Properties

Label 637.2.f.k.393.5
Level $637$
Weight $2$
Character 637.393
Analytic conductor $5.086$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(295,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.295");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 7x^{10} - 2x^{9} + 33x^{8} - 11x^{7} + 55x^{6} + 17x^{5} + 47x^{4} + x^{3} + 8x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 393.5
Root \(1.16700 - 2.02131i\) of defining polynomial
Character \(\chi\) \(=\) 637.393
Dual form 637.2.f.k.295.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.952780 + 1.65026i) q^{2} +(-0.214224 - 0.371047i) q^{3} +(-0.815580 + 1.41263i) q^{4} -1.47313 q^{5} +(0.408216 - 0.707051i) q^{6} +0.702849 q^{8} +(1.40822 - 2.43910i) q^{9} +(-1.40357 - 2.43105i) q^{10} +(2.19681 + 3.80498i) q^{11} +0.698866 q^{12} +(2.69752 + 2.39236i) q^{13} +(0.315580 + 0.546600i) q^{15} +(2.30082 + 3.98514i) q^{16} +(0.601356 - 1.04158i) q^{17} +5.36688 q^{18} +(-1.62105 + 2.80773i) q^{19} +(1.20145 - 2.08098i) q^{20} +(-4.18615 + 7.25062i) q^{22} +(2.21855 + 3.84264i) q^{23} +(-0.150567 - 0.260790i) q^{24} -2.82989 q^{25} +(-1.37787 + 6.73101i) q^{26} -2.49204 q^{27} +(-0.0837807 - 0.145112i) q^{29} +(-0.601356 + 1.04158i) q^{30} +5.24543 q^{31} +(-3.68150 + 6.37655i) q^{32} +(0.941217 - 1.63024i) q^{33} +2.29184 q^{34} +(2.29702 + 3.97856i) q^{36} +(-3.52527 - 6.10595i) q^{37} -6.17800 q^{38} +(0.309802 - 1.51341i) q^{39} -1.03539 q^{40} +(-2.58195 - 4.47206i) q^{41} +(-0.0113752 + 0.0197024i) q^{43} -7.16668 q^{44} +(-2.07449 + 3.59311i) q^{45} +(-4.22758 + 7.32239i) q^{46} +11.6836 q^{47} +(0.985780 - 1.70742i) q^{48} +(-2.69626 - 4.67006i) q^{50} -0.515299 q^{51} +(-5.57955 + 1.85943i) q^{52} -0.141786 q^{53} +(-2.37436 - 4.11252i) q^{54} +(-3.23618 - 5.60523i) q^{55} +1.38907 q^{57} +(0.159649 - 0.276520i) q^{58} +(2.67177 - 4.62764i) q^{59} -1.02952 q^{60} +(-5.77287 + 9.99891i) q^{61} +(4.99774 + 8.65635i) q^{62} -4.82736 q^{64} +(-3.97380 - 3.52425i) q^{65} +3.58709 q^{66} +(-2.06773 - 3.58141i) q^{67} +(0.980907 + 1.69898i) q^{68} +(0.950533 - 1.64637i) q^{69} +(4.98486 - 8.63403i) q^{71} +(0.989763 - 1.71432i) q^{72} +15.2416 q^{73} +(6.71762 - 11.6353i) q^{74} +(0.606229 + 1.05002i) q^{75} +(-2.64418 - 4.57986i) q^{76} +(2.79269 - 0.930689i) q^{78} +0.774501 q^{79} +(-3.38941 - 5.87062i) q^{80} +(-3.69080 - 6.39265i) q^{81} +(4.92006 - 8.52179i) q^{82} -16.0186 q^{83} +(-0.885875 + 1.53438i) q^{85} -0.0433522 q^{86} +(-0.0358956 + 0.0621731i) q^{87} +(1.54402 + 2.67433i) q^{88} +(-3.27880 - 5.67904i) q^{89} -7.90611 q^{90} -7.23762 q^{92} +(-1.12370 - 1.94630i) q^{93} +(11.1319 + 19.2809i) q^{94} +(2.38801 - 4.13616i) q^{95} +3.15466 q^{96} +(-1.74583 + 3.02387i) q^{97} +12.3743 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + q^{3} - 4 q^{4} - 2 q^{5} - 9 q^{6} - 6 q^{8} + 3 q^{9} + 4 q^{10} + 4 q^{11} - 10 q^{12} - 2 q^{13} - 2 q^{15} + 8 q^{16} + 5 q^{17} - 6 q^{18} - q^{19} - q^{20} - 5 q^{22} - q^{23}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.952780 + 1.65026i 0.673717 + 1.16691i 0.976842 + 0.213962i \(0.0686367\pi\)
−0.303125 + 0.952951i \(0.598030\pi\)
\(3\) −0.214224 0.371047i −0.123682 0.214224i 0.797535 0.603273i \(-0.206137\pi\)
−0.921217 + 0.389049i \(0.872804\pi\)
\(4\) −0.815580 + 1.41263i −0.407790 + 0.706313i
\(5\) −1.47313 −0.658804 −0.329402 0.944190i \(-0.606847\pi\)
−0.329402 + 0.944190i \(0.606847\pi\)
\(6\) 0.408216 0.707051i 0.166654 0.288653i
\(7\) 0 0
\(8\) 0.702849 0.248495
\(9\) 1.40822 2.43910i 0.469405 0.813034i
\(10\) −1.40357 2.43105i −0.443847 0.768766i
\(11\) 2.19681 + 3.80498i 0.662362 + 1.14725i 0.979993 + 0.199031i \(0.0637794\pi\)
−0.317631 + 0.948214i \(0.602887\pi\)
\(12\) 0.698866 0.201745
\(13\) 2.69752 + 2.39236i 0.748158 + 0.663520i
\(14\) 0 0
\(15\) 0.315580 + 0.546600i 0.0814823 + 0.141131i
\(16\) 2.30082 + 3.98514i 0.575205 + 0.996284i
\(17\) 0.601356 1.04158i 0.145850 0.252620i −0.783840 0.620963i \(-0.786742\pi\)
0.929690 + 0.368343i \(0.120075\pi\)
\(18\) 5.36688 1.26499
\(19\) −1.62105 + 2.80773i −0.371893 + 0.644138i −0.989857 0.142068i \(-0.954625\pi\)
0.617963 + 0.786207i \(0.287958\pi\)
\(20\) 1.20145 2.08098i 0.268653 0.465321i
\(21\) 0 0
\(22\) −4.18615 + 7.25062i −0.892490 + 1.54584i
\(23\) 2.21855 + 3.84264i 0.462600 + 0.801246i 0.999090 0.0426603i \(-0.0135833\pi\)
−0.536490 + 0.843907i \(0.680250\pi\)
\(24\) −0.150567 0.260790i −0.0307343 0.0532334i
\(25\) −2.82989 −0.565978
\(26\) −1.37787 + 6.73101i −0.270223 + 1.32006i
\(27\) −2.49204 −0.479593
\(28\) 0 0
\(29\) −0.0837807 0.145112i −0.0155577 0.0269467i 0.858142 0.513413i \(-0.171619\pi\)
−0.873699 + 0.486466i \(0.838286\pi\)
\(30\) −0.601356 + 1.04158i −0.109792 + 0.190165i
\(31\) 5.24543 0.942108 0.471054 0.882104i \(-0.343874\pi\)
0.471054 + 0.882104i \(0.343874\pi\)
\(32\) −3.68150 + 6.37655i −0.650803 + 1.12722i
\(33\) 0.941217 1.63024i 0.163845 0.283788i
\(34\) 2.29184 0.393047
\(35\) 0 0
\(36\) 2.29702 + 3.97856i 0.382837 + 0.663094i
\(37\) −3.52527 6.10595i −0.579552 1.00381i −0.995531 0.0944386i \(-0.969894\pi\)
0.415979 0.909374i \(-0.363439\pi\)
\(38\) −6.17800 −1.00220
\(39\) 0.309802 1.51341i 0.0496080 0.242339i
\(40\) −1.03539 −0.163709
\(41\) −2.58195 4.47206i −0.403233 0.698419i 0.590881 0.806758i \(-0.298780\pi\)
−0.994114 + 0.108339i \(0.965447\pi\)
\(42\) 0 0
\(43\) −0.0113752 + 0.0197024i −0.00173470 + 0.00300459i −0.866891 0.498497i \(-0.833886\pi\)
0.865157 + 0.501502i \(0.167219\pi\)
\(44\) −7.16668 −1.08042
\(45\) −2.07449 + 3.59311i −0.309246 + 0.535630i
\(46\) −4.22758 + 7.32239i −0.623323 + 1.07963i
\(47\) 11.6836 1.70422 0.852111 0.523362i \(-0.175322\pi\)
0.852111 + 0.523362i \(0.175322\pi\)
\(48\) 0.985780 1.70742i 0.142285 0.246445i
\(49\) 0 0
\(50\) −2.69626 4.67006i −0.381309 0.660446i
\(51\) −0.515299 −0.0721563
\(52\) −5.57955 + 1.85943i −0.773744 + 0.257857i
\(53\) −0.141786 −0.0194758 −0.00973788 0.999953i \(-0.503100\pi\)
−0.00973788 + 0.999953i \(0.503100\pi\)
\(54\) −2.37436 4.11252i −0.323110 0.559643i
\(55\) −3.23618 5.60523i −0.436367 0.755809i
\(56\) 0 0
\(57\) 1.38907 0.183986
\(58\) 0.159649 0.276520i 0.0209630 0.0363089i
\(59\) 2.67177 4.62764i 0.347835 0.602468i −0.638030 0.770012i \(-0.720250\pi\)
0.985865 + 0.167544i \(0.0535837\pi\)
\(60\) −1.02952 −0.132911
\(61\) −5.77287 + 9.99891i −0.739141 + 1.28023i 0.213742 + 0.976890i \(0.431435\pi\)
−0.952883 + 0.303339i \(0.901898\pi\)
\(62\) 4.99774 + 8.65635i 0.634714 + 1.09936i
\(63\) 0 0
\(64\) −4.82736 −0.603420
\(65\) −3.97380 3.52425i −0.492889 0.437130i
\(66\) 3.58709 0.441540
\(67\) −2.06773 3.58141i −0.252613 0.437539i 0.711631 0.702553i \(-0.247957\pi\)
−0.964245 + 0.265014i \(0.914623\pi\)
\(68\) 0.980907 + 1.69898i 0.118952 + 0.206032i
\(69\) 0.950533 1.64637i 0.114431 0.198200i
\(70\) 0 0
\(71\) 4.98486 8.63403i 0.591594 1.02467i −0.402424 0.915453i \(-0.631832\pi\)
0.994018 0.109217i \(-0.0348344\pi\)
\(72\) 0.989763 1.71432i 0.116645 0.202035i
\(73\) 15.2416 1.78389 0.891947 0.452141i \(-0.149340\pi\)
0.891947 + 0.452141i \(0.149340\pi\)
\(74\) 6.71762 11.6353i 0.780908 1.35257i
\(75\) 0.606229 + 1.05002i 0.0700013 + 0.121246i
\(76\) −2.64418 4.57986i −0.303309 0.525346i
\(77\) 0 0
\(78\) 2.79269 0.930689i 0.316210 0.105380i
\(79\) 0.774501 0.0871382 0.0435691 0.999050i \(-0.486127\pi\)
0.0435691 + 0.999050i \(0.486127\pi\)
\(80\) −3.38941 5.87062i −0.378947 0.656356i
\(81\) −3.69080 6.39265i −0.410088 0.710294i
\(82\) 4.92006 8.52179i 0.543329 0.941074i
\(83\) −16.0186 −1.75827 −0.879136 0.476571i \(-0.841879\pi\)
−0.879136 + 0.476571i \(0.841879\pi\)
\(84\) 0 0
\(85\) −0.885875 + 1.53438i −0.0960866 + 0.166427i
\(86\) −0.0433522 −0.00467479
\(87\) −0.0358956 + 0.0621731i −0.00384842 + 0.00666565i
\(88\) 1.54402 + 2.67433i 0.164593 + 0.285084i
\(89\) −3.27880 5.67904i −0.347552 0.601977i 0.638262 0.769819i \(-0.279654\pi\)
−0.985814 + 0.167842i \(0.946320\pi\)
\(90\) −7.90611 −0.833378
\(91\) 0 0
\(92\) −7.23762 −0.754574
\(93\) −1.12370 1.94630i −0.116522 0.201822i
\(94\) 11.1319 + 19.2809i 1.14816 + 1.98868i
\(95\) 2.38801 4.13616i 0.245005 0.424361i
\(96\) 3.15466 0.321971
\(97\) −1.74583 + 3.02387i −0.177262 + 0.307027i −0.940942 0.338568i \(-0.890057\pi\)
0.763680 + 0.645595i \(0.223391\pi\)
\(98\) 0 0
\(99\) 12.3743 1.24367
\(100\) 2.30800 3.99757i 0.230800 0.399757i
\(101\) −1.28890 2.23244i −0.128250 0.222136i 0.794749 0.606939i \(-0.207603\pi\)
−0.922999 + 0.384803i \(0.874269\pi\)
\(102\) −0.490966 0.850379i −0.0486129 0.0842000i
\(103\) −16.8635 −1.66161 −0.830803 0.556567i \(-0.812118\pi\)
−0.830803 + 0.556567i \(0.812118\pi\)
\(104\) 1.89595 + 1.68146i 0.185913 + 0.164881i
\(105\) 0 0
\(106\) −0.135091 0.233984i −0.0131212 0.0227265i
\(107\) −4.34132 7.51939i −0.419692 0.726927i 0.576217 0.817297i \(-0.304528\pi\)
−0.995908 + 0.0903697i \(0.971195\pi\)
\(108\) 2.03245 3.52031i 0.195573 0.338742i
\(109\) −12.0405 −1.15327 −0.576637 0.817001i \(-0.695635\pi\)
−0.576637 + 0.817001i \(0.695635\pi\)
\(110\) 6.16674 10.6811i 0.587976 1.01840i
\(111\) −1.51040 + 2.61608i −0.143360 + 0.248307i
\(112\) 0 0
\(113\) −4.68616 + 8.11667i −0.440837 + 0.763552i −0.997752 0.0670176i \(-0.978652\pi\)
0.556915 + 0.830570i \(0.311985\pi\)
\(114\) 1.32348 + 2.29233i 0.123955 + 0.214696i
\(115\) −3.26821 5.66071i −0.304763 0.527864i
\(116\) 0.273319 0.0253771
\(117\) 9.63390 3.21058i 0.890654 0.296818i
\(118\) 10.1824 0.937369
\(119\) 0 0
\(120\) 0.221805 + 0.384177i 0.0202479 + 0.0350704i
\(121\) −4.15192 + 7.19134i −0.377448 + 0.653758i
\(122\) −22.0011 −1.99189
\(123\) −1.10623 + 1.91605i −0.0997453 + 0.172764i
\(124\) −4.27807 + 7.40983i −0.384182 + 0.665423i
\(125\) 11.5344 1.03167
\(126\) 0 0
\(127\) −7.94269 13.7571i −0.704800 1.22075i −0.966764 0.255672i \(-0.917703\pi\)
0.261964 0.965078i \(-0.415630\pi\)
\(128\) 2.76359 + 4.78667i 0.244269 + 0.423086i
\(129\) 0.00974735 0.000858206
\(130\) 2.02978 9.91566i 0.178024 0.869661i
\(131\) 1.85745 0.162286 0.0811430 0.996702i \(-0.474143\pi\)
0.0811430 + 0.996702i \(0.474143\pi\)
\(132\) 1.53527 + 2.65917i 0.133628 + 0.231451i
\(133\) 0 0
\(134\) 3.94018 6.82459i 0.340380 0.589555i
\(135\) 3.67109 0.315957
\(136\) 0.422662 0.732072i 0.0362430 0.0627747i
\(137\) 6.40011 11.0853i 0.546798 0.947082i −0.451693 0.892173i \(-0.649180\pi\)
0.998491 0.0549088i \(-0.0174868\pi\)
\(138\) 3.62260 0.308376
\(139\) 0.169365 0.293348i 0.0143653 0.0248815i −0.858753 0.512389i \(-0.828761\pi\)
0.873119 + 0.487508i \(0.162094\pi\)
\(140\) 0 0
\(141\) −2.50290 4.33514i −0.210782 0.365085i
\(142\) 18.9979 1.59427
\(143\) −3.17693 + 15.5196i −0.265669 + 1.29781i
\(144\) 12.9602 1.08002
\(145\) 0.123420 + 0.213769i 0.0102495 + 0.0177526i
\(146\) 14.5219 + 25.1526i 1.20184 + 2.08165i
\(147\) 0 0
\(148\) 11.5006 0.945341
\(149\) −1.96158 + 3.39756i −0.160699 + 0.278339i −0.935120 0.354332i \(-0.884708\pi\)
0.774421 + 0.632671i \(0.218041\pi\)
\(150\) −1.15521 + 2.00088i −0.0943222 + 0.163371i
\(151\) −2.11879 −0.172424 −0.0862122 0.996277i \(-0.527476\pi\)
−0.0862122 + 0.996277i \(0.527476\pi\)
\(152\) −1.13935 + 1.97341i −0.0924135 + 0.160065i
\(153\) −1.69368 2.93354i −0.136926 0.237162i
\(154\) 0 0
\(155\) −7.72721 −0.620664
\(156\) 1.88521 + 1.67194i 0.150937 + 0.133862i
\(157\) −22.1128 −1.76479 −0.882397 0.470506i \(-0.844071\pi\)
−0.882397 + 0.470506i \(0.844071\pi\)
\(158\) 0.737929 + 1.27813i 0.0587065 + 0.101683i
\(159\) 0.0303739 + 0.0526091i 0.00240881 + 0.00417217i
\(160\) 5.42333 9.39348i 0.428752 0.742620i
\(161\) 0 0
\(162\) 7.03303 12.1816i 0.552567 0.957074i
\(163\) −1.92607 + 3.33605i −0.150861 + 0.261299i −0.931544 0.363628i \(-0.881538\pi\)
0.780683 + 0.624927i \(0.214871\pi\)
\(164\) 8.42314 0.657736
\(165\) −1.38653 + 2.40155i −0.107942 + 0.186960i
\(166\) −15.2622 26.4349i −1.18458 2.05175i
\(167\) −1.06947 1.85238i −0.0827582 0.143341i 0.821676 0.569956i \(-0.193040\pi\)
−0.904434 + 0.426614i \(0.859706\pi\)
\(168\) 0 0
\(169\) 1.55326 + 12.9069i 0.119482 + 0.992836i
\(170\) −3.37618 −0.258941
\(171\) 4.56557 + 7.90779i 0.349138 + 0.604724i
\(172\) −0.0185547 0.0321378i −0.00141479 0.00245048i
\(173\) 8.30664 14.3875i 0.631542 1.09386i −0.355695 0.934602i \(-0.615756\pi\)
0.987237 0.159260i \(-0.0509110\pi\)
\(174\) −0.136803 −0.0103710
\(175\) 0 0
\(176\) −10.1089 + 17.5091i −0.761988 + 1.31980i
\(177\) −2.28943 −0.172084
\(178\) 6.24795 10.8218i 0.468303 0.811125i
\(179\) 0.269748 + 0.467217i 0.0201619 + 0.0349214i 0.875930 0.482438i \(-0.160248\pi\)
−0.855768 + 0.517359i \(0.826915\pi\)
\(180\) −3.38382 5.86094i −0.252215 0.436849i
\(181\) 2.77164 0.206014 0.103007 0.994681i \(-0.467154\pi\)
0.103007 + 0.994681i \(0.467154\pi\)
\(182\) 0 0
\(183\) 4.94675 0.365674
\(184\) 1.55931 + 2.70080i 0.114954 + 0.199105i
\(185\) 5.19319 + 8.99486i 0.381811 + 0.661316i
\(186\) 2.14127 3.70879i 0.157006 0.271942i
\(187\) 5.28425 0.386423
\(188\) −9.52887 + 16.5045i −0.694964 + 1.20371i
\(189\) 0 0
\(190\) 9.10100 0.660256
\(191\) 10.1204 17.5290i 0.732284 1.26835i −0.223621 0.974676i \(-0.571788\pi\)
0.955905 0.293677i \(-0.0948790\pi\)
\(192\) 1.03414 + 1.79118i 0.0746323 + 0.129267i
\(193\) 8.18856 + 14.1830i 0.589425 + 1.02091i 0.994308 + 0.106546i \(0.0339791\pi\)
−0.404882 + 0.914369i \(0.632688\pi\)
\(194\) −6.65357 −0.477698
\(195\) −0.456378 + 2.22944i −0.0326819 + 0.159654i
\(196\) 0 0
\(197\) −9.86676 17.0897i −0.702977 1.21759i −0.967417 0.253190i \(-0.918520\pi\)
0.264439 0.964402i \(-0.414813\pi\)
\(198\) 11.7900 + 20.4209i 0.837879 + 1.45125i
\(199\) 7.05873 12.2261i 0.500380 0.866683i −0.499620 0.866245i \(-0.666527\pi\)
1.00000 0.000438630i \(-0.000139620\pi\)
\(200\) −1.98898 −0.140642
\(201\) −0.885913 + 1.53445i −0.0624875 + 0.108232i
\(202\) 2.45607 4.25404i 0.172809 0.299313i
\(203\) 0 0
\(204\) 0.420267 0.727924i 0.0294246 0.0509649i
\(205\) 3.80354 + 6.58793i 0.265651 + 0.460121i
\(206\) −16.0672 27.8291i −1.11945 1.93895i
\(207\) 12.4968 0.868588
\(208\) −3.32735 + 16.2544i −0.230710 + 1.12704i
\(209\) −14.2445 −0.985313
\(210\) 0 0
\(211\) 2.31317 + 4.00652i 0.159245 + 0.275820i 0.934597 0.355709i \(-0.115761\pi\)
−0.775352 + 0.631530i \(0.782427\pi\)
\(212\) 0.115638 0.200290i 0.00794202 0.0137560i
\(213\) −4.27150 −0.292678
\(214\) 8.27265 14.3287i 0.565507 0.979487i
\(215\) 0.0167571 0.0290242i 0.00114283 0.00197943i
\(216\) −1.75152 −0.119176
\(217\) 0 0
\(218\) −11.4720 19.8700i −0.776980 1.34577i
\(219\) −3.26511 5.65534i −0.220636 0.382152i
\(220\) 10.5575 0.711784
\(221\) 4.11400 1.37103i 0.276737 0.0922251i
\(222\) −5.75630 −0.386337
\(223\) 10.6761 + 18.4916i 0.714926 + 1.23829i 0.962988 + 0.269545i \(0.0868732\pi\)
−0.248061 + 0.968744i \(0.579793\pi\)
\(224\) 0 0
\(225\) −3.98509 + 6.90239i −0.265673 + 0.460159i
\(226\) −17.8595 −1.18800
\(227\) 5.22451 9.04911i 0.346763 0.600611i −0.638910 0.769282i \(-0.720614\pi\)
0.985672 + 0.168671i \(0.0539476\pi\)
\(228\) −1.13289 + 1.96223i −0.0750278 + 0.129952i
\(229\) 14.4580 0.955413 0.477706 0.878520i \(-0.341468\pi\)
0.477706 + 0.878520i \(0.341468\pi\)
\(230\) 6.22778 10.7868i 0.410648 0.711262i
\(231\) 0 0
\(232\) −0.0588852 0.101992i −0.00386600 0.00669611i
\(233\) −9.28827 −0.608495 −0.304247 0.952593i \(-0.598405\pi\)
−0.304247 + 0.952593i \(0.598405\pi\)
\(234\) 14.4773 + 12.8395i 0.946410 + 0.839344i
\(235\) −17.2114 −1.12275
\(236\) 4.35808 + 7.54842i 0.283687 + 0.491360i
\(237\) −0.165917 0.287376i −0.0107774 0.0186671i
\(238\) 0 0
\(239\) 19.6332 1.26997 0.634983 0.772526i \(-0.281007\pi\)
0.634983 + 0.772526i \(0.281007\pi\)
\(240\) −1.45218 + 2.51525i −0.0937380 + 0.162359i
\(241\) −3.65552 + 6.33155i −0.235473 + 0.407851i −0.959410 0.282015i \(-0.908997\pi\)
0.723937 + 0.689866i \(0.242331\pi\)
\(242\) −15.8235 −1.01717
\(243\) −5.31937 + 9.21341i −0.341238 + 0.591041i
\(244\) −9.41648 16.3098i −0.602828 1.04413i
\(245\) 0 0
\(246\) −4.21597 −0.268801
\(247\) −11.0899 + 3.69581i −0.705634 + 0.235159i
\(248\) 3.68675 0.234109
\(249\) 3.43157 + 5.94365i 0.217467 + 0.376664i
\(250\) 10.9898 + 19.0349i 0.695055 + 1.20387i
\(251\) 5.93191 10.2744i 0.374419 0.648512i −0.615821 0.787886i \(-0.711176\pi\)
0.990240 + 0.139374i \(0.0445089\pi\)
\(252\) 0 0
\(253\) −9.74746 + 16.8831i −0.612817 + 1.06143i
\(254\) 15.1353 26.2151i 0.949672 1.64488i
\(255\) 0.759102 0.0475368
\(256\) −10.0935 + 17.4825i −0.630846 + 1.09266i
\(257\) 7.58608 + 13.1395i 0.473206 + 0.819618i 0.999530 0.0306670i \(-0.00976315\pi\)
−0.526323 + 0.850285i \(0.676430\pi\)
\(258\) 0.00928708 + 0.0160857i 0.000578188 + 0.00100145i
\(259\) 0 0
\(260\) 8.21940 2.73919i 0.509745 0.169877i
\(261\) −0.471925 −0.0292115
\(262\) 1.76974 + 3.06528i 0.109335 + 0.189374i
\(263\) −8.59820 14.8925i −0.530187 0.918312i −0.999380 0.0352156i \(-0.988788\pi\)
0.469192 0.883096i \(-0.344545\pi\)
\(264\) 0.661533 1.14581i 0.0407145 0.0705196i
\(265\) 0.208869 0.0128307
\(266\) 0 0
\(267\) −1.40479 + 2.43317i −0.0859719 + 0.148908i
\(268\) 6.74559 0.412052
\(269\) −9.46102 + 16.3870i −0.576849 + 0.999131i 0.418989 + 0.907991i \(0.362384\pi\)
−0.995838 + 0.0911401i \(0.970949\pi\)
\(270\) 3.49774 + 6.05827i 0.212866 + 0.368695i
\(271\) −16.0667 27.8283i −0.975982 1.69045i −0.676657 0.736298i \(-0.736572\pi\)
−0.299324 0.954151i \(-0.596761\pi\)
\(272\) 5.53444 0.335575
\(273\) 0 0
\(274\) 24.3916 1.47355
\(275\) −6.21672 10.7677i −0.374882 0.649315i
\(276\) 1.55047 + 2.68549i 0.0933273 + 0.161648i
\(277\) −9.20269 + 15.9395i −0.552936 + 0.957714i 0.445125 + 0.895469i \(0.353159\pi\)
−0.998061 + 0.0622450i \(0.980174\pi\)
\(278\) 0.645469 0.0387126
\(279\) 7.38671 12.7942i 0.442231 0.765966i
\(280\) 0 0
\(281\) −14.2252 −0.848603 −0.424302 0.905521i \(-0.639480\pi\)
−0.424302 + 0.905521i \(0.639480\pi\)
\(282\) 4.76942 8.26087i 0.284015 0.491928i
\(283\) 5.71446 + 9.89773i 0.339689 + 0.588359i 0.984374 0.176089i \(-0.0563448\pi\)
−0.644685 + 0.764448i \(0.723011\pi\)
\(284\) 8.13109 + 14.0835i 0.482492 + 0.835700i
\(285\) −2.04628 −0.121211
\(286\) −28.6383 + 9.54396i −1.69342 + 0.564346i
\(287\) 0 0
\(288\) 10.3687 + 17.9591i 0.610981 + 1.05825i
\(289\) 7.77674 + 13.4697i 0.457455 + 0.792336i
\(290\) −0.235184 + 0.407351i −0.0138105 + 0.0239205i
\(291\) 1.49599 0.0876967
\(292\) −12.4307 + 21.5307i −0.727453 + 1.25999i
\(293\) 6.60231 11.4355i 0.385711 0.668071i −0.606156 0.795345i \(-0.707289\pi\)
0.991868 + 0.127274i \(0.0406228\pi\)
\(294\) 0 0
\(295\) −3.93586 + 6.81712i −0.229155 + 0.396908i
\(296\) −2.47773 4.29156i −0.144015 0.249442i
\(297\) −5.47452 9.48215i −0.317664 0.550210i
\(298\) −7.47582 −0.433062
\(299\) −3.20838 + 15.6732i −0.185545 + 0.906404i
\(300\) −1.97771 −0.114183
\(301\) 0 0
\(302\) −2.01874 3.49656i −0.116165 0.201204i
\(303\) −0.552225 + 0.956482i −0.0317245 + 0.0549484i
\(304\) −14.9189 −0.855660
\(305\) 8.50420 14.7297i 0.486949 0.843420i
\(306\) 3.22740 5.59003i 0.184498 0.319561i
\(307\) −6.65903 −0.380051 −0.190026 0.981779i \(-0.560857\pi\)
−0.190026 + 0.981779i \(0.560857\pi\)
\(308\) 0 0
\(309\) 3.61255 + 6.25713i 0.205511 + 0.355955i
\(310\) −7.36233 12.7519i −0.418152 0.724261i
\(311\) −2.04597 −0.116016 −0.0580081 0.998316i \(-0.518475\pi\)
−0.0580081 + 0.998316i \(0.518475\pi\)
\(312\) 0.217744 1.06370i 0.0123273 0.0602199i
\(313\) 9.41767 0.532318 0.266159 0.963929i \(-0.414245\pi\)
0.266159 + 0.963929i \(0.414245\pi\)
\(314\) −21.0686 36.4919i −1.18897 2.05936i
\(315\) 0 0
\(316\) −0.631667 + 1.09408i −0.0355341 + 0.0615468i
\(317\) −33.3713 −1.87432 −0.937159 0.348902i \(-0.886555\pi\)
−0.937159 + 0.348902i \(0.886555\pi\)
\(318\) −0.0578792 + 0.100250i −0.00324571 + 0.00562173i
\(319\) 0.368100 0.637568i 0.0206097 0.0356970i
\(320\) 7.11133 0.397536
\(321\) −1.86003 + 3.22167i −0.103817 + 0.179816i
\(322\) 0 0
\(323\) 1.94965 + 3.37689i 0.108481 + 0.187895i
\(324\) 12.0405 0.668919
\(325\) −7.63369 6.77010i −0.423441 0.375538i
\(326\) −7.34048 −0.406551
\(327\) 2.57937 + 4.46760i 0.142639 + 0.247059i
\(328\) −1.81472 3.14318i −0.100201 0.173553i
\(329\) 0 0
\(330\) −5.28425 −0.290888
\(331\) −9.53298 + 16.5116i −0.523980 + 0.907560i 0.475631 + 0.879645i \(0.342220\pi\)
−0.999610 + 0.0279144i \(0.991113\pi\)
\(332\) 13.0645 22.6283i 0.717005 1.24189i
\(333\) −19.8574 −1.08818
\(334\) 2.03794 3.52982i 0.111511 0.193143i
\(335\) 3.04603 + 5.27588i 0.166423 + 0.288252i
\(336\) 0 0
\(337\) −31.2849 −1.70420 −0.852098 0.523382i \(-0.824670\pi\)
−0.852098 + 0.523382i \(0.824670\pi\)
\(338\) −19.8198 + 14.8607i −1.07806 + 0.808316i
\(339\) 4.01555 0.218095
\(340\) −1.44500 2.50282i −0.0783663 0.135734i
\(341\) 11.5232 + 19.9588i 0.624017 + 1.08083i
\(342\) −8.69996 + 15.0688i −0.470440 + 0.814826i
\(343\) 0 0
\(344\) −0.00799504 + 0.0138478i −0.000431064 + 0.000746624i
\(345\) −1.40026 + 2.42532i −0.0753874 + 0.130575i
\(346\) 31.6576 1.70192
\(347\) −5.83759 + 10.1110i −0.313378 + 0.542787i −0.979091 0.203420i \(-0.934794\pi\)
0.665713 + 0.746208i \(0.268128\pi\)
\(348\) −0.0585515 0.101414i −0.00313869 0.00543637i
\(349\) −11.9952 20.7763i −0.642089 1.11213i −0.984966 0.172750i \(-0.944735\pi\)
0.342877 0.939380i \(-0.388599\pi\)
\(350\) 0 0
\(351\) −6.72233 5.96184i −0.358811 0.318219i
\(352\) −32.3502 −1.72427
\(353\) −6.39668 11.0794i −0.340461 0.589696i 0.644057 0.764977i \(-0.277250\pi\)
−0.984518 + 0.175282i \(0.943916\pi\)
\(354\) −2.18132 3.77816i −0.115936 0.200807i
\(355\) −7.34334 + 12.7190i −0.389744 + 0.675057i
\(356\) 10.6965 0.566912
\(357\) 0 0
\(358\) −0.514021 + 0.890310i −0.0271668 + 0.0470544i
\(359\) 12.3397 0.651265 0.325633 0.945496i \(-0.394423\pi\)
0.325633 + 0.945496i \(0.394423\pi\)
\(360\) −1.45805 + 2.52542i −0.0768460 + 0.133101i
\(361\) 4.24442 + 7.35155i 0.223390 + 0.386924i
\(362\) 2.64076 + 4.57393i 0.138795 + 0.240401i
\(363\) 3.55776 0.186734
\(364\) 0 0
\(365\) −22.4528 −1.17524
\(366\) 4.71316 + 8.16344i 0.246361 + 0.426710i
\(367\) −1.01538 1.75870i −0.0530026 0.0918032i 0.838307 0.545199i \(-0.183546\pi\)
−0.891309 + 0.453396i \(0.850212\pi\)
\(368\) −10.2090 + 17.6825i −0.532179 + 0.921762i
\(369\) −14.5438 −0.757118
\(370\) −9.89593 + 17.1403i −0.514465 + 0.891079i
\(371\) 0 0
\(372\) 3.66586 0.190066
\(373\) 1.93700 3.35498i 0.100294 0.173714i −0.811512 0.584336i \(-0.801355\pi\)
0.911806 + 0.410622i \(0.134688\pi\)
\(374\) 5.03473 + 8.72040i 0.260340 + 0.450921i
\(375\) −2.47095 4.27981i −0.127599 0.221009i
\(376\) 8.21177 0.423490
\(377\) 0.121160 0.591877i 0.00624007 0.0304832i
\(378\) 0 0
\(379\) 7.28396 + 12.6162i 0.374152 + 0.648050i 0.990200 0.139659i \(-0.0446006\pi\)
−0.616048 + 0.787709i \(0.711267\pi\)
\(380\) 3.89523 + 6.74673i 0.199821 + 0.346100i
\(381\) −3.40303 + 5.89422i −0.174342 + 0.301970i
\(382\) 38.5699 1.97341
\(383\) 13.3909 23.1937i 0.684243 1.18514i −0.289430 0.957199i \(-0.593466\pi\)
0.973674 0.227945i \(-0.0732008\pi\)
\(384\) 1.18405 2.05084i 0.0604234 0.104656i
\(385\) 0 0
\(386\) −15.6038 + 27.0266i −0.794212 + 1.37562i
\(387\) 0.0320375 + 0.0554905i 0.00162856 + 0.00282074i
\(388\) −2.84773 4.93241i −0.144571 0.250405i
\(389\) 12.0148 0.609173 0.304586 0.952485i \(-0.401482\pi\)
0.304586 + 0.952485i \(0.401482\pi\)
\(390\) −4.11400 + 1.37103i −0.208320 + 0.0694246i
\(391\) 5.33655 0.269881
\(392\) 0 0
\(393\) −0.397910 0.689200i −0.0200719 0.0347655i
\(394\) 18.8017 32.5655i 0.947216 1.64063i
\(395\) −1.14094 −0.0574070
\(396\) −10.0922 + 17.4803i −0.507154 + 0.878417i
\(397\) 0.828825 1.43557i 0.0415975 0.0720491i −0.844477 0.535592i \(-0.820089\pi\)
0.886075 + 0.463543i \(0.153422\pi\)
\(398\) 26.9017 1.34846
\(399\) 0 0
\(400\) −6.51106 11.2775i −0.325553 0.563874i
\(401\) 10.2414 + 17.7386i 0.511430 + 0.885823i 0.999912 + 0.0132488i \(0.00421735\pi\)
−0.488482 + 0.872574i \(0.662449\pi\)
\(402\) −3.37632 −0.168396
\(403\) 14.1497 + 12.5489i 0.704846 + 0.625108i
\(404\) 4.20479 0.209196
\(405\) 5.43702 + 9.41720i 0.270168 + 0.467944i
\(406\) 0 0
\(407\) 15.4887 26.8272i 0.767746 1.32978i
\(408\) −0.362177 −0.0179304
\(409\) −7.43293 + 12.8742i −0.367535 + 0.636589i −0.989180 0.146710i \(-0.953131\pi\)
0.621645 + 0.783299i \(0.286465\pi\)
\(410\) −7.24788 + 12.5537i −0.357947 + 0.619983i
\(411\) −5.48422 −0.270517
\(412\) 13.7535 23.8217i 0.677586 1.17361i
\(413\) 0 0
\(414\) 11.9067 + 20.6230i 0.585182 + 1.01357i
\(415\) 23.5975 1.15836
\(416\) −25.1859 + 8.39342i −1.23484 + 0.411521i
\(417\) −0.145128 −0.00710693
\(418\) −13.5719 23.5072i −0.663822 1.14977i
\(419\) 11.8087 + 20.4533i 0.576895 + 0.999211i 0.995833 + 0.0911962i \(0.0290690\pi\)
−0.418938 + 0.908015i \(0.637598\pi\)
\(420\) 0 0
\(421\) 26.0822 1.27117 0.635585 0.772031i \(-0.280759\pi\)
0.635585 + 0.772031i \(0.280759\pi\)
\(422\) −4.40788 + 7.63467i −0.214572 + 0.371650i
\(423\) 16.4530 28.4974i 0.799971 1.38559i
\(424\) −0.0996539 −0.00483962
\(425\) −1.70177 + 2.94755i −0.0825479 + 0.142977i
\(426\) −4.06980 7.04910i −0.197182 0.341530i
\(427\) 0 0
\(428\) 14.1628 0.684584
\(429\) 6.43906 2.14587i 0.310881 0.103604i
\(430\) 0.0638635 0.00307977
\(431\) 6.65859 + 11.5330i 0.320733 + 0.555526i 0.980640 0.195822i \(-0.0627374\pi\)
−0.659906 + 0.751348i \(0.729404\pi\)
\(432\) −5.73373 9.93110i −0.275864 0.477810i
\(433\) −10.2110 + 17.6860i −0.490711 + 0.849937i −0.999943 0.0106929i \(-0.996596\pi\)
0.509232 + 0.860629i \(0.329930\pi\)
\(434\) 0 0
\(435\) 0.0528790 0.0915890i 0.00253535 0.00439136i
\(436\) 9.82001 17.0087i 0.470293 0.814571i
\(437\) −14.3855 −0.688152
\(438\) 6.22187 10.7766i 0.297292 0.514925i
\(439\) 4.88537 + 8.46171i 0.233166 + 0.403855i 0.958738 0.284291i \(-0.0917581\pi\)
−0.725572 + 0.688146i \(0.758425\pi\)
\(440\) −2.27455 3.93963i −0.108435 0.187814i
\(441\) 0 0
\(442\) 6.18229 + 5.48290i 0.294061 + 0.260795i
\(443\) 21.1639 1.00553 0.502763 0.864424i \(-0.332317\pi\)
0.502763 + 0.864424i \(0.332317\pi\)
\(444\) −2.46370 4.26725i −0.116922 0.202514i
\(445\) 4.83010 + 8.36597i 0.228968 + 0.396585i
\(446\) −20.3440 + 35.2368i −0.963317 + 1.66851i
\(447\) 1.68087 0.0795023
\(448\) 0 0
\(449\) 9.07320 15.7152i 0.428191 0.741648i −0.568522 0.822668i \(-0.692484\pi\)
0.996712 + 0.0810200i \(0.0258178\pi\)
\(450\) −15.1877 −0.715954
\(451\) 11.3441 19.6485i 0.534172 0.925213i
\(452\) −7.64387 13.2396i −0.359538 0.622737i
\(453\) 0.453895 + 0.786168i 0.0213258 + 0.0369374i
\(454\) 19.9112 0.934480
\(455\) 0 0
\(456\) 0.976304 0.0457196
\(457\) 9.00991 + 15.6056i 0.421466 + 0.730000i 0.996083 0.0884220i \(-0.0281824\pi\)
−0.574617 + 0.818422i \(0.694849\pi\)
\(458\) 13.7753 + 23.8595i 0.643678 + 1.11488i
\(459\) −1.49860 + 2.59565i −0.0699487 + 0.121155i
\(460\) 10.6620 0.497116
\(461\) 14.8873 25.7855i 0.693370 1.20095i −0.277357 0.960767i \(-0.589458\pi\)
0.970727 0.240185i \(-0.0772082\pi\)
\(462\) 0 0
\(463\) 17.7067 0.822900 0.411450 0.911432i \(-0.365023\pi\)
0.411450 + 0.911432i \(0.365023\pi\)
\(464\) 0.385529 0.667755i 0.0178977 0.0309997i
\(465\) 1.65535 + 2.86715i 0.0767651 + 0.132961i
\(466\) −8.84968 15.3281i −0.409953 0.710060i
\(467\) −5.82922 −0.269744 −0.134872 0.990863i \(-0.543062\pi\)
−0.134872 + 0.990863i \(0.543062\pi\)
\(468\) −3.32186 + 16.2276i −0.153553 + 0.750120i
\(469\) 0 0
\(470\) −16.3987 28.4033i −0.756414 1.31015i
\(471\) 4.73709 + 8.20488i 0.218274 + 0.378061i
\(472\) 1.87785 3.25253i 0.0864350 0.149710i
\(473\) −0.0999564 −0.00459600
\(474\) 0.316164 0.547612i 0.0145219 0.0251527i
\(475\) 4.58738 7.94557i 0.210483 0.364568i
\(476\) 0 0
\(477\) −0.199665 + 0.345830i −0.00914203 + 0.0158345i
\(478\) 18.7061 + 32.4000i 0.855598 + 1.48194i
\(479\) −7.24565 12.5498i −0.331062 0.573417i 0.651658 0.758513i \(-0.274074\pi\)
−0.982720 + 0.185096i \(0.940740\pi\)
\(480\) −4.64722 −0.212116
\(481\) 5.09811 24.9047i 0.232454 1.13556i
\(482\) −13.9316 −0.634569
\(483\) 0 0
\(484\) −6.77245 11.7302i −0.307839 0.533192i
\(485\) 2.57183 4.45455i 0.116781 0.202271i
\(486\) −20.2727 −0.919591
\(487\) 8.98006 15.5539i 0.406926 0.704816i −0.587618 0.809139i \(-0.699934\pi\)
0.994543 + 0.104323i \(0.0332675\pi\)
\(488\) −4.05746 + 7.02772i −0.183672 + 0.318130i
\(489\) 1.65044 0.0746354
\(490\) 0 0
\(491\) 18.1505 + 31.4375i 0.819119 + 1.41876i 0.906332 + 0.422566i \(0.138870\pi\)
−0.0872134 + 0.996190i \(0.527796\pi\)
\(492\) −1.80444 3.12537i −0.0813503 0.140903i
\(493\) −0.201528 −0.00907637
\(494\) −16.6653 14.7800i −0.749807 0.664983i
\(495\) −18.2290 −0.819332
\(496\) 12.0688 + 20.9038i 0.541905 + 0.938607i
\(497\) 0 0
\(498\) −6.53906 + 11.3260i −0.293022 + 0.507530i
\(499\) 23.7076 1.06130 0.530649 0.847591i \(-0.321948\pi\)
0.530649 + 0.847591i \(0.321948\pi\)
\(500\) −9.40726 + 16.2938i −0.420705 + 0.728683i
\(501\) −0.458213 + 0.793648i −0.0204714 + 0.0354576i
\(502\) 22.6072 1.00901
\(503\) −13.8876 + 24.0540i −0.619217 + 1.07252i 0.370411 + 0.928868i \(0.379217\pi\)
−0.989629 + 0.143648i \(0.954117\pi\)
\(504\) 0 0
\(505\) 1.89871 + 3.28867i 0.0844916 + 0.146344i
\(506\) −37.1487 −1.65146
\(507\) 4.45630 3.34129i 0.197911 0.148392i
\(508\) 25.9116 1.14964
\(509\) −4.35208 7.53802i −0.192902 0.334117i 0.753308 0.657667i \(-0.228457\pi\)
−0.946211 + 0.323551i \(0.895123\pi\)
\(510\) 0.723257 + 1.25272i 0.0320264 + 0.0554713i
\(511\) 0 0
\(512\) −27.4134 −1.21151
\(513\) 4.03971 6.99698i 0.178357 0.308924i
\(514\) −14.4557 + 25.0380i −0.637615 + 1.10438i
\(515\) 24.8421 1.09467
\(516\) −0.00794974 + 0.0137693i −0.000349968 + 0.000606162i
\(517\) 25.6665 + 44.4557i 1.12881 + 1.95516i
\(518\) 0 0
\(519\) −7.11792 −0.312442
\(520\) −2.79298 2.47702i −0.122480 0.108624i
\(521\) −8.57146 −0.375523 −0.187761 0.982215i \(-0.560123\pi\)
−0.187761 + 0.982215i \(0.560123\pi\)
\(522\) −0.449641 0.778801i −0.0196803 0.0340872i
\(523\) −14.9746 25.9369i −0.654796 1.13414i −0.981945 0.189167i \(-0.939421\pi\)
0.327149 0.944973i \(-0.393912\pi\)
\(524\) −1.51490 + 2.62388i −0.0661786 + 0.114625i
\(525\) 0 0
\(526\) 16.3844 28.3786i 0.714393 1.23736i
\(527\) 3.15437 5.46353i 0.137407 0.237995i
\(528\) 8.66228 0.376977
\(529\) 1.65606 2.86838i 0.0720027 0.124712i
\(530\) 0.199006 + 0.344689i 0.00864427 + 0.0149723i
\(531\) −7.52486 13.0334i −0.326551 0.565603i
\(532\) 0 0
\(533\) 3.73391 18.2404i 0.161734 0.790081i
\(534\) −5.35383 −0.231683
\(535\) 6.39534 + 11.0770i 0.276494 + 0.478902i
\(536\) −1.45330 2.51719i −0.0627730 0.108726i
\(537\) 0.115573 0.200178i 0.00498734 0.00863832i
\(538\) −36.0571 −1.55453
\(539\) 0 0
\(540\) −2.99407 + 5.18588i −0.128844 + 0.223165i
\(541\) 10.4819 0.450652 0.225326 0.974283i \(-0.427655\pi\)
0.225326 + 0.974283i \(0.427655\pi\)
\(542\) 30.6160 53.0285i 1.31507 2.27777i
\(543\) −0.593751 1.02841i −0.0254803 0.0441331i
\(544\) 4.42778 + 7.66914i 0.189840 + 0.328812i
\(545\) 17.7373 0.759781
\(546\) 0 0
\(547\) 15.2216 0.650829 0.325415 0.945571i \(-0.394496\pi\)
0.325415 + 0.945571i \(0.394496\pi\)
\(548\) 10.4396 + 18.0819i 0.445957 + 0.772421i
\(549\) 16.2589 + 28.1613i 0.693914 + 1.20189i
\(550\) 11.8463 20.5184i 0.505129 0.874909i
\(551\) 0.543250 0.0231432
\(552\) 0.668081 1.15715i 0.0284354 0.0492516i
\(553\) 0 0
\(554\) −35.0726 −1.49009
\(555\) 2.22501 3.85383i 0.0944464 0.163586i
\(556\) 0.276261 + 0.478497i 0.0117161 + 0.0202928i
\(557\) −5.92986 10.2708i −0.251256 0.435189i 0.712616 0.701555i \(-0.247510\pi\)
−0.963872 + 0.266366i \(0.914177\pi\)
\(558\) 28.1516 1.19175
\(559\) −0.0778200 + 0.0259342i −0.00329144 + 0.00109690i
\(560\) 0 0
\(561\) −1.13201 1.96070i −0.0477936 0.0827809i
\(562\) −13.5535 23.4753i −0.571719 0.990246i
\(563\) −3.84675 + 6.66276i −0.162121 + 0.280802i −0.935629 0.352985i \(-0.885167\pi\)
0.773508 + 0.633786i \(0.218500\pi\)
\(564\) 8.16524 0.343819
\(565\) 6.90332 11.9569i 0.290425 0.503031i
\(566\) −10.8892 + 18.8607i −0.457709 + 0.792775i
\(567\) 0 0
\(568\) 3.50360 6.06841i 0.147008 0.254625i
\(569\) −18.7098 32.4063i −0.784355 1.35854i −0.929384 0.369115i \(-0.879661\pi\)
0.145029 0.989427i \(-0.453673\pi\)
\(570\) −1.94965 3.37689i −0.0816619 0.141443i
\(571\) 14.1657 0.592816 0.296408 0.955061i \(-0.404211\pi\)
0.296408 + 0.955061i \(0.404211\pi\)
\(572\) −19.3323 17.1453i −0.808324 0.716879i
\(573\) −8.67209 −0.362282
\(574\) 0 0
\(575\) −6.27825 10.8742i −0.261821 0.453488i
\(576\) −6.79797 + 11.7744i −0.283249 + 0.490601i
\(577\) −14.9755 −0.623439 −0.311720 0.950174i \(-0.600905\pi\)
−0.311720 + 0.950174i \(0.600905\pi\)
\(578\) −14.8190 + 25.6673i −0.616391 + 1.06762i
\(579\) 3.50837 6.07667i 0.145803 0.252538i
\(580\) −0.402635 −0.0167185
\(581\) 0 0
\(582\) 1.42535 + 2.46878i 0.0590828 + 0.102334i
\(583\) −0.311476 0.539492i −0.0129000 0.0223435i
\(584\) 10.7125 0.443288
\(585\) −14.1920 + 4.72960i −0.586766 + 0.195545i
\(586\) 25.1622 1.03944
\(587\) 6.58821 + 11.4111i 0.271925 + 0.470987i 0.969355 0.245666i \(-0.0790066\pi\)
−0.697430 + 0.716653i \(0.745673\pi\)
\(588\) 0 0
\(589\) −8.50309 + 14.7278i −0.350364 + 0.606848i
\(590\) −15.0001 −0.617542
\(591\) −4.22739 + 7.32205i −0.173892 + 0.301189i
\(592\) 16.2220 28.0974i 0.666722 1.15480i
\(593\) −44.1327 −1.81231 −0.906156 0.422943i \(-0.860997\pi\)
−0.906156 + 0.422943i \(0.860997\pi\)
\(594\) 10.4320 18.0688i 0.428032 0.741372i
\(595\) 0 0
\(596\) −3.19965 5.54195i −0.131063 0.227007i
\(597\) −6.04859 −0.247552
\(598\) −28.9218 + 9.63843i −1.18270 + 0.394145i
\(599\) −6.02698 −0.246256 −0.123128 0.992391i \(-0.539293\pi\)
−0.123128 + 0.992391i \(0.539293\pi\)
\(600\) 0.426087 + 0.738005i 0.0173949 + 0.0301289i
\(601\) −1.86260 3.22612i −0.0759770 0.131596i 0.825534 0.564353i \(-0.190874\pi\)
−0.901511 + 0.432757i \(0.857541\pi\)
\(602\) 0 0
\(603\) −11.6472 −0.474312
\(604\) 1.72804 2.99305i 0.0703129 0.121786i
\(605\) 6.11632 10.5938i 0.248664 0.430698i
\(606\) −2.10460 −0.0854934
\(607\) 3.00825 5.21045i 0.122101 0.211486i −0.798495 0.602002i \(-0.794370\pi\)
0.920596 + 0.390516i \(0.127703\pi\)
\(608\) −11.9358 20.6733i −0.484059 0.838415i
\(609\) 0 0
\(610\) 32.4105 1.31226
\(611\) 31.5167 + 27.9512i 1.27503 + 1.13079i
\(612\) 5.52532 0.223348
\(613\) −4.90413 8.49420i −0.198076 0.343077i 0.749829 0.661632i \(-0.230136\pi\)
−0.947904 + 0.318555i \(0.896803\pi\)
\(614\) −6.34459 10.9892i −0.256047 0.443486i
\(615\) 1.62962 2.82258i 0.0657126 0.113818i
\(616\) 0 0
\(617\) −16.8838 + 29.2436i −0.679716 + 1.17730i 0.295350 + 0.955389i \(0.404564\pi\)
−0.975066 + 0.221914i \(0.928770\pi\)
\(618\) −6.88394 + 11.9233i −0.276913 + 0.479627i
\(619\) 4.09343 0.164529 0.0822644 0.996611i \(-0.473785\pi\)
0.0822644 + 0.996611i \(0.473785\pi\)
\(620\) 6.30215 10.9156i 0.253100 0.438383i
\(621\) −5.52871 9.57601i −0.221860 0.384272i
\(622\) −1.94936 3.37639i −0.0781621 0.135381i
\(623\) 0 0
\(624\) 6.74393 2.24747i 0.269973 0.0899709i
\(625\) −2.84229 −0.113692
\(626\) 8.97297 + 15.5416i 0.358632 + 0.621169i
\(627\) 3.05151 + 5.28537i 0.121866 + 0.211077i
\(628\) 18.0347 31.2371i 0.719665 1.24650i
\(629\) −8.47978 −0.338111
\(630\) 0 0
\(631\) 13.3868 23.1866i 0.532921 0.923046i −0.466340 0.884605i \(-0.654428\pi\)
0.999261 0.0384402i \(-0.0122389\pi\)
\(632\) 0.544357 0.0216534
\(633\) 0.991071 1.71659i 0.0393915 0.0682282i
\(634\) −31.7955 55.0714i −1.26276 2.18717i
\(635\) 11.7006 + 20.2661i 0.464325 + 0.804234i
\(636\) −0.0990892 −0.00392914
\(637\) 0 0
\(638\) 1.40287 0.0555403
\(639\) −14.0395 24.3172i −0.555395 0.961972i
\(640\) −4.07112 7.05139i −0.160925 0.278731i
\(641\) 9.28610 16.0840i 0.366779 0.635279i −0.622281 0.782794i \(-0.713794\pi\)
0.989060 + 0.147514i \(0.0471273\pi\)
\(642\) −7.08880 −0.279773
\(643\) 1.96695 3.40686i 0.0775690 0.134353i −0.824632 0.565670i \(-0.808618\pi\)
0.902201 + 0.431317i \(0.141951\pi\)
\(644\) 0 0
\(645\) −0.0143591 −0.000565389
\(646\) −3.71518 + 6.43487i −0.146172 + 0.253177i
\(647\) 0.0985378 + 0.170672i 0.00387392 + 0.00670983i 0.867956 0.496641i \(-0.165434\pi\)
−0.864082 + 0.503351i \(0.832100\pi\)
\(648\) −2.59407 4.49306i −0.101905 0.176504i
\(649\) 23.4775 0.921571
\(650\) 3.89922 19.0480i 0.152940 0.747125i
\(651\) 0 0
\(652\) −3.14172 5.44163i −0.123039 0.213110i
\(653\) 7.23363 + 12.5290i 0.283074 + 0.490298i 0.972140 0.234400i \(-0.0753125\pi\)
−0.689066 + 0.724698i \(0.741979\pi\)
\(654\) −4.91514 + 8.51327i −0.192197 + 0.332895i
\(655\) −2.73626 −0.106915
\(656\) 11.8812 20.5788i 0.463883 0.803468i
\(657\) 21.4635 37.1758i 0.837369 1.45037i
\(658\) 0 0
\(659\) 11.7066 20.2764i 0.456024 0.789857i −0.542722 0.839912i \(-0.682606\pi\)
0.998746 + 0.0500552i \(0.0159397\pi\)
\(660\) −2.26166 3.91731i −0.0880349 0.152481i
\(661\) 2.02409 + 3.50582i 0.0787278 + 0.136361i 0.902701 0.430268i \(-0.141581\pi\)
−0.823973 + 0.566628i \(0.808248\pi\)
\(662\) −36.3313 −1.41206
\(663\) −1.39003 1.23278i −0.0539843 0.0478771i
\(664\) −11.2587 −0.436921
\(665\) 0 0
\(666\) −18.9197 32.7699i −0.733125 1.26981i
\(667\) 0.371744 0.643879i 0.0143940 0.0249311i
\(668\) 3.48896 0.134992
\(669\) 4.57416 7.92268i 0.176847 0.306309i
\(670\) −5.80440 + 10.0535i −0.224243 + 0.388401i
\(671\) −50.7276 −1.95832
\(672\) 0 0
\(673\) −3.64704 6.31685i −0.140583 0.243497i 0.787133 0.616783i \(-0.211564\pi\)
−0.927716 + 0.373286i \(0.878231\pi\)
\(674\) −29.8076 51.6283i −1.14815 1.98865i
\(675\) 7.05218 0.271439
\(676\) −19.4994 8.33241i −0.749976 0.320477i
\(677\) −15.7511 −0.605362 −0.302681 0.953092i \(-0.597882\pi\)
−0.302681 + 0.953092i \(0.597882\pi\)
\(678\) 3.82593 + 6.62671i 0.146934 + 0.254497i
\(679\) 0 0
\(680\) −0.622636 + 1.07844i −0.0238770 + 0.0413562i
\(681\) −4.47686 −0.171553
\(682\) −21.9582 + 38.0327i −0.840822 + 1.45635i
\(683\) −20.7427 + 35.9274i −0.793697 + 1.37472i 0.129967 + 0.991518i \(0.458513\pi\)
−0.923664 + 0.383204i \(0.874820\pi\)
\(684\) −14.8943 −0.569499
\(685\) −9.42819 + 16.3301i −0.360233 + 0.623941i
\(686\) 0 0
\(687\) −3.09725 5.36460i −0.118168 0.204672i
\(688\) −0.104689 −0.00399123
\(689\) −0.382470 0.339202i −0.0145710 0.0129226i
\(690\) −5.33655 −0.203159
\(691\) 23.4108 + 40.5487i 0.890589 + 1.54255i 0.839171 + 0.543868i \(0.183041\pi\)
0.0514184 + 0.998677i \(0.483626\pi\)
\(692\) 13.5494 + 23.4683i 0.515073 + 0.892132i
\(693\) 0 0
\(694\) −22.2478 −0.844514
\(695\) −0.249496 + 0.432140i −0.00946392 + 0.0163920i
\(696\) −0.0252292 + 0.0436983i −0.000956311 + 0.00165638i
\(697\) −6.21068 −0.235246
\(698\) 22.8576 39.5905i 0.865172 1.49852i
\(699\) 1.98977 + 3.44638i 0.0752600 + 0.130354i
\(700\) 0 0
\(701\) 29.8626 1.12790 0.563948 0.825810i \(-0.309282\pi\)
0.563948 + 0.825810i \(0.309282\pi\)
\(702\) 3.43371 16.7739i 0.129597 0.633091i
\(703\) 22.8585 0.862126
\(704\) −10.6048 18.3680i −0.399683 0.692271i
\(705\) 3.68709 + 6.38623i 0.138864 + 0.240519i
\(706\) 12.1893 21.1124i 0.458749 0.794576i
\(707\) 0 0
\(708\) 1.86721 3.23410i 0.0701740 0.121545i
\(709\) −13.4666 + 23.3249i −0.505750 + 0.875984i 0.494228 + 0.869332i \(0.335451\pi\)
−0.999978 + 0.00665185i \(0.997883\pi\)
\(710\) −27.9864 −1.05031
\(711\) 1.09067 1.88909i 0.0409031 0.0708463i
\(712\) −2.30450 3.99151i −0.0863647 0.149588i
\(713\) 11.6373 + 20.1563i 0.435819 + 0.754861i
\(714\) 0 0
\(715\) 4.68004 22.8623i 0.175023 0.855003i
\(716\) −0.880004 −0.0328873
\(717\) −4.20590 7.28483i −0.157072 0.272057i
\(718\) 11.7570 + 20.3638i 0.438769 + 0.759969i
\(719\) 7.24938 12.5563i 0.270356 0.468271i −0.698597 0.715516i \(-0.746192\pi\)
0.968953 + 0.247245i \(0.0795252\pi\)
\(720\) −19.0921 −0.711519
\(721\) 0 0
\(722\) −8.08799 + 14.0088i −0.301004 + 0.521354i
\(723\) 3.13240 0.116495
\(724\) −2.26049 + 3.91528i −0.0840105 + 0.145510i
\(725\) 0.237090 + 0.410652i 0.00880530 + 0.0152512i
\(726\) 3.38977 + 5.87125i 0.125806 + 0.217902i
\(727\) −6.26424 −0.232328 −0.116164 0.993230i \(-0.537060\pi\)
−0.116164 + 0.993230i \(0.537060\pi\)
\(728\) 0 0
\(729\) −17.5866 −0.651357
\(730\) −21.3926 37.0531i −0.791776 1.37140i
\(731\) 0.0136811 + 0.0236963i 0.000506013 + 0.000876440i
\(732\) −4.03447 + 6.98790i −0.149118 + 0.258280i
\(733\) −11.9838 −0.442631 −0.221316 0.975202i \(-0.571035\pi\)
−0.221316 + 0.975202i \(0.571035\pi\)
\(734\) 1.93487 3.35130i 0.0714175 0.123699i
\(735\) 0 0
\(736\) −32.6704 −1.20425
\(737\) 9.08480 15.7353i 0.334643 0.579619i
\(738\) −13.8570 24.0010i −0.510084 0.883491i
\(739\) −6.76269 11.7133i −0.248770 0.430882i 0.714415 0.699722i \(-0.246693\pi\)
−0.963185 + 0.268840i \(0.913360\pi\)
\(740\) −16.9418 −0.622794
\(741\) 3.74704 + 3.32314i 0.137651 + 0.122079i
\(742\) 0 0
\(743\) 19.2299 + 33.3072i 0.705477 + 1.22192i 0.966519 + 0.256594i \(0.0826003\pi\)
−0.261043 + 0.965327i \(0.584066\pi\)
\(744\) −0.789789 1.36795i −0.0289551 0.0501516i
\(745\) 2.88966 5.00504i 0.105869 0.183371i
\(746\) 7.38214 0.270279
\(747\) −22.5577 + 39.0710i −0.825342 + 1.42953i
\(748\) −4.30973 + 7.46466i −0.157579 + 0.272935i
\(749\) 0 0
\(750\) 4.70855 8.15544i 0.171932 0.297795i
\(751\) −5.85573 10.1424i −0.213679 0.370102i 0.739184 0.673503i \(-0.235211\pi\)
−0.952863 + 0.303401i \(0.901878\pi\)
\(752\) 26.8817 + 46.5605i 0.980276 + 1.69789i
\(753\) −5.08302 −0.185236
\(754\) 1.09219 0.363983i 0.0397753 0.0132555i
\(755\) 3.12125 0.113594
\(756\) 0 0
\(757\) −4.65791 8.06773i −0.169295 0.293227i 0.768877 0.639396i \(-0.220816\pi\)
−0.938172 + 0.346169i \(0.887482\pi\)
\(758\) −13.8800 + 24.0409i −0.504145 + 0.873205i
\(759\) 8.35255 0.303178
\(760\) 1.67841 2.90709i 0.0608824 0.105451i
\(761\) 21.9691 38.0515i 0.796378 1.37937i −0.125582 0.992083i \(-0.540080\pi\)
0.921960 0.387284i \(-0.126587\pi\)
\(762\) −12.9693 −0.469830
\(763\) 0 0
\(764\) 16.5079 + 28.5926i 0.597236 + 1.03444i
\(765\) 2.49501 + 4.32148i 0.0902072 + 0.156243i
\(766\) 51.0344 1.84395
\(767\) 18.2781 6.09134i 0.659985 0.219946i
\(768\) 8.64911 0.312098
\(769\) −12.6771 21.9573i −0.457147 0.791802i 0.541662 0.840597i \(-0.317795\pi\)
−0.998809 + 0.0487946i \(0.984462\pi\)
\(770\) 0 0
\(771\) 3.25024 5.62957i 0.117054 0.202744i
\(772\) −26.7137 −0.961447
\(773\) 11.5542 20.0125i 0.415576 0.719798i −0.579913 0.814678i \(-0.696913\pi\)
0.995489 + 0.0948801i \(0.0302468\pi\)
\(774\) −0.0610493 + 0.105741i −0.00219437 + 0.00380076i
\(775\) −14.8440 −0.533212
\(776\) −1.22705 + 2.12532i −0.0440487 + 0.0762946i
\(777\) 0 0
\(778\) 11.4474 + 19.8275i 0.410410 + 0.710851i
\(779\) 16.7418 0.599838
\(780\) −2.77716 2.46298i −0.0994381 0.0881889i
\(781\) 43.8031 1.56740
\(782\) 5.08456 + 8.80672i 0.181824 + 0.314928i
\(783\) 0.208785 + 0.361626i 0.00746135 + 0.0129234i
\(784\) 0 0
\(785\) 32.5750 1.16265
\(786\) 0.758241 1.31331i 0.0270456 0.0468443i
\(787\) 12.3346 21.3642i 0.439682 0.761551i −0.557983 0.829852i \(-0.688425\pi\)
0.997665 + 0.0683012i \(0.0217579\pi\)
\(788\) 32.1885 1.14667
\(789\) −3.68388 + 6.38066i −0.131149 + 0.227158i
\(790\) −1.08707 1.88285i −0.0386761 0.0669889i
\(791\) 0 0
\(792\) 8.69727 0.309044
\(793\) −39.4934 + 13.1615i −1.40245 + 0.467379i
\(794\) 3.15875 0.112100
\(795\) −0.0447447 0.0775000i −0.00158693 0.00274864i
\(796\) 11.5139 + 19.9427i 0.408100 + 0.706849i
\(797\) −5.65686 + 9.79797i −0.200376 + 0.347062i −0.948650 0.316329i \(-0.897550\pi\)
0.748273 + 0.663390i \(0.230883\pi\)
\(798\) 0 0
\(799\) 7.02597 12.1693i 0.248561 0.430520i
\(800\) 10.4182 18.0449i 0.368340 0.637984i
\(801\) −18.4690 −0.652571
\(802\) −19.5156 + 33.8019i −0.689118 + 1.19359i
\(803\) 33.4828 + 57.9940i 1.18158 + 2.04656i
\(804\) −1.44507 2.50293i −0.0509635 0.0882714i
\(805\) 0 0
\(806\) −7.22754 + 35.3071i −0.254579 + 1.24364i
\(807\) 8.10710 0.285384
\(808\) −0.905900 1.56906i −0.0318694 0.0551995i
\(809\) −8.18540 14.1775i −0.287783 0.498455i 0.685497 0.728075i \(-0.259585\pi\)
−0.973280 + 0.229620i \(0.926252\pi\)
\(810\) −10.3606 + 17.9450i −0.364033 + 0.630524i
\(811\) −29.0412 −1.01978 −0.509888 0.860241i \(-0.670313\pi\)
−0.509888 + 0.860241i \(0.670313\pi\)
\(812\) 0 0
\(813\) −6.88373 + 11.9230i −0.241423 + 0.418157i
\(814\) 59.0293 2.06898
\(815\) 2.83735 4.91443i 0.0993880 0.172145i
\(816\) −1.18561 2.05354i −0.0415046 0.0718881i
\(817\) −0.0368794 0.0638770i −0.00129025 0.00223477i
\(818\) −28.3278 −0.990458
\(819\) 0 0
\(820\) −12.4084 −0.433319
\(821\) 6.87589 + 11.9094i 0.239970 + 0.415640i 0.960705 0.277570i \(-0.0895290\pi\)
−0.720735 + 0.693210i \(0.756196\pi\)
\(822\) −5.22526 9.05041i −0.182252 0.315669i
\(823\) 14.5577 25.2146i 0.507448 0.878926i −0.492515 0.870304i \(-0.663922\pi\)
0.999963 0.00862197i \(-0.00274449\pi\)
\(824\) −11.8525 −0.412900
\(825\) −2.66354 + 4.61338i −0.0927325 + 0.160617i
\(826\) 0 0
\(827\) −22.9118 −0.796722 −0.398361 0.917229i \(-0.630421\pi\)
−0.398361 + 0.917229i \(0.630421\pi\)
\(828\) −10.1921 + 17.6533i −0.354201 + 0.613494i
\(829\) 11.6914 + 20.2502i 0.406061 + 0.703317i 0.994444 0.105264i \(-0.0335689\pi\)
−0.588384 + 0.808582i \(0.700236\pi\)
\(830\) 22.4832 + 38.9421i 0.780404 + 1.35170i
\(831\) 7.88574 0.273553
\(832\) −13.0219 11.5488i −0.451454 0.400382i
\(833\) 0 0
\(834\) −0.138275 0.239499i −0.00478806 0.00829317i
\(835\) 1.57547 + 2.72880i 0.0545214 + 0.0944339i
\(836\) 11.6175 20.1221i 0.401801 0.695939i
\(837\) −13.0718 −0.451828
\(838\) −22.5023 + 38.9751i −0.777328 + 1.34637i
\(839\) −0.367168 + 0.635954i −0.0126761 + 0.0219556i −0.872294 0.488982i \(-0.837368\pi\)
0.859618 + 0.510938i \(0.170702\pi\)
\(840\) 0 0
\(841\) 14.4860 25.0904i 0.499516 0.865187i
\(842\) 24.8506 + 43.0426i 0.856409 + 1.48334i
\(843\) 3.04737 + 5.27820i 0.104957 + 0.181791i
\(844\) −7.54629 −0.259754
\(845\) −2.28816 19.0135i −0.0787150 0.654084i
\(846\) 62.7042 2.15582
\(847\) 0 0
\(848\) −0.326223 0.565035i −0.0112026 0.0194034i
\(849\) 2.44834 4.24066i 0.0840270 0.145539i
\(850\) −6.48565 −0.222456
\(851\) 15.6420 27.0927i 0.536201 0.928727i
\(852\) 3.48375 6.03403i 0.119351 0.206722i
\(853\) 54.3567 1.86114 0.930569 0.366118i \(-0.119313\pi\)
0.930569 + 0.366118i \(0.119313\pi\)
\(854\) 0 0
\(855\) −6.72567 11.6492i −0.230013 0.398395i
\(856\) −3.05129 5.28500i −0.104291 0.180637i
\(857\) −21.0211 −0.718067 −0.359034 0.933325i \(-0.616894\pi\)
−0.359034 + 0.933325i \(0.616894\pi\)
\(858\) 9.67626 + 8.58160i 0.330342 + 0.292971i
\(859\) −51.3629 −1.75248 −0.876240 0.481875i \(-0.839956\pi\)
−0.876240 + 0.481875i \(0.839956\pi\)
\(860\) 0.0273336 + 0.0473431i 0.000932066 + 0.00161439i
\(861\) 0 0
\(862\) −12.6884 + 21.9769i −0.432167 + 0.748535i
\(863\) 7.11319 0.242136 0.121068 0.992644i \(-0.461368\pi\)
0.121068 + 0.992644i \(0.461368\pi\)
\(864\) 9.17443 15.8906i 0.312121 0.540609i
\(865\) −12.2368 + 21.1947i −0.416062 + 0.720641i
\(866\) −38.9155 −1.32240
\(867\) 3.33193 5.77107i 0.113158 0.195996i
\(868\) 0 0
\(869\) 1.70143 + 2.94696i 0.0577171 + 0.0999689i
\(870\) 0.201528 0.00683244
\(871\) 2.99027 14.6077i 0.101321 0.494962i
\(872\) −8.46267 −0.286582
\(873\) 4.91701 + 8.51652i 0.166416 + 0.288240i
\(874\) −13.7062 23.7399i −0.463620 0.803013i
\(875\) 0 0
\(876\) 10.6518 0.359892
\(877\) −0.256238 + 0.443818i −0.00865255 + 0.0149867i −0.870319 0.492488i \(-0.836088\pi\)
0.861667 + 0.507475i \(0.169421\pi\)
\(878\) −9.30937 + 16.1243i −0.314176 + 0.544169i
\(879\) −5.65749 −0.190822
\(880\) 14.8917 25.7933i 0.502000 0.869490i
\(881\) 18.5464 + 32.1232i 0.624843 + 1.08226i 0.988571 + 0.150754i \(0.0481702\pi\)
−0.363729 + 0.931505i \(0.618497\pi\)
\(882\) 0 0
\(883\) −15.5667 −0.523860 −0.261930 0.965087i \(-0.584359\pi\)
−0.261930 + 0.965087i \(0.584359\pi\)
\(884\) −1.41855 + 6.92972i −0.0477109 + 0.233072i
\(885\) 3.37262 0.113369
\(886\) 20.1645 + 34.9260i 0.677440 + 1.17336i
\(887\) −13.7900 23.8849i −0.463022 0.801977i 0.536088 0.844162i \(-0.319901\pi\)
−0.999110 + 0.0421849i \(0.986568\pi\)
\(888\) −1.06158 + 1.83871i −0.0356243 + 0.0617030i
\(889\) 0 0
\(890\) −9.20404 + 15.9419i −0.308520 + 0.534372i
\(891\) 16.2159 28.0868i 0.543254 0.940944i
\(892\) −34.8289 −1.16616
\(893\) −18.9396 + 32.8043i −0.633789 + 1.09775i
\(894\) 1.60150 + 2.77388i 0.0535621 + 0.0927723i
\(895\) −0.397374 0.688272i −0.0132827 0.0230064i
\(896\) 0 0
\(897\) 6.50279 2.16711i 0.217122 0.0723577i
\(898\) 34.5791 1.15392
\(899\) −0.439466 0.761178i −0.0146570 0.0253867i
\(900\) −6.50032 11.2589i −0.216677 0.375296i
\(901\) −0.0852637 + 0.147681i −0.00284054 + 0.00491997i
\(902\) 43.2337 1.43952
\(903\) 0 0
\(904\) −3.29366 + 5.70479i −0.109546 + 0.189738i
\(905\) −4.08298 −0.135723
\(906\) −0.864923 + 1.49809i −0.0287352 + 0.0497707i
\(907\) 22.5236 + 39.0119i 0.747882 + 1.29537i 0.948836 + 0.315769i \(0.102263\pi\)
−0.200954 + 0.979601i \(0.564404\pi\)
\(908\) 8.52200 + 14.7605i 0.282813 + 0.489846i
\(909\) −7.26019 −0.240805
\(910\) 0 0
\(911\) 35.4678 1.17510 0.587550 0.809188i \(-0.300093\pi\)
0.587550 + 0.809188i \(0.300093\pi\)
\(912\) 3.19599 + 5.53562i 0.105830 + 0.183303i
\(913\) −35.1898 60.9505i −1.16461 2.01717i
\(914\) −17.1689 + 29.7375i −0.567898 + 0.983627i
\(915\) −7.28720 −0.240908
\(916\) −11.7917 + 20.4238i −0.389608 + 0.674820i
\(917\) 0 0
\(918\) −5.71135 −0.188503
\(919\) −8.68622 + 15.0450i −0.286532 + 0.496288i −0.972980 0.230891i \(-0.925836\pi\)
0.686447 + 0.727179i \(0.259169\pi\)
\(920\) −2.29706 3.97862i −0.0757318 0.131171i
\(921\) 1.42652 + 2.47081i 0.0470056 + 0.0814160i
\(922\) 56.7372 1.86854
\(923\) 34.1024 11.3649i 1.12250 0.374081i
\(924\) 0 0
\(925\) 9.97613 + 17.2792i 0.328013 + 0.568136i
\(926\) 16.8706 + 29.2207i 0.554402 + 0.960252i
\(927\) −23.7474 + 41.1317i −0.779967 + 1.35094i
\(928\) 1.23375 0.0405000
\(929\) −5.38001 + 9.31845i −0.176512 + 0.305729i −0.940684 0.339285i \(-0.889815\pi\)
0.764171 + 0.645013i \(0.223148\pi\)
\(930\) −3.15437 + 5.46353i −0.103436 + 0.179156i
\(931\) 0 0
\(932\) 7.57532 13.1208i 0.248138 0.429788i
\(933\) 0.438295 + 0.759149i 0.0143491 + 0.0248534i
\(934\) −5.55396 9.61975i −0.181731 0.314768i
\(935\) −7.78439 −0.254577
\(936\) 6.77117 2.25655i 0.221323 0.0737577i
\(937\) −10.9816 −0.358755 −0.179377 0.983780i \(-0.557408\pi\)
−0.179377 + 0.983780i \(0.557408\pi\)
\(938\) 0 0
\(939\) −2.01749 3.49439i −0.0658383 0.114035i
\(940\) 14.0373 24.3132i 0.457845 0.793011i
\(941\) 8.17795 0.266594 0.133297 0.991076i \(-0.457444\pi\)
0.133297 + 0.991076i \(0.457444\pi\)
\(942\) −9.02681 + 15.6349i −0.294109 + 0.509412i
\(943\) 11.4564 19.8430i 0.373071 0.646177i
\(944\) 24.5890 0.800305
\(945\) 0 0
\(946\) −0.0952365 0.164954i −0.00309640 0.00536313i
\(947\) 2.29689 + 3.97833i 0.0746389 + 0.129278i 0.900929 0.433966i \(-0.142886\pi\)
−0.826290 + 0.563244i \(0.809553\pi\)
\(948\) 0.541273 0.0175797
\(949\) 41.1145 + 36.4633i 1.33463 + 1.18365i
\(950\) 17.4831 0.567225
\(951\) 7.14892 + 12.3823i 0.231820 + 0.401524i
\(952\) 0 0
\(953\) −10.5714 + 18.3102i −0.342442 + 0.593126i −0.984886 0.173206i \(-0.944587\pi\)
0.642444 + 0.766333i \(0.277921\pi\)
\(954\) −0.760947 −0.0246366
\(955\) −14.9086 + 25.8225i −0.482432 + 0.835596i
\(956\) −16.0124 + 27.7344i −0.517879 + 0.896993i
\(957\) −0.315423 −0.0101962
\(958\) 13.8070 23.9145i 0.446085 0.772641i
\(959\) 0 0
\(960\) −1.52342 2.63864i −0.0491681 0.0851616i
\(961\) −3.48542 −0.112433
\(962\) 45.9566 15.3154i 1.48170 0.493790i
\(963\) −24.4541 −0.788022
\(964\) −5.96274 10.3278i −0.192047 0.332635i
\(965\) −12.0628 20.8934i −0.388316 0.672582i
\(966\) 0 0
\(967\) −32.0750 −1.03146 −0.515731 0.856750i \(-0.672480\pi\)
−0.515731 + 0.856750i \(0.672480\pi\)
\(968\) −2.91817 + 5.05442i −0.0937936 + 0.162455i
\(969\) 0.835323 1.44682i 0.0268344 0.0464786i
\(970\) 9.80157 0.314710
\(971\) 26.0417 45.1056i 0.835719 1.44751i −0.0577245 0.998333i \(-0.518384\pi\)
0.893444 0.449175i \(-0.148282\pi\)
\(972\) −8.67673 15.0285i −0.278306 0.482041i
\(973\) 0 0
\(974\) 34.2241 1.09661
\(975\) −0.876705 + 4.28277i −0.0280770 + 0.137158i
\(976\) −53.1294 −1.70063
\(977\) −9.62898 16.6779i −0.308058 0.533573i 0.669879 0.742470i \(-0.266346\pi\)
−0.977938 + 0.208897i \(0.933013\pi\)
\(978\) 1.57251 + 2.72366i 0.0502832 + 0.0870930i
\(979\) 14.4058 24.9515i 0.460410 0.797454i
\(980\) 0 0
\(981\) −16.9557 + 29.3681i −0.541353 + 0.937650i
\(982\) −34.5868 + 59.9061i −1.10371 + 1.91168i
\(983\) −16.0731 −0.512653 −0.256327 0.966590i \(-0.582512\pi\)
−0.256327 + 0.966590i \(0.582512\pi\)
\(984\) −0.777512 + 1.34669i −0.0247862 + 0.0429309i
\(985\) 14.5350 + 25.1754i 0.463124 + 0.802155i
\(986\) −0.192012 0.332574i −0.00611490 0.0105913i
\(987\) 0 0
\(988\) 3.82391 18.6801i 0.121655 0.594294i
\(989\) −0.100946 −0.00320989
\(990\) −17.3682 30.0826i −0.551998 0.956088i
\(991\) −10.7132 18.5559i −0.340317 0.589447i 0.644174 0.764879i \(-0.277201\pi\)
−0.984492 + 0.175432i \(0.943868\pi\)
\(992\) −19.3111 + 33.4478i −0.613127 + 1.06197i
\(993\) 8.16876 0.259228
\(994\) 0 0
\(995\) −10.3984 + 18.0106i −0.329652 + 0.570974i
\(996\) −11.1949 −0.354723
\(997\) 8.47687 14.6824i 0.268465 0.464996i −0.700000 0.714142i \(-0.746817\pi\)
0.968466 + 0.249147i \(0.0801502\pi\)
\(998\) 22.5881 + 39.1238i 0.715015 + 1.23844i
\(999\) 8.78511 + 15.2163i 0.277949 + 0.481421i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.f.k.393.5 12
7.2 even 3 91.2.g.b.81.5 yes 12
7.3 odd 6 637.2.h.l.471.2 12
7.4 even 3 91.2.h.b.16.2 yes 12
7.5 odd 6 637.2.g.l.263.5 12
7.6 odd 2 637.2.f.j.393.5 12
13.3 even 3 8281.2.a.bz.1.2 6
13.9 even 3 inner 637.2.f.k.295.5 12
13.10 even 6 8281.2.a.ce.1.5 6
21.2 odd 6 819.2.n.d.172.2 12
21.11 odd 6 819.2.s.d.289.5 12
91.9 even 3 91.2.h.b.74.2 yes 12
91.16 even 3 1183.2.e.h.508.5 12
91.23 even 6 1183.2.e.g.508.2 12
91.48 odd 6 637.2.f.j.295.5 12
91.55 odd 6 8281.2.a.ca.1.2 6
91.61 odd 6 637.2.h.l.165.2 12
91.62 odd 6 8281.2.a.cf.1.5 6
91.74 even 3 91.2.g.b.9.5 12
91.81 even 3 1183.2.e.h.170.5 12
91.87 odd 6 637.2.g.l.373.5 12
91.88 even 6 1183.2.e.g.170.2 12
273.74 odd 6 819.2.n.d.100.2 12
273.191 odd 6 819.2.s.d.802.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.b.9.5 12 91.74 even 3
91.2.g.b.81.5 yes 12 7.2 even 3
91.2.h.b.16.2 yes 12 7.4 even 3
91.2.h.b.74.2 yes 12 91.9 even 3
637.2.f.j.295.5 12 91.48 odd 6
637.2.f.j.393.5 12 7.6 odd 2
637.2.f.k.295.5 12 13.9 even 3 inner
637.2.f.k.393.5 12 1.1 even 1 trivial
637.2.g.l.263.5 12 7.5 odd 6
637.2.g.l.373.5 12 91.87 odd 6
637.2.h.l.165.2 12 91.61 odd 6
637.2.h.l.471.2 12 7.3 odd 6
819.2.n.d.100.2 12 273.74 odd 6
819.2.n.d.172.2 12 21.2 odd 6
819.2.s.d.289.5 12 21.11 odd 6
819.2.s.d.802.5 12 273.191 odd 6
1183.2.e.g.170.2 12 91.88 even 6
1183.2.e.g.508.2 12 91.23 even 6
1183.2.e.h.170.5 12 91.81 even 3
1183.2.e.h.508.5 12 91.16 even 3
8281.2.a.bz.1.2 6 13.3 even 3
8281.2.a.ca.1.2 6 91.55 odd 6
8281.2.a.ce.1.5 6 13.10 even 6
8281.2.a.cf.1.5 6 91.62 odd 6