Properties

Label 819.2.s.d.289.1
Level $819$
Weight $2$
Character 819.289
Analytic conductor $6.540$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(289,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.s (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 7x^{10} - 2x^{9} + 33x^{8} - 11x^{7} + 55x^{6} + 17x^{5} + 47x^{4} + x^{3} + 8x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Root \(0.217953 - 0.377506i\) of defining polynomial
Character \(\chi\) \(=\) 819.289
Dual form 819.2.s.d.802.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.85816 q^{2} +1.45276 q^{4} +(-0.0986811 + 0.170921i) q^{5} +(1.03826 - 2.43352i) q^{7} +1.01686 q^{8} +(0.183365 - 0.317598i) q^{10} +(-2.09137 + 3.62236i) q^{11} +(-2.72221 + 2.36423i) q^{13} +(-1.92926 + 4.52187i) q^{14} -4.79501 q^{16} -0.841305 q^{17} +(-0.675876 - 1.17065i) q^{19} +(-0.143360 + 0.248307i) q^{20} +(3.88610 - 6.73092i) q^{22} +4.11519 q^{23} +(2.48052 + 4.29639i) q^{25} +(5.05830 - 4.39312i) q^{26} +(1.50835 - 3.53532i) q^{28} +(-4.11931 - 7.13485i) q^{29} +(0.640350 + 1.10912i) q^{31} +6.87618 q^{32} +1.56328 q^{34} +(0.313482 + 0.417603i) q^{35} +3.04485 q^{37} +(1.25589 + 2.17526i) q^{38} +(-0.100344 + 0.173802i) q^{40} +(2.69848 + 4.67390i) q^{41} +(-2.66389 + 4.61399i) q^{43} +(-3.03826 + 5.26242i) q^{44} -7.64669 q^{46} +(-5.83204 + 10.1014i) q^{47} +(-4.84403 - 5.05326i) q^{49} +(-4.60921 - 7.98339i) q^{50} +(-3.95472 + 3.43466i) q^{52} +(2.32398 + 4.02525i) q^{53} +(-0.412757 - 0.714916i) q^{55} +(1.05576 - 2.47454i) q^{56} +(7.65434 + 13.2577i) q^{58} -6.05811 q^{59} +(5.68285 + 9.84298i) q^{61} +(-1.18987 - 2.06092i) q^{62} -3.18704 q^{64} +(-0.135465 - 0.698587i) q^{65} +(-6.69851 + 11.6022i) q^{67} -1.22222 q^{68} +(-0.582500 - 0.775973i) q^{70} +(-2.98520 + 5.17051i) q^{71} +(-1.94273 - 3.36491i) q^{73} -5.65782 q^{74} +(-0.981887 - 1.70068i) q^{76} +(6.64368 + 8.85034i) q^{77} +(5.36669 - 9.29537i) q^{79} +(0.473177 - 0.819566i) q^{80} +(-5.01421 - 8.68486i) q^{82} -3.07390 q^{83} +(0.0830210 - 0.143797i) q^{85} +(4.94994 - 8.57354i) q^{86} +(-2.12662 + 3.68341i) q^{88} +11.9841 q^{89} +(2.92702 + 9.07924i) q^{91} +5.97840 q^{92} +(10.8369 - 18.7700i) q^{94} +0.266785 q^{95} +(-9.73637 + 16.8639i) q^{97} +(9.00098 + 9.38977i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + 8 q^{4} - q^{5} - 3 q^{7} + 6 q^{8} + 4 q^{10} - 4 q^{11} - 2 q^{13} + 2 q^{14} - 16 q^{16} + 10 q^{17} - q^{19} + q^{20} - 5 q^{22} - 2 q^{23} + 7 q^{25} + 16 q^{26} - q^{28} - 3 q^{29}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.85816 −1.31392 −0.656959 0.753926i \(-0.728158\pi\)
−0.656959 + 0.753926i \(0.728158\pi\)
\(3\) 0 0
\(4\) 1.45276 0.726381
\(5\) −0.0986811 + 0.170921i −0.0441315 + 0.0764381i −0.887247 0.461294i \(-0.847385\pi\)
0.843116 + 0.537732i \(0.180719\pi\)
\(6\) 0 0
\(7\) 1.03826 2.43352i 0.392426 0.919784i
\(8\) 1.01686 0.359513
\(9\) 0 0
\(10\) 0.183365 0.317598i 0.0579852 0.100433i
\(11\) −2.09137 + 3.62236i −0.630571 + 1.09218i 0.356864 + 0.934156i \(0.383846\pi\)
−0.987435 + 0.158025i \(0.949487\pi\)
\(12\) 0 0
\(13\) −2.72221 + 2.36423i −0.755005 + 0.655719i
\(14\) −1.92926 + 4.52187i −0.515616 + 1.20852i
\(15\) 0 0
\(16\) −4.79501 −1.19875
\(17\) −0.841305 −0.204047 −0.102023 0.994782i \(-0.532532\pi\)
−0.102023 + 0.994782i \(0.532532\pi\)
\(18\) 0 0
\(19\) −0.675876 1.17065i −0.155057 0.268566i 0.778023 0.628236i \(-0.216223\pi\)
−0.933080 + 0.359670i \(0.882889\pi\)
\(20\) −0.143360 + 0.248307i −0.0320563 + 0.0555232i
\(21\) 0 0
\(22\) 3.88610 6.73092i 0.828519 1.43504i
\(23\) 4.11519 0.858077 0.429038 0.903286i \(-0.358853\pi\)
0.429038 + 0.903286i \(0.358853\pi\)
\(24\) 0 0
\(25\) 2.48052 + 4.29639i 0.496105 + 0.859279i
\(26\) 5.05830 4.39312i 0.992015 0.861561i
\(27\) 0 0
\(28\) 1.50835 3.53532i 0.285051 0.668113i
\(29\) −4.11931 7.13485i −0.764936 1.32491i −0.940280 0.340401i \(-0.889437\pi\)
0.175344 0.984507i \(-0.443896\pi\)
\(30\) 0 0
\(31\) 0.640350 + 1.10912i 0.115010 + 0.199203i 0.917784 0.397080i \(-0.129977\pi\)
−0.802774 + 0.596284i \(0.796643\pi\)
\(32\) 6.87618 1.21555
\(33\) 0 0
\(34\) 1.56328 0.268100
\(35\) 0.313482 + 0.417603i 0.0529881 + 0.0705878i
\(36\) 0 0
\(37\) 3.04485 0.500570 0.250285 0.968172i \(-0.419476\pi\)
0.250285 + 0.968172i \(0.419476\pi\)
\(38\) 1.25589 + 2.17526i 0.203732 + 0.352874i
\(39\) 0 0
\(40\) −0.100344 + 0.173802i −0.0158659 + 0.0274805i
\(41\) 2.69848 + 4.67390i 0.421431 + 0.729941i 0.996080 0.0884599i \(-0.0281945\pi\)
−0.574648 + 0.818400i \(0.694861\pi\)
\(42\) 0 0
\(43\) −2.66389 + 4.61399i −0.406239 + 0.703627i −0.994465 0.105070i \(-0.966493\pi\)
0.588226 + 0.808697i \(0.299827\pi\)
\(44\) −3.03826 + 5.26242i −0.458035 + 0.793340i
\(45\) 0 0
\(46\) −7.64669 −1.12744
\(47\) −5.83204 + 10.1014i −0.850690 + 1.47344i 0.0298969 + 0.999553i \(0.490482\pi\)
−0.880587 + 0.473885i \(0.842851\pi\)
\(48\) 0 0
\(49\) −4.84403 5.05326i −0.692004 0.721894i
\(50\) −4.60921 7.98339i −0.651841 1.12902i
\(51\) 0 0
\(52\) −3.95472 + 3.43466i −0.548422 + 0.476302i
\(53\) 2.32398 + 4.02525i 0.319223 + 0.552911i 0.980326 0.197384i \(-0.0632446\pi\)
−0.661103 + 0.750295i \(0.729911\pi\)
\(54\) 0 0
\(55\) −0.412757 0.714916i −0.0556562 0.0963993i
\(56\) 1.05576 2.47454i 0.141082 0.330674i
\(57\) 0 0
\(58\) 7.65434 + 13.2577i 1.00506 + 1.74082i
\(59\) −6.05811 −0.788698 −0.394349 0.918961i \(-0.629030\pi\)
−0.394349 + 0.918961i \(0.629030\pi\)
\(60\) 0 0
\(61\) 5.68285 + 9.84298i 0.727614 + 1.26026i 0.957889 + 0.287139i \(0.0927042\pi\)
−0.230275 + 0.973126i \(0.573962\pi\)
\(62\) −1.18987 2.06092i −0.151114 0.261737i
\(63\) 0 0
\(64\) −3.18704 −0.398380
\(65\) −0.135465 0.698587i −0.0168023 0.0866490i
\(66\) 0 0
\(67\) −6.69851 + 11.6022i −0.818354 + 1.41743i 0.0885411 + 0.996073i \(0.471780\pi\)
−0.906895 + 0.421357i \(0.861554\pi\)
\(68\) −1.22222 −0.148216
\(69\) 0 0
\(70\) −0.582500 0.775973i −0.0696221 0.0927465i
\(71\) −2.98520 + 5.17051i −0.354278 + 0.613627i −0.986994 0.160757i \(-0.948607\pi\)
0.632716 + 0.774384i \(0.281940\pi\)
\(72\) 0 0
\(73\) −1.94273 3.36491i −0.227380 0.393833i 0.729651 0.683820i \(-0.239683\pi\)
−0.957031 + 0.289986i \(0.906349\pi\)
\(74\) −5.65782 −0.657708
\(75\) 0 0
\(76\) −0.981887 1.70068i −0.112630 0.195081i
\(77\) 6.64368 + 8.85034i 0.757118 + 1.00859i
\(78\) 0 0
\(79\) 5.36669 9.29537i 0.603799 1.04581i −0.388441 0.921474i \(-0.626986\pi\)
0.992240 0.124337i \(-0.0396805\pi\)
\(80\) 0.473177 0.819566i 0.0529028 0.0916303i
\(81\) 0 0
\(82\) −5.01421 8.68486i −0.553726 0.959082i
\(83\) −3.07390 −0.337404 −0.168702 0.985667i \(-0.553958\pi\)
−0.168702 + 0.985667i \(0.553958\pi\)
\(84\) 0 0
\(85\) 0.0830210 0.143797i 0.00900489 0.0155969i
\(86\) 4.94994 8.57354i 0.533765 0.924509i
\(87\) 0 0
\(88\) −2.12662 + 3.68341i −0.226698 + 0.392653i
\(89\) 11.9841 1.27032 0.635159 0.772382i \(-0.280935\pi\)
0.635159 + 0.772382i \(0.280935\pi\)
\(90\) 0 0
\(91\) 2.92702 + 9.07924i 0.306836 + 0.951763i
\(92\) 5.97840 0.623291
\(93\) 0 0
\(94\) 10.8369 18.7700i 1.11774 1.93598i
\(95\) 0.266785 0.0273715
\(96\) 0 0
\(97\) −9.73637 + 16.8639i −0.988578 + 1.71227i −0.363771 + 0.931488i \(0.618511\pi\)
−0.624807 + 0.780779i \(0.714822\pi\)
\(98\) 9.00098 + 9.38977i 0.909236 + 0.948510i
\(99\) 0 0
\(100\) 3.60361 + 6.24164i 0.360361 + 0.624164i
\(101\) −8.46697 + 14.6652i −0.842495 + 1.45924i 0.0452843 + 0.998974i \(0.485581\pi\)
−0.887779 + 0.460270i \(0.847753\pi\)
\(102\) 0 0
\(103\) 3.61712 6.26504i 0.356406 0.617313i −0.630952 0.775822i \(-0.717335\pi\)
0.987357 + 0.158509i \(0.0506688\pi\)
\(104\) −2.76809 + 2.40408i −0.271434 + 0.235739i
\(105\) 0 0
\(106\) −4.31833 7.47957i −0.419434 0.726480i
\(107\) 9.85249 0.952477 0.476238 0.879316i \(-0.342000\pi\)
0.476238 + 0.879316i \(0.342000\pi\)
\(108\) 0 0
\(109\) 6.90796 + 11.9649i 0.661662 + 1.14603i 0.980179 + 0.198115i \(0.0634821\pi\)
−0.318516 + 0.947917i \(0.603185\pi\)
\(110\) 0.766969 + 1.32843i 0.0731277 + 0.126661i
\(111\) 0 0
\(112\) −4.97847 + 11.6687i −0.470421 + 1.10259i
\(113\) −2.13432 + 3.69675i −0.200780 + 0.347761i −0.948780 0.315938i \(-0.897681\pi\)
0.748000 + 0.663699i \(0.231014\pi\)
\(114\) 0 0
\(115\) −0.406092 + 0.703371i −0.0378682 + 0.0655897i
\(116\) −5.98437 10.3652i −0.555635 0.962388i
\(117\) 0 0
\(118\) 11.2569 1.03629
\(119\) −0.873495 + 2.04733i −0.0800732 + 0.187679i
\(120\) 0 0
\(121\) −3.24765 5.62509i −0.295240 0.511372i
\(122\) −10.5596 18.2898i −0.956026 1.65589i
\(123\) 0 0
\(124\) 0.930276 + 1.61129i 0.0835412 + 0.144698i
\(125\) −1.96593 −0.175839
\(126\) 0 0
\(127\) 1.09512 + 1.89680i 0.0971761 + 0.168314i 0.910515 0.413477i \(-0.135686\pi\)
−0.813339 + 0.581791i \(0.802352\pi\)
\(128\) −7.83033 −0.692110
\(129\) 0 0
\(130\) 0.251715 + 1.29809i 0.0220769 + 0.113850i
\(131\) 1.13806 1.97117i 0.0994326 0.172222i −0.812017 0.583633i \(-0.801631\pi\)
0.911450 + 0.411411i \(0.134964\pi\)
\(132\) 0 0
\(133\) −3.55054 + 0.429314i −0.307871 + 0.0372262i
\(134\) 12.4469 21.5587i 1.07525 1.86239i
\(135\) 0 0
\(136\) −0.855486 −0.0733573
\(137\) −13.4480 −1.14894 −0.574469 0.818526i \(-0.694791\pi\)
−0.574469 + 0.818526i \(0.694791\pi\)
\(138\) 0 0
\(139\) −2.02270 + 3.50342i −0.171563 + 0.297156i −0.938966 0.344009i \(-0.888215\pi\)
0.767403 + 0.641165i \(0.221548\pi\)
\(140\) 0.455415 + 0.606678i 0.0384896 + 0.0512736i
\(141\) 0 0
\(142\) 5.54698 9.60765i 0.465492 0.806256i
\(143\) −2.87093 14.8053i −0.240079 1.23808i
\(144\) 0 0
\(145\) 1.62599 0.135031
\(146\) 3.60991 + 6.25255i 0.298758 + 0.517465i
\(147\) 0 0
\(148\) 4.42344 0.363605
\(149\) 7.67596 + 13.2952i 0.628840 + 1.08918i 0.987785 + 0.155823i \(0.0498031\pi\)
−0.358945 + 0.933359i \(0.616864\pi\)
\(150\) 0 0
\(151\) −3.06054 5.30101i −0.249063 0.431390i 0.714203 0.699939i \(-0.246789\pi\)
−0.963266 + 0.268548i \(0.913456\pi\)
\(152\) −0.687268 1.19038i −0.0557448 0.0965528i
\(153\) 0 0
\(154\) −12.3450 16.4454i −0.994791 1.32520i
\(155\) −0.252762 −0.0203023
\(156\) 0 0
\(157\) −2.26834 3.92888i −0.181033 0.313559i 0.761199 0.648518i \(-0.224611\pi\)
−0.942233 + 0.334959i \(0.891278\pi\)
\(158\) −9.97217 + 17.2723i −0.793343 + 1.37411i
\(159\) 0 0
\(160\) −0.678549 + 1.17528i −0.0536440 + 0.0929142i
\(161\) 4.27265 10.0144i 0.336732 0.789245i
\(162\) 0 0
\(163\) −0.911271 1.57837i −0.0713762 0.123627i 0.828128 0.560538i \(-0.189406\pi\)
−0.899505 + 0.436911i \(0.856072\pi\)
\(164\) 3.92025 + 6.79007i 0.306120 + 0.530215i
\(165\) 0 0
\(166\) 5.71180 0.443322
\(167\) −5.35397 9.27336i −0.414303 0.717594i 0.581052 0.813866i \(-0.302641\pi\)
−0.995355 + 0.0962726i \(0.969308\pi\)
\(168\) 0 0
\(169\) 1.82086 12.8718i 0.140066 0.990142i
\(170\) −0.154266 + 0.267197i −0.0118317 + 0.0204931i
\(171\) 0 0
\(172\) −3.87000 + 6.70303i −0.295085 + 0.511102i
\(173\) −6.74634 11.6850i −0.512915 0.888395i −0.999888 0.0149778i \(-0.995232\pi\)
0.486973 0.873417i \(-0.338101\pi\)
\(174\) 0 0
\(175\) 13.0308 1.57562i 0.985035 0.119106i
\(176\) 10.0281 17.3692i 0.755898 1.30925i
\(177\) 0 0
\(178\) −22.2685 −1.66909
\(179\) 5.23458 9.06657i 0.391251 0.677667i −0.601364 0.798975i \(-0.705376\pi\)
0.992615 + 0.121309i \(0.0387090\pi\)
\(180\) 0 0
\(181\) 12.5209 0.930674 0.465337 0.885133i \(-0.345933\pi\)
0.465337 + 0.885133i \(0.345933\pi\)
\(182\) −5.43888 16.8707i −0.403157 1.25054i
\(183\) 0 0
\(184\) 4.18455 0.308489
\(185\) −0.300469 + 0.520428i −0.0220909 + 0.0382626i
\(186\) 0 0
\(187\) 1.75948 3.04751i 0.128666 0.222856i
\(188\) −8.47256 + 14.6749i −0.617925 + 1.07028i
\(189\) 0 0
\(190\) −0.495729 −0.0359640
\(191\) 6.55685 + 11.3568i 0.474437 + 0.821749i 0.999572 0.0292704i \(-0.00931840\pi\)
−0.525135 + 0.851019i \(0.675985\pi\)
\(192\) 0 0
\(193\) −0.520786 + 0.902028i −0.0374870 + 0.0649294i −0.884160 0.467184i \(-0.845269\pi\)
0.846673 + 0.532113i \(0.178602\pi\)
\(194\) 18.0917 31.3358i 1.29891 2.24978i
\(195\) 0 0
\(196\) −7.03722 7.34118i −0.502658 0.524370i
\(197\) 0.739167 + 1.28027i 0.0526635 + 0.0912158i 0.891155 0.453698i \(-0.149896\pi\)
−0.838492 + 0.544914i \(0.816562\pi\)
\(198\) 0 0
\(199\) 14.0999 0.999512 0.499756 0.866166i \(-0.333423\pi\)
0.499756 + 0.866166i \(0.333423\pi\)
\(200\) 2.52233 + 4.36881i 0.178356 + 0.308922i
\(201\) 0 0
\(202\) 15.7330 27.2503i 1.10697 1.91733i
\(203\) −21.6397 + 2.61657i −1.51881 + 0.183647i
\(204\) 0 0
\(205\) −1.06516 −0.0743937
\(206\) −6.72120 + 11.6415i −0.468288 + 0.811099i
\(207\) 0 0
\(208\) 13.0530 11.3365i 0.905064 0.786044i
\(209\) 5.65402 0.391097
\(210\) 0 0
\(211\) −13.2346 22.9230i −0.911108 1.57809i −0.812501 0.582959i \(-0.801895\pi\)
−0.0986067 0.995126i \(-0.531439\pi\)
\(212\) 3.37619 + 5.84774i 0.231878 + 0.401624i
\(213\) 0 0
\(214\) −18.3075 −1.25148
\(215\) −0.525751 0.910628i −0.0358559 0.0621043i
\(216\) 0 0
\(217\) 3.36391 0.406748i 0.228357 0.0276118i
\(218\) −12.8361 22.2328i −0.869370 1.50579i
\(219\) 0 0
\(220\) −0.599638 1.03860i −0.0404276 0.0700227i
\(221\) 2.29021 1.98904i 0.154056 0.133797i
\(222\) 0 0
\(223\) 0.364024 + 0.630508i 0.0243769 + 0.0422219i 0.877956 0.478740i \(-0.158907\pi\)
−0.853580 + 0.520962i \(0.825573\pi\)
\(224\) 7.13928 16.7333i 0.477013 1.11804i
\(225\) 0 0
\(226\) 3.96591 6.86916i 0.263808 0.456929i
\(227\) 2.85195 0.189291 0.0946454 0.995511i \(-0.469828\pi\)
0.0946454 + 0.995511i \(0.469828\pi\)
\(228\) 0 0
\(229\) −1.58676 + 2.74835i −0.104856 + 0.181616i −0.913679 0.406436i \(-0.866772\pi\)
0.808823 + 0.588052i \(0.200105\pi\)
\(230\) 0.754584 1.30698i 0.0497558 0.0861795i
\(231\) 0 0
\(232\) −4.18874 7.25511i −0.275004 0.476321i
\(233\) 6.70354 11.6109i 0.439163 0.760653i −0.558462 0.829530i \(-0.688608\pi\)
0.997625 + 0.0688769i \(0.0219416\pi\)
\(234\) 0 0
\(235\) −1.15102 1.99363i −0.0750845 0.130050i
\(236\) −8.80099 −0.572896
\(237\) 0 0
\(238\) 1.62309 3.80427i 0.105210 0.246594i
\(239\) 15.5538 1.00609 0.503046 0.864259i \(-0.332212\pi\)
0.503046 + 0.864259i \(0.332212\pi\)
\(240\) 0 0
\(241\) −7.57574 −0.487996 −0.243998 0.969776i \(-0.578459\pi\)
−0.243998 + 0.969776i \(0.578459\pi\)
\(242\) 6.03465 + 10.4523i 0.387922 + 0.671900i
\(243\) 0 0
\(244\) 8.25583 + 14.2995i 0.528525 + 0.915433i
\(245\) 1.34172 0.329283i 0.0857194 0.0210371i
\(246\) 0 0
\(247\) 4.60756 + 1.58883i 0.293172 + 0.101095i
\(248\) 0.651143 + 1.12781i 0.0413476 + 0.0716162i
\(249\) 0 0
\(250\) 3.65302 0.231038
\(251\) 0.637382 1.10398i 0.0402312 0.0696825i −0.845209 0.534436i \(-0.820524\pi\)
0.885440 + 0.464754i \(0.153857\pi\)
\(252\) 0 0
\(253\) −8.60638 + 14.9067i −0.541079 + 0.937176i
\(254\) −2.03491 3.52456i −0.127682 0.221151i
\(255\) 0 0
\(256\) 20.9241 1.30776
\(257\) 8.48019 0.528980 0.264490 0.964388i \(-0.414796\pi\)
0.264490 + 0.964388i \(0.414796\pi\)
\(258\) 0 0
\(259\) 3.16135 7.40970i 0.196437 0.460416i
\(260\) −0.196798 1.01488i −0.0122049 0.0629402i
\(261\) 0 0
\(262\) −2.11470 + 3.66276i −0.130646 + 0.226286i
\(263\) 6.39415 11.0750i 0.394280 0.682913i −0.598729 0.800952i \(-0.704327\pi\)
0.993009 + 0.118038i \(0.0376606\pi\)
\(264\) 0 0
\(265\) −0.917333 −0.0563513
\(266\) 6.59747 0.797735i 0.404517 0.0489122i
\(267\) 0 0
\(268\) −9.73135 + 16.8552i −0.594437 + 1.02959i
\(269\) 4.71172 0.287278 0.143639 0.989630i \(-0.454120\pi\)
0.143639 + 0.989630i \(0.454120\pi\)
\(270\) 0 0
\(271\) −18.0112 −1.09410 −0.547052 0.837098i \(-0.684250\pi\)
−0.547052 + 0.837098i \(0.684250\pi\)
\(272\) 4.03407 0.244601
\(273\) 0 0
\(274\) 24.9885 1.50961
\(275\) −20.7508 −1.25132
\(276\) 0 0
\(277\) −26.1209 −1.56945 −0.784725 0.619844i \(-0.787196\pi\)
−0.784725 + 0.619844i \(0.787196\pi\)
\(278\) 3.75850 6.50991i 0.225420 0.390439i
\(279\) 0 0
\(280\) 0.318766 + 0.424642i 0.0190499 + 0.0253772i
\(281\) 3.66197 0.218455 0.109227 0.994017i \(-0.465162\pi\)
0.109227 + 0.994017i \(0.465162\pi\)
\(282\) 0 0
\(283\) −3.82263 + 6.62099i −0.227232 + 0.393577i −0.956987 0.290132i \(-0.906301\pi\)
0.729755 + 0.683709i \(0.239634\pi\)
\(284\) −4.33678 + 7.51153i −0.257341 + 0.445727i
\(285\) 0 0
\(286\) 5.33465 + 27.5106i 0.315445 + 1.62674i
\(287\) 14.1757 1.71406i 0.836768 0.101178i
\(288\) 0 0
\(289\) −16.2922 −0.958365
\(290\) −3.02135 −0.177420
\(291\) 0 0
\(292\) −2.82233 4.88842i −0.165164 0.286073i
\(293\) −8.57670 + 14.8553i −0.501056 + 0.867855i 0.498943 + 0.866635i \(0.333722\pi\)
−0.999999 + 0.00122001i \(0.999612\pi\)
\(294\) 0 0
\(295\) 0.597821 1.03546i 0.0348065 0.0602866i
\(296\) 3.09617 0.179961
\(297\) 0 0
\(298\) −14.2632 24.7045i −0.826244 1.43110i
\(299\) −11.2024 + 9.72925i −0.647852 + 0.562657i
\(300\) 0 0
\(301\) 8.46242 + 11.2732i 0.487766 + 0.649774i
\(302\) 5.68698 + 9.85014i 0.327249 + 0.566812i
\(303\) 0 0
\(304\) 3.24083 + 5.61328i 0.185874 + 0.321944i
\(305\) −2.24316 −0.128443
\(306\) 0 0
\(307\) −28.0696 −1.60201 −0.801007 0.598655i \(-0.795702\pi\)
−0.801007 + 0.598655i \(0.795702\pi\)
\(308\) 9.65169 + 12.8574i 0.549956 + 0.732621i
\(309\) 0 0
\(310\) 0.469672 0.0266756
\(311\) −11.7670 20.3811i −0.667248 1.15571i −0.978671 0.205436i \(-0.934139\pi\)
0.311423 0.950271i \(-0.399194\pi\)
\(312\) 0 0
\(313\) 1.67430 2.89997i 0.0946370 0.163916i −0.814820 0.579714i \(-0.803164\pi\)
0.909457 + 0.415798i \(0.136498\pi\)
\(314\) 4.21494 + 7.30050i 0.237863 + 0.411991i
\(315\) 0 0
\(316\) 7.79652 13.5040i 0.438588 0.759658i
\(317\) −3.63917 + 6.30323i −0.204396 + 0.354025i −0.949940 0.312432i \(-0.898856\pi\)
0.745544 + 0.666456i \(0.232190\pi\)
\(318\) 0 0
\(319\) 34.4600 1.92939
\(320\) 0.314501 0.544732i 0.0175811 0.0304514i
\(321\) 0 0
\(322\) −7.93926 + 18.6084i −0.442438 + 1.03700i
\(323\) 0.568618 + 0.984875i 0.0316388 + 0.0547999i
\(324\) 0 0
\(325\) −16.9102 5.83116i −0.938007 0.323455i
\(326\) 1.69329 + 2.93286i 0.0937826 + 0.162436i
\(327\) 0 0
\(328\) 2.74396 + 4.75268i 0.151510 + 0.262423i
\(329\) 18.5267 + 24.6802i 1.02141 + 1.36067i
\(330\) 0 0
\(331\) 7.16168 + 12.4044i 0.393642 + 0.681807i 0.992927 0.118728i \(-0.0378818\pi\)
−0.599285 + 0.800536i \(0.704548\pi\)
\(332\) −4.46564 −0.245084
\(333\) 0 0
\(334\) 9.94855 + 17.2314i 0.544360 + 0.942860i
\(335\) −1.32203 2.28983i −0.0722304 0.125107i
\(336\) 0 0
\(337\) 17.1802 0.935868 0.467934 0.883764i \(-0.344999\pi\)
0.467934 + 0.883764i \(0.344999\pi\)
\(338\) −3.38344 + 23.9180i −0.184035 + 1.30097i
\(339\) 0 0
\(340\) 0.120610 0.208902i 0.00654098 0.0113293i
\(341\) −5.35683 −0.290089
\(342\) 0 0
\(343\) −17.3266 + 6.54142i −0.935547 + 0.353203i
\(344\) −2.70879 + 4.69176i −0.146048 + 0.252963i
\(345\) 0 0
\(346\) 12.5358 + 21.7126i 0.673928 + 1.16728i
\(347\) 7.70278 0.413507 0.206753 0.978393i \(-0.433710\pi\)
0.206753 + 0.978393i \(0.433710\pi\)
\(348\) 0 0
\(349\) −11.1850 19.3730i −0.598721 1.03702i −0.993010 0.118029i \(-0.962343\pi\)
0.394289 0.918986i \(-0.370991\pi\)
\(350\) −24.2133 + 2.92776i −1.29426 + 0.156495i
\(351\) 0 0
\(352\) −14.3806 + 24.9080i −0.766490 + 1.32760i
\(353\) −11.1311 + 19.2797i −0.592451 + 1.02616i 0.401450 + 0.915881i \(0.368506\pi\)
−0.993901 + 0.110275i \(0.964827\pi\)
\(354\) 0 0
\(355\) −0.589165 1.02046i −0.0312697 0.0541606i
\(356\) 17.4101 0.922735
\(357\) 0 0
\(358\) −9.72670 + 16.8471i −0.514072 + 0.890399i
\(359\) −1.37921 + 2.38887i −0.0727920 + 0.126079i −0.900124 0.435634i \(-0.856524\pi\)
0.827332 + 0.561713i \(0.189858\pi\)
\(360\) 0 0
\(361\) 8.58638 14.8721i 0.451915 0.782740i
\(362\) −23.2659 −1.22283
\(363\) 0 0
\(364\) 4.25227 + 13.1900i 0.222880 + 0.691342i
\(365\) 0.766844 0.0401385
\(366\) 0 0
\(367\) 7.07485 12.2540i 0.369304 0.639654i −0.620153 0.784481i \(-0.712929\pi\)
0.989457 + 0.144827i \(0.0462626\pi\)
\(368\) −19.7324 −1.02862
\(369\) 0 0
\(370\) 0.558320 0.967039i 0.0290257 0.0502740i
\(371\) 12.2084 1.47619i 0.633830 0.0766397i
\(372\) 0 0
\(373\) 2.52142 + 4.36723i 0.130554 + 0.226127i 0.923890 0.382657i \(-0.124991\pi\)
−0.793336 + 0.608784i \(0.791658\pi\)
\(374\) −3.26940 + 5.66276i −0.169056 + 0.292814i
\(375\) 0 0
\(376\) −5.93034 + 10.2716i −0.305834 + 0.529720i
\(377\) 28.0820 + 9.68358i 1.44630 + 0.498730i
\(378\) 0 0
\(379\) 3.02982 + 5.24780i 0.155631 + 0.269561i 0.933289 0.359127i \(-0.116925\pi\)
−0.777657 + 0.628688i \(0.783592\pi\)
\(380\) 0.387575 0.0198822
\(381\) 0 0
\(382\) −12.1837 21.1028i −0.623371 1.07971i
\(383\) −2.27052 3.93266i −0.116018 0.200950i 0.802168 0.597098i \(-0.203680\pi\)
−0.918186 + 0.396149i \(0.870346\pi\)
\(384\) 0 0
\(385\) −2.16831 + 0.262182i −0.110507 + 0.0133620i
\(386\) 0.967705 1.67611i 0.0492549 0.0853120i
\(387\) 0 0
\(388\) −14.1446 + 24.4992i −0.718085 + 1.24376i
\(389\) 2.25383 + 3.90374i 0.114273 + 0.197927i 0.917489 0.397761i \(-0.130213\pi\)
−0.803216 + 0.595688i \(0.796879\pi\)
\(390\) 0 0
\(391\) −3.46213 −0.175088
\(392\) −4.92567 5.13843i −0.248784 0.259530i
\(393\) 0 0
\(394\) −1.37349 2.37896i −0.0691955 0.119850i
\(395\) 1.05918 + 1.83456i 0.0532932 + 0.0923065i
\(396\) 0 0
\(397\) −2.00174 3.46712i −0.100465 0.174010i 0.811412 0.584475i \(-0.198700\pi\)
−0.911876 + 0.410465i \(0.865366\pi\)
\(398\) −26.1998 −1.31328
\(399\) 0 0
\(400\) −11.8941 20.6012i −0.594706 1.03006i
\(401\) −12.6135 −0.629887 −0.314944 0.949110i \(-0.601986\pi\)
−0.314944 + 0.949110i \(0.601986\pi\)
\(402\) 0 0
\(403\) −4.36537 1.50532i −0.217455 0.0749853i
\(404\) −12.3005 + 21.3051i −0.611972 + 1.05997i
\(405\) 0 0
\(406\) 40.2101 4.86201i 1.99559 0.241297i
\(407\) −6.36790 + 11.0295i −0.315645 + 0.546713i
\(408\) 0 0
\(409\) 20.6952 1.02331 0.511657 0.859190i \(-0.329032\pi\)
0.511657 + 0.859190i \(0.329032\pi\)
\(410\) 1.97923 0.0977472
\(411\) 0 0
\(412\) 5.25482 9.10162i 0.258886 0.448404i
\(413\) −6.28990 + 14.7425i −0.309506 + 0.725432i
\(414\) 0 0
\(415\) 0.303336 0.525393i 0.0148902 0.0257905i
\(416\) −18.7184 + 16.2569i −0.917746 + 0.797058i
\(417\) 0 0
\(418\) −10.5061 −0.513869
\(419\) −10.9088 18.8945i −0.532928 0.923058i −0.999261 0.0384484i \(-0.987758\pi\)
0.466333 0.884609i \(-0.345575\pi\)
\(420\) 0 0
\(421\) 9.42727 0.459457 0.229728 0.973255i \(-0.426216\pi\)
0.229728 + 0.973255i \(0.426216\pi\)
\(422\) 24.5920 + 42.5947i 1.19712 + 2.07348i
\(423\) 0 0
\(424\) 2.36315 + 4.09310i 0.114765 + 0.198779i
\(425\) −2.08688 3.61458i −0.101228 0.175333i
\(426\) 0 0
\(427\) 29.8534 3.60973i 1.44471 0.174687i
\(428\) 14.3133 0.691861
\(429\) 0 0
\(430\) 0.976930 + 1.69209i 0.0471118 + 0.0816000i
\(431\) 10.2138 17.6908i 0.491980 0.852134i −0.507977 0.861370i \(-0.669607\pi\)
0.999957 + 0.00923613i \(0.00293999\pi\)
\(432\) 0 0
\(433\) −13.1743 + 22.8186i −0.633117 + 1.09659i 0.353794 + 0.935323i \(0.384891\pi\)
−0.986911 + 0.161267i \(0.948442\pi\)
\(434\) −6.25069 + 0.755803i −0.300043 + 0.0362797i
\(435\) 0 0
\(436\) 10.0356 + 17.3822i 0.480619 + 0.832457i
\(437\) −2.78136 4.81745i −0.133050 0.230450i
\(438\) 0 0
\(439\) 25.1310 1.19944 0.599720 0.800210i \(-0.295279\pi\)
0.599720 + 0.800210i \(0.295279\pi\)
\(440\) −0.419714 0.726967i −0.0200091 0.0346568i
\(441\) 0 0
\(442\) −4.25558 + 3.69595i −0.202417 + 0.175799i
\(443\) 9.25995 16.0387i 0.439953 0.762022i −0.557732 0.830021i \(-0.688328\pi\)
0.997685 + 0.0679994i \(0.0216616\pi\)
\(444\) 0 0
\(445\) −1.18261 + 2.04834i −0.0560611 + 0.0971006i
\(446\) −0.676415 1.17159i −0.0320292 0.0554762i
\(447\) 0 0
\(448\) −3.30898 + 7.75573i −0.156335 + 0.366424i
\(449\) 5.82155 10.0832i 0.274736 0.475856i −0.695333 0.718688i \(-0.744743\pi\)
0.970068 + 0.242832i \(0.0780763\pi\)
\(450\) 0 0
\(451\) −22.5740 −1.06297
\(452\) −3.10066 + 5.37050i −0.145843 + 0.252607i
\(453\) 0 0
\(454\) −5.29939 −0.248713
\(455\) −1.84067 0.395660i −0.0862920 0.0185488i
\(456\) 0 0
\(457\) 20.5184 0.959812 0.479906 0.877320i \(-0.340671\pi\)
0.479906 + 0.877320i \(0.340671\pi\)
\(458\) 2.94845 5.10687i 0.137772 0.238629i
\(459\) 0 0
\(460\) −0.589955 + 1.02183i −0.0275068 + 0.0476431i
\(461\) 1.02038 1.76734i 0.0475236 0.0823134i −0.841285 0.540592i \(-0.818200\pi\)
0.888809 + 0.458278i \(0.151534\pi\)
\(462\) 0 0
\(463\) 3.03155 0.140888 0.0704441 0.997516i \(-0.477558\pi\)
0.0704441 + 0.997516i \(0.477558\pi\)
\(464\) 19.7521 + 34.2116i 0.916968 + 1.58824i
\(465\) 0 0
\(466\) −12.4563 + 21.5749i −0.577025 + 0.999436i
\(467\) −6.46371 + 11.1955i −0.299105 + 0.518065i −0.975931 0.218078i \(-0.930021\pi\)
0.676827 + 0.736142i \(0.263355\pi\)
\(468\) 0 0
\(469\) 21.2793 + 28.3470i 0.982585 + 1.30894i
\(470\) 2.13879 + 3.70449i 0.0986549 + 0.170875i
\(471\) 0 0
\(472\) −6.16022 −0.283547
\(473\) −11.1423 19.2991i −0.512326 0.887374i
\(474\) 0 0
\(475\) 3.35305 5.80766i 0.153849 0.266474i
\(476\) −1.26898 + 2.97429i −0.0581637 + 0.136326i
\(477\) 0 0
\(478\) −28.9015 −1.32192
\(479\) 18.2911 31.6810i 0.835740 1.44754i −0.0576873 0.998335i \(-0.518373\pi\)
0.893427 0.449209i \(-0.148294\pi\)
\(480\) 0 0
\(481\) −8.28872 + 7.19872i −0.377933 + 0.328233i
\(482\) 14.0769 0.641187
\(483\) 0 0
\(484\) −4.71806 8.17191i −0.214457 0.371451i
\(485\) −1.92159 3.32829i −0.0872550 0.151130i
\(486\) 0 0
\(487\) 36.7496 1.66528 0.832642 0.553812i \(-0.186827\pi\)
0.832642 + 0.553812i \(0.186827\pi\)
\(488\) 5.77864 + 10.0089i 0.261587 + 0.453081i
\(489\) 0 0
\(490\) −2.49313 + 0.611861i −0.112628 + 0.0276411i
\(491\) −4.09899 7.09965i −0.184985 0.320403i 0.758587 0.651572i \(-0.225890\pi\)
−0.943571 + 0.331169i \(0.892557\pi\)
\(492\) 0 0
\(493\) 3.46560 + 6.00259i 0.156083 + 0.270343i
\(494\) −8.56159 2.95231i −0.385204 0.132831i
\(495\) 0 0
\(496\) −3.07048 5.31823i −0.137869 0.238795i
\(497\) 9.48313 + 12.6329i 0.425376 + 0.566662i
\(498\) 0 0
\(499\) 21.6266 37.4584i 0.968141 1.67687i 0.267211 0.963638i \(-0.413898\pi\)
0.700929 0.713231i \(-0.252769\pi\)
\(500\) −2.85604 −0.127726
\(501\) 0 0
\(502\) −1.18436 + 2.05137i −0.0528605 + 0.0915571i
\(503\) 0.00909609 0.0157549i 0.000405575 0.000702476i −0.865823 0.500351i \(-0.833204\pi\)
0.866228 + 0.499649i \(0.166538\pi\)
\(504\) 0 0
\(505\) −1.67106 2.89436i −0.0743612 0.128797i
\(506\) 15.9920 27.6990i 0.710933 1.23137i
\(507\) 0 0
\(508\) 1.59095 + 2.75560i 0.0705869 + 0.122260i
\(509\) −43.1006 −1.91040 −0.955200 0.295960i \(-0.904361\pi\)
−0.955200 + 0.295960i \(0.904361\pi\)
\(510\) 0 0
\(511\) −10.2056 + 1.23402i −0.451471 + 0.0545897i
\(512\) −23.2197 −1.02617
\(513\) 0 0
\(514\) −15.7576 −0.695036
\(515\) 0.713884 + 1.23648i 0.0314575 + 0.0544859i
\(516\) 0 0
\(517\) −24.3939 42.2514i −1.07284 1.85822i
\(518\) −5.87430 + 13.7684i −0.258102 + 0.604949i
\(519\) 0 0
\(520\) −0.137748 0.710362i −0.00604065 0.0311514i
\(521\) 10.4770 + 18.1467i 0.459006 + 0.795022i 0.998909 0.0467056i \(-0.0148723\pi\)
−0.539903 + 0.841727i \(0.681539\pi\)
\(522\) 0 0
\(523\) −34.7403 −1.51909 −0.759543 0.650457i \(-0.774577\pi\)
−0.759543 + 0.650457i \(0.774577\pi\)
\(524\) 1.65333 2.86365i 0.0722260 0.125099i
\(525\) 0 0
\(526\) −11.8814 + 20.5791i −0.518052 + 0.897292i
\(527\) −0.538730 0.933107i −0.0234674 0.0406468i
\(528\) 0 0
\(529\) −6.06520 −0.263704
\(530\) 1.70455 0.0740410
\(531\) 0 0
\(532\) −5.15809 + 0.623691i −0.223631 + 0.0270404i
\(533\) −18.3960 6.34352i −0.796819 0.274769i
\(534\) 0 0
\(535\) −0.972255 + 1.68400i −0.0420343 + 0.0728055i
\(536\) −6.81142 + 11.7977i −0.294209 + 0.509584i
\(537\) 0 0
\(538\) −8.75513 −0.377460
\(539\) 28.4353 6.97856i 1.22480 0.300588i
\(540\) 0 0
\(541\) 1.64923 2.85655i 0.0709059 0.122813i −0.828393 0.560148i \(-0.810744\pi\)
0.899299 + 0.437335i \(0.144078\pi\)
\(542\) 33.4678 1.43756
\(543\) 0 0
\(544\) −5.78497 −0.248029
\(545\) −2.72674 −0.116801
\(546\) 0 0
\(547\) 21.9417 0.938161 0.469080 0.883155i \(-0.344585\pi\)
0.469080 + 0.883155i \(0.344585\pi\)
\(548\) −19.5367 −0.834567
\(549\) 0 0
\(550\) 38.5583 1.64413
\(551\) −5.56828 + 9.64455i −0.237217 + 0.410871i
\(552\) 0 0
\(553\) −17.0484 22.7110i −0.724973 0.965768i
\(554\) 48.5368 2.06213
\(555\) 0 0
\(556\) −2.93850 + 5.08963i −0.124620 + 0.215848i
\(557\) −7.14329 + 12.3725i −0.302671 + 0.524241i −0.976740 0.214427i \(-0.931212\pi\)
0.674069 + 0.738668i \(0.264545\pi\)
\(558\) 0 0
\(559\) −3.65686 18.8583i −0.154669 0.797621i
\(560\) −1.50315 2.00241i −0.0635196 0.0846172i
\(561\) 0 0
\(562\) −6.80453 −0.287032
\(563\) −6.78784 −0.286073 −0.143037 0.989717i \(-0.545687\pi\)
−0.143037 + 0.989717i \(0.545687\pi\)
\(564\) 0 0
\(565\) −0.421234 0.729599i −0.0177215 0.0306945i
\(566\) 7.10307 12.3029i 0.298564 0.517128i
\(567\) 0 0
\(568\) −3.03552 + 5.25767i −0.127367 + 0.220607i
\(569\) 17.3212 0.726143 0.363072 0.931761i \(-0.381728\pi\)
0.363072 + 0.931761i \(0.381728\pi\)
\(570\) 0 0
\(571\) 6.50581 + 11.2684i 0.272260 + 0.471568i 0.969440 0.245328i \(-0.0788957\pi\)
−0.697180 + 0.716896i \(0.745562\pi\)
\(572\) −4.17078 21.5086i −0.174389 0.899318i
\(573\) 0 0
\(574\) −26.3408 + 3.18501i −1.09944 + 0.132940i
\(575\) 10.2078 + 17.6805i 0.425696 + 0.737327i
\(576\) 0 0
\(577\) 0.365767 + 0.633528i 0.0152271 + 0.0263741i 0.873539 0.486755i \(-0.161820\pi\)
−0.858311 + 0.513129i \(0.828486\pi\)
\(578\) 30.2735 1.25921
\(579\) 0 0
\(580\) 2.36218 0.0980842
\(581\) −3.19151 + 7.48039i −0.132406 + 0.310339i
\(582\) 0 0
\(583\) −19.4412 −0.805173
\(584\) −1.97548 3.42163i −0.0817459 0.141588i
\(585\) 0 0
\(586\) 15.9369 27.6035i 0.658347 1.14029i
\(587\) −4.26142 7.38099i −0.175888 0.304646i 0.764581 0.644528i \(-0.222946\pi\)
−0.940468 + 0.339882i \(0.889613\pi\)
\(588\) 0 0
\(589\) 0.865594 1.49925i 0.0356662 0.0617756i
\(590\) −1.11085 + 1.92404i −0.0457329 + 0.0792117i
\(591\) 0 0
\(592\) −14.6001 −0.600059
\(593\) −15.6547 + 27.1147i −0.642860 + 1.11347i 0.341932 + 0.939725i \(0.388919\pi\)
−0.984791 + 0.173741i \(0.944415\pi\)
\(594\) 0 0
\(595\) −0.263734 0.351332i −0.0108120 0.0144032i
\(596\) 11.1514 + 19.3147i 0.456777 + 0.791161i
\(597\) 0 0
\(598\) 20.8159 18.0785i 0.851225 0.739285i
\(599\) −0.375116 0.649720i −0.0153268 0.0265468i 0.858260 0.513215i \(-0.171546\pi\)
−0.873587 + 0.486668i \(0.838212\pi\)
\(600\) 0 0
\(601\) 4.77652 + 8.27318i 0.194838 + 0.337470i 0.946848 0.321683i \(-0.104248\pi\)
−0.752009 + 0.659153i \(0.770915\pi\)
\(602\) −15.7245 20.9473i −0.640884 0.853750i
\(603\) 0 0
\(604\) −4.44624 7.70111i −0.180915 0.313354i
\(605\) 1.28193 0.0521177
\(606\) 0 0
\(607\) −11.1197 19.2599i −0.451336 0.781737i 0.547133 0.837045i \(-0.315719\pi\)
−0.998469 + 0.0553087i \(0.982386\pi\)
\(608\) −4.64745 8.04961i −0.188479 0.326455i
\(609\) 0 0
\(610\) 4.16815 0.168764
\(611\) −8.00594 41.2863i −0.323886 1.67027i
\(612\) 0 0
\(613\) 4.13993 7.17057i 0.167210 0.289617i −0.770228 0.637769i \(-0.779857\pi\)
0.937438 + 0.348152i \(0.113191\pi\)
\(614\) 52.1578 2.10492
\(615\) 0 0
\(616\) 6.75567 + 8.99952i 0.272194 + 0.362601i
\(617\) 10.1656 17.6073i 0.409252 0.708845i −0.585554 0.810633i \(-0.699123\pi\)
0.994806 + 0.101789i \(0.0324565\pi\)
\(618\) 0 0
\(619\) −2.67049 4.62542i −0.107336 0.185911i 0.807354 0.590067i \(-0.200899\pi\)
−0.914690 + 0.404156i \(0.867565\pi\)
\(620\) −0.367203 −0.0147472
\(621\) 0 0
\(622\) 21.8651 + 37.8714i 0.876709 + 1.51850i
\(623\) 12.4427 29.1636i 0.498506 1.16842i
\(624\) 0 0
\(625\) −12.2086 + 21.1459i −0.488345 + 0.845838i
\(626\) −3.11112 + 5.38862i −0.124345 + 0.215372i
\(627\) 0 0
\(628\) −3.29536 5.70773i −0.131499 0.227763i
\(629\) −2.56165 −0.102140
\(630\) 0 0
\(631\) −3.23331 + 5.60026i −0.128716 + 0.222943i −0.923179 0.384369i \(-0.874419\pi\)
0.794463 + 0.607312i \(0.207752\pi\)
\(632\) 5.45714 9.45205i 0.217074 0.375982i
\(633\) 0 0
\(634\) 6.76217 11.7124i 0.268560 0.465160i
\(635\) −0.432271 −0.0171541
\(636\) 0 0
\(637\) 25.1335 + 2.30365i 0.995826 + 0.0912741i
\(638\) −64.0322 −2.53506
\(639\) 0 0
\(640\) 0.772706 1.33837i 0.0305439 0.0529035i
\(641\) −23.3289 −0.921434 −0.460717 0.887547i \(-0.652408\pi\)
−0.460717 + 0.887547i \(0.652408\pi\)
\(642\) 0 0
\(643\) 1.79439 3.10797i 0.0707637 0.122566i −0.828472 0.560030i \(-0.810790\pi\)
0.899236 + 0.437463i \(0.144123\pi\)
\(644\) 6.20714 14.5485i 0.244596 0.573293i
\(645\) 0 0
\(646\) −1.05658 1.83006i −0.0415707 0.0720026i
\(647\) −19.8262 + 34.3400i −0.779448 + 1.35004i 0.152812 + 0.988255i \(0.451167\pi\)
−0.932260 + 0.361788i \(0.882166\pi\)
\(648\) 0 0
\(649\) 12.6697 21.9446i 0.497331 0.861402i
\(650\) 31.4218 + 10.8352i 1.23246 + 0.424993i
\(651\) 0 0
\(652\) −1.32386 2.29299i −0.0518464 0.0898005i
\(653\) −18.1355 −0.709699 −0.354849 0.934923i \(-0.615468\pi\)
−0.354849 + 0.934923i \(0.615468\pi\)
\(654\) 0 0
\(655\) 0.224610 + 0.389035i 0.00877623 + 0.0152009i
\(656\) −12.9392 22.4114i −0.505192 0.875017i
\(657\) 0 0
\(658\) −34.4256 45.8599i −1.34205 1.78780i
\(659\) 6.74052 11.6749i 0.262573 0.454791i −0.704352 0.709851i \(-0.748762\pi\)
0.966925 + 0.255061i \(0.0820955\pi\)
\(660\) 0 0
\(661\) −5.15611 + 8.93064i −0.200549 + 0.347362i −0.948706 0.316161i \(-0.897606\pi\)
0.748156 + 0.663523i \(0.230939\pi\)
\(662\) −13.3076 23.0494i −0.517213 0.895839i
\(663\) 0 0
\(664\) −3.12571 −0.121301
\(665\) 0.276992 0.649226i 0.0107413 0.0251759i
\(666\) 0 0
\(667\) −16.9517 29.3613i −0.656374 1.13687i
\(668\) −7.77805 13.4720i −0.300942 0.521247i
\(669\) 0 0
\(670\) 2.45655 + 4.25487i 0.0949049 + 0.164380i
\(671\) −47.5397 −1.83525
\(672\) 0 0
\(673\) 4.61528 + 7.99390i 0.177906 + 0.308142i 0.941163 0.337953i \(-0.109734\pi\)
−0.763257 + 0.646095i \(0.776401\pi\)
\(674\) −31.9237 −1.22965
\(675\) 0 0
\(676\) 2.64527 18.6997i 0.101741 0.719221i
\(677\) −10.5467 + 18.2674i −0.405343 + 0.702075i −0.994361 0.106045i \(-0.966181\pi\)
0.589018 + 0.808120i \(0.299515\pi\)
\(678\) 0 0
\(679\) 30.9297 + 41.2027i 1.18697 + 1.58122i
\(680\) 0.0844203 0.146220i 0.00323737 0.00560729i
\(681\) 0 0
\(682\) 9.95385 0.381153
\(683\) 38.2212 1.46249 0.731246 0.682113i \(-0.238939\pi\)
0.731246 + 0.682113i \(0.238939\pi\)
\(684\) 0 0
\(685\) 1.32706 2.29854i 0.0507044 0.0878226i
\(686\) 32.1955 12.1550i 1.22923 0.464081i
\(687\) 0 0
\(688\) 12.7734 22.1241i 0.486980 0.843474i
\(689\) −15.8430 5.46317i −0.603570 0.208130i
\(690\) 0 0
\(691\) −26.2322 −0.997920 −0.498960 0.866625i \(-0.666285\pi\)
−0.498960 + 0.866625i \(0.666285\pi\)
\(692\) −9.80084 16.9755i −0.372572 0.645313i
\(693\) 0 0
\(694\) −14.3130 −0.543314
\(695\) −0.399204 0.691442i −0.0151427 0.0262279i
\(696\) 0 0
\(697\) −2.27024 3.93218i −0.0859916 0.148942i
\(698\) 20.7836 + 35.9982i 0.786670 + 1.36255i
\(699\) 0 0
\(700\) 18.9306 2.28900i 0.715511 0.0865161i
\(701\) 46.7346 1.76514 0.882570 0.470180i \(-0.155811\pi\)
0.882570 + 0.470180i \(0.155811\pi\)
\(702\) 0 0
\(703\) −2.05794 3.56446i −0.0776167 0.134436i
\(704\) 6.66528 11.5446i 0.251207 0.435104i
\(705\) 0 0
\(706\) 20.6835 35.8248i 0.778433 1.34828i
\(707\) 26.8972 + 35.8309i 1.01157 + 1.34756i
\(708\) 0 0
\(709\) 23.7232 + 41.0898i 0.890944 + 1.54316i 0.838745 + 0.544524i \(0.183290\pi\)
0.0521988 + 0.998637i \(0.483377\pi\)
\(710\) 1.09476 + 1.89619i 0.0410858 + 0.0711626i
\(711\) 0 0
\(712\) 12.1861 0.456695
\(713\) 2.63516 + 4.56423i 0.0986876 + 0.170932i
\(714\) 0 0
\(715\) 2.81384 + 0.970301i 0.105232 + 0.0362872i
\(716\) 7.60461 13.1716i 0.284197 0.492244i
\(717\) 0 0
\(718\) 2.56280 4.43890i 0.0956428 0.165658i
\(719\) −24.6190 42.6413i −0.918133 1.59025i −0.802249 0.596990i \(-0.796363\pi\)
−0.115884 0.993263i \(-0.536970\pi\)
\(720\) 0 0
\(721\) −11.4906 15.3071i −0.427931 0.570066i
\(722\) −15.9549 + 27.6347i −0.593779 + 1.02846i
\(723\) 0 0
\(724\) 18.1900 0.676024
\(725\) 20.4361 35.3963i 0.758977 1.31459i
\(726\) 0 0
\(727\) −32.0495 −1.18865 −0.594325 0.804225i \(-0.702581\pi\)
−0.594325 + 0.804225i \(0.702581\pi\)
\(728\) 2.97636 + 9.23227i 0.110311 + 0.342171i
\(729\) 0 0
\(730\) −1.42492 −0.0527387
\(731\) 2.24114 3.88178i 0.0828917 0.143573i
\(732\) 0 0
\(733\) −14.1005 + 24.4228i −0.520813 + 0.902075i 0.478894 + 0.877873i \(0.341038\pi\)
−0.999707 + 0.0242025i \(0.992295\pi\)
\(734\) −13.1462 + 22.7699i −0.485236 + 0.840453i
\(735\) 0 0
\(736\) 28.2968 1.04303
\(737\) −28.0181 48.5288i −1.03206 1.78758i
\(738\) 0 0
\(739\) 21.2685 36.8381i 0.782375 1.35511i −0.148180 0.988960i \(-0.547342\pi\)
0.930555 0.366153i \(-0.119325\pi\)
\(740\) −0.436510 + 0.756058i −0.0160464 + 0.0277932i
\(741\) 0 0
\(742\) −22.6852 + 2.74299i −0.832801 + 0.100698i
\(743\) 7.95711 + 13.7821i 0.291918 + 0.505617i 0.974263 0.225413i \(-0.0723732\pi\)
−0.682345 + 0.731030i \(0.739040\pi\)
\(744\) 0 0
\(745\) −3.02989 −0.111007
\(746\) −4.68521 8.11502i −0.171538 0.297112i
\(747\) 0 0
\(748\) 2.55611 4.42731i 0.0934605 0.161878i
\(749\) 10.2295 23.9762i 0.373777 0.876072i
\(750\) 0 0
\(751\) 18.1996 0.664114 0.332057 0.943259i \(-0.392257\pi\)
0.332057 + 0.943259i \(0.392257\pi\)
\(752\) 27.9646 48.4362i 1.01977 1.76629i
\(753\) 0 0
\(754\) −52.1809 17.9937i −1.90032 0.655290i
\(755\) 1.20807 0.0439662
\(756\) 0 0
\(757\) 22.4502 + 38.8849i 0.815967 + 1.41330i 0.908632 + 0.417598i \(0.137128\pi\)
−0.0926649 + 0.995697i \(0.529539\pi\)
\(758\) −5.62989 9.75126i −0.204487 0.354182i
\(759\) 0 0
\(760\) 0.271282 0.00984042
\(761\) −13.2444 22.9399i −0.480108 0.831572i 0.519631 0.854391i \(-0.326069\pi\)
−0.999740 + 0.0228184i \(0.992736\pi\)
\(762\) 0 0
\(763\) 36.2892 4.38791i 1.31376 0.158853i
\(764\) 9.52554 + 16.4987i 0.344622 + 0.596903i
\(765\) 0 0
\(766\) 4.21900 + 7.30752i 0.152439 + 0.264031i
\(767\) 16.4914 14.3227i 0.595471 0.517164i
\(768\) 0 0
\(769\) −6.98127 12.0919i −0.251751 0.436045i 0.712257 0.701919i \(-0.247673\pi\)
−0.964008 + 0.265873i \(0.914340\pi\)
\(770\) 4.02907 0.487176i 0.145198 0.0175566i
\(771\) 0 0
\(772\) −0.756579 + 1.31043i −0.0272299 + 0.0471635i
\(773\) −12.8113 −0.460790 −0.230395 0.973097i \(-0.574002\pi\)
−0.230395 + 0.973097i \(0.574002\pi\)
\(774\) 0 0
\(775\) −3.17681 + 5.50239i −0.114114 + 0.197652i
\(776\) −9.90048 + 17.1481i −0.355406 + 0.615582i
\(777\) 0 0
\(778\) −4.18797 7.25378i −0.150146 0.260061i
\(779\) 3.64767 6.31795i 0.130691 0.226364i
\(780\) 0 0
\(781\) −12.4863 21.6269i −0.446795 0.773871i
\(782\) 6.43320 0.230051
\(783\) 0 0
\(784\) 23.2271 + 24.2304i 0.829540 + 0.865372i
\(785\) 0.895370 0.0319571
\(786\) 0 0
\(787\) −27.3199 −0.973848 −0.486924 0.873444i \(-0.661881\pi\)
−0.486924 + 0.873444i \(0.661881\pi\)
\(788\) 1.07383 + 1.85993i 0.0382537 + 0.0662574i
\(789\) 0 0
\(790\) −1.96813 3.40890i −0.0700229 0.121283i
\(791\) 6.78013 + 9.03210i 0.241074 + 0.321145i
\(792\) 0 0
\(793\) −38.7410 13.3591i −1.37573 0.474396i
\(794\) 3.71956 + 6.44247i 0.132002 + 0.228635i
\(795\) 0 0
\(796\) 20.4837 0.726027
\(797\) −14.7002 + 25.4614i −0.520707 + 0.901891i 0.479003 + 0.877813i \(0.340998\pi\)
−0.999710 + 0.0240775i \(0.992335\pi\)
\(798\) 0 0
\(799\) 4.90652 8.49835i 0.173580 0.300650i
\(800\) 17.0565 + 29.5428i 0.603040 + 1.04450i
\(801\) 0 0
\(802\) 23.4379 0.827621
\(803\) 16.2519 0.573517
\(804\) 0 0
\(805\) 1.29004 + 1.71852i 0.0454679 + 0.0605697i
\(806\) 8.11157 + 2.79713i 0.285718 + 0.0985246i
\(807\) 0 0
\(808\) −8.60968 + 14.9124i −0.302888 + 0.524617i
\(809\) −3.00617 + 5.20683i −0.105691 + 0.183063i −0.914020 0.405668i \(-0.867039\pi\)
0.808329 + 0.588731i \(0.200372\pi\)
\(810\) 0 0
\(811\) 8.44807 0.296652 0.148326 0.988939i \(-0.452612\pi\)
0.148326 + 0.988939i \(0.452612\pi\)
\(812\) −31.4374 + 3.80125i −1.10323 + 0.133398i
\(813\) 0 0
\(814\) 11.8326 20.4946i 0.414732 0.718337i
\(815\) 0.359701 0.0125998
\(816\) 0 0
\(817\) 7.20184 0.251960
\(818\) −38.4551 −1.34455
\(819\) 0 0
\(820\) −1.54742 −0.0540382
\(821\) 34.2635 1.19581 0.597903 0.801569i \(-0.296001\pi\)
0.597903 + 0.801569i \(0.296001\pi\)
\(822\) 0 0
\(823\) −6.23732 −0.217419 −0.108710 0.994074i \(-0.534672\pi\)
−0.108710 + 0.994074i \(0.534672\pi\)
\(824\) 3.67809 6.37064i 0.128132 0.221932i
\(825\) 0 0
\(826\) 11.6876 27.3940i 0.406665 0.953158i
\(827\) −19.5232 −0.678889 −0.339445 0.940626i \(-0.610239\pi\)
−0.339445 + 0.940626i \(0.610239\pi\)
\(828\) 0 0
\(829\) −16.3383 + 28.2988i −0.567453 + 0.982857i 0.429364 + 0.903131i \(0.358738\pi\)
−0.996817 + 0.0797254i \(0.974596\pi\)
\(830\) −0.563647 + 0.976265i −0.0195645 + 0.0338866i
\(831\) 0 0
\(832\) 8.67580 7.53489i 0.300779 0.261225i
\(833\) 4.07530 + 4.25133i 0.141201 + 0.147300i
\(834\) 0 0
\(835\) 2.11334 0.0731353
\(836\) 8.21395 0.284085
\(837\) 0 0
\(838\) 20.2702 + 35.1091i 0.700223 + 1.21282i
\(839\) 12.3713 21.4278i 0.427106 0.739769i −0.569508 0.821985i \(-0.692866\pi\)
0.996615 + 0.0822161i \(0.0261998\pi\)
\(840\) 0 0
\(841\) −19.4374 + 33.6665i −0.670255 + 1.16092i
\(842\) −17.5174 −0.603689
\(843\) 0 0
\(844\) −19.2267 33.3017i −0.661812 1.14629i
\(845\) 2.02038 + 1.58143i 0.0695032 + 0.0544029i
\(846\) 0 0
\(847\) −17.0607 + 2.06289i −0.586211 + 0.0708818i
\(848\) −11.1435 19.3011i −0.382670 0.662803i
\(849\) 0 0
\(850\) 3.87776 + 6.71647i 0.133006 + 0.230373i
\(851\) 12.5301 0.429528
\(852\) 0 0
\(853\) 18.2245 0.623994 0.311997 0.950083i \(-0.399002\pi\)
0.311997 + 0.950083i \(0.399002\pi\)
\(854\) −55.4724 + 6.70745i −1.89823 + 0.229524i
\(855\) 0 0
\(856\) 10.0186 0.342427
\(857\) 1.27340 + 2.20559i 0.0434984 + 0.0753414i 0.886955 0.461856i \(-0.152816\pi\)
−0.843457 + 0.537197i \(0.819483\pi\)
\(858\) 0 0
\(859\) −27.0045 + 46.7732i −0.921382 + 1.59588i −0.124104 + 0.992269i \(0.539606\pi\)
−0.797278 + 0.603612i \(0.793728\pi\)
\(860\) −0.763792 1.32293i −0.0260451 0.0451114i
\(861\) 0 0
\(862\) −18.9788 + 32.8723i −0.646421 + 1.11963i
\(863\) 0.621545 1.07655i 0.0211576 0.0366461i −0.855253 0.518211i \(-0.826598\pi\)
0.876410 + 0.481565i \(0.159931\pi\)
\(864\) 0 0
\(865\) 2.66295 0.0905429
\(866\) 24.4800 42.4006i 0.831864 1.44083i
\(867\) 0 0
\(868\) 4.88696 0.590908i 0.165874 0.0200567i
\(869\) 22.4474 + 38.8801i 0.761477 + 1.31892i
\(870\) 0 0
\(871\) −9.19540 47.4203i −0.311574 1.60678i
\(872\) 7.02440 + 12.1666i 0.237876 + 0.412013i
\(873\) 0 0
\(874\) 5.16821 + 8.95161i 0.174817 + 0.302793i
\(875\) −2.04116 + 4.78414i −0.0690036 + 0.161733i
\(876\) 0 0
\(877\) −0.401330 0.695125i −0.0135520 0.0234727i 0.859170 0.511690i \(-0.170981\pi\)
−0.872722 + 0.488218i \(0.837647\pi\)
\(878\) −46.6975 −1.57597
\(879\) 0 0
\(880\) 1.97917 + 3.42803i 0.0667179 + 0.115559i
\(881\) −18.5318 32.0980i −0.624352 1.08141i −0.988666 0.150133i \(-0.952030\pi\)
0.364314 0.931276i \(-0.381304\pi\)
\(882\) 0 0
\(883\) −22.8671 −0.769539 −0.384770 0.923013i \(-0.625719\pi\)
−0.384770 + 0.923013i \(0.625719\pi\)
\(884\) 3.32713 2.88960i 0.111904 0.0971877i
\(885\) 0 0
\(886\) −17.2065 + 29.8025i −0.578063 + 1.00123i
\(887\) 49.2573 1.65390 0.826950 0.562276i \(-0.190074\pi\)
0.826950 + 0.562276i \(0.190074\pi\)
\(888\) 0 0
\(889\) 5.75292 0.695616i 0.192947 0.0233302i
\(890\) 2.19748 3.80614i 0.0736597 0.127582i
\(891\) 0 0
\(892\) 0.528840 + 0.915978i 0.0177069 + 0.0306692i
\(893\) 15.7669 0.527620
\(894\) 0 0
\(895\) 1.03311 + 1.78940i 0.0345330 + 0.0598130i
\(896\) −8.12993 + 19.0552i −0.271602 + 0.636591i
\(897\) 0 0
\(898\) −10.8174 + 18.7362i −0.360980 + 0.625236i
\(899\) 5.27559 9.13760i 0.175951 0.304756i
\(900\) 0 0
\(901\) −1.95518 3.38647i −0.0651365 0.112820i
\(902\) 41.9462 1.39666
\(903\) 0 0
\(904\) −2.17029 + 3.75906i −0.0721829 + 0.125024i
\(905\) −1.23558 + 2.14009i −0.0410721 + 0.0711390i
\(906\) 0 0
\(907\) 2.50228 4.33407i 0.0830867 0.143910i −0.821488 0.570226i \(-0.806855\pi\)
0.904574 + 0.426316i \(0.140189\pi\)
\(908\) 4.14321 0.137497
\(909\) 0 0
\(910\) 3.42026 + 0.735200i 0.113381 + 0.0243716i
\(911\) −49.0582 −1.62537 −0.812685 0.582703i \(-0.801995\pi\)
−0.812685 + 0.582703i \(0.801995\pi\)
\(912\) 0 0
\(913\) 6.42866 11.1348i 0.212757 0.368507i
\(914\) −38.1266 −1.26111
\(915\) 0 0
\(916\) −2.30518 + 3.99270i −0.0761654 + 0.131922i
\(917\) −3.61529 4.81608i −0.119387 0.159041i
\(918\) 0 0
\(919\) −14.8028 25.6392i −0.488299 0.845758i 0.511611 0.859217i \(-0.329049\pi\)
−0.999909 + 0.0134590i \(0.995716\pi\)
\(920\) −0.412937 + 0.715227i −0.0136141 + 0.0235803i
\(921\) 0 0
\(922\) −1.89602 + 3.28401i −0.0624422 + 0.108153i
\(923\) −4.09794 21.1329i −0.134885 0.695598i
\(924\) 0 0
\(925\) 7.55282 + 13.0819i 0.248335 + 0.430129i
\(926\) −5.63311 −0.185116
\(927\) 0 0
\(928\) −28.3251 49.0605i −0.929817 1.61049i
\(929\) 8.41525 + 14.5756i 0.276095 + 0.478211i 0.970411 0.241460i \(-0.0776261\pi\)
−0.694316 + 0.719671i \(0.744293\pi\)
\(930\) 0 0
\(931\) −2.64164 + 9.08604i −0.0865764 + 0.297783i
\(932\) 9.73865 16.8678i 0.319000 0.552524i
\(933\) 0 0
\(934\) 12.0106 20.8030i 0.392999 0.680695i
\(935\) 0.347255 + 0.601463i 0.0113565 + 0.0196699i
\(936\) 0 0
\(937\) 44.0131 1.43784 0.718922 0.695091i \(-0.244636\pi\)
0.718922 + 0.695091i \(0.244636\pi\)
\(938\) −39.5403 52.6734i −1.29104 1.71985i
\(939\) 0 0
\(940\) −1.67216 2.89627i −0.0545400 0.0944660i
\(941\) 26.5338 + 45.9578i 0.864976 + 1.49818i 0.867071 + 0.498184i \(0.166000\pi\)
−0.00209573 + 0.999998i \(0.500667\pi\)
\(942\) 0 0
\(943\) 11.1048 + 19.2340i 0.361620 + 0.626345i
\(944\) 29.0487 0.945453
\(945\) 0 0
\(946\) 20.7043 + 35.8609i 0.673154 + 1.16594i
\(947\) 27.8817 0.906034 0.453017 0.891502i \(-0.350348\pi\)
0.453017 + 0.891502i \(0.350348\pi\)
\(948\) 0 0
\(949\) 13.2439 + 4.56694i 0.429917 + 0.148249i
\(950\) −6.23051 + 10.7916i −0.202145 + 0.350125i
\(951\) 0 0
\(952\) −0.888219 + 2.08184i −0.0287873 + 0.0674729i
\(953\) −18.1784 + 31.4859i −0.588856 + 1.01993i 0.405527 + 0.914083i \(0.367088\pi\)
−0.994383 + 0.105845i \(0.966245\pi\)
\(954\) 0 0
\(955\) −2.58815 −0.0837505
\(956\) 22.5960 0.730807
\(957\) 0 0
\(958\) −33.9877 + 58.8685i −1.09809 + 1.90195i
\(959\) −13.9625 + 32.7259i −0.450873 + 1.05677i
\(960\) 0 0
\(961\) 14.6799 25.4263i 0.473545 0.820205i
\(962\) 15.4018 13.3764i 0.496573 0.431272i
\(963\) 0 0
\(964\) −11.0057 −0.354471
\(965\) −0.102784 0.178026i −0.00330872 0.00573087i
\(966\) 0 0
\(967\) −15.2681 −0.490988 −0.245494 0.969398i \(-0.578950\pi\)
−0.245494 + 0.969398i \(0.578950\pi\)
\(968\) −3.30239 5.71990i −0.106143 0.183845i
\(969\) 0 0
\(970\) 3.57063 + 6.18450i 0.114646 + 0.198572i
\(971\) −18.4460 31.9494i −0.591961 1.02531i −0.993968 0.109669i \(-0.965021\pi\)
0.402008 0.915636i \(-0.368313\pi\)
\(972\) 0 0
\(973\) 6.42554 + 8.55974i 0.205993 + 0.274413i
\(974\) −68.2867 −2.18805
\(975\) 0 0
\(976\) −27.2493 47.1972i −0.872229 1.51074i
\(977\) −0.221957 + 0.384441i −0.00710104 + 0.0122994i −0.869554 0.493838i \(-0.835594\pi\)
0.862453 + 0.506137i \(0.168927\pi\)
\(978\) 0 0
\(979\) −25.0633 + 43.4109i −0.801026 + 1.38742i
\(980\) 1.94920 0.478370i 0.0622649 0.0152810i
\(981\) 0 0
\(982\) 7.61658 + 13.1923i 0.243055 + 0.420983i
\(983\) 22.7802 + 39.4564i 0.726575 + 1.25846i 0.958323 + 0.285688i \(0.0922222\pi\)
−0.231748 + 0.972776i \(0.574444\pi\)
\(984\) 0 0
\(985\) −0.291767 −0.00929648
\(986\) −6.43964 11.1538i −0.205080 0.355209i
\(987\) 0 0
\(988\) 6.69369 + 2.30820i 0.212955 + 0.0734336i
\(989\) −10.9624 + 18.9875i −0.348585 + 0.603766i
\(990\) 0 0
\(991\) −26.8148 + 46.4445i −0.851799 + 1.47536i 0.0277842 + 0.999614i \(0.491155\pi\)
−0.879583 + 0.475745i \(0.842178\pi\)
\(992\) 4.40316 + 7.62650i 0.139801 + 0.242142i
\(993\) 0 0
\(994\) −17.6212 23.4739i −0.558910 0.744548i
\(995\) −1.39139 + 2.40996i −0.0441100 + 0.0764008i
\(996\) 0 0
\(997\) 29.0852 0.921139 0.460569 0.887624i \(-0.347645\pi\)
0.460569 + 0.887624i \(0.347645\pi\)
\(998\) −40.1857 + 69.6038i −1.27206 + 2.20327i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.s.d.289.1 12
3.2 odd 2 91.2.h.b.16.6 yes 12
7.4 even 3 819.2.n.d.172.6 12
13.9 even 3 819.2.n.d.100.6 12
21.2 odd 6 637.2.f.k.393.1 12
21.5 even 6 637.2.f.j.393.1 12
21.11 odd 6 91.2.g.b.81.1 yes 12
21.17 even 6 637.2.g.l.263.1 12
21.20 even 2 637.2.h.l.471.6 12
39.23 odd 6 1183.2.e.g.170.6 12
39.29 odd 6 1183.2.e.h.170.1 12
39.35 odd 6 91.2.g.b.9.1 12
91.74 even 3 inner 819.2.s.d.802.1 12
273.23 odd 6 8281.2.a.ce.1.1 6
273.68 even 6 8281.2.a.ca.1.6 6
273.74 odd 6 91.2.h.b.74.6 yes 12
273.107 odd 6 8281.2.a.bz.1.6 6
273.152 even 6 637.2.f.j.295.1 12
273.179 odd 6 1183.2.e.g.508.6 12
273.191 odd 6 637.2.f.k.295.1 12
273.230 even 6 637.2.g.l.373.1 12
273.257 even 6 8281.2.a.cf.1.1 6
273.263 odd 6 1183.2.e.h.508.1 12
273.269 even 6 637.2.h.l.165.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.b.9.1 12 39.35 odd 6
91.2.g.b.81.1 yes 12 21.11 odd 6
91.2.h.b.16.6 yes 12 3.2 odd 2
91.2.h.b.74.6 yes 12 273.74 odd 6
637.2.f.j.295.1 12 273.152 even 6
637.2.f.j.393.1 12 21.5 even 6
637.2.f.k.295.1 12 273.191 odd 6
637.2.f.k.393.1 12 21.2 odd 6
637.2.g.l.263.1 12 21.17 even 6
637.2.g.l.373.1 12 273.230 even 6
637.2.h.l.165.6 12 273.269 even 6
637.2.h.l.471.6 12 21.20 even 2
819.2.n.d.100.6 12 13.9 even 3
819.2.n.d.172.6 12 7.4 even 3
819.2.s.d.289.1 12 1.1 even 1 trivial
819.2.s.d.802.1 12 91.74 even 3 inner
1183.2.e.g.170.6 12 39.23 odd 6
1183.2.e.g.508.6 12 273.179 odd 6
1183.2.e.h.170.1 12 39.29 odd 6
1183.2.e.h.508.1 12 273.263 odd 6
8281.2.a.bz.1.6 6 273.107 odd 6
8281.2.a.ca.1.6 6 273.68 even 6
8281.2.a.ce.1.1 6 273.23 odd 6
8281.2.a.cf.1.1 6 273.257 even 6