Properties

Label 8281.2.a.ca.1.2
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.6995813.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 6x^{4} + 4x^{3} + 7x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.33401\) of defining polynomial
Character \(\chi\) \(=\) 8281.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.90556 q^{2} -0.428448 q^{3} +1.63116 q^{4} +1.47313 q^{5} +0.816433 q^{6} +0.702849 q^{8} -2.81643 q^{9} -2.80714 q^{10} -4.39361 q^{11} -0.698866 q^{12} -0.631159 q^{15} -4.60164 q^{16} +1.20271 q^{17} +5.36688 q^{18} -3.24209 q^{19} +2.40291 q^{20} +8.37230 q^{22} -4.43710 q^{23} -0.301134 q^{24} -2.82989 q^{25} +2.49204 q^{27} +0.167561 q^{29} +1.20271 q^{30} -5.24543 q^{31} +7.36300 q^{32} +1.88243 q^{33} -2.29184 q^{34} -4.59405 q^{36} +7.05055 q^{37} +6.17800 q^{38} +1.03539 q^{40} -5.16390 q^{41} +0.0227504 q^{43} -7.16668 q^{44} -4.14897 q^{45} +8.45516 q^{46} -11.6836 q^{47} +1.97156 q^{48} +5.39252 q^{50} -0.515299 q^{51} -0.141786 q^{53} -4.74873 q^{54} -6.47236 q^{55} +1.38907 q^{57} -0.319298 q^{58} +5.34354 q^{59} -1.02952 q^{60} -11.5457 q^{61} +9.99549 q^{62} -4.82736 q^{64} -3.58709 q^{66} +4.13546 q^{67} +1.96181 q^{68} +1.90107 q^{69} -9.96971 q^{71} -1.97953 q^{72} -15.2416 q^{73} -13.4352 q^{74} +1.21246 q^{75} -5.28837 q^{76} +0.774501 q^{79} -6.77881 q^{80} +7.38159 q^{81} +9.84011 q^{82} +16.0186 q^{83} +1.77175 q^{85} -0.0433522 q^{86} -0.0717913 q^{87} -3.08805 q^{88} -6.55760 q^{89} +7.90611 q^{90} -7.23762 q^{92} +2.24739 q^{93} +22.2637 q^{94} -4.77602 q^{95} -3.15466 q^{96} -3.49166 q^{97} +12.3743 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + q^{3} + 4 q^{4} + q^{5} - 9 q^{6} - 3 q^{8} - 3 q^{9} + 4 q^{10} - 4 q^{11} + 5 q^{12} + 2 q^{15} - 8 q^{16} + 5 q^{17} - 3 q^{18} - q^{19} - q^{20} + 5 q^{22} + q^{23} - 11 q^{24}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.90556 −1.34743 −0.673717 0.738989i \(-0.735303\pi\)
−0.673717 + 0.738989i \(0.735303\pi\)
\(3\) −0.428448 −0.247364 −0.123682 0.992322i \(-0.539470\pi\)
−0.123682 + 0.992322i \(0.539470\pi\)
\(4\) 1.63116 0.815580
\(5\) 1.47313 0.658804 0.329402 0.944190i \(-0.393153\pi\)
0.329402 + 0.944190i \(0.393153\pi\)
\(6\) 0.816433 0.333307
\(7\) 0 0
\(8\) 0.702849 0.248495
\(9\) −2.81643 −0.938811
\(10\) −2.80714 −0.887695
\(11\) −4.39361 −1.32472 −0.662362 0.749184i \(-0.730446\pi\)
−0.662362 + 0.749184i \(0.730446\pi\)
\(12\) −0.698866 −0.201745
\(13\) 0 0
\(14\) 0 0
\(15\) −0.631159 −0.162965
\(16\) −4.60164 −1.15041
\(17\) 1.20271 0.291700 0.145850 0.989307i \(-0.453408\pi\)
0.145850 + 0.989307i \(0.453408\pi\)
\(18\) 5.36688 1.26499
\(19\) −3.24209 −0.743787 −0.371893 0.928275i \(-0.621291\pi\)
−0.371893 + 0.928275i \(0.621291\pi\)
\(20\) 2.40291 0.537307
\(21\) 0 0
\(22\) 8.37230 1.78498
\(23\) −4.43710 −0.925200 −0.462600 0.886567i \(-0.653083\pi\)
−0.462600 + 0.886567i \(0.653083\pi\)
\(24\) −0.301134 −0.0614687
\(25\) −2.82989 −0.565978
\(26\) 0 0
\(27\) 2.49204 0.479593
\(28\) 0 0
\(29\) 0.167561 0.0311154 0.0155577 0.999879i \(-0.495048\pi\)
0.0155577 + 0.999879i \(0.495048\pi\)
\(30\) 1.20271 0.219584
\(31\) −5.24543 −0.942108 −0.471054 0.882104i \(-0.656126\pi\)
−0.471054 + 0.882104i \(0.656126\pi\)
\(32\) 7.36300 1.30161
\(33\) 1.88243 0.327690
\(34\) −2.29184 −0.393047
\(35\) 0 0
\(36\) −4.59405 −0.765675
\(37\) 7.05055 1.15910 0.579552 0.814936i \(-0.303228\pi\)
0.579552 + 0.814936i \(0.303228\pi\)
\(38\) 6.17800 1.00220
\(39\) 0 0
\(40\) 1.03539 0.163709
\(41\) −5.16390 −0.806465 −0.403233 0.915098i \(-0.632113\pi\)
−0.403233 + 0.915098i \(0.632113\pi\)
\(42\) 0 0
\(43\) 0.0227504 0.00346940 0.00173470 0.999998i \(-0.499448\pi\)
0.00173470 + 0.999998i \(0.499448\pi\)
\(44\) −7.16668 −1.08042
\(45\) −4.14897 −0.618492
\(46\) 8.45516 1.24665
\(47\) −11.6836 −1.70422 −0.852111 0.523362i \(-0.824678\pi\)
−0.852111 + 0.523362i \(0.824678\pi\)
\(48\) 1.97156 0.284570
\(49\) 0 0
\(50\) 5.39252 0.762618
\(51\) −0.515299 −0.0721563
\(52\) 0 0
\(53\) −0.141786 −0.0194758 −0.00973788 0.999953i \(-0.503100\pi\)
−0.00973788 + 0.999953i \(0.503100\pi\)
\(54\) −4.74873 −0.646220
\(55\) −6.47236 −0.872734
\(56\) 0 0
\(57\) 1.38907 0.183986
\(58\) −0.319298 −0.0419259
\(59\) 5.34354 0.695670 0.347835 0.937556i \(-0.386917\pi\)
0.347835 + 0.937556i \(0.386917\pi\)
\(60\) −1.02952 −0.132911
\(61\) −11.5457 −1.47828 −0.739141 0.673551i \(-0.764768\pi\)
−0.739141 + 0.673551i \(0.764768\pi\)
\(62\) 9.99549 1.26943
\(63\) 0 0
\(64\) −4.82736 −0.603420
\(65\) 0 0
\(66\) −3.58709 −0.441540
\(67\) 4.13546 0.505226 0.252613 0.967567i \(-0.418710\pi\)
0.252613 + 0.967567i \(0.418710\pi\)
\(68\) 1.96181 0.237905
\(69\) 1.90107 0.228861
\(70\) 0 0
\(71\) −9.96971 −1.18319 −0.591594 0.806236i \(-0.701501\pi\)
−0.591594 + 0.806236i \(0.701501\pi\)
\(72\) −1.97953 −0.233289
\(73\) −15.2416 −1.78389 −0.891947 0.452141i \(-0.850660\pi\)
−0.891947 + 0.452141i \(0.850660\pi\)
\(74\) −13.4352 −1.56182
\(75\) 1.21246 0.140003
\(76\) −5.28837 −0.606617
\(77\) 0 0
\(78\) 0 0
\(79\) 0.774501 0.0871382 0.0435691 0.999050i \(-0.486127\pi\)
0.0435691 + 0.999050i \(0.486127\pi\)
\(80\) −6.77881 −0.757894
\(81\) 7.38159 0.820177
\(82\) 9.84011 1.08666
\(83\) 16.0186 1.75827 0.879136 0.476571i \(-0.158121\pi\)
0.879136 + 0.476571i \(0.158121\pi\)
\(84\) 0 0
\(85\) 1.77175 0.192173
\(86\) −0.0433522 −0.00467479
\(87\) −0.0717913 −0.00769683
\(88\) −3.08805 −0.329187
\(89\) −6.55760 −0.695104 −0.347552 0.937661i \(-0.612987\pi\)
−0.347552 + 0.937661i \(0.612987\pi\)
\(90\) 7.90611 0.833378
\(91\) 0 0
\(92\) −7.23762 −0.754574
\(93\) 2.24739 0.233044
\(94\) 22.2637 2.29633
\(95\) −4.77602 −0.490010
\(96\) −3.15466 −0.321971
\(97\) −3.49166 −0.354524 −0.177262 0.984164i \(-0.556724\pi\)
−0.177262 + 0.984164i \(0.556724\pi\)
\(98\) 0 0
\(99\) 12.3743 1.24367
\(100\) −4.61600 −0.461600
\(101\) −2.57780 −0.256500 −0.128250 0.991742i \(-0.540936\pi\)
−0.128250 + 0.991742i \(0.540936\pi\)
\(102\) 0.981933 0.0972258
\(103\) 16.8635 1.66161 0.830803 0.556567i \(-0.187882\pi\)
0.830803 + 0.556567i \(0.187882\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.270181 0.0262423
\(107\) 8.68265 0.839383 0.419692 0.907667i \(-0.362138\pi\)
0.419692 + 0.907667i \(0.362138\pi\)
\(108\) 4.06491 0.391146
\(109\) −12.0405 −1.15327 −0.576637 0.817001i \(-0.695635\pi\)
−0.576637 + 0.817001i \(0.695635\pi\)
\(110\) 12.3335 1.17595
\(111\) −3.02079 −0.286721
\(112\) 0 0
\(113\) 9.37232 0.881674 0.440837 0.897587i \(-0.354682\pi\)
0.440837 + 0.897587i \(0.354682\pi\)
\(114\) −2.64695 −0.247910
\(115\) −6.53643 −0.609525
\(116\) 0.273319 0.0253771
\(117\) 0 0
\(118\) −10.1824 −0.937369
\(119\) 0 0
\(120\) −0.443609 −0.0404958
\(121\) 8.30385 0.754895
\(122\) 22.0011 1.99189
\(123\) 2.21246 0.199491
\(124\) −8.55614 −0.768364
\(125\) −11.5344 −1.03167
\(126\) 0 0
\(127\) 15.8854 1.40960 0.704800 0.709406i \(-0.251037\pi\)
0.704800 + 0.709406i \(0.251037\pi\)
\(128\) −5.52717 −0.488537
\(129\) −0.00974735 −0.000858206 0
\(130\) 0 0
\(131\) −1.85745 −0.162286 −0.0811430 0.996702i \(-0.525857\pi\)
−0.0811430 + 0.996702i \(0.525857\pi\)
\(132\) 3.07055 0.267257
\(133\) 0 0
\(134\) −7.88036 −0.680759
\(135\) 3.67109 0.315957
\(136\) 0.845324 0.0724859
\(137\) −12.8002 −1.09360 −0.546798 0.837264i \(-0.684153\pi\)
−0.546798 + 0.837264i \(0.684153\pi\)
\(138\) −3.62260 −0.308376
\(139\) 0.338729 0.0287306 0.0143653 0.999897i \(-0.495427\pi\)
0.0143653 + 0.999897i \(0.495427\pi\)
\(140\) 0 0
\(141\) 5.00579 0.421564
\(142\) 18.9979 1.59427
\(143\) 0 0
\(144\) 12.9602 1.08002
\(145\) 0.246840 0.0204989
\(146\) 29.0438 2.40368
\(147\) 0 0
\(148\) 11.5006 0.945341
\(149\) 3.92316 0.321398 0.160699 0.987003i \(-0.448625\pi\)
0.160699 + 0.987003i \(0.448625\pi\)
\(150\) −2.31041 −0.188644
\(151\) −2.11879 −0.172424 −0.0862122 0.996277i \(-0.527476\pi\)
−0.0862122 + 0.996277i \(0.527476\pi\)
\(152\) −2.27870 −0.184827
\(153\) −3.38736 −0.273851
\(154\) 0 0
\(155\) −7.72721 −0.620664
\(156\) 0 0
\(157\) 22.1128 1.76479 0.882397 0.470506i \(-0.155929\pi\)
0.882397 + 0.470506i \(0.155929\pi\)
\(158\) −1.47586 −0.117413
\(159\) 0.0607478 0.00481761
\(160\) 10.8467 0.857504
\(161\) 0 0
\(162\) −14.0661 −1.10513
\(163\) 3.85214 0.301723 0.150861 0.988555i \(-0.451795\pi\)
0.150861 + 0.988555i \(0.451795\pi\)
\(164\) −8.42314 −0.657736
\(165\) 2.77307 0.215883
\(166\) −30.5244 −2.36916
\(167\) −2.13894 −0.165516 −0.0827582 0.996570i \(-0.526373\pi\)
−0.0827582 + 0.996570i \(0.526373\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −3.37618 −0.258941
\(171\) 9.13113 0.698275
\(172\) 0.0371095 0.00282957
\(173\) 16.6133 1.26308 0.631542 0.775342i \(-0.282422\pi\)
0.631542 + 0.775342i \(0.282422\pi\)
\(174\) 0.136803 0.0103710
\(175\) 0 0
\(176\) 20.2178 1.52398
\(177\) −2.28943 −0.172084
\(178\) 12.4959 0.936607
\(179\) −0.539496 −0.0403238 −0.0201619 0.999797i \(-0.506418\pi\)
−0.0201619 + 0.999797i \(0.506418\pi\)
\(180\) −6.76763 −0.504430
\(181\) −2.77164 −0.206014 −0.103007 0.994681i \(-0.532846\pi\)
−0.103007 + 0.994681i \(0.532846\pi\)
\(182\) 0 0
\(183\) 4.94675 0.365674
\(184\) −3.11861 −0.229907
\(185\) 10.3864 0.763621
\(186\) −4.28254 −0.314011
\(187\) −5.28425 −0.386423
\(188\) −19.0577 −1.38993
\(189\) 0 0
\(190\) 9.10100 0.660256
\(191\) −20.2407 −1.46457 −0.732284 0.680999i \(-0.761546\pi\)
−0.732284 + 0.680999i \(0.761546\pi\)
\(192\) 2.06827 0.149265
\(193\) −16.3771 −1.17885 −0.589425 0.807823i \(-0.700646\pi\)
−0.589425 + 0.807823i \(0.700646\pi\)
\(194\) 6.65357 0.477698
\(195\) 0 0
\(196\) 0 0
\(197\) 19.7335 1.40595 0.702977 0.711212i \(-0.251854\pi\)
0.702977 + 0.711212i \(0.251854\pi\)
\(198\) −23.5800 −1.67576
\(199\) 14.1175 1.00076 0.500380 0.865806i \(-0.333194\pi\)
0.500380 + 0.865806i \(0.333194\pi\)
\(200\) −1.98898 −0.140642
\(201\) −1.77183 −0.124975
\(202\) 4.91214 0.345617
\(203\) 0 0
\(204\) −0.840534 −0.0588492
\(205\) −7.60709 −0.531302
\(206\) −32.1343 −2.23890
\(207\) 12.4968 0.868588
\(208\) 0 0
\(209\) 14.2445 0.985313
\(210\) 0 0
\(211\) −4.62634 −0.318490 −0.159245 0.987239i \(-0.550906\pi\)
−0.159245 + 0.987239i \(0.550906\pi\)
\(212\) −0.231275 −0.0158840
\(213\) 4.27150 0.292678
\(214\) −16.5453 −1.13101
\(215\) 0.0335143 0.00228565
\(216\) 1.75152 0.119176
\(217\) 0 0
\(218\) 22.9439 1.55396
\(219\) 6.53022 0.441272
\(220\) −10.5575 −0.711784
\(221\) 0 0
\(222\) 5.75630 0.386337
\(223\) 21.3523 1.42985 0.714926 0.699200i \(-0.246460\pi\)
0.714926 + 0.699200i \(0.246460\pi\)
\(224\) 0 0
\(225\) 7.97019 0.531346
\(226\) −17.8595 −1.18800
\(227\) 10.4490 0.693526 0.346763 0.937953i \(-0.387281\pi\)
0.346763 + 0.937953i \(0.387281\pi\)
\(228\) 2.26579 0.150056
\(229\) −14.4580 −0.955413 −0.477706 0.878520i \(-0.658532\pi\)
−0.477706 + 0.878520i \(0.658532\pi\)
\(230\) 12.4556 0.821295
\(231\) 0 0
\(232\) 0.117770 0.00773200
\(233\) −9.28827 −0.608495 −0.304247 0.952593i \(-0.598405\pi\)
−0.304247 + 0.952593i \(0.598405\pi\)
\(234\) 0 0
\(235\) −17.2114 −1.12275
\(236\) 8.71616 0.567374
\(237\) −0.331833 −0.0215549
\(238\) 0 0
\(239\) 19.6332 1.26997 0.634983 0.772526i \(-0.281007\pi\)
0.634983 + 0.772526i \(0.281007\pi\)
\(240\) 2.90437 0.187476
\(241\) −7.31105 −0.470946 −0.235473 0.971881i \(-0.575664\pi\)
−0.235473 + 0.971881i \(0.575664\pi\)
\(242\) −15.8235 −1.01717
\(243\) −10.6387 −0.682475
\(244\) −18.8330 −1.20566
\(245\) 0 0
\(246\) −4.21597 −0.268801
\(247\) 0 0
\(248\) −3.68675 −0.234109
\(249\) −6.86314 −0.434934
\(250\) 21.9796 1.39011
\(251\) 11.8638 0.748837 0.374419 0.927260i \(-0.377842\pi\)
0.374419 + 0.927260i \(0.377842\pi\)
\(252\) 0 0
\(253\) 19.4949 1.22563
\(254\) −30.2706 −1.89934
\(255\) −0.759102 −0.0475368
\(256\) 20.1871 1.26169
\(257\) 15.1722 0.946413 0.473206 0.880952i \(-0.343096\pi\)
0.473206 + 0.880952i \(0.343096\pi\)
\(258\) 0.0185742 0.00115638
\(259\) 0 0
\(260\) 0 0
\(261\) −0.471925 −0.0292115
\(262\) 3.53948 0.218670
\(263\) 17.1964 1.06037 0.530187 0.847880i \(-0.322122\pi\)
0.530187 + 0.847880i \(0.322122\pi\)
\(264\) 1.32307 0.0814291
\(265\) −0.208869 −0.0128307
\(266\) 0 0
\(267\) 2.80959 0.171944
\(268\) 6.74559 0.412052
\(269\) −18.9220 −1.15370 −0.576849 0.816851i \(-0.695718\pi\)
−0.576849 + 0.816851i \(0.695718\pi\)
\(270\) −6.99549 −0.425732
\(271\) −32.1334 −1.95196 −0.975982 0.217853i \(-0.930095\pi\)
−0.975982 + 0.217853i \(0.930095\pi\)
\(272\) −5.53444 −0.335575
\(273\) 0 0
\(274\) 24.3916 1.47355
\(275\) 12.4334 0.749764
\(276\) 3.10094 0.186655
\(277\) 18.4054 1.10587 0.552936 0.833224i \(-0.313507\pi\)
0.552936 + 0.833224i \(0.313507\pi\)
\(278\) −0.645469 −0.0387126
\(279\) 14.7734 0.884461
\(280\) 0 0
\(281\) −14.2252 −0.848603 −0.424302 0.905521i \(-0.639480\pi\)
−0.424302 + 0.905521i \(0.639480\pi\)
\(282\) −9.53883 −0.568029
\(283\) 11.4289 0.679378 0.339689 0.940538i \(-0.389678\pi\)
0.339689 + 0.940538i \(0.389678\pi\)
\(284\) −16.2622 −0.964983
\(285\) 2.04628 0.121211
\(286\) 0 0
\(287\) 0 0
\(288\) −20.7374 −1.22196
\(289\) −15.5535 −0.914911
\(290\) −0.470368 −0.0276210
\(291\) 1.49599 0.0876967
\(292\) −24.8615 −1.45491
\(293\) 13.2046 0.771422 0.385711 0.922620i \(-0.373956\pi\)
0.385711 + 0.922620i \(0.373956\pi\)
\(294\) 0 0
\(295\) 7.87173 0.458310
\(296\) 4.95547 0.288031
\(297\) −10.9490 −0.635328
\(298\) −7.47582 −0.433062
\(299\) 0 0
\(300\) 1.97771 0.114183
\(301\) 0 0
\(302\) 4.03748 0.232331
\(303\) 1.10445 0.0634490
\(304\) 14.9189 0.855660
\(305\) −17.0084 −0.973898
\(306\) 6.45481 0.368997
\(307\) 6.65903 0.380051 0.190026 0.981779i \(-0.439143\pi\)
0.190026 + 0.981779i \(0.439143\pi\)
\(308\) 0 0
\(309\) −7.22511 −0.411022
\(310\) 14.7247 0.836304
\(311\) 2.04597 0.116016 0.0580081 0.998316i \(-0.481525\pi\)
0.0580081 + 0.998316i \(0.481525\pi\)
\(312\) 0 0
\(313\) −9.41767 −0.532318 −0.266159 0.963929i \(-0.585755\pi\)
−0.266159 + 0.963929i \(0.585755\pi\)
\(314\) −42.1373 −2.37794
\(315\) 0 0
\(316\) 1.26333 0.0710681
\(317\) −33.3713 −1.87432 −0.937159 0.348902i \(-0.886555\pi\)
−0.937159 + 0.348902i \(0.886555\pi\)
\(318\) −0.115758 −0.00649141
\(319\) −0.736200 −0.0412193
\(320\) −7.11133 −0.397536
\(321\) −3.72006 −0.207634
\(322\) 0 0
\(323\) −3.89930 −0.216963
\(324\) 12.0405 0.668919
\(325\) 0 0
\(326\) −7.34048 −0.406551
\(327\) 5.15873 0.285279
\(328\) −3.62944 −0.200402
\(329\) 0 0
\(330\) −5.28425 −0.290888
\(331\) 19.0660 1.04796 0.523980 0.851731i \(-0.324447\pi\)
0.523980 + 0.851731i \(0.324447\pi\)
\(332\) 26.1289 1.43401
\(333\) −19.8574 −1.08818
\(334\) 4.07589 0.223023
\(335\) 6.09207 0.332845
\(336\) 0 0
\(337\) −31.2849 −1.70420 −0.852098 0.523382i \(-0.824670\pi\)
−0.852098 + 0.523382i \(0.824670\pi\)
\(338\) 0 0
\(339\) −4.01555 −0.218095
\(340\) 2.89001 0.156733
\(341\) 23.0464 1.24803
\(342\) −17.3999 −0.940880
\(343\) 0 0
\(344\) 0.0159901 0.000862127 0
\(345\) 2.80052 0.150775
\(346\) −31.6576 −1.70192
\(347\) 11.6752 0.626757 0.313378 0.949628i \(-0.398539\pi\)
0.313378 + 0.949628i \(0.398539\pi\)
\(348\) −0.117103 −0.00627738
\(349\) −23.9904 −1.28418 −0.642089 0.766631i \(-0.721932\pi\)
−0.642089 + 0.766631i \(0.721932\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −32.3502 −1.72427
\(353\) −12.7934 −0.680922 −0.340461 0.940259i \(-0.610583\pi\)
−0.340461 + 0.940259i \(0.610583\pi\)
\(354\) 4.36264 0.231872
\(355\) −14.6867 −0.779488
\(356\) −10.6965 −0.566912
\(357\) 0 0
\(358\) 1.02804 0.0543337
\(359\) 12.3397 0.651265 0.325633 0.945496i \(-0.394423\pi\)
0.325633 + 0.945496i \(0.394423\pi\)
\(360\) −2.91610 −0.153692
\(361\) −8.48884 −0.446781
\(362\) 5.28152 0.277591
\(363\) −3.55776 −0.186734
\(364\) 0 0
\(365\) −22.4528 −1.17524
\(366\) −9.42633 −0.492722
\(367\) −2.03077 −0.106005 −0.0530026 0.998594i \(-0.516879\pi\)
−0.0530026 + 0.998594i \(0.516879\pi\)
\(368\) 20.4179 1.06436
\(369\) 14.5438 0.757118
\(370\) −19.7919 −1.02893
\(371\) 0 0
\(372\) 3.66586 0.190066
\(373\) −3.87400 −0.200588 −0.100294 0.994958i \(-0.531978\pi\)
−0.100294 + 0.994958i \(0.531978\pi\)
\(374\) 10.0695 0.520679
\(375\) 4.94190 0.255199
\(376\) −8.21177 −0.423490
\(377\) 0 0
\(378\) 0 0
\(379\) −14.5679 −0.748303 −0.374152 0.927368i \(-0.622066\pi\)
−0.374152 + 0.927368i \(0.622066\pi\)
\(380\) −7.79045 −0.399642
\(381\) −6.80606 −0.348685
\(382\) 38.5699 1.97341
\(383\) 26.7818 1.36849 0.684243 0.729254i \(-0.260133\pi\)
0.684243 + 0.729254i \(0.260133\pi\)
\(384\) 2.36810 0.120847
\(385\) 0 0
\(386\) 31.2076 1.58842
\(387\) −0.0640749 −0.00325711
\(388\) −5.69545 −0.289143
\(389\) 12.0148 0.609173 0.304586 0.952485i \(-0.401482\pi\)
0.304586 + 0.952485i \(0.401482\pi\)
\(390\) 0 0
\(391\) −5.33655 −0.269881
\(392\) 0 0
\(393\) 0.795820 0.0401438
\(394\) −37.6034 −1.89443
\(395\) 1.14094 0.0574070
\(396\) 20.1845 1.01431
\(397\) 1.65765 0.0831951 0.0415975 0.999134i \(-0.486755\pi\)
0.0415975 + 0.999134i \(0.486755\pi\)
\(398\) −26.9017 −1.34846
\(399\) 0 0
\(400\) 13.0221 0.651106
\(401\) −20.4828 −1.02286 −0.511430 0.859325i \(-0.670884\pi\)
−0.511430 + 0.859325i \(0.670884\pi\)
\(402\) 3.37632 0.168396
\(403\) 0 0
\(404\) −4.20479 −0.209196
\(405\) 10.8740 0.540336
\(406\) 0 0
\(407\) −30.9774 −1.53549
\(408\) −0.362177 −0.0179304
\(409\) −14.8659 −0.735070 −0.367535 0.930010i \(-0.619798\pi\)
−0.367535 + 0.930010i \(0.619798\pi\)
\(410\) 14.4958 0.715895
\(411\) 5.48422 0.270517
\(412\) 27.5070 1.35517
\(413\) 0 0
\(414\) −23.8134 −1.17036
\(415\) 23.5975 1.15836
\(416\) 0 0
\(417\) −0.145128 −0.00710693
\(418\) −27.1438 −1.32764
\(419\) 23.6175 1.15379 0.576895 0.816819i \(-0.304264\pi\)
0.576895 + 0.816819i \(0.304264\pi\)
\(420\) 0 0
\(421\) 26.0822 1.27117 0.635585 0.772031i \(-0.280759\pi\)
0.635585 + 0.772031i \(0.280759\pi\)
\(422\) 8.81576 0.429144
\(423\) 32.9059 1.59994
\(424\) −0.0996539 −0.00483962
\(425\) −3.40354 −0.165096
\(426\) −8.13960 −0.394365
\(427\) 0 0
\(428\) 14.1628 0.684584
\(429\) 0 0
\(430\) −0.0638635 −0.00307977
\(431\) −13.3172 −0.641466 −0.320733 0.947170i \(-0.603929\pi\)
−0.320733 + 0.947170i \(0.603929\pi\)
\(432\) −11.4675 −0.551728
\(433\) −20.4221 −0.981422 −0.490711 0.871322i \(-0.663263\pi\)
−0.490711 + 0.871322i \(0.663263\pi\)
\(434\) 0 0
\(435\) −0.105758 −0.00507070
\(436\) −19.6400 −0.940586
\(437\) 14.3855 0.688152
\(438\) −12.4437 −0.594585
\(439\) 9.77074 0.466332 0.233166 0.972437i \(-0.425091\pi\)
0.233166 + 0.972437i \(0.425091\pi\)
\(440\) −4.54909 −0.216869
\(441\) 0 0
\(442\) 0 0
\(443\) 21.1639 1.00553 0.502763 0.864424i \(-0.332317\pi\)
0.502763 + 0.864424i \(0.332317\pi\)
\(444\) −4.92739 −0.233844
\(445\) −9.66019 −0.457937
\(446\) −40.6880 −1.92663
\(447\) −1.68087 −0.0795023
\(448\) 0 0
\(449\) −18.1464 −0.856382 −0.428191 0.903688i \(-0.640849\pi\)
−0.428191 + 0.903688i \(0.640849\pi\)
\(450\) −15.1877 −0.715954
\(451\) 22.6882 1.06834
\(452\) 15.2877 0.719075
\(453\) 0.907789 0.0426517
\(454\) −19.9112 −0.934480
\(455\) 0 0
\(456\) 0.976304 0.0457196
\(457\) −18.0198 −0.842932 −0.421466 0.906844i \(-0.638484\pi\)
−0.421466 + 0.906844i \(0.638484\pi\)
\(458\) 27.5506 1.28736
\(459\) 2.99720 0.139897
\(460\) −10.6620 −0.497116
\(461\) 29.7746 1.38674 0.693370 0.720582i \(-0.256125\pi\)
0.693370 + 0.720582i \(0.256125\pi\)
\(462\) 0 0
\(463\) 17.7067 0.822900 0.411450 0.911432i \(-0.365023\pi\)
0.411450 + 0.911432i \(0.365023\pi\)
\(464\) −0.771057 −0.0357954
\(465\) 3.31070 0.153530
\(466\) 17.6994 0.819907
\(467\) 5.82922 0.269744 0.134872 0.990863i \(-0.456938\pi\)
0.134872 + 0.990863i \(0.456938\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 32.7973 1.51283
\(471\) −9.47418 −0.436547
\(472\) 3.75570 0.172870
\(473\) −0.0999564 −0.00459600
\(474\) 0.632328 0.0290438
\(475\) 9.17476 0.420967
\(476\) 0 0
\(477\) 0.399330 0.0182841
\(478\) −37.4122 −1.71120
\(479\) −14.4913 −0.662125 −0.331062 0.943609i \(-0.607407\pi\)
−0.331062 + 0.943609i \(0.607407\pi\)
\(480\) −4.64722 −0.212116
\(481\) 0 0
\(482\) 13.9316 0.634569
\(483\) 0 0
\(484\) 13.5449 0.615677
\(485\) −5.14367 −0.233562
\(486\) 20.2727 0.919591
\(487\) −17.9601 −0.813851 −0.406926 0.913461i \(-0.633399\pi\)
−0.406926 + 0.913461i \(0.633399\pi\)
\(488\) −8.11491 −0.367345
\(489\) −1.65044 −0.0746354
\(490\) 0 0
\(491\) −36.3009 −1.63824 −0.819119 0.573624i \(-0.805537\pi\)
−0.819119 + 0.573624i \(0.805537\pi\)
\(492\) 3.60887 0.162701
\(493\) 0.201528 0.00907637
\(494\) 0 0
\(495\) 18.2290 0.819332
\(496\) 24.1376 1.08381
\(497\) 0 0
\(498\) 13.0781 0.586045
\(499\) 23.7076 1.06130 0.530649 0.847591i \(-0.321948\pi\)
0.530649 + 0.847591i \(0.321948\pi\)
\(500\) −18.8145 −0.841410
\(501\) 0.916426 0.0409429
\(502\) −22.6072 −1.00901
\(503\) −27.7752 −1.23843 −0.619217 0.785220i \(-0.712550\pi\)
−0.619217 + 0.785220i \(0.712550\pi\)
\(504\) 0 0
\(505\) −3.79743 −0.168983
\(506\) −37.1487 −1.65146
\(507\) 0 0
\(508\) 25.9116 1.14964
\(509\) −8.70416 −0.385805 −0.192902 0.981218i \(-0.561790\pi\)
−0.192902 + 0.981218i \(0.561790\pi\)
\(510\) 1.44651 0.0640527
\(511\) 0 0
\(512\) −27.4134 −1.21151
\(513\) −8.07941 −0.356715
\(514\) −28.9114 −1.27523
\(515\) 24.8421 1.09467
\(516\) −0.0158995 −0.000699935 0
\(517\) 51.3330 2.25762
\(518\) 0 0
\(519\) −7.11792 −0.312442
\(520\) 0 0
\(521\) 8.57146 0.375523 0.187761 0.982215i \(-0.439877\pi\)
0.187761 + 0.982215i \(0.439877\pi\)
\(522\) 0.899282 0.0393605
\(523\) −29.9493 −1.30959 −0.654796 0.755806i \(-0.727245\pi\)
−0.654796 + 0.755806i \(0.727245\pi\)
\(524\) −3.02980 −0.132357
\(525\) 0 0
\(526\) −32.7688 −1.42879
\(527\) −6.30874 −0.274813
\(528\) −8.66228 −0.376977
\(529\) −3.31212 −0.144005
\(530\) 0.398012 0.0172885
\(531\) −15.0497 −0.653102
\(532\) 0 0
\(533\) 0 0
\(534\) −5.35383 −0.231683
\(535\) 12.7907 0.552989
\(536\) 2.90660 0.125546
\(537\) 0.231146 0.00997467
\(538\) 36.0571 1.55453
\(539\) 0 0
\(540\) 5.98814 0.257688
\(541\) 10.4819 0.450652 0.225326 0.974283i \(-0.427655\pi\)
0.225326 + 0.974283i \(0.427655\pi\)
\(542\) 61.2321 2.63014
\(543\) 1.18750 0.0509606
\(544\) 8.85557 0.379679
\(545\) −17.7373 −0.759781
\(546\) 0 0
\(547\) 15.2216 0.650829 0.325415 0.945571i \(-0.394496\pi\)
0.325415 + 0.945571i \(0.394496\pi\)
\(548\) −20.8792 −0.891915
\(549\) 32.5178 1.38783
\(550\) −23.6927 −1.01026
\(551\) −0.543250 −0.0231432
\(552\) 1.33616 0.0568708
\(553\) 0 0
\(554\) −35.0726 −1.49009
\(555\) −4.45002 −0.188893
\(556\) 0.552521 0.0234321
\(557\) 11.8597 0.502513 0.251256 0.967921i \(-0.419156\pi\)
0.251256 + 0.967921i \(0.419156\pi\)
\(558\) −28.1516 −1.19175
\(559\) 0 0
\(560\) 0 0
\(561\) 2.26402 0.0955872
\(562\) 27.1069 1.14344
\(563\) −7.69349 −0.324242 −0.162121 0.986771i \(-0.551834\pi\)
−0.162121 + 0.986771i \(0.551834\pi\)
\(564\) 8.16524 0.343819
\(565\) 13.8066 0.580850
\(566\) −21.7785 −0.915418
\(567\) 0 0
\(568\) −7.00720 −0.294016
\(569\) 37.4196 1.56871 0.784355 0.620312i \(-0.212994\pi\)
0.784355 + 0.620312i \(0.212994\pi\)
\(570\) −3.89930 −0.163324
\(571\) 14.1657 0.592816 0.296408 0.955061i \(-0.404211\pi\)
0.296408 + 0.955061i \(0.404211\pi\)
\(572\) 0 0
\(573\) 8.67209 0.362282
\(574\) 0 0
\(575\) 12.5565 0.523642
\(576\) 13.5959 0.566498
\(577\) 14.9755 0.623439 0.311720 0.950174i \(-0.399095\pi\)
0.311720 + 0.950174i \(0.399095\pi\)
\(578\) 29.6381 1.23278
\(579\) 7.01674 0.291606
\(580\) 0.402635 0.0167185
\(581\) 0 0
\(582\) −2.85071 −0.118166
\(583\) 0.622952 0.0258000
\(584\) −10.7125 −0.443288
\(585\) 0 0
\(586\) −25.1622 −1.03944
\(587\) 13.1764 0.543849 0.271925 0.962319i \(-0.412340\pi\)
0.271925 + 0.962319i \(0.412340\pi\)
\(588\) 0 0
\(589\) 17.0062 0.700728
\(590\) −15.0001 −0.617542
\(591\) −8.45478 −0.347783
\(592\) −32.4441 −1.33344
\(593\) 44.1327 1.81231 0.906156 0.422943i \(-0.139003\pi\)
0.906156 + 0.422943i \(0.139003\pi\)
\(594\) 20.8641 0.856063
\(595\) 0 0
\(596\) 6.39930 0.262125
\(597\) −6.04859 −0.247552
\(598\) 0 0
\(599\) −6.02698 −0.246256 −0.123128 0.992391i \(-0.539293\pi\)
−0.123128 + 0.992391i \(0.539293\pi\)
\(600\) 0.852175 0.0347899
\(601\) −3.72520 −0.151954 −0.0759770 0.997110i \(-0.524208\pi\)
−0.0759770 + 0.997110i \(0.524208\pi\)
\(602\) 0 0
\(603\) −11.6472 −0.474312
\(604\) −3.45608 −0.140626
\(605\) 12.2326 0.497328
\(606\) −2.10460 −0.0854934
\(607\) 6.01651 0.244203 0.122101 0.992518i \(-0.461037\pi\)
0.122101 + 0.992518i \(0.461037\pi\)
\(608\) −23.8715 −0.968118
\(609\) 0 0
\(610\) 32.4105 1.31226
\(611\) 0 0
\(612\) −5.52532 −0.223348
\(613\) 9.80825 0.396152 0.198076 0.980187i \(-0.436531\pi\)
0.198076 + 0.980187i \(0.436531\pi\)
\(614\) −12.6892 −0.512094
\(615\) 3.25924 0.131425
\(616\) 0 0
\(617\) 33.7676 1.35943 0.679716 0.733475i \(-0.262103\pi\)
0.679716 + 0.733475i \(0.262103\pi\)
\(618\) 13.7679 0.553825
\(619\) −4.09343 −0.164529 −0.0822644 0.996611i \(-0.526215\pi\)
−0.0822644 + 0.996611i \(0.526215\pi\)
\(620\) −12.6043 −0.506201
\(621\) −11.0574 −0.443719
\(622\) −3.89871 −0.156324
\(623\) 0 0
\(624\) 0 0
\(625\) −2.84229 −0.113692
\(626\) 17.9459 0.717264
\(627\) −6.10302 −0.243731
\(628\) 36.0695 1.43933
\(629\) 8.47978 0.338111
\(630\) 0 0
\(631\) −26.7736 −1.06584 −0.532921 0.846165i \(-0.678906\pi\)
−0.532921 + 0.846165i \(0.678906\pi\)
\(632\) 0.544357 0.0216534
\(633\) 1.98214 0.0787831
\(634\) 63.5910 2.52552
\(635\) 23.4012 0.928650
\(636\) 0.0990892 0.00392914
\(637\) 0 0
\(638\) 1.40287 0.0555403
\(639\) 28.0790 1.11079
\(640\) −8.14224 −0.321850
\(641\) −18.5722 −0.733558 −0.366779 0.930308i \(-0.619539\pi\)
−0.366779 + 0.930308i \(0.619539\pi\)
\(642\) 7.08880 0.279773
\(643\) 3.93390 0.155138 0.0775690 0.996987i \(-0.475284\pi\)
0.0775690 + 0.996987i \(0.475284\pi\)
\(644\) 0 0
\(645\) −0.0143591 −0.000565389 0
\(646\) 7.43035 0.292343
\(647\) 0.197076 0.00774784 0.00387392 0.999992i \(-0.498767\pi\)
0.00387392 + 0.999992i \(0.498767\pi\)
\(648\) 5.18814 0.203809
\(649\) −23.4775 −0.921571
\(650\) 0 0
\(651\) 0 0
\(652\) 6.28345 0.246079
\(653\) −14.4673 −0.566148 −0.283074 0.959098i \(-0.591354\pi\)
−0.283074 + 0.959098i \(0.591354\pi\)
\(654\) −9.83028 −0.384394
\(655\) −2.73626 −0.106915
\(656\) 23.7624 0.927765
\(657\) 42.9269 1.67474
\(658\) 0 0
\(659\) −23.4132 −0.912048 −0.456024 0.889967i \(-0.650727\pi\)
−0.456024 + 0.889967i \(0.650727\pi\)
\(660\) 4.52332 0.176070
\(661\) 4.04817 0.157456 0.0787278 0.996896i \(-0.474914\pi\)
0.0787278 + 0.996896i \(0.474914\pi\)
\(662\) −36.3313 −1.41206
\(663\) 0 0
\(664\) 11.2587 0.436921
\(665\) 0 0
\(666\) 37.8395 1.46625
\(667\) −0.743487 −0.0287879
\(668\) −3.48896 −0.134992
\(669\) −9.14832 −0.353695
\(670\) −11.6088 −0.448487
\(671\) 50.7276 1.95832
\(672\) 0 0
\(673\) 7.29407 0.281166 0.140583 0.990069i \(-0.455102\pi\)
0.140583 + 0.990069i \(0.455102\pi\)
\(674\) 59.6152 2.29629
\(675\) −7.05218 −0.271439
\(676\) 0 0
\(677\) 15.7511 0.605362 0.302681 0.953092i \(-0.402118\pi\)
0.302681 + 0.953092i \(0.402118\pi\)
\(678\) 7.65187 0.293868
\(679\) 0 0
\(680\) 1.24527 0.0477540
\(681\) −4.47686 −0.171553
\(682\) −43.9163 −1.68164
\(683\) 41.4854 1.58739 0.793697 0.608314i \(-0.208154\pi\)
0.793697 + 0.608314i \(0.208154\pi\)
\(684\) 14.8943 0.569499
\(685\) −18.8564 −0.720465
\(686\) 0 0
\(687\) 6.19450 0.236335
\(688\) −0.104689 −0.00399123
\(689\) 0 0
\(690\) −5.33655 −0.203159
\(691\) 46.8216 1.78118 0.890589 0.454809i \(-0.150292\pi\)
0.890589 + 0.454809i \(0.150292\pi\)
\(692\) 27.0989 1.03015
\(693\) 0 0
\(694\) −22.2478 −0.844514
\(695\) 0.498992 0.0189278
\(696\) −0.0504584 −0.00191262
\(697\) −6.21068 −0.235246
\(698\) 45.7152 1.73034
\(699\) 3.97954 0.150520
\(700\) 0 0
\(701\) 29.8626 1.12790 0.563948 0.825810i \(-0.309282\pi\)
0.563948 + 0.825810i \(0.309282\pi\)
\(702\) 0 0
\(703\) −22.8585 −0.862126
\(704\) 21.2096 0.799366
\(705\) 7.37418 0.277728
\(706\) 24.3785 0.917497
\(707\) 0 0
\(708\) −3.73442 −0.140348
\(709\) 26.9332 1.01150 0.505750 0.862680i \(-0.331216\pi\)
0.505750 + 0.862680i \(0.331216\pi\)
\(710\) 27.9864 1.05031
\(711\) −2.18133 −0.0818063
\(712\) −4.60900 −0.172729
\(713\) 23.2745 0.871638
\(714\) 0 0
\(715\) 0 0
\(716\) −0.880004 −0.0328873
\(717\) −8.41180 −0.314144
\(718\) −23.5141 −0.877537
\(719\) 14.4988 0.540713 0.270356 0.962760i \(-0.412859\pi\)
0.270356 + 0.962760i \(0.412859\pi\)
\(720\) 19.0921 0.711519
\(721\) 0 0
\(722\) 16.1760 0.602008
\(723\) 3.13240 0.116495
\(724\) −4.52098 −0.168021
\(725\) −0.474180 −0.0176106
\(726\) 6.77953 0.251612
\(727\) 6.26424 0.232328 0.116164 0.993230i \(-0.462940\pi\)
0.116164 + 0.993230i \(0.462940\pi\)
\(728\) 0 0
\(729\) −17.5866 −0.651357
\(730\) 42.7852 1.58355
\(731\) 0.0273621 0.00101203
\(732\) 8.06893 0.298236
\(733\) 11.9838 0.442631 0.221316 0.975202i \(-0.428965\pi\)
0.221316 + 0.975202i \(0.428965\pi\)
\(734\) 3.86975 0.142835
\(735\) 0 0
\(736\) −32.6704 −1.20425
\(737\) −18.1696 −0.669286
\(738\) −27.7140 −1.02017
\(739\) 13.5254 0.497539 0.248770 0.968563i \(-0.419974\pi\)
0.248770 + 0.968563i \(0.419974\pi\)
\(740\) 16.9418 0.622794
\(741\) 0 0
\(742\) 0 0
\(743\) −38.4598 −1.41095 −0.705477 0.708733i \(-0.749267\pi\)
−0.705477 + 0.708733i \(0.749267\pi\)
\(744\) 1.57958 0.0579101
\(745\) 5.77932 0.211738
\(746\) 7.38214 0.270279
\(747\) −45.1154 −1.65068
\(748\) −8.61945 −0.315158
\(749\) 0 0
\(750\) −9.41710 −0.343864
\(751\) 11.7115 0.427357 0.213679 0.976904i \(-0.431455\pi\)
0.213679 + 0.976904i \(0.431455\pi\)
\(752\) 53.7635 1.96055
\(753\) −5.08302 −0.185236
\(754\) 0 0
\(755\) −3.12125 −0.113594
\(756\) 0 0
\(757\) 9.31582 0.338589 0.169295 0.985566i \(-0.445851\pi\)
0.169295 + 0.985566i \(0.445851\pi\)
\(758\) 27.7600 1.00829
\(759\) −8.35255 −0.303178
\(760\) −3.35682 −0.121765
\(761\) 43.9381 1.59276 0.796378 0.604799i \(-0.206747\pi\)
0.796378 + 0.604799i \(0.206747\pi\)
\(762\) 12.9693 0.469830
\(763\) 0 0
\(764\) −33.0159 −1.19447
\(765\) −4.99002 −0.180414
\(766\) −51.0344 −1.84395
\(767\) 0 0
\(768\) −8.64911 −0.312098
\(769\) −25.3542 −0.914294 −0.457147 0.889391i \(-0.651129\pi\)
−0.457147 + 0.889391i \(0.651129\pi\)
\(770\) 0 0
\(771\) −6.50047 −0.234109
\(772\) −26.7137 −0.961447
\(773\) 23.1084 0.831152 0.415576 0.909559i \(-0.363580\pi\)
0.415576 + 0.909559i \(0.363580\pi\)
\(774\) 0.122099 0.00438874
\(775\) 14.8440 0.533212
\(776\) −2.45411 −0.0880974
\(777\) 0 0
\(778\) −22.8949 −0.820820
\(779\) 16.7418 0.599838
\(780\) 0 0
\(781\) 43.8031 1.56740
\(782\) 10.1691 0.363647
\(783\) 0.417569 0.0149227
\(784\) 0 0
\(785\) 32.5750 1.16265
\(786\) −1.51648 −0.0540911
\(787\) 24.6692 0.879364 0.439682 0.898154i \(-0.355091\pi\)
0.439682 + 0.898154i \(0.355091\pi\)
\(788\) 32.1885 1.14667
\(789\) −7.36775 −0.262299
\(790\) −2.17413 −0.0773521
\(791\) 0 0
\(792\) 8.69727 0.309044
\(793\) 0 0
\(794\) −3.15875 −0.112100
\(795\) 0.0894893 0.00317386
\(796\) 23.0278 0.816199
\(797\) −11.3137 −0.400752 −0.200376 0.979719i \(-0.564216\pi\)
−0.200376 + 0.979719i \(0.564216\pi\)
\(798\) 0 0
\(799\) −14.0519 −0.497122
\(800\) −20.8365 −0.736680
\(801\) 18.4690 0.652571
\(802\) 39.0311 1.37824
\(803\) 66.9657 2.36317
\(804\) −2.89013 −0.101927
\(805\) 0 0
\(806\) 0 0
\(807\) 8.10710 0.285384
\(808\) −1.81180 −0.0637389
\(809\) 16.3708 0.575566 0.287783 0.957696i \(-0.407082\pi\)
0.287783 + 0.957696i \(0.407082\pi\)
\(810\) −20.7211 −0.728067
\(811\) 29.0412 1.01978 0.509888 0.860241i \(-0.329687\pi\)
0.509888 + 0.860241i \(0.329687\pi\)
\(812\) 0 0
\(813\) 13.7675 0.482846
\(814\) 59.0293 2.06898
\(815\) 5.67470 0.198776
\(816\) 2.37122 0.0830093
\(817\) −0.0737588 −0.00258050
\(818\) 28.3278 0.990458
\(819\) 0 0
\(820\) −12.4084 −0.433319
\(821\) −13.7518 −0.479940 −0.239970 0.970780i \(-0.577138\pi\)
−0.239970 + 0.970780i \(0.577138\pi\)
\(822\) −10.4505 −0.364504
\(823\) −29.1153 −1.01490 −0.507448 0.861682i \(-0.669411\pi\)
−0.507448 + 0.861682i \(0.669411\pi\)
\(824\) 11.8525 0.412900
\(825\) −5.32708 −0.185465
\(826\) 0 0
\(827\) −22.9118 −0.796722 −0.398361 0.917229i \(-0.630421\pi\)
−0.398361 + 0.917229i \(0.630421\pi\)
\(828\) 20.3843 0.708402
\(829\) 23.3829 0.812121 0.406061 0.913846i \(-0.366902\pi\)
0.406061 + 0.913846i \(0.366902\pi\)
\(830\) −44.9665 −1.56081
\(831\) −7.88574 −0.273553
\(832\) 0 0
\(833\) 0 0
\(834\) 0.276550 0.00957613
\(835\) −3.15094 −0.109043
\(836\) 23.2350 0.803601
\(837\) −13.0718 −0.451828
\(838\) −45.0045 −1.55466
\(839\) −0.734337 −0.0253521 −0.0126761 0.999920i \(-0.504035\pi\)
−0.0126761 + 0.999920i \(0.504035\pi\)
\(840\) 0 0
\(841\) −28.9719 −0.999032
\(842\) −49.7013 −1.71282
\(843\) 6.09475 0.209914
\(844\) −7.54629 −0.259754
\(845\) 0 0
\(846\) −62.7042 −2.15582
\(847\) 0 0
\(848\) 0.652447 0.0224051
\(849\) −4.89669 −0.168054
\(850\) 6.48565 0.222456
\(851\) −31.2840 −1.07240
\(852\) 6.96750 0.238702
\(853\) −54.3567 −1.86114 −0.930569 0.366118i \(-0.880687\pi\)
−0.930569 + 0.366118i \(0.880687\pi\)
\(854\) 0 0
\(855\) 13.4513 0.460026
\(856\) 6.10259 0.208582
\(857\) 21.0211 0.718067 0.359034 0.933325i \(-0.383106\pi\)
0.359034 + 0.933325i \(0.383106\pi\)
\(858\) 0 0
\(859\) 51.3629 1.75248 0.876240 0.481875i \(-0.160044\pi\)
0.876240 + 0.481875i \(0.160044\pi\)
\(860\) 0.0546671 0.00186413
\(861\) 0 0
\(862\) 25.3767 0.864334
\(863\) 7.11319 0.242136 0.121068 0.992644i \(-0.461368\pi\)
0.121068 + 0.992644i \(0.461368\pi\)
\(864\) 18.3489 0.624241
\(865\) 24.4735 0.832124
\(866\) 38.9155 1.32240
\(867\) 6.66385 0.226316
\(868\) 0 0
\(869\) −3.40286 −0.115434
\(870\) 0.201528 0.00683244
\(871\) 0 0
\(872\) −8.46267 −0.286582
\(873\) 9.83403 0.332831
\(874\) −27.4124 −0.927239
\(875\) 0 0
\(876\) 10.6518 0.359892
\(877\) 0.512476 0.0173051 0.00865255 0.999963i \(-0.497246\pi\)
0.00865255 + 0.999963i \(0.497246\pi\)
\(878\) −18.6187 −0.628352
\(879\) −5.65749 −0.190822
\(880\) 29.7835 1.00400
\(881\) 37.0927 1.24969 0.624843 0.780751i \(-0.285163\pi\)
0.624843 + 0.780751i \(0.285163\pi\)
\(882\) 0 0
\(883\) −15.5667 −0.523860 −0.261930 0.965087i \(-0.584359\pi\)
−0.261930 + 0.965087i \(0.584359\pi\)
\(884\) 0 0
\(885\) −3.37262 −0.113369
\(886\) −40.3290 −1.35488
\(887\) −27.5799 −0.926043 −0.463022 0.886347i \(-0.653235\pi\)
−0.463022 + 0.886347i \(0.653235\pi\)
\(888\) −2.12316 −0.0712485
\(889\) 0 0
\(890\) 18.4081 0.617040
\(891\) −32.4319 −1.08651
\(892\) 34.8289 1.16616
\(893\) 37.8792 1.26758
\(894\) 3.20300 0.107124
\(895\) −0.794748 −0.0265655
\(896\) 0 0
\(897\) 0 0
\(898\) 34.5791 1.15392
\(899\) −0.878932 −0.0293140
\(900\) 13.0006 0.433355
\(901\) −0.170527 −0.00568109
\(902\) −43.2337 −1.43952
\(903\) 0 0
\(904\) 6.58732 0.219091
\(905\) −4.08298 −0.135723
\(906\) −1.72985 −0.0574703
\(907\) −45.0471 −1.49576 −0.747882 0.663831i \(-0.768929\pi\)
−0.747882 + 0.663831i \(0.768929\pi\)
\(908\) 17.0440 0.565625
\(909\) 7.26019 0.240805
\(910\) 0 0
\(911\) 35.4678 1.17510 0.587550 0.809188i \(-0.300093\pi\)
0.587550 + 0.809188i \(0.300093\pi\)
\(912\) −6.39198 −0.211660
\(913\) −70.3796 −2.32923
\(914\) 34.3379 1.13580
\(915\) 7.28720 0.240908
\(916\) −23.5833 −0.779215
\(917\) 0 0
\(918\) −5.71135 −0.188503
\(919\) 17.3724 0.573064 0.286532 0.958071i \(-0.407497\pi\)
0.286532 + 0.958071i \(0.407497\pi\)
\(920\) −4.59412 −0.151464
\(921\) −2.85305 −0.0940111
\(922\) −56.7372 −1.86854
\(923\) 0 0
\(924\) 0 0
\(925\) −19.9523 −0.656026
\(926\) −33.7412 −1.10880
\(927\) −47.4948 −1.55993
\(928\) 1.23375 0.0405000
\(929\) −10.7600 −0.353025 −0.176512 0.984298i \(-0.556482\pi\)
−0.176512 + 0.984298i \(0.556482\pi\)
\(930\) −6.30874 −0.206872
\(931\) 0 0
\(932\) −15.1506 −0.496276
\(933\) −0.876590 −0.0286983
\(934\) −11.1079 −0.363463
\(935\) −7.78439 −0.254577
\(936\) 0 0
\(937\) 10.9816 0.358755 0.179377 0.983780i \(-0.442592\pi\)
0.179377 + 0.983780i \(0.442592\pi\)
\(938\) 0 0
\(939\) 4.03498 0.131677
\(940\) −28.0745 −0.915690
\(941\) −8.17795 −0.266594 −0.133297 0.991076i \(-0.542556\pi\)
−0.133297 + 0.991076i \(0.542556\pi\)
\(942\) 18.0536 0.588219
\(943\) 22.9127 0.746141
\(944\) −24.5890 −0.800305
\(945\) 0 0
\(946\) 0.190473 0.00619281
\(947\) −4.59378 −0.149278 −0.0746389 0.997211i \(-0.523780\pi\)
−0.0746389 + 0.997211i \(0.523780\pi\)
\(948\) −0.541273 −0.0175797
\(949\) 0 0
\(950\) −17.4831 −0.567225
\(951\) 14.2978 0.463640
\(952\) 0 0
\(953\) 21.1428 0.684883 0.342442 0.939539i \(-0.388746\pi\)
0.342442 + 0.939539i \(0.388746\pi\)
\(954\) −0.760947 −0.0246366
\(955\) −29.8172 −0.964863
\(956\) 32.0249 1.03576
\(957\) 0.315423 0.0101962
\(958\) 27.6141 0.892170
\(959\) 0 0
\(960\) 3.04683 0.0983361
\(961\) −3.48542 −0.112433
\(962\) 0 0
\(963\) −24.4541 −0.788022
\(964\) −11.9255 −0.384094
\(965\) −24.1256 −0.776631
\(966\) 0 0
\(967\) −32.0750 −1.03146 −0.515731 0.856750i \(-0.672480\pi\)
−0.515731 + 0.856750i \(0.672480\pi\)
\(968\) 5.83635 0.187587
\(969\) 1.67065 0.0536689
\(970\) 9.80157 0.314710
\(971\) 52.0835 1.67144 0.835719 0.549157i \(-0.185051\pi\)
0.835719 + 0.549157i \(0.185051\pi\)
\(972\) −17.3535 −0.556613
\(973\) 0 0
\(974\) 34.2241 1.09661
\(975\) 0 0
\(976\) 53.1294 1.70063
\(977\) 19.2580 0.616117 0.308058 0.951367i \(-0.400321\pi\)
0.308058 + 0.951367i \(0.400321\pi\)
\(978\) 3.14501 0.100566
\(979\) 28.8115 0.920821
\(980\) 0 0
\(981\) 33.9113 1.08271
\(982\) 69.1736 2.20742
\(983\) 16.0731 0.512653 0.256327 0.966590i \(-0.417488\pi\)
0.256327 + 0.966590i \(0.417488\pi\)
\(984\) 1.55502 0.0495723
\(985\) 29.0700 0.926248
\(986\) −0.384024 −0.0122298
\(987\) 0 0
\(988\) 0 0
\(989\) −0.100946 −0.00320989
\(990\) −34.7364 −1.10400
\(991\) 21.4265 0.680635 0.340317 0.940311i \(-0.389466\pi\)
0.340317 + 0.940311i \(0.389466\pi\)
\(992\) −38.6221 −1.22625
\(993\) −8.16876 −0.259228
\(994\) 0 0
\(995\) 20.7968 0.659304
\(996\) −11.1949 −0.354723
\(997\) 16.9537 0.536931 0.268465 0.963289i \(-0.413484\pi\)
0.268465 + 0.963289i \(0.413484\pi\)
\(998\) −45.1763 −1.43003
\(999\) 17.5702 0.555897
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.ca.1.2 6
7.3 odd 6 1183.2.e.h.170.5 12
7.5 odd 6 1183.2.e.h.508.5 12
7.6 odd 2 8281.2.a.bz.1.2 6
13.3 even 3 637.2.f.j.295.5 12
13.9 even 3 637.2.f.j.393.5 12
13.12 even 2 8281.2.a.cf.1.5 6
91.3 odd 6 91.2.g.b.9.5 12
91.9 even 3 637.2.g.l.263.5 12
91.12 odd 6 1183.2.e.g.508.2 12
91.16 even 3 637.2.h.l.165.2 12
91.38 odd 6 1183.2.e.g.170.2 12
91.48 odd 6 637.2.f.k.393.5 12
91.55 odd 6 637.2.f.k.295.5 12
91.61 odd 6 91.2.g.b.81.5 yes 12
91.68 odd 6 91.2.h.b.74.2 yes 12
91.74 even 3 637.2.h.l.471.2 12
91.81 even 3 637.2.g.l.373.5 12
91.87 odd 6 91.2.h.b.16.2 yes 12
91.90 odd 2 8281.2.a.ce.1.5 6
273.68 even 6 819.2.s.d.802.5 12
273.152 even 6 819.2.n.d.172.2 12
273.185 even 6 819.2.n.d.100.2 12
273.269 even 6 819.2.s.d.289.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.b.9.5 12 91.3 odd 6
91.2.g.b.81.5 yes 12 91.61 odd 6
91.2.h.b.16.2 yes 12 91.87 odd 6
91.2.h.b.74.2 yes 12 91.68 odd 6
637.2.f.j.295.5 12 13.3 even 3
637.2.f.j.393.5 12 13.9 even 3
637.2.f.k.295.5 12 91.55 odd 6
637.2.f.k.393.5 12 91.48 odd 6
637.2.g.l.263.5 12 91.9 even 3
637.2.g.l.373.5 12 91.81 even 3
637.2.h.l.165.2 12 91.16 even 3
637.2.h.l.471.2 12 91.74 even 3
819.2.n.d.100.2 12 273.185 even 6
819.2.n.d.172.2 12 273.152 even 6
819.2.s.d.289.5 12 273.269 even 6
819.2.s.d.802.5 12 273.68 even 6
1183.2.e.g.170.2 12 91.38 odd 6
1183.2.e.g.508.2 12 91.12 odd 6
1183.2.e.h.170.5 12 7.3 odd 6
1183.2.e.h.508.5 12 7.5 odd 6
8281.2.a.bz.1.2 6 7.6 odd 2
8281.2.a.ca.1.2 6 1.1 even 1 trivial
8281.2.a.ce.1.5 6 91.90 odd 2
8281.2.a.cf.1.5 6 13.12 even 2