + 7.13485i) q^{29} +(0.420653 - 0.728592i) q^{30} -1.28070 q^{31} +(3.43809 - 5.95495i) q^{32} +(4.79774 - 8.30993i) q^{33} +1.56328 q^{34} +(-1.64362 - 2.84683i) q^{36} +(-1.52242 - 2.63692i) q^{37} +2.51177 q^{38} +(7.81953 + 2.69642i) q^{39} +0.200689 q^{40} +(-2.69848 - 4.67390i) q^{41} +(-2.66389 + 4.61399i) q^{43} -6.07652 q^{44} +(0.223290 - 0.386750i) q^{45} +(3.82334 - 6.62223i) q^{46} -11.6641 q^{47} +(5.50003 - 9.52634i) q^{48} +(4.60921 + 7.98339i) q^{50} +1.93001 q^{51} +(-0.997141 - 5.14222i) q^{52} +4.64796 q^{53} +(1.57136 + 2.72168i) q^{54} +(-0.412757 - 0.714916i) q^{55} +3.10101 q^{57} +(7.65434 - 13.2577i) q^{58} +(-3.02905 + 5.24648i) q^{59} -0.657756 q^{60} +(5.68285 - 9.84298i) q^{61} +(1.18987 + 2.06092i) q^{62} -3.18704 q^{64} +(0.537262 - 0.466609i) q^{65} -17.8300 q^{66} +(-6.69851 - 11.6022i) q^{67} +(-0.611109 - 1.05847i) q^{68} +(4.72026 - 8.17574i) q^{69} +(2.98520 - 5.17051i) q^{71} +(1.15044 - 1.99263i) q^{72} +3.88547 q^{73} +(-2.82891 + 4.89982i) q^{74} +(5.69049 + 9.85622i) q^{75} +(-0.981887 - 1.70068i) q^{76} +(-2.92585 - 15.0885i) q^{78} -10.7334 q^{79} +(-0.473177 - 0.819566i) q^{80} +(5.33411 + 9.23895i) q^{81} +(-5.01421 + 8.68486i) q^{82} +3.07390 q^{83} +(0.0830210 - 0.143797i) q^{85} +9.89987 q^{86} +(9.44997 - 16.3678i) q^{87} +(-2.12662 - 3.68341i) q^{88} +(5.99207 + 10.3786i) q^{89} -0.829819 q^{90} -5.97840 q^{92} +(1.46901 + 2.54439i) q^{93} +(10.8369 + 18.7700i) q^{94} +(0.133392 - 0.231042i) q^{95} -15.7744 q^{96} +(-9.73637 + 16.8639i) q^{97} -9.46448 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + q^{3} - 4 q^{4} - 2 q^{5} - 9 q^{6} - 6 q^{8} + 3 q^{9} + 4 q^{10} + 4 q^{11} - 10 q^{12} - 2 q^{13} - 2 q^{15} + 8 q^{16} + 5 q^{17} - 6 q^{18} - q^{19} - q^{20} - 5 q^{22} - q^{23}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.929081 1.60921i −0.656959 1.13789i −0.981399 0.191980i \(-0.938509\pi\)
0.324440 0.945906i \(-0.394824\pi\)
\(3\) −1.14703 1.98672i −0.662240 1.14703i −0.980026 0.198871i \(-0.936272\pi\)
0.317785 0.948163i \(-0.397061\pi\)
\(4\) −0.726381 + 1.25813i −0.363191 + 0.629065i
\(5\) −0.197362 −0.0882631 −0.0441315 0.999026i \(-0.514052\pi\)
−0.0441315 + 0.999026i \(0.514052\pi\)
\(6\) −2.13137 + 3.69165i −0.870130 + 1.50711i
\(7\) 0 0
\(8\) −1.01686 −0.359513
\(9\) −1.13137 + 1.95960i −0.377125 + 0.653199i
\(10\) 0.183365 + 0.317598i 0.0579852 + 0.100433i
\(11\) 2.09137 + 3.62236i 0.630571 + 1.09218i 0.987435 + 0.158025i \(0.0505127\pi\)
−0.356864 + 0.934156i \(0.616154\pi\)
\(12\) 3.33274 0.962078
\(13\) −2.72221 + 2.36423i −0.755005 + 0.655719i
\(14\) 0 0
\(15\) 0.226381 + 0.392104i 0.0584514 + 0.101241i
\(16\) 2.39750 + 4.15260i 0.599376 + 1.03815i
\(17\) −0.420653 + 0.728592i −0.102023 + 0.176709i −0.912518 0.409036i \(-0.865865\pi\)
0.810495 + 0.585746i \(0.199198\pi\)
\(18\) 4.20455 0.991022
\(19\) −0.675876 + 1.17065i −0.155057 + 0.268566i −0.933080 0.359670i \(-0.882889\pi\)
0.778023 + 0.628236i \(0.216223\pi\)
\(20\) 0.143360 0.248307i 0.0320563 0.0555232i
\(21\) 0 0
\(22\) 3.88610 6.73092i 0.828519 1.43504i
\(23\) 2.05760 + 3.56386i 0.429038 + 0.743116i 0.996788 0.0800850i \(-0.0255192\pi\)
−0.567750 + 0.823201i \(0.692186\pi\)
\(24\) 1.16637 + 2.02021i 0.238084 + 0.412373i
\(25\) −4.96105 −0.992210
\(26\) 6.33370 + 2.18406i 1.24214 + 0.428330i
\(27\) −1.69131 −0.325492
\(28\) 0 0
\(29\) 4.11931 + 7.13485i 0.764936 + 1.32491i 0.940280 + 0.340401i \(0.110563\pi\)
−0.175344 + 0.984507i \(0.556104\pi\)
\(30\) 0.420653 0.728592i 0.0768003 0.133022i
\(31\) −1.28070 −0.230020 −0.115010 0.993364i \(-0.536690\pi\)
−0.115010 + 0.993364i \(0.536690\pi\)
\(32\) 3.43809 5.95495i 0.607774 1.05270i
\(33\) 4.79774 8.30993i 0.835180 1.44657i
\(34\) 1.56328 0.268100
\(35\) 0 0
\(36\) −1.64362 2.84683i −0.273936 0.474471i
\(37\) −1.52242 2.63692i −0.250285 0.433506i 0.713319 0.700839i \(-0.247191\pi\)
−0.963604 + 0.267333i \(0.913858\pi\)
\(38\) 2.51177 0.407463
\(39\) 7.81953 + 2.69642i 1.25213 + 0.431773i
\(40\) 0.200689 0.0317317
\(41\) −2.69848 4.67390i −0.421431 0.729941i 0.574648 0.818400i \(-0.305139\pi\)
−0.996080 + 0.0884599i \(0.971805\pi\)
\(42\) 0 0
\(43\) −2.66389 + 4.61399i −0.406239 + 0.703627i −0.994465 0.105070i \(-0.966493\pi\)
0.588226 + 0.808697i \(0.299827\pi\)
\(44\) −6.07652 −0.916070
\(45\) 0.223290 0.386750i 0.0332862 0.0576534i
\(46\) 3.82334 6.62223i 0.563721 0.976394i
\(47\) −11.6641 −1.70138 −0.850690 0.525668i \(-0.823815\pi\)
−0.850690 + 0.525668i \(0.823815\pi\)
\(48\) 5.50003 9.52634i 0.793862 1.37501i
\(49\) 0 0
\(50\) 4.60921 + 7.98339i 0.651841 + 1.12902i
\(51\) 1.93001 0.270256
\(52\) −0.997141 5.14222i −0.138279 0.713098i
\(53\) 4.64796 0.638447 0.319223 0.947679i \(-0.396578\pi\)
0.319223 + 0.947679i \(0.396578\pi\)
\(54\) 1.57136 + 2.72168i 0.213835 + 0.370373i
\(55\) −0.412757 0.714916i −0.0556562 0.0963993i
\(56\) 0 0
\(57\) 3.10101 0.410739
\(58\) 7.65434 13.2577i 1.00506 1.74082i
\(59\) −3.02905 + 5.24648i −0.394349 + 0.683033i −0.993018 0.117964i \(-0.962363\pi\)
0.598669 + 0.800997i \(0.295697\pi\)
\(60\) −0.657756 −0.0849160
\(61\) 5.68285 9.84298i 0.727614 1.26026i −0.230275 0.973126i \(-0.573962\pi\)
0.957889 0.287139i \(-0.0927042\pi\)
\(62\) 1.18987 + 2.06092i 0.151114 + 0.261737i
\(63\) 0 0
\(64\) −3.18704 −0.398380
\(65\) 0.537262 0.466609i 0.0666391 0.0578758i
\(66\) −17.8300 −2.19472
\(67\) −6.69851 11.6022i −0.818354 1.41743i −0.906895 0.421357i \(-0.861554\pi\)
0.0885411 0.996073i \(-0.471780\pi\)
\(68\) −0.611109 1.05847i −0.0741078 0.128358i
\(69\) 4.72026 8.17574i 0.568253 0.984243i
\(70\) 0 0
\(71\) 2.98520 5.17051i 0.354278 0.613627i −0.632716 0.774384i \(-0.718060\pi\)
0.986994 + 0.160757i \(0.0513934\pi\)
\(72\) 1.15044 1.99263i 0.135581 0.234833i
\(73\) 3.88547 0.454759 0.227380 0.973806i \(-0.426984\pi\)
0.227380 + 0.973806i \(0.426984\pi\)
\(74\) −2.82891 + 4.89982i −0.328854 + 0.569592i
\(75\) 5.69049 + 9.85622i 0.657081 + 1.13810i
\(76\) −0.981887 1.70068i −0.112630 0.195081i
\(77\) 0 0
\(78\) −2.92585 15.0885i −0.331287 1.70844i
\(79\) −10.7334 −1.20760 −0.603799 0.797136i \(-0.706347\pi\)
−0.603799 + 0.797136i \(0.706347\pi\)
\(80\) −0.473177 0.819566i −0.0529028 0.0916303i
\(81\) 5.33411 + 9.23895i 0.592679 + 1.02655i
\(82\) −5.01421 + 8.68486i −0.553726 + 0.959082i
\(83\) 3.07390 0.337404 0.168702 0.985667i \(-0.446042\pi\)
0.168702 + 0.985667i \(0.446042\pi\)
\(84\) 0 0
\(85\) 0.0830210 0.143797i 0.00900489 0.0155969i
\(86\) 9.89987 1.06753
\(87\) 9.44997 16.3678i 1.01314 1.75482i
\(88\) −2.12662 3.68341i −0.226698 0.392653i
\(89\) 5.99207 + 10.3786i 0.635159 + 1.10013i 0.986482 + 0.163873i \(0.0523986\pi\)
−0.351323 + 0.936254i \(0.614268\pi\)
\(90\) −0.829819 −0.0874706
\(91\) 0 0
\(92\) −5.97840 −0.623291
\(93\) 1.46901 + 2.54439i 0.152329 + 0.263841i
\(94\) 10.8369 + 18.7700i 1.11774 + 1.93598i
\(95\) 0.133392 0.231042i 0.0136858 0.0237045i
\(96\) −15.7744 −1.60997
\(97\) −9.73637 + 16.8639i −0.988578 + 1.71227i −0.363771 + 0.931488i \(0.618511\pi\)
−0.624807 + 0.780779i \(0.714822\pi\)
\(98\) 0 0
\(99\) −9.46448 −0.951216
\(100\) 3.60361 6.24164i 0.360361 0.624164i
\(101\) 8.46697 + 14.6652i 0.842495 + 1.45924i 0.887779 + 0.460270i \(0.152247\pi\)
−0.0452843 + 0.998974i \(0.514419\pi\)
\(102\) −1.79314 3.10580i −0.177547 0.307520i
\(103\) −7.23425 −0.712811 −0.356406 0.934331i \(-0.615998\pi\)
−0.356406 + 0.934331i \(0.615998\pi\)
\(104\) 2.76809 2.40408i 0.271434 0.235739i
\(105\) 0 0
\(106\) −4.31833 7.47957i −0.419434 0.726480i
\(107\) 4.92625 + 8.53251i 0.476238 + 0.824869i 0.999629 0.0272237i \(-0.00866664\pi\)
−0.523391 + 0.852093i \(0.675333\pi\)
\(108\) 1.22853 2.12788i 0.118216 0.204756i
\(109\) −13.8159 −1.32332 −0.661662 0.749802i \(-0.730149\pi\)
−0.661662 + 0.749802i \(0.730149\pi\)
\(110\) −0.766969 + 1.32843i −0.0731277 + 0.126661i
\(111\) −3.49255 + 6.04927i −0.331498 + 0.574171i
\(112\) 0 0
\(113\) 2.13432 3.69675i 0.200780 0.347761i −0.748000 0.663699i \(-0.768986\pi\)
0.948780 + 0.315938i \(0.102319\pi\)
\(114\) −2.88109 4.99019i −0.269839 0.467374i
\(115\) −0.406092 0.703371i −0.0378682 0.0655897i
\(116\) −11.9687 −1.11127
\(117\) −1.55310 8.00926i −0.143584 0.740456i
\(118\) 11.2569 1.03629
\(119\) 0 0
\(120\) −0.230197 0.398713i −0.0210140 0.0363973i
\(121\) −3.24765 + 5.62509i −0.295240 + 0.511372i
\(122\) −21.1193 −1.91205
\(123\) −6.19049 + 10.7222i −0.558178 + 0.966792i
\(124\) 0.930276 1.61129i 0.0835412 0.144698i
\(125\) 1.96593 0.175839
\(126\) 0 0
\(127\) 1.09512 + 1.89680i 0.0971761 + 0.168314i 0.910515 0.413477i \(-0.135686\pi\)
−0.813339 + 0.581791i \(0.802352\pi\)
\(128\) −3.91516 6.78126i −0.346055 0.599385i
\(129\) 12.2223 1.07611
\(130\) −1.25003 0.431052i −0.109635 0.0378057i
\(131\) 2.27612 0.198865 0.0994326 0.995044i \(-0.468297\pi\)
0.0994326 + 0.995044i \(0.468297\pi\)
\(132\) 6.96998 + 12.0724i 0.606659 + 1.05076i
\(133\) 0 0
\(134\) −12.4469 + 21.5587i −1.07525 + 1.86239i
\(135\) 0.333800 0.0287289
\(136\) 0.427743 0.740873i 0.0366787 0.0635293i
\(137\) −6.72399 + 11.6463i −0.574469 + 0.995010i 0.421630 + 0.906768i \(0.361458\pi\)
−0.996099 + 0.0882417i \(0.971875\pi\)
\(138\) −17.5420 −1.49328
\(139\) −2.02270 + 3.50342i −0.171563 + 0.297156i −0.938966 0.344009i \(-0.888215\pi\)
0.767403 + 0.641165i \(0.221548\pi\)
\(140\) 0 0
\(141\) 13.3791 + 23.1733i 1.12672 + 1.95154i
\(142\) −11.0940 −0.930984
\(143\) −14.2572 4.91634i −1.19225 0.411125i
\(144\) −10.8499 −0.904157
\(145\) −0.812996 1.40815i −0.0675156 0.116940i
\(146\) −3.60991 6.25255i −0.298758 0.517465i
\(147\) 0 0
\(148\) 4.42344 0.363605
\(149\) −7.67596 + 13.2952i −0.628840 + 1.08918i 0.358945 + 0.933359i \(0.383136\pi\)
−0.987785 + 0.155823i \(0.950197\pi\)
\(150\) 10.5738 18.3144i 0.863351 1.49537i
\(151\) 6.12108 0.498127 0.249063 0.968487i \(-0.419877\pi\)
0.249063 + 0.968487i \(0.419877\pi\)
\(152\) 0.687268 1.19038i 0.0557448 0.0965528i
\(153\) −0.951831 1.64862i −0.0769510 0.133283i
\(154\) 0 0
\(155\) 0.252762 0.0203023
\(156\) −9.07241 + 7.87935i −0.726374 + 0.630853i
\(157\) 4.53668 0.362067 0.181033 0.983477i \(-0.442056\pi\)
0.181033 + 0.983477i \(0.442056\pi\)
\(158\) 9.97217 + 17.2723i 0.793343 + 1.37411i
\(159\) −5.33137 9.23421i −0.422805 0.732320i
\(160\) −0.678549 + 1.17528i −0.0536440 + 0.0929142i
\(161\) 0 0
\(162\) 9.91163 17.1674i 0.778731 1.34880i
\(163\) −0.911271 + 1.57837i −0.0713762 + 0.123627i −0.899505 0.436911i \(-0.856072\pi\)
0.828128 + 0.560538i \(0.189406\pi\)
\(164\) 7.84049 0.612240
\(165\) −0.946893 + 1.64007i −0.0737155 + 0.127679i
\(166\) −2.85590 4.94656i −0.221661 0.383928i
\(167\) 5.35397 + 9.27336i 0.414303 + 0.717594i 0.995355 0.0962726i \(-0.0306921\pi\)
−0.581052 + 0.813866i \(0.697359\pi\)
\(168\) 0 0
\(169\) 1.82086 12.8718i 0.140066 0.990142i
\(170\) −0.308533 −0.0236634
\(171\) −1.52934 2.64889i −0.116951 0.202566i
\(172\) −3.87000 6.70303i −0.295085 0.511102i
\(173\) 6.74634 11.6850i 0.512915 0.888395i −0.486973 0.873417i \(-0.661899\pi\)
0.999888 0.0149778i \(-0.00476775\pi\)
\(174\) −35.1191 −2.66237
\(175\) 0 0
\(176\) −10.0281 + 17.3692i −0.755898 + 1.30925i
\(177\) 13.8977 1.04462
\(178\) 11.1342 19.2851i 0.834547 1.44548i
\(179\) −5.23458 9.06657i −0.391251 0.677667i 0.601364 0.798975i \(-0.294624\pi\)
−0.992615 + 0.121309i \(0.961291\pi\)
\(180\) 0.324388 + 0.561857i 0.0241785 + 0.0418783i
\(181\) 12.5209 0.930674 0.465337 0.885133i \(-0.345933\pi\)
0.465337 + 0.885133i \(0.345933\pi\)
\(182\) 0 0
\(183\) −26.0737 −1.92742
\(184\) −2.09228 3.62393i −0.154245 0.267160i
\(185\) 0.300469 + 0.520428i 0.0220909 + 0.0382626i
\(186\) 2.72965 4.72789i 0.200148 0.346666i
\(187\) −3.51896 −0.257332
\(188\) 8.47256 14.6749i 0.617925 1.07028i
\(189\) 0 0
\(190\) −0.495729 −0.0359640
\(191\) −6.55685 + 11.3568i −0.474437 + 0.821749i −0.999572 0.0292704i \(-0.990682\pi\)
0.525135 + 0.851019i \(0.324015\pi\)
\(192\) 3.65565 + 6.33176i 0.263823 + 0.456956i
\(193\) −0.520786 0.902028i −0.0374870 0.0649294i 0.846673 0.532113i \(-0.178602\pi\)
−0.884160 + 0.467184i \(0.845269\pi\)
\(194\) 36.1835 2.59782
\(195\) −1.54328 0.532172i −0.110517 0.0381096i
\(196\) 0 0
\(197\) −0.739167 1.28027i −0.0526635 0.0912158i 0.838492 0.544914i \(-0.183438\pi\)
−0.891155 + 0.453698i \(0.850104\pi\)
\(198\) 8.79326 + 15.2304i 0.624910 + 1.08238i
\(199\) −7.04993 + 12.2108i −0.499756 + 0.865603i −1.00000 0.000281618i \(-0.999910\pi\)
0.500244 + 0.865885i \(0.333244\pi\)
\(200\) 5.04467 0.356712
\(201\) −15.3668 + 26.6162i −1.08389 + 1.87736i
\(202\) 15.7330 27.2503i 1.10697 1.91733i
\(203\) 0 0
\(204\) −1.40192 + 2.42820i −0.0981543 + 0.170008i
\(205\) 0.532578 + 0.922451i 0.0371968 + 0.0644268i
\(206\) 6.72120 + 11.6415i 0.468288 + 0.811099i
\(207\) −9.31164 −0.647204
\(208\) −16.3442 5.63600i −1.13327 0.390786i
\(209\) −5.65402 −0.391097
\(210\) 0 0
\(211\) −13.2346 22.9230i −0.911108 1.57809i −0.812501 0.582959i \(-0.801895\pi\)
−0.0986067 0.995126i \(-0.531439\pi\)
\(212\) −3.37619 + 5.84774i −0.231878 + 0.401624i
\(213\) −13.6965 −0.938468
\(214\) 9.15376 15.8548i 0.625738 1.08381i
\(215\) 0.525751 0.910628i 0.0358559 0.0621043i
\(216\) 1.71981 0.117019
\(217\) 0 0
\(218\) 12.8361 + 22.2328i 0.869370 + 1.50579i
\(219\) −4.45676 7.71934i −0.301160 0.521625i
\(220\) 1.19928 0.0808552
\(221\) −0.577452 2.97790i −0.0388436 0.200315i
\(222\) 12.9794 0.871122
\(223\) 0.364024 + 0.630508i 0.0243769 + 0.0422219i 0.877956 0.478740i \(-0.158907\pi\)
−0.853580 + 0.520962i \(0.825573\pi\)
\(224\) 0 0
\(225\) 5.61280 9.72165i 0.374187 0.648110i
\(226\) −7.93182 −0.527617
\(227\) 1.42598 2.46986i 0.0946454 0.163931i −0.814815 0.579721i \(-0.803162\pi\)
0.909461 + 0.415790i \(0.136495\pi\)
\(228\) −2.25252 + 3.90147i −0.149177 + 0.258381i
\(229\) 3.17352 0.209712 0.104856 0.994487i \(-0.466562\pi\)
0.104856 + 0.994487i \(0.466562\pi\)
\(230\) −0.754584 + 1.30698i −0.0497558 + 0.0861795i
\(231\) 0 0
\(232\) −4.18874 7.25511i −0.275004 0.476321i
\(233\) 13.4071 0.878327 0.439163 0.898407i \(-0.355275\pi\)
0.439163 + 0.898407i \(0.355275\pi\)
\(234\) −11.4457 + 9.94051i −0.748227 + 0.649832i
\(235\) 2.30205 0.150169
\(236\) −4.40050 7.62188i −0.286448 0.496142i
\(237\) 12.3115 + 21.3242i 0.799721 + 1.38516i
\(238\) 0 0
\(239\) −15.5538 −1.00609 −0.503046 0.864259i \(-0.667788\pi\)
−0.503046 + 0.864259i \(0.667788\pi\)
\(240\) −1.08550 + 1.88014i −0.0700687 + 0.121363i
\(241\) 3.78787 6.56078i 0.243998 0.422617i −0.717851 0.696196i \(-0.754874\pi\)
0.961849 + 0.273579i \(0.0882076\pi\)
\(242\) 12.0693 0.775844
\(243\) 9.69985 16.8006i 0.622245 1.07776i
\(244\) 8.25583 + 14.2995i 0.528525 + 0.915433i
\(245\) 0 0
\(246\) 23.0059 1.46680
\(247\) −0.927810 4.78468i −0.0590351 0.304442i
\(248\) 1.30229 0.0826953
\(249\) −3.52587 6.10698i −0.223443 0.387014i
\(250\) −1.82651 3.16361i −0.115519 0.200084i
\(251\) −0.637382 + 1.10398i −0.0402312 + 0.0696825i −0.885440 0.464754i \(-0.846143\pi\)
0.845209 + 0.534436i \(0.179476\pi\)
\(252\) 0 0
\(253\) −8.60638 + 14.9067i −0.541079 + 0.937176i
\(254\) 2.03491 3.52456i 0.127682 0.221151i
\(255\) −0.380912 −0.0238536
\(256\) −10.4620 + 18.1208i −0.653878 + 1.13255i
\(257\) 4.24010 + 7.34406i 0.264490 + 0.458110i 0.967430 0.253139i \(-0.0814631\pi\)
−0.702940 + 0.711249i \(0.748130\pi\)
\(258\) −11.3555 19.6683i −0.706962 1.22449i
\(259\) 0 0
\(260\) 0.196798 + 1.01488i 0.0122049 + 0.0629402i
\(261\) −18.6419 −1.15390
\(262\) −2.11470 3.66276i −0.130646 0.226286i
\(263\) −6.39415 11.0750i −0.394280 0.682913i 0.598729 0.800952i \(-0.295673\pi\)
−0.993009 + 0.118038i \(0.962339\pi\)
\(264\) −4.87861 + 8.45000i −0.300258 + 0.520062i
\(265\) −0.917333 −0.0563513
\(266\) 0 0
\(267\) 13.7462 23.8092i 0.841255 1.45710i
\(268\) 19.4627 1.18887
\(269\) 2.35586 4.08047i 0.143639 0.248790i −0.785225 0.619210i \(-0.787453\pi\)
0.928864 + 0.370420i \(0.120786\pi\)
\(270\) −0.310127 0.537156i −0.0188737 0.0326903i
\(271\) 9.00562 + 15.5982i 0.547052 + 0.947522i 0.998475 + 0.0552119i \(0.0175834\pi\)
−0.451422 + 0.892310i \(0.649083\pi\)
\(272\) −4.03407 −0.244601
\(273\) 0 0
\(274\) 24.9885 1.50961
\(275\) −10.3754 17.9707i −0.625659 1.08367i
\(276\) 6.85742 + 11.8774i 0.412768 + 0.714936i
\(277\) 13.0604 22.6213i 0.784725 1.35918i −0.144438 0.989514i \(-0.546137\pi\)
0.929163 0.369670i \(-0.120529\pi\)
\(278\) 7.51700 0.450840
\(279\) 1.44895 2.50965i 0.0867463 0.150249i
\(280\) 0 0
\(281\) −3.66197 −0.218455 −0.109227 0.994017i \(-0.534838\pi\)
−0.109227 + 0.994017i \(0.534838\pi\)
\(282\) 24.8605 43.0596i 1.48042 2.56416i
\(283\) −3.82263 6.62099i −0.227232 0.393577i 0.729755 0.683709i \(-0.239634\pi\)
−0.956987 + 0.290132i \(0.906301\pi\)
\(284\) 4.33678 + 7.51153i 0.257341 + 0.445727i
\(285\) −0.612022 −0.0362531
\(286\) 5.33465 + 27.5106i 0.315445 + 1.62674i
\(287\) 0 0
\(288\) 7.77953 + 13.4745i 0.458413 + 0.793995i
\(289\) 8.14610 + 14.1095i 0.479183 + 0.829968i
\(290\) −1.51068 + 2.61657i −0.0887100 + 0.153650i
\(291\) 44.6718 2.61871
\(292\) −2.82233 + 4.88842i −0.165164 + 0.286073i
\(293\) 8.57670 14.8553i 0.501056 0.867855i −0.498943 0.866635i \(-0.666278\pi\)
0.999999 0.00122001i \(-0.000388343\pi\)
\(294\) 0 0
\(295\) 0.597821 1.03546i 0.0348065 0.0602866i
\(296\) 1.54809 + 2.68136i 0.0899807 + 0.155851i
\(297\) −3.53715 6.12652i −0.205246 0.355497i
\(298\) 28.5264 1.65249
\(299\) −14.0270 4.83695i −0.811201 0.279728i
\(300\) −16.5339 −0.954583
\(301\) 0 0
\(302\) −5.68698 9.85014i −0.327249 0.566812i
\(303\) 19.4238 33.6430i 1.11587 1.93274i
\(304\) −6.48166 −0.371749
\(305\) −1.12158 + 1.94263i −0.0642215 + 0.111235i
\(306\) −1.76866 + 3.06340i −0.101107 + 0.175123i
\(307\) −28.0696 −1.60201 −0.801007 0.598655i \(-0.795702\pi\)
−0.801007 + 0.598655i \(0.795702\pi\)
\(308\) 0 0
\(309\) 8.29793 + 14.3724i 0.472052 + 0.817619i
\(310\) −0.234836 0.406748i −0.0133378 0.0231017i
\(311\) −23.5341 −1.33450 −0.667248 0.744836i \(-0.732528\pi\)
−0.667248 + 0.744836i \(0.732528\pi\)
\(312\) −7.95133 2.74187i −0.450155 0.155228i
\(313\) −3.34860 −0.189274 −0.0946370 0.995512i \(-0.530169\pi\)
−0.0946370 + 0.995512i \(0.530169\pi\)
\(314\) −4.21494 7.30050i −0.237863 0.411991i
\(315\) 0 0
\(316\) 7.79652 13.5040i 0.438588 0.759658i
\(317\) −7.27834 −0.408793 −0.204396 0.978888i \(-0.565523\pi\)
−0.204396 + 0.978888i \(0.565523\pi\)
\(318\) −9.90655 + 17.1586i −0.555532 + 0.962209i
\(319\) −17.2300 + 29.8432i −0.964694 + 1.67090i
\(320\) 0.629002 0.0351623
\(321\) 11.3011 19.5742i 0.630768 1.09252i
\(322\) 0 0
\(323\) −0.568618 0.984875i −0.0316388 0.0547999i
\(324\) −15.4984 −0.861021
\(325\) 13.5050 11.7290i 0.749123 0.650610i
\(326\) 3.38658 0.187565
\(327\) 15.8473 + 27.4484i 0.876359 + 1.51790i
\(328\) 2.74396 + 4.75268i 0.151510 + 0.262423i
\(329\) 0 0
\(330\) 3.51896 0.193712
\(331\) 7.16168 12.4044i 0.393642 0.681807i −0.599285 0.800536i \(-0.704548\pi\)
0.992927 + 0.118728i \(0.0378818\pi\)
\(332\) −2.23282 + 3.86736i −0.122542 + 0.212249i
\(333\) 6.88973 0.377555
\(334\) 9.94855 17.2314i 0.544360 0.942860i
\(335\) 1.32203 + 2.28983i 0.0722304 + 0.125107i
\(336\) 0 0
\(337\) 17.1802 0.935868 0.467934 0.883764i \(-0.344999\pi\)
0.467934 + 0.883764i \(0.344999\pi\)
\(338\) −22.4053 + 9.02883i −1.21869 + 0.491104i
\(339\) −9.79255 −0.531858
\(340\) 0.120610 + 0.208902i 0.00654098 + 0.0113293i
\(341\) −2.67841 4.63915i −0.145044 0.251224i
\(342\) −2.84175 + 4.92206i −0.153664 + 0.266155i
\(343\) 0 0
\(344\) 2.70879 4.69176i 0.146048 0.252963i
\(345\) −0.931602 + 1.61358i −0.0501558 + 0.0868723i
\(346\) −25.0716 −1.34786
\(347\) 3.85139 6.67080i 0.206753 0.358107i −0.743937 0.668250i \(-0.767044\pi\)
0.950690 + 0.310143i \(0.100377\pi\)
\(348\) 13.7286 + 23.7786i 0.735928 + 1.27466i
\(349\) −11.1850 19.3730i −0.598721 1.03702i −0.993010 0.118029i \(-0.962343\pi\)
0.394289 0.918986i \(-0.370991\pi\)
\(350\) 0 0
\(351\) 4.60409 3.99863i 0.245748 0.213431i
\(352\) 28.7613 1.53298
\(353\) 11.1311 + 19.2797i 0.592451 + 1.02616i 0.993901 + 0.110275i \(0.0351731\pi\)
−0.401450 + 0.915881i \(0.631494\pi\)
\(354\) −12.9121 22.3644i −0.686270 1.18865i
\(355\) −0.589165 + 1.02046i −0.0312697 + 0.0541606i
\(356\) −17.4101 −0.922735
\(357\) 0 0
\(358\) −9.72670 + 16.8471i −0.514072 + 0.890399i
\(359\) −2.75842 −0.145584 −0.0727920 0.997347i \(-0.523191\pi\)
−0.0727920 + 0.997347i \(0.523191\pi\)
\(360\) −0.227054 + 0.393269i −0.0119668 + 0.0207271i
\(361\) 8.58638 + 14.8721i 0.451915 + 0.782740i
\(362\) −11.6330 20.1489i −0.611415 1.05900i
\(363\) 14.9006 0.782081
\(364\) 0 0
\(365\) −0.766844 −0.0401385
\(366\) 24.2246 + 41.9582i 1.26624 + 2.19319i
\(367\) 7.07485 + 12.2540i 0.369304 + 0.639654i 0.989457 0.144827i \(-0.0462626\pi\)
−0.620153 + 0.784481i \(0.712929\pi\)
\(368\) −9.86618 + 17.0887i −0.514310 + 0.890812i
\(369\) 12.2119 0.635729
\(370\) 0.558320 0.967039i 0.0290257 0.0502740i
\(371\) 0 0
\(372\) −4.26823 −0.221298
\(373\) 2.52142 4.36723i 0.130554 0.226127i −0.793336 0.608784i \(-0.791658\pi\)
0.923890 + 0.382657i \(0.124991\pi\)
\(374\) 3.26940 + 5.66276i 0.169056 + 0.292814i
\(375\) −2.25499 3.90576i −0.116447 0.201693i
\(376\) 11.8607 0.611668
\(377\) −28.0820 9.68358i −1.44630 0.498730i
\(378\) 0 0
\(379\) 3.02982 + 5.24780i 0.155631 + 0.269561i 0.933289 0.359127i \(-0.116925\pi\)
−0.777657 + 0.628688i \(0.783592\pi\)
\(380\) 0.193787 + 0.335650i 0.00994109 + 0.0172185i
\(381\) 2.51228 4.35139i 0.128708 0.222929i
\(382\) 24.3674 1.24674
\(383\) 2.27052 3.93266i 0.116018 0.200950i −0.802168 0.597098i \(-0.796320\pi\)
0.918186 + 0.396149i \(0.129654\pi\)
\(384\) −8.98165 + 15.5567i −0.458343 + 0.793873i
\(385\) 0 0
\(386\) −0.967705 + 1.67611i −0.0492549 + 0.0853120i
\(387\) −6.02771 10.4403i −0.306406 0.530710i
\(388\) −14.1446 24.4992i −0.718085 1.24376i
\(389\) 4.50765 0.228547 0.114273 0.993449i \(-0.463546\pi\)
0.114273 + 0.993449i \(0.463546\pi\)
\(390\) 0.577452 + 2.97790i 0.0292404 + 0.150792i
\(391\) −3.46213 −0.175088
\(392\) 0 0
\(393\) −2.61078 4.52201i −0.131697 0.228105i
\(394\) −1.37349 + 2.37896i −0.0691955 + 0.119850i
\(395\) 2.11836 0.106586
\(396\) 6.87482 11.9075i 0.345473 0.598376i
\(397\) −2.00174 + 3.46712i −0.100465 + 0.174010i −0.911876 0.410465i \(-0.865366\pi\)
0.811412 + 0.584475i \(0.198700\pi\)
\(398\) 26.1998 1.31328
\(399\) 0 0
\(400\) −11.8941 20.6012i −0.594706 1.03006i
\(401\) −6.30674 10.9236i −0.314944 0.545498i 0.664482 0.747304i \(-0.268652\pi\)
−0.979426 + 0.201806i \(0.935319\pi\)
\(402\) 57.1081 2.84829
\(403\) 3.48633 3.02786i 0.173667 0.150829i
\(404\) −24.6010 −1.22394
\(405\) −1.05275 1.82342i −0.0523116 0.0906064i
\(406\) 0 0
\(407\) 6.36790 11.0295i 0.315645 0.546713i
\(408\) −1.96254 −0.0971604
\(409\) −10.3476 + 17.9226i −0.511657 + 0.886216i 0.488252 + 0.872703i \(0.337635\pi\)
−0.999909 + 0.0135128i \(0.995699\pi\)
\(410\) 0.989615 1.71406i 0.0488736 0.0846516i
\(411\) 30.8506 1.52175
\(412\) 5.25482 9.10162i 0.258886 0.448404i
\(413\) 0 0
\(414\) 8.65126 + 14.9844i 0.425186 + 0.736444i
\(415\) −0.606672 −0.0297803
\(416\) 4.71965 + 24.3391i 0.231400 + 1.19332i
\(417\) 9.28042 0.454464
\(418\) 5.25304 + 9.09854i 0.256935 + 0.445024i
\(419\) 10.9088 + 18.8945i 0.532928 + 0.923058i 0.999261 + 0.0384484i \(0.0122415\pi\)
−0.466333 + 0.884609i \(0.654425\pi\)
\(420\) 0 0
\(421\) 9.42727 0.459457 0.229728 0.973255i \(-0.426216\pi\)
0.229728 + 0.973255i \(0.426216\pi\)
\(422\) −24.5920 + 42.5947i −1.19712 + 2.07348i
\(423\) 13.1964 22.8569i 0.641632 1.11134i
\(424\) −4.72631 −0.229530
\(425\) 2.08688 3.61458i 0.101228 0.175333i
\(426\) 12.7251 + 22.0406i 0.616535 + 1.06787i
\(427\) 0 0
\(428\) −14.3133 −0.691861
\(429\) 6.58611 + 33.9643i 0.317980 + 1.63981i
\(430\) −1.95386 −0.0942235
\(431\) −10.2138 17.6908i −0.491980 0.852134i 0.507977 0.861370i \(-0.330393\pi\)
−0.999957 + 0.00923613i \(0.997060\pi\)
\(432\) −4.05491 7.02332i −0.195092 0.337909i
\(433\) −13.1743 + 22.8186i −0.633117 + 1.09659i 0.353794 + 0.935323i \(0.384891\pi\)
−0.986911 + 0.161267i \(0.948442\pi\)
\(434\) 0 0
\(435\) −1.86507 + 3.23039i −0.0894231 + 0.154885i
\(436\) 10.0356 17.3822i 0.480619 0.832457i
\(437\) −5.56272 −0.266101
\(438\) −8.28138 + 14.3438i −0.395700 + 0.685372i
\(439\) −12.5655 21.7641i −0.599720 1.03875i −0.992862 0.119267i \(-0.961945\pi\)
0.393142 0.919478i \(-0.371388\pi\)
\(440\) 0.419714 + 0.726967i 0.0200091 + 0.0346568i
\(441\) 0 0
\(442\) −4.25558 + 3.69595i −0.202417 + 0.175799i
\(443\) 18.5199 0.879907 0.439953 0.898021i \(-0.354995\pi\)
0.439953 + 0.898021i \(0.354995\pi\)
\(444\) −5.07384 8.78815i −0.240794 0.417067i
\(445\) −1.18261 2.04834i −0.0560611 0.0971006i
\(446\) 0.676415 1.17159i 0.0320292 0.0554762i
\(447\) 35.2184 1.66577
\(448\) 0 0
\(449\) −5.82155 + 10.0832i −0.274736 + 0.475856i −0.970068 0.242832i \(-0.921924\pi\)
0.695333 + 0.718688i \(0.255257\pi\)
\(450\) −20.8590 −0.983301
\(451\) 11.2870 19.5497i 0.531485 0.920559i
\(452\) 3.10066 + 5.37050i 0.145843 + 0.252607i
\(453\) −7.02109 12.1609i −0.329880 0.571368i
\(454\) −5.29939 −0.248713
\(455\) 0 0
\(456\) −3.15328 −0.147666
\(457\) −10.2592 17.7695i −0.479906 0.831222i 0.519828 0.854271i \(-0.325996\pi\)
−0.999734 + 0.0230490i \(0.992663\pi\)
\(458\) −2.94845 5.10687i −0.137772 0.238629i
\(459\) 0.711453 1.23227i 0.0332078 0.0575176i
\(460\) 1.17991 0.0550136
\(461\) −1.02038 + 1.76734i −0.0475236 + 0.0823134i −0.888809 0.458278i \(-0.848466\pi\)
0.841285 + 0.540592i \(0.181800\pi\)
\(462\) 0 0
\(463\) 3.03155 0.140888 0.0704441 0.997516i \(-0.477558\pi\)
0.0704441 + 0.997516i \(0.477558\pi\)
\(464\) −19.7521 + 34.2116i −0.916968 + 1.58824i
\(465\) −0.289926 0.502167i −0.0134450 0.0232874i
\(466\) −12.4563 21.5749i −0.577025 0.999436i
\(467\) −12.9274 −0.598210 −0.299105 0.954220i \(-0.596688\pi\)
−0.299105 + 0.954220i \(0.596688\pi\)
\(468\) 11.2048 + 3.86378i 0.517943 + 0.178603i
\(469\) 0 0
\(470\) −2.13879 3.70449i −0.0986549 0.170875i
\(471\) −5.20373 9.01312i −0.239775 0.415303i
\(472\) 3.08011 5.33491i 0.141774 0.245559i
\(473\) −22.2847 −1.02465
\(474\) 22.8768 39.6238i 1.05077 1.81998i
\(475\) 3.35305 5.80766i 0.153849 0.266474i
\(476\) 0 0
\(477\) −5.25858 + 9.10814i −0.240774 + 0.417033i
\(478\) 14.4507 + 25.0294i 0.660962 + 1.14482i
\(479\) −18.2911 31.6810i −0.835740 1.44754i −0.893427 0.449209i \(-0.851706\pi\)
0.0576873 0.998335i \(-0.481627\pi\)
\(480\) 3.11328 0.142101
\(481\) 10.3786 + 3.57888i 0.473225 + 0.163183i
\(482\) −14.0769 −0.641187
\(483\) 0 0
\(484\) −4.71806 8.17191i −0.214457 0.371451i
\(485\) 1.92159 3.32829i 0.0872550 0.151130i
\(486\) −36.0478 −1.63516
\(487\) −18.3748 + 31.8261i −0.832642 + 1.44218i 0.0632939 + 0.997995i \(0.479839\pi\)
−0.895936 + 0.444183i \(0.853494\pi\)
\(488\) −5.77864 + 10.0089i −0.261587 + 0.453081i
\(489\) 4.18103 0.189073
\(490\) 0 0
\(491\) 4.09899 + 7.09965i 0.184985 + 0.320403i 0.943571 0.331169i \(-0.107443\pi\)
−0.758587 + 0.651572i \(0.774110\pi\)
\(492\) −8.99331 15.5769i −0.405450 0.702260i
\(493\) −6.93119 −0.312165
\(494\) −6.83757 + 5.93840i −0.307637 + 0.267181i
\(495\) 1.86793 0.0839572
\(496\) −3.07048 5.31823i −0.137869 0.238795i
\(497\) 0 0
\(498\) −6.55163 + 11.3478i −0.293585 + 0.508505i
\(499\) −43.2532 −1.93628 −0.968141 0.250407i \(-0.919436\pi\)
−0.968141 + 0.250407i \(0.919436\pi\)
\(500\) −1.42802 + 2.47340i −0.0638629 + 0.110614i
\(501\) 12.2824 21.2737i 0.548736 0.950439i
\(502\) 2.36872 0.105721
\(503\) −0.00909609 + 0.0157549i −0.000405575 + 0.000702476i −0.866228 0.499649i \(-0.833462\pi\)
0.865823 + 0.500351i \(0.166796\pi\)
\(504\) 0 0
\(505\) −1.67106 2.89436i −0.0743612 0.128797i
\(506\) 31.9841 1.42187
\(507\) −27.6614 + 11.1469i −1.22848 + 0.495052i
\(508\) −3.18190 −0.141174
\(509\) −21.5503 37.3262i −0.955200 1.65446i −0.733909 0.679248i \(-0.762306\pi\)
−0.221292 0.975208i \(-0.571027\pi\)
\(510\) 0.353897 + 0.612968i 0.0156708 + 0.0271427i
\(511\) 0 0
\(512\) 23.2197 1.02617
\(513\) 1.14311 1.97993i 0.0504697 0.0874161i
\(514\) 7.87878 13.6464i 0.347518 0.601919i
\(515\) 1.42777 0.0629149
\(516\) −8.87804 + 15.3772i −0.390834 + 0.676944i
\(517\) −24.3939 42.2514i −1.07284 1.85822i
\(518\) 0 0
\(519\) −30.9531 −1.35869
\(520\) −0.546317 + 0.474474i −0.0239576 + 0.0208071i
\(521\) 20.9540 0.918012 0.459006 0.888433i \(-0.348206\pi\)
0.459006 + 0.888433i \(0.348206\pi\)
\(522\) 17.3198 + 29.9988i 0.758068 + 1.31301i
\(523\) 17.3701 + 30.0860i 0.759543 + 1.31557i 0.943084 + 0.332555i \(0.107911\pi\)
−0.183541 + 0.983012i \(0.558756\pi\)
\(524\) −1.65333 + 2.86365i −0.0722260 + 0.125099i
\(525\) 0 0
\(526\) −11.8814 + 20.5791i −0.518052 + 0.897292i
\(527\) 0.538730 0.933107i 0.0234674 0.0406468i
\(528\) 46.0104 2.00235
\(529\) 3.03260 5.25262i 0.131852 0.228375i
\(530\) 0.852276 + 1.47619i 0.0370205 + 0.0641214i
\(531\) −6.85398 11.8714i −0.297438 0.515177i
\(532\) 0 0
\(533\) 18.3960 + 6.34352i 0.796819 + 0.274769i
\(534\) −51.0854 −2.21068
\(535\) −0.972255 1.68400i −0.0420343 0.0728055i
\(536\) 6.81142 + 11.7977i 0.294209 + 0.509584i
\(537\) −12.0085 + 20.7993i −0.518205 + 0.897557i
\(538\) −8.75513 −0.377460
\(539\) 0 0
\(540\) −0.242466 + 0.419964i −0.0104341 + 0.0180724i
\(541\) −3.29846 −0.141812 −0.0709059 0.997483i \(-0.522589\pi\)
−0.0709059 + 0.997483i \(0.522589\pi\)
\(542\) 16.7339 28.9839i 0.718782 1.24497i
\(543\) −14.3619 24.8756i −0.616330 1.06752i
\(544\) 2.89249 + 5.00993i 0.124014 + 0.214799i
\(545\) 2.72674 0.116801
\(546\) 0 0
\(547\) 21.9417 0.938161 0.469080 0.883155i \(-0.344585\pi\)
0.469080 + 0.883155i \(0.344585\pi\)
\(548\) −9.76836 16.9193i −0.417284 0.722756i
\(549\) 12.8589 + 22.2722i 0.548803 + 0.950554i
\(550\) −19.2791 + 33.3924i −0.822065 + 1.42386i
\(551\) −11.1366 −0.474434
\(552\) −4.79983 + 8.31354i −0.204294 + 0.353848i
\(553\) 0 0
\(554\) −48.5368 −2.06213
\(555\) 0.689297 1.19390i 0.0292590 0.0506781i
\(556\) −2.93850 5.08963i −0.124620 0.215848i
\(557\) 7.14329 + 12.3725i 0.302671 + 0.524241i 0.976740 0.214427i \(-0.0687884\pi\)
−0.674069 + 0.738668i \(0.735455\pi\)
\(558\) −5.38476 −0.227955
\(559\) −3.65686 18.8583i −0.154669 0.797621i
\(560\) 0 0
\(561\) 4.03637 + 6.99119i 0.170416 + 0.295168i
\(562\) 3.40226 + 5.89289i 0.143516 + 0.248577i
\(563\) −3.39392 + 5.87844i −0.143037 + 0.247747i −0.928639 0.370985i \(-0.879020\pi\)
0.785602 + 0.618732i \(0.212353\pi\)
\(564\) −38.8733 −1.63686
\(565\) −0.421234 + 0.729599i −0.0177215 + 0.0306945i
\(566\) −7.10307 + 12.3029i −0.298564 + 0.517128i
\(567\) 0 0
\(568\) −3.03552 + 5.25767i −0.127367 + 0.220607i
\(569\) 8.66061 + 15.0006i 0.363072 + 0.628859i 0.988465 0.151451i \(-0.0483947\pi\)
−0.625393 + 0.780310i \(0.715061\pi\)
\(570\) 0.568618 + 0.984875i 0.0238168 + 0.0412519i
\(571\) −13.0116 −0.544520 −0.272260 0.962224i \(-0.587771\pi\)
−0.272260 + 0.962224i \(0.587771\pi\)
\(572\) 16.5416 14.3663i 0.691638 0.600685i
\(573\) 30.0837 1.25676
\(574\) 0 0
\(575\) −10.2078 17.6805i −0.425696 0.737327i
\(576\) 3.60574 6.24532i 0.150239 0.260222i
\(577\) −0.731535 −0.0304542 −0.0152271 0.999884i \(-0.504847\pi\)
−0.0152271 + 0.999884i \(0.504847\pi\)
\(578\) 15.1368 26.2177i 0.629607 1.09051i
\(579\) −1.19472 + 2.06931i −0.0496508 + 0.0859978i
\(580\) 2.36218 0.0980842
\(581\) 0 0
\(582\) −41.5037 71.8865i −1.72038 2.97979i
\(583\) 9.72061 + 16.8366i 0.402586 + 0.697300i
\(584\) −3.95096 −0.163492
\(585\) 0.306522 + 1.58073i 0.0126731 + 0.0653550i
\(586\) −31.8738 −1.31669
\(587\) 4.26142 + 7.38099i 0.175888 + 0.304646i 0.940468 0.339882i \(-0.110387\pi\)
−0.764581 + 0.644528i \(0.777054\pi\)
\(588\) 0 0
\(589\) 0.865594 1.49925i 0.0356662 0.0617756i
\(590\) −2.22170 −0.0914657
\(591\) −1.69570 + 2.93704i −0.0697517 + 0.120814i
\(592\) 7.30004 12.6440i 0.300030 0.519667i
\(593\) −31.3093 −1.28572 −0.642860 0.765984i \(-0.722252\pi\)
−0.642860 + 0.765984i \(0.722252\pi\)
\(594\) −6.57259 + 11.3841i −0.269677 + 0.467093i
\(595\) 0 0
\(596\) −11.1514 19.3147i −0.456777 0.791161i
\(597\) 32.3460 1.32383
\(598\) 5.24850 + 27.0663i 0.214627 + 1.10683i
\(599\) −0.750232 −0.0306537 −0.0153268 0.999883i \(-0.504879\pi\)
−0.0153268 + 0.999883i \(0.504879\pi\)
\(600\) −5.78641 10.0224i −0.236229 0.409161i
\(601\) 4.77652 + 8.27318i 0.194838 + 0.337470i 0.946848 0.321683i \(-0.104248\pi\)
−0.752009 + 0.659153i \(0.770915\pi\)
\(602\) 0 0
\(603\) 30.3141 1.23449
\(604\) −4.44624 + 7.70111i −0.180915 + 0.313354i
\(605\) 0.640963 1.11018i 0.0260588 0.0451352i
\(606\) −72.1851 −2.93232
\(607\) −11.1197 + 19.2599i −0.451336 + 0.781737i −0.998469 0.0553087i \(-0.982386\pi\)
0.547133 + 0.837045i \(0.315719\pi\)
\(608\) 4.64745 + 8.04961i 0.188479 + 0.326455i
\(609\) 0 0
\(610\) 4.16815 0.168764
\(611\) 31.7521 27.5765i 1.28455 1.11563i
\(612\) 2.76557 0.111791
\(613\) 4.13993 + 7.17057i 0.167210 + 0.289617i 0.937438 0.348152i \(-0.113191\pi\)
−0.770228 + 0.637769i \(0.779857\pi\)
\(614\) 26.0789 + 45.1699i 1.05246 + 1.82291i
\(615\) 1.22177 2.11617i 0.0492665 0.0853321i
\(616\) 0 0
\(617\) −10.1656 + 17.6073i −0.409252 + 0.708845i −0.994806 0.101789i \(-0.967543\pi\)
0.585554 + 0.810633i \(0.300877\pi\)
\(618\) 15.4189 26.7063i 0.620238 1.07428i
\(619\) 5.34097 0.214672 0.107336 0.994223i \(-0.465768\pi\)
0.107336 + 0.994223i \(0.465768\pi\)
\(620\) −0.183601 + 0.318007i −0.00737361 + 0.0127715i
\(621\) −3.48003 6.02758i −0.139649 0.241879i
\(622\) 21.8651 + 37.8714i 0.876709 + 1.51850i
\(623\) 0 0
\(624\) 7.55018 + 38.9360i 0.302249 + 1.55869i
\(625\) 24.4172 0.976690
\(626\) 3.11112 + 5.38862i 0.124345 + 0.215372i
\(627\) 6.48536 + 11.2330i 0.259000 + 0.448601i
\(628\) −3.29536 + 5.70773i −0.131499 + 0.227763i
\(629\) 2.56165 0.102140
\(630\) 0 0
\(631\) −3.23331 + 5.60026i −0.128716 + 0.222943i −0.923179 0.384369i \(-0.874419\pi\)
0.794463 + 0.607312i \(0.207752\pi\)
\(632\) 10.9143 0.434147
\(633\) −30.3611 + 52.5870i −1.20675 + 2.09014i
\(634\) 6.76217 + 11.7124i 0.268560 + 0.465160i
\(635\) −0.216135 0.374357i −0.00857707 0.0148559i
\(636\) 15.4904 0.614236
\(637\) 0 0
\(638\) 64.0322 2.53506
\(639\) 6.75475 + 11.6996i 0.267214 + 0.462828i
\(640\) 0.772706 + 1.33837i 0.0305439 + 0.0529035i
\(641\) −11.6644 + 20.2034i −0.460717 + 0.797985i −0.998997 0.0447808i \(-0.985741\pi\)
0.538280 + 0.842766i \(0.319074\pi\)
\(642\) −41.9987 −1.65756
\(643\) 1.79439 3.10797i 0.0707637 0.122566i −0.828472 0.560030i \(-0.810790\pi\)
0.899236 + 0.437463i \(0.144123\pi\)
\(644\) 0 0
\(645\) −2.41222 −0.0949810
\(646\) −1.05658 + 1.83006i −0.0415707 + 0.0720026i
\(647\) 19.8262 + 34.3400i 0.779448 + 1.35004i 0.932260 + 0.361788i \(0.117834\pi\)
−0.152812 + 0.988255i \(0.548833\pi\)
\(648\) −5.42402 9.39467i −0.213076 0.369058i
\(649\) −25.3395 −0.994661
\(650\) −31.4218 10.8352i −1.23246 0.424993i
\(651\) 0 0
\(652\) −1.32386 2.29299i −0.0518464 0.0898005i
\(653\) −9.06777 15.7058i −0.354849 0.614617i 0.632243 0.774770i \(-0.282135\pi\)
−0.987092 + 0.160153i \(0.948801\pi\)
\(654\) 29.4469 51.0035i 1.15146 1.99439i
\(655\) −0.449219 −0.0175525
\(656\) 12.9392 22.4114i 0.505192 0.875017i
\(657\) −4.39592 + 7.61395i −0.171501 + 0.297048i
\(658\) 0 0
\(659\) −6.74052 + 11.6749i −0.262573 + 0.454791i −0.966925 0.255061i \(-0.917905\pi\)
0.704352 + 0.709851i \(0.251238\pi\)
\(660\) −1.37561 2.38263i −0.0535456 0.0927437i
\(661\) −5.15611 8.93064i −0.200549 0.347362i 0.748156 0.663523i \(-0.230939\pi\)
−0.948706 + 0.316161i \(0.897606\pi\)
\(662\) −26.6151 −1.03443
\(663\) −5.25390 + 4.56299i −0.204044 + 0.177212i
\(664\) −3.12571 −0.121301
\(665\) 0 0
\(666\) −6.40111 11.0870i −0.248038 0.429614i
\(667\) −16.9517 + 29.3613i −0.656374 + 1.13687i
\(668\) −15.5561 −0.601884
\(669\) 0.835096 1.44643i 0.0322867 0.0559222i
\(670\) 2.45655 4.25487i 0.0949049 0.164380i
\(671\) 47.5397 1.83525
\(672\) 0 0
\(673\) 4.61528 + 7.99390i 0.177906 + 0.308142i 0.941163 0.337953i \(-0.109734\pi\)
−0.763257 + 0.646095i \(0.776401\pi\)
\(674\) −15.9618 27.6467i −0.614827 1.06491i
\(675\) 8.39066 0.322956
\(676\) 14.8718 + 11.6407i 0.571993 + 0.447721i
\(677\) −21.0934 −0.810687 −0.405343 0.914165i \(-0.632848\pi\)
−0.405343 + 0.914165i \(0.632848\pi\)
\(678\) 9.09807 + 15.7583i 0.349409 + 0.605194i
\(679\) 0 0
\(680\) −0.0844203 + 0.146220i −0.00323737 + 0.00560729i
\(681\) −6.54258 −0.250712
\(682\) −4.97693 + 8.62029i −0.190576 + 0.330088i
\(683\) 19.1106 33.1005i 0.731246 1.26656i −0.225104 0.974335i \(-0.572272\pi\)
0.956351 0.292221i \(-0.0943944\pi\)
\(684\) 4.44353 0.169902
\(685\) 1.32706 2.29854i 0.0507044 0.0878226i
\(686\) 0 0
\(687\) −3.64013 6.30490i −0.138880 0.240547i
\(688\) −25.5467 −0.973960
\(689\) −12.6527 + 10.9888i −0.482031 + 0.418642i
\(690\) 3.46213 0.131801
\(691\) 13.1161 + 22.7178i 0.498960 + 0.864224i 0.999999 0.00120019i \(-0.000382034\pi\)
−0.501039 + 0.865425i \(0.667049\pi\)
\(692\) 9.80084 + 16.9755i 0.372572 + 0.645313i
\(693\) 0 0
\(694\) −14.3130 −0.543314
\(695\) 0.399204 0.691442i 0.0151427 0.0262279i
\(696\) −9.60925 + 16.6437i −0.364238 + 0.630878i
\(697\) 4.54049 0.171983
\(698\) −20.7836 + 35.9982i −0.786670 + 1.36255i
\(699\) −15.3784 26.6361i −0.581664 1.00747i
\(700\) 0 0
\(701\) −46.7346 −1.76514 −0.882570 0.470180i \(-0.844189\pi\)
−0.882570 + 0.470180i \(0.844189\pi\)
\(702\) −10.7122 3.69392i −0.404307 0.139418i
\(703\) 4.11588 0.155233
\(704\) −6.66528 11.5446i −0.251207 0.435104i
\(705\) −2.64053 4.57353i −0.0994480 0.172249i
\(706\) 20.6835 35.8248i 0.778433 1.34828i
\(707\) 0 0
\(708\) −10.0950 + 17.4851i −0.379395 + 0.657131i
\(709\) 23.7232 41.0898i 0.890944 1.54316i 0.0521988 0.998637i \(-0.483377\pi\)
0.838745 0.544524i \(-0.183290\pi\)
\(710\) 2.18953 0.0821715
\(711\) 12.1435 21.0331i 0.455415 0.788802i
\(712\) −6.09307 10.5535i −0.228348 0.395510i
\(713\) −2.63516 4.56423i −0.0986876 0.170932i
\(714\) 0 0
\(715\) 2.81384 + 0.970301i 0.105232 + 0.0362872i
\(716\) 15.2092 0.568395
\(717\) 17.8408 + 30.9011i 0.666275 + 1.15402i
\(718\) 2.56280 + 4.43890i 0.0956428 + 0.165658i
\(719\) 24.6190 42.6413i 0.918133 1.59025i 0.115884 0.993263i \(-0.463030\pi\)
0.802249 0.596990i \(-0.203637\pi\)
\(720\) 2.14136 0.0798037
\(721\) 0 0
\(722\) 15.9549 27.6347i 0.593779 1.02846i
\(723\) −17.3793 −0.646342
\(724\) −9.09498 + 15.7530i −0.338012 + 0.585454i
\(725\) −20.4361 35.3963i −0.758977 1.31459i
\(726\) −13.8439 23.9783i −0.513795 0.889919i
\(727\) −32.0495 −1.18865 −0.594325 0.804225i \(-0.702581\pi\)
−0.594325 + 0.804225i \(0.702581\pi\)
\(728\) 0 0
\(729\) −12.4996 −0.462947
\(730\) 0.712460 + 1.23402i 0.0263693 + 0.0456730i
\(731\) −2.24114 3.88178i −0.0828917 0.143573i
\(732\) 18.9394 32.8041i 0.700022 1.21247i
\(733\) 28.2010 1.04163 0.520813 0.853670i \(-0.325629\pi\)
0.520813 + 0.853670i \(0.325629\pi\)
\(734\) 13.1462 22.7699i 0.485236 0.840453i
\(735\) 0 0
\(736\) 28.2968 1.04303
\(737\) 28.0181 48.5288i 1.03206 1.78758i
\(738\) −11.3459 19.6516i −0.417648 0.723387i
\(739\) 21.2685 + 36.8381i 0.782375 + 1.35511i 0.930555 + 0.366153i \(0.119325\pi\)
−0.148180 + 0.988960i \(0.547342\pi\)
\(740\) −0.873021 −0.0320929
\(741\) −8.44160 + 7.33149i −0.310110 + 0.269329i
\(742\) 0 0
\(743\) −7.95711 13.7821i −0.291918 0.505617i 0.682345 0.731030i \(-0.260960\pi\)
−0.974263 + 0.225413i \(0.927627\pi\)
\(744\) −1.49377 2.58728i −0.0547641 0.0948543i
\(745\) 1.51495 2.62396i 0.0555033 0.0961346i
\(746\) −9.37042 −0.343075
\(747\) −3.47773 + 6.02360i −0.127243 + 0.220392i
\(748\) 2.55611 4.42731i 0.0934605 0.161878i
\(749\) 0 0
\(750\) −4.19014 + 7.25754i −0.153002 + 0.265008i
\(751\) −9.09981 15.7613i −0.332057 0.575139i 0.650858 0.759199i \(-0.274409\pi\)
−0.982915 + 0.184060i \(0.941076\pi\)
\(752\) −27.9646 48.4362i −1.01977 1.76629i
\(753\) 2.92440 0.106571
\(754\) 10.5075 + 54.1868i 0.382661 + 1.97337i
\(755\) −1.20807 −0.0439662
\(756\) 0 0
\(757\) 22.4502 + 38.8849i 0.815967 + 1.41330i 0.908632 + 0.417598i \(0.137128\pi\)
−0.0926649 + 0.995697i \(0.529539\pi\)
\(758\) 5.62989 9.75126i 0.204487 0.354182i
\(759\) 39.4872 1.43330
\(760\) −0.135641 + 0.234937i −0.00492021 + 0.00852205i
\(761\) 13.2444 22.9399i 0.480108 0.831572i −0.519631 0.854391i \(-0.673931\pi\)
0.999740 + 0.0228184i \(0.00726396\pi\)
\(762\) −9.33644 −0.338223
\(763\) 0 0
\(764\) −9.52554 16.4987i −0.344622 0.596903i
\(765\) 0.187856 + 0.325375i 0.00679193 + 0.0117640i
\(766\) −8.43800 −0.304877
\(767\) −4.15814 21.4434i −0.150142 0.774276i
\(768\) 48.0013 1.73210
\(769\) −6.98127 12.0919i −0.251751 0.436045i 0.712257 0.701919i \(-0.247673\pi\)
−0.964008 + 0.265873i \(0.914340\pi\)
\(770\) 0 0
\(771\) 9.72707 16.8478i 0.350312 0.606758i
\(772\) 1.51316 0.0544597
\(773\) −6.40564 + 11.0949i −0.230395 + 0.399056i −0.957924 0.287021i \(-0.907335\pi\)
0.727529 + 0.686077i \(0.240668\pi\)
\(774\) −11.2005 + 19.3998i −0.402592 + 0.697310i
\(775\) 6.35361 0.228228
\(776\) 9.90048 17.1481i 0.355406 0.615582i
\(777\) 0 0
\(778\) −4.18797 7.25378i −0.150146 0.260061i
\(779\) 7.29534 0.261383
\(780\) 1.79055 1.55509i 0.0641120 0.0556810i
\(781\) 24.9726 0.893590
\(782\) 3.21660 + 5.57132i 0.115025 + 0.199230i
\(783\) −6.96701 12.0672i −0.248981 0.431247i
\(784\) 0 0
\(785\) −0.895370 −0.0319571
\(786\) −4.85125 + 8.40262i −0.173039 + 0.299712i
\(787\) 13.6599 23.6597i 0.486924 0.843377i −0.512963 0.858411i \(-0.671452\pi\)
0.999887 + 0.0150334i \(0.00478545\pi\)
\(788\) 2.14767 0.0765075
\(789\) −14.6686 + 25.4068i −0.522217 + 0.904506i
\(790\) −1.96813 3.40890i −0.0700229 0.121283i
\(791\) 0 0
\(792\) 9.62401 0.341974
\(793\) 7.80114 + 40.2302i 0.277027 + 1.42862i
\(794\) 7.43912 0.264005
\(795\) 1.05221 + 1.82248i 0.0373181 + 0.0646369i
\(796\) −10.2419 17.7394i −0.363013 0.628758i
\(797\) 14.7002 25.4614i 0.520707 0.901891i −0.479003 0.877813i \(-0.659002\pi\)
0.999710 0.0240775i \(-0.00766483\pi\)
\(798\) 0 0
\(799\) 4.90652 8.49835i 0.173580 0.300650i
\(800\) −17.0565 + 29.5428i −0.603040 + 1.04450i
\(801\) −27.1171 −0.958136
\(802\) −11.7189 + 20.2978i −0.413810 + 0.716740i
\(803\) 8.12594 + 14.0745i 0.286758 + 0.496680i
\(804\) −22.3244 38.6669i −0.787320 1.36368i
\(805\) 0 0
\(806\) −8.11157 2.79713i −0.285718 0.0985246i
\(807\) −10.8090 −0.380495
\(808\) −8.60968 14.9124i −0.302888 0.524617i
\(809\) 3.00617 + 5.20683i 0.105691 + 0.183063i 0.914020 0.405668i \(-0.132961\pi\)
−0.808329 + 0.588731i \(0.799628\pi\)
\(810\) −1.95618 + 3.38821i −0.0687332 + 0.119049i
\(811\) 8.44807 0.296652 0.148326 0.988939i \(-0.452612\pi\)
0.148326 + 0.988939i \(0.452612\pi\)
\(812\) 0 0
\(813\) 20.6595 35.7833i 0.724560 1.25497i
\(814\) −23.6652 −0.829464
\(815\) 0.179850 0.311510i 0.00629989 0.0109117i
\(816\) 4.62721 + 8.01456i 0.161985 + 0.280566i
\(817\) −3.60092 6.23697i −0.125980 0.218204i
\(818\) 38.4551 1.34455
\(819\) 0 0
\(820\) −1.54742 −0.0540382
\(821\) 17.1318 + 29.6731i 0.597903 + 1.03560i 0.993130 + 0.117014i \(0.0373324\pi\)
−0.395228 + 0.918583i \(0.629334\pi\)
\(822\) −28.6627 49.6452i −0.999725 1.73157i
\(823\) 3.11866 5.40168i 0.108710 0.188291i −0.806538 0.591182i \(-0.798661\pi\)
0.915248 + 0.402891i \(0.131995\pi\)
\(824\) 7.35618 0.256265
\(825\) −23.8018 + 41.2260i −0.828673 + 1.43530i
\(826\) 0 0
\(827\) 19.5232 0.678889 0.339445 0.940626i \(-0.389761\pi\)
0.339445 + 0.940626i \(0.389761\pi\)
\(828\) 6.76380 11.7152i 0.235058 0.407133i
\(829\) −16.3383 28.2988i −0.567453 0.982857i −0.996817 0.0797254i \(-0.974596\pi\)
0.429364 0.903131i \(-0.358738\pi\)
\(830\) 0.563647 + 0.976265i 0.0195645 + 0.0338866i
\(831\) −59.9230 −2.07871
\(832\) 8.67580 7.53489i 0.300779 0.261225i
\(833\) 0 0
\(834\) −8.62225 14.9342i −0.298564 0.517128i
\(835\) −1.05667 1.83021i −0.0365677 0.0633370i
\(836\) 4.10698 7.11349i 0.142043 0.246025i
\(837\) 2.16606 0.0748698
\(838\) 20.2702 35.1091i 0.700223 1.21282i
\(839\) −12.3713 + 21.4278i −0.427106 + 0.739769i −0.996615 0.0822161i \(-0.973800\pi\)
0.569508 + 0.821985i \(0.307134\pi\)
\(840\) 0 0
\(841\) −19.4374 + 33.6665i −0.670255 + 1.16092i
\(842\) −8.75869 15.1705i −0.301844 0.522810i
\(843\) 4.20040 + 7.27531i 0.144669 + 0.250575i
\(844\) 38.4535 1.32362
\(845\) −0.359368 + 2.54042i −0.0123626 + 0.0873930i
\(846\) −49.0422 −1.68610
\(847\) 0 0
\(848\) 11.1435 + 19.3011i 0.382670 + 0.662803i
\(849\) −8.76938 + 15.1890i −0.300964 + 0.521285i
\(850\) −7.75551 −0.266012
\(851\) 6.26507 10.8514i 0.214764 0.371982i
\(852\) 9.94888 17.2320i 0.340843 0.590357i
\(853\) 18.2245 0.623994 0.311997 0.950083i \(-0.399002\pi\)
0.311997 + 0.950083i \(0.399002\pi\)
\(854\) 0 0
\(855\) 0.301833 + 0.522791i 0.0103225 + 0.0178791i
\(856\) −5.00928 8.67633i −0.171214 0.296551i
\(857\) 2.54679 0.0869967 0.0434984 0.999053i \(-0.486150\pi\)
0.0434984 + 0.999053i \(0.486150\pi\)
\(858\) 48.5369 42.1541i 1.65702 1.43912i
\(859\) 54.0090 1.84276 0.921382 0.388657i \(-0.127061\pi\)
0.921382 + 0.388657i \(0.127061\pi\)
\(860\) 0.763792 + 1.32293i 0.0260451 + 0.0451114i
\(861\) 0 0
\(862\) −18.9788 + 32.8723i −0.646421 + 1.11963i
\(863\) 1.24309 0.0423153 0.0211576 0.999776i \(-0.493265\pi\)
0.0211576 + 0.999776i \(0.493265\pi\)
\(864\) −5.81487 + 10.0716i −0.197826 + 0.342644i
\(865\) −1.33147 + 2.30618i −0.0452715 + 0.0784125i
\(866\) 48.9600 1.66373
\(867\) 18.6877 32.3681i 0.634668 1.09928i
\(868\) 0 0
\(869\) −22.4474 38.8801i −0.761477 1.31892i
\(870\) 6.93119 0.234989
\(871\) 45.6649 + 15.7467i 1.54730 + 0.533557i
\(872\) 14.0488 0.475752
\(873\) −22.0309 38.1587i −0.745634 1.29148i
\(874\) 5.16821 + 8.95161i 0.174817 + 0.302793i
\(875\) 0 0
\(876\) 12.9492 0.437514
\(877\) −0.401330 + 0.695125i −0.0135520 + 0.0234727i −0.872722 0.488218i \(-0.837647\pi\)
0.859170 + 0.511690i \(0.170981\pi\)
\(878\) −23.3488 + 40.4412i −0.787983 + 1.36483i
\(879\) −39.3511 −1.32728
\(880\) 1.97917 3.42803i 0.0667179 0.115559i
\(881\) 18.5318 + 32.0980i 0.624352 + 1.08141i 0.988666 + 0.150133i \(0.0479703\pi\)
−0.364314 + 0.931276i \(0.618696\pi\)
\(882\) 0 0
\(883\) −22.8671 −0.769539 −0.384770 0.923013i \(-0.625719\pi\)
−0.384770 + 0.923013i \(0.625719\pi\)
\(884\) 4.16603 + 1.43658i 0.140119 + 0.0483174i
\(885\) −2.74288 −0.0922010
\(886\) −17.2065 29.8025i −0.578063 1.00123i
\(887\) 24.6287 + 42.6581i 0.826950 + 1.43232i 0.900420 + 0.435022i \(0.143259\pi\)
−0.0734699 + 0.997297i \(0.523407\pi\)
\(888\) 3.55141 6.15123i 0.119178 0.206422i
\(889\) 0 0
\(890\) −2.19748 + 3.80614i −0.0736597 + 0.127582i
\(891\) −22.3112 + 38.6441i −0.747452 + 1.29463i
\(892\) −1.05768 −0.0354138
\(893\) 7.88347 13.6546i 0.263810 0.456932i
\(894\) −32.7207 56.6739i −1.09434 1.89546i
\(895\) 1.03311 + 1.78940i 0.0345330 + 0.0598130i
\(896\) 0 0
\(897\) 6.47975 + 33.4159i 0.216353 + 1.11572i
\(898\) 21.6347 0.721961
\(899\) −5.27559 9.13760i −0.175951 0.304756i
\(900\) 8.15406 + 14.1233i 0.271802 + 0.470775i
\(901\) −1.95518 + 3.38647i −0.0651365 + 0.112820i
\(902\) −41.9462 −1.39666
\(903\) 0 0
\(904\) −2.17029 + 3.75906i −0.0721829 + 0.125024i
\(905\) −2.47116 −0.0821442
\(906\) −13.0463 + 22.5969i −0.433435 + 0.750731i
\(907\) 2.50228 + 4.33407i 0.0830867 + 0.143910i 0.904574 0.426316i \(-0.140189\pi\)
−0.821488 + 0.570226i \(0.806855\pi\)
\(908\) 2.07161 + 3.58813i 0.0687487 + 0.119076i
\(909\) −38.3172 −1.27090
\(910\) 0 0
\(911\) 49.0582 1.62537 0.812685 0.582703i \(-0.198005\pi\)
0.812685 + 0.582703i \(0.198005\pi\)
\(912\) 7.43468 + 12.8772i 0.246187 + 0.426408i
\(913\) 6.42866 + 11.1348i 0.212757 + 0.368507i
\(914\) −19.0633 + 33.0186i −0.630557 + 1.09216i
\(915\) 5.14596 0.170120
\(916\) −2.30518 + 3.99270i −0.0761654 + 0.131922i
\(917\) 0 0
\(918\) −2.64399 −0.0872646
\(919\) −14.8028 + 25.6392i −0.488299 + 0.845758i −0.999909 0.0134590i \(-0.995716\pi\)
0.511611 + 0.859217i \(0.329049\pi\)
\(920\) 0.412937 + 0.715227i 0.0136141 + 0.0235803i
\(921\) 32.1967 + 55.7664i 1.06092 + 1.83756i
\(922\) 3.79205 0.124884
\(923\) 4.09794 + 21.1329i 0.134885 + 0.695598i
\(924\) 0 0
\(925\) 7.55282 + 13.0819i 0.248335 + 0.430129i
\(926\) −2.81656 4.87842i −0.0925578 0.160315i
\(927\) 8.18464 14.1762i 0.268819 0.465608i
\(928\) 56.6502 1.85963
\(929\) −8.41525 + 14.5756i −0.276095 + 0.478211i −0.970411 0.241460i \(-0.922374\pi\)
0.694316 + 0.719671i \(0.255707\pi\)
\(930\) −0.538730 + 0.933107i −0.0176656 + 0.0305978i
\(931\) 0 0
\(932\) −9.73865 + 16.8678i −0.319000 + 0.552524i
\(933\) 26.9944 + 46.7557i 0.883757 + 1.53071i
\(934\) 12.0106 + 20.8030i 0.392999 + 0.680695i
\(935\) 0.694510 0.0227129
\(936\) 1.57927 + 8.14426i 0.0516202 + 0.266203i
\(937\) 44.0131 1.43784 0.718922 0.695091i \(-0.244636\pi\)
0.718922 + 0.695091i \(0.244636\pi\)
\(938\) 0 0
\(939\) 3.84096 + 6.65273i 0.125345 + 0.217104i
\(940\) −1.67216 + 2.89627i −0.0545400 + 0.0944660i
\(941\) 53.0675 1.72995 0.864976 0.501814i \(-0.167334\pi\)
0.864976 + 0.501814i \(0.167334\pi\)
\(942\) −9.66937 + 16.7478i −0.315045 + 0.545674i
\(943\) 11.1048 19.2340i 0.361620 0.626345i
\(944\) −29.0487 −0.945453
\(945\) 0 0
\(946\) 20.7043 + 35.8609i 0.673154 + 1.16594i
\(947\) 13.9409 + 24.1463i 0.453017 + 0.784649i 0.998572 0.0534265i \(-0.0170143\pi\)
−0.545555 + 0.838075i \(0.683681\pi\)
\(948\) −35.7715 −1.16180
\(949\) −10.5771 + 9.18613i −0.343346 + 0.298194i
\(950\) −12.4610 −0.404289
\(951\) 8.34851 + 14.4600i 0.270719 + 0.468899i
\(952\) 0 0
\(953\) 18.1784 31.4859i 0.588856 1.01993i −0.405527 0.914083i \(-0.632912\pi\)
0.994383 0.105845i \(-0.0337548\pi\)
\(954\) 19.5426 0.632715
\(955\) 1.29407 2.24140i 0.0418753 0.0725301i
\(956\) 11.2980 19.5687i 0.365403 0.632897i
\(957\) 79.0535 2.55544
\(958\) −33.9877 + 58.8685i −1.09809 + 1.90195i
\(959\) 0 0
\(960\) −0.721486 1.24965i −0.0232859 0.0403323i
\(961\) −29.3598 −0.947091
\(962\) −3.88339 20.0265i −0.125206 0.645681i
\(963\) −22.2937 −0.718405
\(964\) 5.50287 + 9.53126i 0.177236 + 0.306981i
\(965\) 0.102784 + 0.178026i 0.00330872 + 0.00573087i
\(966\) 0 0
\(967\) −15.2681 −0.490988 −0.245494 0.969398i \(-0.578950\pi\)
−0.245494 + 0.969398i \(0.578950\pi\)
\(968\) 3.30239 5.71990i 0.106143 0.183845i
\(969\) −1.30445 + 2.25937i −0.0419049 + 0.0725815i
\(970\) −7.14125 −0.229292
\(971\) 18.4460 31.9494i 0.591961 1.02531i −0.402008 0.915636i \(-0.631687\pi\)
0.993968 0.109669i \(-0.0349792\pi\)
\(972\) 14.0916 + 24.4073i 0.451987 + 0.782865i
\(973\) 0 0
\(974\) 68.2867 2.18805
\(975\) −38.7931 13.3771i −1.24237 0.428410i
\(976\) 54.4986 1.74446
\(977\) 0.221957 + 0.384441i 0.00710104 + 0.0122994i 0.869554 0.493838i \(-0.164406\pi\)
−0.862453 + 0.506137i \(0.831073\pi\)
\(978\) −3.88452 6.72818i −0.124213 0.215144i
\(979\) −25.0633 + 43.4109i −0.801026 + 1.38742i
\(980\) 0 0
\(981\) 15.6310 27.0736i 0.499058 0.864394i
\(982\) 7.61658 13.1923i 0.243055 0.420983i
\(983\) 45.5603 1.45315 0.726575 0.687088i \(-0.241111\pi\)
0.726575 + 0.687088i \(0.241111\pi\)
\(984\) 6.29483 10.9030i 0.200672 0.347574i
\(985\) 0.145884 + 0.252678i 0.00464824 + 0.00805099i
\(986\) 6.43964 + 11.1538i 0.205080 + 0.355209i
\(987\) 0 0
\(988\) 6.69369 + 2.30820i 0.212955 + 0.0734336i
\(989\) −21.9248 −0.697169
\(990\) −1.73546 3.00590i −0.0551565 0.0955338i
\(991\) −26.8148 46.4445i −0.851799 1.47536i −0.879583 0.475745i \(-0.842178\pi\)
0.0277842 0.999614i \(-0.491155\pi\)
\(992\) −4.40316 + 7.62650i −0.139801 + 0.242142i
\(993\) −32.8588 −1.04274
\(994\) 0 0
\(995\) 1.39139 2.40996i 0.0441100 0.0764008i
\(996\) 10.2445 0.324609
\(997\) −14.5426 + 25.1886i −0.460569 + 0.797730i −0.998989 0.0449470i \(-0.985688\pi\)
0.538420 + 0.842677i \(0.319021\pi\)
\(998\) 40.1857 + 69.6038i 1.27206 + 2.20327i
\(999\) 2.57489 + 4.45984i 0.0814658 + 0.141103i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.f.k.393.1 12
7.2 even 3 91.2.g.b.81.1 yes 12
7.3 odd 6 637.2.h.l.471.6 12
7.4 even 3 91.2.h.b.16.6 yes 12
7.5 odd 6 637.2.g.l.263.1 12
7.6 odd 2 637.2.f.j.393.1 12
13.3 even 3 8281.2.a.bz.1.6 6
13.9 even 3 inner 637.2.f.k.295.1 12
13.10 even 6 8281.2.a.ce.1.1 6
21.2 odd 6 819.2.n.d.172.6 12
21.11 odd 6 819.2.s.d.289.1 12
91.9 even 3 91.2.h.b.74.6 yes 12
91.16 even 3 1183.2.e.h.508.1 12
91.23 even 6 1183.2.e.g.508.6 12
91.48 odd 6 637.2.f.j.295.1 12
91.55 odd 6 8281.2.a.ca.1.6 6
91.61 odd 6 637.2.h.l.165.6 12
91.62 odd 6 8281.2.a.cf.1.1 6
91.74 even 3 91.2.g.b.9.1 12
91.81 even 3 1183.2.e.h.170.1 12
91.87 odd 6 637.2.g.l.373.1 12
91.88 even 6 1183.2.e.g.170.6 12
273.74 odd 6 819.2.n.d.100.6 12
273.191 odd 6 819.2.s.d.802.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.b.9.1 12 91.74 even 3
91.2.g.b.81.1 yes 12 7.2 even 3
91.2.h.b.16.6 yes 12 7.4 even 3
91.2.h.b.74.6 yes 12 91.9 even 3
637.2.f.j.295.1 12 91.48 odd 6
637.2.f.j.393.1 12 7.6 odd 2
637.2.f.k.295.1 12 13.9 even 3 inner
637.2.f.k.393.1 12 1.1 even 1 trivial
637.2.g.l.263.1 12 7.5 odd 6
637.2.g.l.373.1 12 91.87 odd 6
637.2.h.l.165.6 12 91.61 odd 6
637.2.h.l.471.6 12 7.3 odd 6
819.2.n.d.100.6 12 273.74 odd 6
819.2.n.d.172.6 12 21.2 odd 6
819.2.s.d.289.1 12 21.11 odd 6
819.2.s.d.802.1 12 273.191 odd 6
1183.2.e.g.170.6 12 91.88 even 6
1183.2.e.g.508.6 12 91.23 even 6
1183.2.e.h.170.1 12 91.81 even 3
1183.2.e.h.508.1 12 91.16 even 3
8281.2.a.bz.1.6 6 13.3 even 3
8281.2.a.ca.1.6 6 91.55 odd 6
8281.2.a.ce.1.1 6 13.10 even 6
8281.2.a.cf.1.1 6 91.62 odd 6