Properties

Label 637.6.a.e.1.4
Level $637$
Weight $6$
Character 637.1
Self dual yes
Analytic conductor $102.164$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,6,Mod(1,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 637.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(102.164493221\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 250x^{6} + 210x^{5} + 20076x^{4} - 12252x^{3} - 544784x^{2} + 65648x + 2393792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.33047\) of defining polynomial
Character \(\chi\) \(=\) 637.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.33047 q^{2} -3.45560 q^{3} -26.5689 q^{4} -94.0769 q^{5} +8.05316 q^{6} +136.493 q^{8} -231.059 q^{9} +219.243 q^{10} -141.785 q^{11} +91.8115 q^{12} +169.000 q^{13} +325.092 q^{15} +532.113 q^{16} -1287.76 q^{17} +538.475 q^{18} -1912.62 q^{19} +2499.52 q^{20} +330.426 q^{22} +1069.34 q^{23} -471.665 q^{24} +5725.47 q^{25} -393.849 q^{26} +1638.16 q^{27} +3439.24 q^{29} -757.616 q^{30} -4842.73 q^{31} -5607.85 q^{32} +489.953 q^{33} +3001.09 q^{34} +6138.98 q^{36} +9538.53 q^{37} +4457.30 q^{38} -583.996 q^{39} -12840.8 q^{40} +14570.9 q^{41} +11985.1 q^{43} +3767.09 q^{44} +21737.3 q^{45} -2492.06 q^{46} -12145.7 q^{47} -1838.77 q^{48} -13343.0 q^{50} +4449.99 q^{51} -4490.15 q^{52} +32750.2 q^{53} -3817.67 q^{54} +13338.7 q^{55} +6609.25 q^{57} -8015.04 q^{58} +48082.8 q^{59} -8637.34 q^{60} +37581.5 q^{61} +11285.8 q^{62} -3958.69 q^{64} -15899.0 q^{65} -1141.82 q^{66} -12664.7 q^{67} +34214.5 q^{68} -3695.20 q^{69} -71435.7 q^{71} -31537.9 q^{72} -53368.5 q^{73} -22229.2 q^{74} -19784.9 q^{75} +50816.3 q^{76} +1360.98 q^{78} -14516.6 q^{79} -50059.5 q^{80} +50486.5 q^{81} -33957.1 q^{82} -78340.8 q^{83} +121149. q^{85} -27930.9 q^{86} -11884.6 q^{87} -19352.7 q^{88} +24546.1 q^{89} -50658.1 q^{90} -28411.2 q^{92} +16734.5 q^{93} +28305.2 q^{94} +179934. q^{95} +19378.5 q^{96} +80624.4 q^{97} +32760.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} - 28 q^{3} + 245 q^{4} - 219 q^{5} - 435 q^{6} - 57 q^{8} + 930 q^{9} + 948 q^{10} + 184 q^{11} - 463 q^{12} + 1352 q^{13} - 256 q^{15} + 4953 q^{16} - 2278 q^{17} - 5308 q^{18} - 4959 q^{19}+ \cdots + 90754 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.33047 −0.411972 −0.205986 0.978555i \(-0.566040\pi\)
−0.205986 + 0.978555i \(0.566040\pi\)
\(3\) −3.45560 −0.221677 −0.110838 0.993838i \(-0.535354\pi\)
−0.110838 + 0.993838i \(0.535354\pi\)
\(4\) −26.5689 −0.830279
\(5\) −94.0769 −1.68290 −0.841450 0.540336i \(-0.818297\pi\)
−0.841450 + 0.540336i \(0.818297\pi\)
\(6\) 8.05316 0.0913247
\(7\) 0 0
\(8\) 136.493 0.754024
\(9\) −231.059 −0.950859
\(10\) 219.243 0.693308
\(11\) −141.785 −0.353305 −0.176653 0.984273i \(-0.556527\pi\)
−0.176653 + 0.984273i \(0.556527\pi\)
\(12\) 91.8115 0.184053
\(13\) 169.000 0.277350
\(14\) 0 0
\(15\) 325.092 0.373059
\(16\) 532.113 0.519641
\(17\) −1287.76 −1.08072 −0.540361 0.841434i \(-0.681712\pi\)
−0.540361 + 0.841434i \(0.681712\pi\)
\(18\) 538.475 0.391728
\(19\) −1912.62 −1.21547 −0.607736 0.794139i \(-0.707922\pi\)
−0.607736 + 0.794139i \(0.707922\pi\)
\(20\) 2499.52 1.39728
\(21\) 0 0
\(22\) 330.426 0.145552
\(23\) 1069.34 0.421498 0.210749 0.977540i \(-0.432410\pi\)
0.210749 + 0.977540i \(0.432410\pi\)
\(24\) −471.665 −0.167150
\(25\) 5725.47 1.83215
\(26\) −393.849 −0.114261
\(27\) 1638.16 0.432460
\(28\) 0 0
\(29\) 3439.24 0.759395 0.379697 0.925111i \(-0.376028\pi\)
0.379697 + 0.925111i \(0.376028\pi\)
\(30\) −757.616 −0.153690
\(31\) −4842.73 −0.905079 −0.452539 0.891744i \(-0.649482\pi\)
−0.452539 + 0.891744i \(0.649482\pi\)
\(32\) −5607.85 −0.968102
\(33\) 489.953 0.0783195
\(34\) 3001.09 0.445227
\(35\) 0 0
\(36\) 6138.98 0.789478
\(37\) 9538.53 1.14545 0.572726 0.819747i \(-0.305886\pi\)
0.572726 + 0.819747i \(0.305886\pi\)
\(38\) 4457.30 0.500741
\(39\) −583.996 −0.0614820
\(40\) −12840.8 −1.26895
\(41\) 14570.9 1.35372 0.676859 0.736113i \(-0.263341\pi\)
0.676859 + 0.736113i \(0.263341\pi\)
\(42\) 0 0
\(43\) 11985.1 0.988487 0.494243 0.869324i \(-0.335445\pi\)
0.494243 + 0.869324i \(0.335445\pi\)
\(44\) 3767.09 0.293342
\(45\) 21737.3 1.60020
\(46\) −2492.06 −0.173646
\(47\) −12145.7 −0.802007 −0.401003 0.916077i \(-0.631338\pi\)
−0.401003 + 0.916077i \(0.631338\pi\)
\(48\) −1838.77 −0.115192
\(49\) 0 0
\(50\) −13343.0 −0.754795
\(51\) 4449.99 0.239571
\(52\) −4490.15 −0.230278
\(53\) 32750.2 1.60149 0.800745 0.599006i \(-0.204437\pi\)
0.800745 + 0.599006i \(0.204437\pi\)
\(54\) −3817.67 −0.178162
\(55\) 13338.7 0.594577
\(56\) 0 0
\(57\) 6609.25 0.269442
\(58\) −8015.04 −0.312850
\(59\) 48082.8 1.79829 0.899145 0.437651i \(-0.144190\pi\)
0.899145 + 0.437651i \(0.144190\pi\)
\(60\) −8637.34 −0.309743
\(61\) 37581.5 1.29315 0.646577 0.762849i \(-0.276200\pi\)
0.646577 + 0.762849i \(0.276200\pi\)
\(62\) 11285.8 0.372867
\(63\) 0 0
\(64\) −3958.69 −0.120810
\(65\) −15899.0 −0.466752
\(66\) −1141.82 −0.0322655
\(67\) −12664.7 −0.344674 −0.172337 0.985038i \(-0.555132\pi\)
−0.172337 + 0.985038i \(0.555132\pi\)
\(68\) 34214.5 0.897300
\(69\) −3695.20 −0.0934362
\(70\) 0 0
\(71\) −71435.7 −1.68178 −0.840891 0.541205i \(-0.817968\pi\)
−0.840891 + 0.541205i \(0.817968\pi\)
\(72\) −31537.9 −0.716971
\(73\) −53368.5 −1.17214 −0.586068 0.810262i \(-0.699325\pi\)
−0.586068 + 0.810262i \(0.699325\pi\)
\(74\) −22229.2 −0.471895
\(75\) −19784.9 −0.406145
\(76\) 50816.3 1.00918
\(77\) 0 0
\(78\) 1360.98 0.0253289
\(79\) −14516.6 −0.261696 −0.130848 0.991402i \(-0.541770\pi\)
−0.130848 + 0.991402i \(0.541770\pi\)
\(80\) −50059.5 −0.874504
\(81\) 50486.5 0.854993
\(82\) −33957.1 −0.557694
\(83\) −78340.8 −1.24823 −0.624113 0.781334i \(-0.714539\pi\)
−0.624113 + 0.781334i \(0.714539\pi\)
\(84\) 0 0
\(85\) 121149. 1.81874
\(86\) −27930.9 −0.407229
\(87\) −11884.6 −0.168340
\(88\) −19352.7 −0.266401
\(89\) 24546.1 0.328479 0.164240 0.986420i \(-0.447483\pi\)
0.164240 + 0.986420i \(0.447483\pi\)
\(90\) −50658.1 −0.659239
\(91\) 0 0
\(92\) −28411.2 −0.349961
\(93\) 16734.5 0.200635
\(94\) 28305.2 0.330405
\(95\) 179934. 2.04552
\(96\) 19378.5 0.214606
\(97\) 80624.4 0.870035 0.435018 0.900422i \(-0.356742\pi\)
0.435018 + 0.900422i \(0.356742\pi\)
\(98\) 0 0
\(99\) 32760.8 0.335943
\(100\) −152120. −1.52120
\(101\) −137332. −1.33958 −0.669789 0.742551i \(-0.733616\pi\)
−0.669789 + 0.742551i \(0.733616\pi\)
\(102\) −10370.6 −0.0986965
\(103\) 62513.9 0.580609 0.290304 0.956934i \(-0.406243\pi\)
0.290304 + 0.956934i \(0.406243\pi\)
\(104\) 23067.3 0.209129
\(105\) 0 0
\(106\) −76323.3 −0.659769
\(107\) −210684. −1.77899 −0.889494 0.456947i \(-0.848943\pi\)
−0.889494 + 0.456947i \(0.848943\pi\)
\(108\) −43524.0 −0.359062
\(109\) −14943.2 −0.120470 −0.0602348 0.998184i \(-0.519185\pi\)
−0.0602348 + 0.998184i \(0.519185\pi\)
\(110\) −31085.5 −0.244949
\(111\) −32961.3 −0.253920
\(112\) 0 0
\(113\) 93907.9 0.691841 0.345920 0.938264i \(-0.387567\pi\)
0.345920 + 0.938264i \(0.387567\pi\)
\(114\) −15402.6 −0.111003
\(115\) −100600. −0.709339
\(116\) −91376.9 −0.630509
\(117\) −39048.9 −0.263721
\(118\) −112055. −0.740846
\(119\) 0 0
\(120\) 44372.8 0.281296
\(121\) −140948. −0.875176
\(122\) −87582.6 −0.532744
\(123\) −50351.3 −0.300087
\(124\) 128666. 0.751467
\(125\) −244644. −1.40042
\(126\) 0 0
\(127\) −114137. −0.627941 −0.313970 0.949433i \(-0.601659\pi\)
−0.313970 + 0.949433i \(0.601659\pi\)
\(128\) 188677. 1.01787
\(129\) −41415.7 −0.219124
\(130\) 37052.1 0.192289
\(131\) −180702. −0.919994 −0.459997 0.887920i \(-0.652150\pi\)
−0.459997 + 0.887920i \(0.652150\pi\)
\(132\) −13017.5 −0.0650270
\(133\) 0 0
\(134\) 29514.7 0.141996
\(135\) −154113. −0.727787
\(136\) −175771. −0.814890
\(137\) 324600. 1.47757 0.738783 0.673944i \(-0.235401\pi\)
0.738783 + 0.673944i \(0.235401\pi\)
\(138\) 8611.55 0.0384932
\(139\) 247720. 1.08749 0.543745 0.839251i \(-0.317006\pi\)
0.543745 + 0.839251i \(0.317006\pi\)
\(140\) 0 0
\(141\) 41970.6 0.177786
\(142\) 166479. 0.692848
\(143\) −23961.7 −0.0979892
\(144\) −122949. −0.494106
\(145\) −323553. −1.27798
\(146\) 124374. 0.482888
\(147\) 0 0
\(148\) −253428. −0.951044
\(149\) −277701. −1.02474 −0.512368 0.858766i \(-0.671232\pi\)
−0.512368 + 0.858766i \(0.671232\pi\)
\(150\) 46108.1 0.167321
\(151\) −317691. −1.13387 −0.566934 0.823763i \(-0.691870\pi\)
−0.566934 + 0.823763i \(0.691870\pi\)
\(152\) −261059. −0.916496
\(153\) 297549. 1.02761
\(154\) 0 0
\(155\) 455589. 1.52316
\(156\) 15516.1 0.0510472
\(157\) 361097. 1.16916 0.584581 0.811336i \(-0.301259\pi\)
0.584581 + 0.811336i \(0.301259\pi\)
\(158\) 33830.5 0.107812
\(159\) −113171. −0.355013
\(160\) 527569. 1.62922
\(161\) 0 0
\(162\) −117657. −0.352234
\(163\) 189986. 0.560084 0.280042 0.959988i \(-0.409652\pi\)
0.280042 + 0.959988i \(0.409652\pi\)
\(164\) −387134. −1.12396
\(165\) −46093.3 −0.131804
\(166\) 182571. 0.514235
\(167\) 173782. 0.482184 0.241092 0.970502i \(-0.422494\pi\)
0.241092 + 0.970502i \(0.422494\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) −282333. −0.749273
\(171\) 441928. 1.15574
\(172\) −318431. −0.820719
\(173\) 310587. 0.788984 0.394492 0.918899i \(-0.370921\pi\)
0.394492 + 0.918899i \(0.370921\pi\)
\(174\) 27696.7 0.0693515
\(175\) 0 0
\(176\) −75445.8 −0.183592
\(177\) −166155. −0.398639
\(178\) −57204.0 −0.135324
\(179\) −66623.4 −0.155415 −0.0777077 0.996976i \(-0.524760\pi\)
−0.0777077 + 0.996976i \(0.524760\pi\)
\(180\) −577537. −1.32861
\(181\) 169918. 0.385516 0.192758 0.981246i \(-0.438257\pi\)
0.192758 + 0.981246i \(0.438257\pi\)
\(182\) 0 0
\(183\) −129867. −0.286662
\(184\) 145957. 0.317820
\(185\) −897355. −1.92768
\(186\) −38999.3 −0.0826560
\(187\) 182586. 0.381824
\(188\) 322698. 0.665889
\(189\) 0 0
\(190\) −419329. −0.842697
\(191\) 181518. 0.360029 0.180014 0.983664i \(-0.442386\pi\)
0.180014 + 0.983664i \(0.442386\pi\)
\(192\) 13679.6 0.0267807
\(193\) 751561. 1.45235 0.726174 0.687511i \(-0.241297\pi\)
0.726174 + 0.687511i \(0.241297\pi\)
\(194\) −187893. −0.358431
\(195\) 54940.5 0.103468
\(196\) 0 0
\(197\) −250963. −0.460727 −0.230364 0.973105i \(-0.573992\pi\)
−0.230364 + 0.973105i \(0.573992\pi\)
\(198\) −76348.0 −0.138399
\(199\) −9.51204 −1.70271e−5 0 −8.51355e−6 1.00000i \(-0.500003\pi\)
−8.51355e−6 1.00000i \(0.500003\pi\)
\(200\) 781486. 1.38149
\(201\) 43764.2 0.0764062
\(202\) 320048. 0.551870
\(203\) 0 0
\(204\) −118231. −0.198910
\(205\) −1.37079e6 −2.27817
\(206\) −145687. −0.239195
\(207\) −247080. −0.400785
\(208\) 89927.0 0.144123
\(209\) 271182. 0.429432
\(210\) 0 0
\(211\) 225993. 0.349454 0.174727 0.984617i \(-0.444096\pi\)
0.174727 + 0.984617i \(0.444096\pi\)
\(212\) −870137. −1.32968
\(213\) 246853. 0.372812
\(214\) 490993. 0.732894
\(215\) −1.12752e6 −1.66352
\(216\) 223597. 0.326085
\(217\) 0 0
\(218\) 34824.6 0.0496301
\(219\) 184420. 0.259835
\(220\) −354396. −0.493665
\(221\) −217632. −0.299738
\(222\) 76815.3 0.104608
\(223\) −207052. −0.278816 −0.139408 0.990235i \(-0.544520\pi\)
−0.139408 + 0.990235i \(0.544520\pi\)
\(224\) 0 0
\(225\) −1.32292e6 −1.74212
\(226\) −218849. −0.285019
\(227\) 860357. 1.10819 0.554095 0.832453i \(-0.313064\pi\)
0.554095 + 0.832453i \(0.313064\pi\)
\(228\) −175601. −0.223712
\(229\) 235104. 0.296259 0.148130 0.988968i \(-0.452675\pi\)
0.148130 + 0.988968i \(0.452675\pi\)
\(230\) 234445. 0.292228
\(231\) 0 0
\(232\) 469432. 0.572602
\(233\) −735958. −0.888103 −0.444051 0.896001i \(-0.646459\pi\)
−0.444051 + 0.896001i \(0.646459\pi\)
\(234\) 91002.3 0.108646
\(235\) 1.14263e6 1.34970
\(236\) −1.27751e6 −1.49308
\(237\) 50163.5 0.0580119
\(238\) 0 0
\(239\) −557974. −0.631857 −0.315929 0.948783i \(-0.602316\pi\)
−0.315929 + 0.948783i \(0.602316\pi\)
\(240\) 172986. 0.193857
\(241\) −1.76415e6 −1.95656 −0.978279 0.207291i \(-0.933535\pi\)
−0.978279 + 0.207291i \(0.933535\pi\)
\(242\) 328475. 0.360548
\(243\) −572533. −0.621992
\(244\) −998501. −1.07368
\(245\) 0 0
\(246\) 117342. 0.123628
\(247\) −323233. −0.337111
\(248\) −660999. −0.682451
\(249\) 270714. 0.276702
\(250\) 570135. 0.576936
\(251\) −881828. −0.883486 −0.441743 0.897142i \(-0.645640\pi\)
−0.441743 + 0.897142i \(0.645640\pi\)
\(252\) 0 0
\(253\) −151617. −0.148917
\(254\) 265994. 0.258694
\(255\) −418641. −0.403173
\(256\) −313027. −0.298526
\(257\) −949971. −0.897176 −0.448588 0.893739i \(-0.648073\pi\)
−0.448588 + 0.893739i \(0.648073\pi\)
\(258\) 96518.0 0.0902732
\(259\) 0 0
\(260\) 422419. 0.387534
\(261\) −794667. −0.722078
\(262\) 421121. 0.379012
\(263\) −94646.4 −0.0843752 −0.0421876 0.999110i \(-0.513433\pi\)
−0.0421876 + 0.999110i \(0.513433\pi\)
\(264\) 66875.2 0.0590548
\(265\) −3.08104e6 −2.69514
\(266\) 0 0
\(267\) −84821.5 −0.0728162
\(268\) 336488. 0.286176
\(269\) 1.25855e6 1.06045 0.530226 0.847857i \(-0.322107\pi\)
0.530226 + 0.847857i \(0.322107\pi\)
\(270\) 359155. 0.299828
\(271\) 1.79951e6 1.48844 0.744221 0.667933i \(-0.232821\pi\)
0.744221 + 0.667933i \(0.232821\pi\)
\(272\) −685235. −0.561587
\(273\) 0 0
\(274\) −756470. −0.608716
\(275\) −811788. −0.647308
\(276\) 98177.5 0.0775781
\(277\) 277895. 0.217612 0.108806 0.994063i \(-0.465297\pi\)
0.108806 + 0.994063i \(0.465297\pi\)
\(278\) −577305. −0.448016
\(279\) 1.11896e6 0.860603
\(280\) 0 0
\(281\) −28661.2 −0.0216535 −0.0108267 0.999941i \(-0.503446\pi\)
−0.0108267 + 0.999941i \(0.503446\pi\)
\(282\) −97811.3 −0.0732430
\(283\) 128237. 0.0951803 0.0475901 0.998867i \(-0.484846\pi\)
0.0475901 + 0.998867i \(0.484846\pi\)
\(284\) 1.89797e6 1.39635
\(285\) −621778. −0.453443
\(286\) 55842.1 0.0403689
\(287\) 0 0
\(288\) 1.29574e6 0.920529
\(289\) 238476. 0.167958
\(290\) 754030. 0.526495
\(291\) −278605. −0.192867
\(292\) 1.41794e6 0.973199
\(293\) −633549. −0.431133 −0.215566 0.976489i \(-0.569160\pi\)
−0.215566 + 0.976489i \(0.569160\pi\)
\(294\) 0 0
\(295\) −4.52348e6 −3.02634
\(296\) 1.30194e6 0.863699
\(297\) −232267. −0.152790
\(298\) 647174. 0.422163
\(299\) 180718. 0.116903
\(300\) 525664. 0.337213
\(301\) 0 0
\(302\) 740368. 0.467122
\(303\) 474564. 0.296953
\(304\) −1.01773e6 −0.631609
\(305\) −3.53556e6 −2.17625
\(306\) −693429. −0.423349
\(307\) 1.69354e6 1.02554 0.512768 0.858527i \(-0.328620\pi\)
0.512768 + 0.858527i \(0.328620\pi\)
\(308\) 0 0
\(309\) −216023. −0.128707
\(310\) −1.06174e6 −0.627498
\(311\) −3.22139e6 −1.88861 −0.944306 0.329068i \(-0.893265\pi\)
−0.944306 + 0.329068i \(0.893265\pi\)
\(312\) −79711.3 −0.0463590
\(313\) −1.27603e6 −0.736205 −0.368103 0.929785i \(-0.619992\pi\)
−0.368103 + 0.929785i \(0.619992\pi\)
\(314\) −841524. −0.481662
\(315\) 0 0
\(316\) 385691. 0.217281
\(317\) −274374. −0.153354 −0.0766769 0.997056i \(-0.524431\pi\)
−0.0766769 + 0.997056i \(0.524431\pi\)
\(318\) 263742. 0.146255
\(319\) −487634. −0.268298
\(320\) 372422. 0.203311
\(321\) 728041. 0.394360
\(322\) 0 0
\(323\) 2.46300e6 1.31359
\(324\) −1.34137e6 −0.709883
\(325\) 967604. 0.508147
\(326\) −442757. −0.230739
\(327\) 51637.6 0.0267053
\(328\) 1.98883e6 1.02074
\(329\) 0 0
\(330\) 107419. 0.0542995
\(331\) 84209.9 0.0422468 0.0211234 0.999777i \(-0.493276\pi\)
0.0211234 + 0.999777i \(0.493276\pi\)
\(332\) 2.08143e6 1.03637
\(333\) −2.20396e6 −1.08916
\(334\) −404993. −0.198647
\(335\) 1.19146e6 0.580052
\(336\) 0 0
\(337\) 2.76043e6 1.32404 0.662022 0.749484i \(-0.269698\pi\)
0.662022 + 0.749484i \(0.269698\pi\)
\(338\) −66560.5 −0.0316902
\(339\) −324508. −0.153365
\(340\) −3.21879e6 −1.51006
\(341\) 686629. 0.319769
\(342\) −1.02990e6 −0.476134
\(343\) 0 0
\(344\) 1.63588e6 0.745343
\(345\) 347633. 0.157244
\(346\) −723813. −0.325040
\(347\) −2.36067e6 −1.05248 −0.526238 0.850337i \(-0.676398\pi\)
−0.526238 + 0.850337i \(0.676398\pi\)
\(348\) 315762. 0.139769
\(349\) 3.35029e6 1.47238 0.736188 0.676777i \(-0.236624\pi\)
0.736188 + 0.676777i \(0.236624\pi\)
\(350\) 0 0
\(351\) 276848. 0.119943
\(352\) 795111. 0.342036
\(353\) −364538. −0.155706 −0.0778532 0.996965i \(-0.524807\pi\)
−0.0778532 + 0.996965i \(0.524807\pi\)
\(354\) 387218. 0.164228
\(355\) 6.72045e6 2.83027
\(356\) −652164. −0.272729
\(357\) 0 0
\(358\) 155264. 0.0640269
\(359\) 2.05925e6 0.843283 0.421642 0.906763i \(-0.361454\pi\)
0.421642 + 0.906763i \(0.361454\pi\)
\(360\) 2.96699e6 1.20659
\(361\) 1.18202e6 0.477372
\(362\) −395988. −0.158822
\(363\) 487059. 0.194006
\(364\) 0 0
\(365\) 5.02075e6 1.97259
\(366\) 302650. 0.118097
\(367\) 1.51741e6 0.588083 0.294041 0.955793i \(-0.405000\pi\)
0.294041 + 0.955793i \(0.405000\pi\)
\(368\) 569008. 0.219028
\(369\) −3.36674e6 −1.28719
\(370\) 2.09126e6 0.794151
\(371\) 0 0
\(372\) −444618. −0.166583
\(373\) 4.91745e6 1.83007 0.915035 0.403374i \(-0.132163\pi\)
0.915035 + 0.403374i \(0.132163\pi\)
\(374\) −425511. −0.157301
\(375\) 845391. 0.310441
\(376\) −1.65780e6 −0.604733
\(377\) 581232. 0.210618
\(378\) 0 0
\(379\) −5.22913e6 −1.86996 −0.934978 0.354707i \(-0.884581\pi\)
−0.934978 + 0.354707i \(0.884581\pi\)
\(380\) −4.78064e6 −1.69835
\(381\) 394413. 0.139200
\(382\) −423023. −0.148322
\(383\) 4.17641e6 1.45481 0.727405 0.686209i \(-0.240726\pi\)
0.727405 + 0.686209i \(0.240726\pi\)
\(384\) −651991. −0.225639
\(385\) 0 0
\(386\) −1.75149e6 −0.598328
\(387\) −2.76927e6 −0.939912
\(388\) −2.14210e6 −0.722372
\(389\) 5.06273e6 1.69633 0.848166 0.529731i \(-0.177707\pi\)
0.848166 + 0.529731i \(0.177707\pi\)
\(390\) −128037. −0.0426260
\(391\) −1.37705e6 −0.455522
\(392\) 0 0
\(393\) 624434. 0.203941
\(394\) 584861. 0.189807
\(395\) 1.36568e6 0.440408
\(396\) −870418. −0.278927
\(397\) −3.67149e6 −1.16914 −0.584569 0.811344i \(-0.698736\pi\)
−0.584569 + 0.811344i \(0.698736\pi\)
\(398\) 22.1675 7.01470e−6 0
\(399\) 0 0
\(400\) 3.04659e6 0.952061
\(401\) 2.79607e6 0.868336 0.434168 0.900832i \(-0.357042\pi\)
0.434168 + 0.900832i \(0.357042\pi\)
\(402\) −101991. −0.0314772
\(403\) −818422. −0.251024
\(404\) 3.64876e6 1.11222
\(405\) −4.74961e6 −1.43887
\(406\) 0 0
\(407\) −1.35242e6 −0.404694
\(408\) 607392. 0.180642
\(409\) 74975.7 0.0221622 0.0110811 0.999939i \(-0.496473\pi\)
0.0110811 + 0.999939i \(0.496473\pi\)
\(410\) 3.19458e6 0.938543
\(411\) −1.12169e6 −0.327542
\(412\) −1.66093e6 −0.482067
\(413\) 0 0
\(414\) 575812. 0.165113
\(415\) 7.37007e6 2.10064
\(416\) −947726. −0.268503
\(417\) −856022. −0.241071
\(418\) −631981. −0.176914
\(419\) 1.62459e6 0.452072 0.226036 0.974119i \(-0.427423\pi\)
0.226036 + 0.974119i \(0.427423\pi\)
\(420\) 0 0
\(421\) −6.21952e6 −1.71022 −0.855109 0.518448i \(-0.826510\pi\)
−0.855109 + 0.518448i \(0.826510\pi\)
\(422\) −526671. −0.143965
\(423\) 2.80637e6 0.762596
\(424\) 4.47017e6 1.20756
\(425\) −7.37305e6 −1.98004
\(426\) −575283. −0.153588
\(427\) 0 0
\(428\) 5.59766e6 1.47706
\(429\) 82802.1 0.0217219
\(430\) 2.62765e6 0.685326
\(431\) −1.19072e6 −0.308758 −0.154379 0.988012i \(-0.549338\pi\)
−0.154379 + 0.988012i \(0.549338\pi\)
\(432\) 871684. 0.224724
\(433\) −477391. −0.122364 −0.0611821 0.998127i \(-0.519487\pi\)
−0.0611821 + 0.998127i \(0.519487\pi\)
\(434\) 0 0
\(435\) 1.11807e6 0.283299
\(436\) 397024. 0.100023
\(437\) −2.04524e6 −0.512319
\(438\) −429785. −0.107045
\(439\) 1.84753e6 0.457541 0.228770 0.973480i \(-0.426529\pi\)
0.228770 + 0.973480i \(0.426529\pi\)
\(440\) 1.82064e6 0.448326
\(441\) 0 0
\(442\) 507184. 0.123484
\(443\) 1.60951e6 0.389658 0.194829 0.980837i \(-0.437585\pi\)
0.194829 + 0.980837i \(0.437585\pi\)
\(444\) 875746. 0.210824
\(445\) −2.30923e6 −0.552798
\(446\) 482529. 0.114865
\(447\) 959623. 0.227160
\(448\) 0 0
\(449\) 4.13027e6 0.966858 0.483429 0.875383i \(-0.339391\pi\)
0.483429 + 0.875383i \(0.339391\pi\)
\(450\) 3.08302e6 0.717704
\(451\) −2.06595e6 −0.478275
\(452\) −2.49503e6 −0.574421
\(453\) 1.09781e6 0.251352
\(454\) −2.00504e6 −0.456544
\(455\) 0 0
\(456\) 902116. 0.203166
\(457\) 5.55845e6 1.24498 0.622491 0.782627i \(-0.286121\pi\)
0.622491 + 0.782627i \(0.286121\pi\)
\(458\) −547904. −0.122051
\(459\) −2.10956e6 −0.467369
\(460\) 2.67283e6 0.588949
\(461\) −4.47320e6 −0.980316 −0.490158 0.871634i \(-0.663061\pi\)
−0.490158 + 0.871634i \(0.663061\pi\)
\(462\) 0 0
\(463\) −6.29324e6 −1.36434 −0.682169 0.731195i \(-0.738963\pi\)
−0.682169 + 0.731195i \(0.738963\pi\)
\(464\) 1.83006e6 0.394613
\(465\) −1.57433e6 −0.337648
\(466\) 1.71513e6 0.365874
\(467\) 8.50258e6 1.80409 0.902046 0.431641i \(-0.142065\pi\)
0.902046 + 0.431641i \(0.142065\pi\)
\(468\) 1.03749e6 0.218962
\(469\) 0 0
\(470\) −2.66286e6 −0.556038
\(471\) −1.24780e6 −0.259176
\(472\) 6.56296e6 1.35595
\(473\) −1.69931e6 −0.349237
\(474\) −116905. −0.0238993
\(475\) −1.09507e7 −2.22693
\(476\) 0 0
\(477\) −7.56722e6 −1.52279
\(478\) 1.30034e6 0.260308
\(479\) −5.85017e6 −1.16501 −0.582505 0.812827i \(-0.697927\pi\)
−0.582505 + 0.812827i \(0.697927\pi\)
\(480\) −1.82307e6 −0.361160
\(481\) 1.61201e6 0.317691
\(482\) 4.11130e6 0.806048
\(483\) 0 0
\(484\) 3.74483e6 0.726640
\(485\) −7.58489e6 −1.46418
\(486\) 1.33427e6 0.256244
\(487\) 9.56841e6 1.82817 0.914086 0.405519i \(-0.132909\pi\)
0.914086 + 0.405519i \(0.132909\pi\)
\(488\) 5.12962e6 0.975069
\(489\) −656515. −0.124157
\(490\) 0 0
\(491\) 4.18960e6 0.784277 0.392138 0.919906i \(-0.371735\pi\)
0.392138 + 0.919906i \(0.371735\pi\)
\(492\) 1.33778e6 0.249156
\(493\) −4.42893e6 −0.820694
\(494\) 753284. 0.138881
\(495\) −3.08203e6 −0.565359
\(496\) −2.57688e6 −0.470316
\(497\) 0 0
\(498\) −630891. −0.113994
\(499\) 5.76516e6 1.03648 0.518239 0.855236i \(-0.326588\pi\)
0.518239 + 0.855236i \(0.326588\pi\)
\(500\) 6.49993e6 1.16274
\(501\) −600520. −0.106889
\(502\) 2.05507e6 0.363972
\(503\) −1.14664e6 −0.202073 −0.101036 0.994883i \(-0.532216\pi\)
−0.101036 + 0.994883i \(0.532216\pi\)
\(504\) 0 0
\(505\) 1.29198e7 2.25438
\(506\) 353338. 0.0613499
\(507\) −98695.3 −0.0170520
\(508\) 3.03251e6 0.521366
\(509\) −6.36053e6 −1.08817 −0.544087 0.839029i \(-0.683124\pi\)
−0.544087 + 0.839029i \(0.683124\pi\)
\(510\) 975630. 0.166096
\(511\) 0 0
\(512\) −5.30816e6 −0.894888
\(513\) −3.13317e6 −0.525643
\(514\) 2.21388e6 0.369612
\(515\) −5.88112e6 −0.977106
\(516\) 1.10037e6 0.181934
\(517\) 1.72208e6 0.283353
\(518\) 0 0
\(519\) −1.07326e6 −0.174899
\(520\) −2.17010e6 −0.351943
\(521\) 7.39468e6 1.19351 0.596754 0.802424i \(-0.296457\pi\)
0.596754 + 0.802424i \(0.296457\pi\)
\(522\) 1.85195e6 0.297476
\(523\) 1.05734e7 1.69029 0.845144 0.534538i \(-0.179515\pi\)
0.845144 + 0.534538i \(0.179515\pi\)
\(524\) 4.80106e6 0.763852
\(525\) 0 0
\(526\) 220570. 0.0347603
\(527\) 6.23629e6 0.978138
\(528\) 260710. 0.0406980
\(529\) −5.29286e6 −0.822339
\(530\) 7.18026e6 1.11033
\(531\) −1.11100e7 −1.70992
\(532\) 0 0
\(533\) 2.46249e6 0.375454
\(534\) 197674. 0.0299983
\(535\) 1.98205e7 2.99386
\(536\) −1.72865e6 −0.259893
\(537\) 230224. 0.0344520
\(538\) −2.93302e6 −0.436877
\(539\) 0 0
\(540\) 4.09461e6 0.604266
\(541\) 2.20343e6 0.323672 0.161836 0.986818i \(-0.448258\pi\)
0.161836 + 0.986818i \(0.448258\pi\)
\(542\) −4.19371e6 −0.613197
\(543\) −587167. −0.0854599
\(544\) 7.22158e6 1.04625
\(545\) 1.40581e6 0.202738
\(546\) 0 0
\(547\) −6.87903e6 −0.983012 −0.491506 0.870874i \(-0.663553\pi\)
−0.491506 + 0.870874i \(0.663553\pi\)
\(548\) −8.62426e6 −1.22679
\(549\) −8.68355e6 −1.22961
\(550\) 1.89185e6 0.266673
\(551\) −6.57796e6 −0.923023
\(552\) −504369. −0.0704532
\(553\) 0 0
\(554\) −647626. −0.0896500
\(555\) 3.10090e6 0.427322
\(556\) −6.58167e6 −0.902919
\(557\) −8.29313e6 −1.13261 −0.566305 0.824196i \(-0.691628\pi\)
−0.566305 + 0.824196i \(0.691628\pi\)
\(558\) −2.60769e6 −0.354545
\(559\) 2.02548e6 0.274157
\(560\) 0 0
\(561\) −630944. −0.0846415
\(562\) 66793.9 0.00892064
\(563\) −2.02389e6 −0.269102 −0.134551 0.990907i \(-0.542959\pi\)
−0.134551 + 0.990907i \(0.542959\pi\)
\(564\) −1.11511e6 −0.147612
\(565\) −8.83457e6 −1.16430
\(566\) −298852. −0.0392117
\(567\) 0 0
\(568\) −9.75048e6 −1.26810
\(569\) 557196. 0.0721486 0.0360743 0.999349i \(-0.488515\pi\)
0.0360743 + 0.999349i \(0.488515\pi\)
\(570\) 1.44903e6 0.186806
\(571\) −7.28586e6 −0.935170 −0.467585 0.883948i \(-0.654876\pi\)
−0.467585 + 0.883948i \(0.654876\pi\)
\(572\) 636637. 0.0813583
\(573\) −627254. −0.0798099
\(574\) 0 0
\(575\) 6.12246e6 0.772248
\(576\) 914691. 0.114873
\(577\) 1.11109e7 1.38935 0.694675 0.719324i \(-0.255548\pi\)
0.694675 + 0.719324i \(0.255548\pi\)
\(578\) −555762. −0.0691941
\(579\) −2.59709e6 −0.321952
\(580\) 8.59646e6 1.06108
\(581\) 0 0
\(582\) 649281. 0.0794557
\(583\) −4.64350e6 −0.565814
\(584\) −7.28443e6 −0.883819
\(585\) 3.67361e6 0.443816
\(586\) 1.47646e6 0.177615
\(587\) −7.21001e6 −0.863656 −0.431828 0.901956i \(-0.642131\pi\)
−0.431828 + 0.901956i \(0.642131\pi\)
\(588\) 0 0
\(589\) 9.26231e6 1.10010
\(590\) 1.05418e7 1.24677
\(591\) 867226. 0.102132
\(592\) 5.07557e6 0.595224
\(593\) −2.44935e6 −0.286031 −0.143016 0.989720i \(-0.545680\pi\)
−0.143016 + 0.989720i \(0.545680\pi\)
\(594\) 541290. 0.0629454
\(595\) 0 0
\(596\) 7.37822e6 0.850817
\(597\) 32.8698 3.77451e−6 0
\(598\) −421158. −0.0481606
\(599\) −1.01766e7 −1.15887 −0.579434 0.815019i \(-0.696726\pi\)
−0.579434 + 0.815019i \(0.696726\pi\)
\(600\) −2.70050e6 −0.306243
\(601\) 6.77189e6 0.764757 0.382379 0.924006i \(-0.375105\pi\)
0.382379 + 0.924006i \(0.375105\pi\)
\(602\) 0 0
\(603\) 2.92630e6 0.327737
\(604\) 8.44070e6 0.941426
\(605\) 1.32599e7 1.47283
\(606\) −1.10596e6 −0.122337
\(607\) 1.65271e6 0.182065 0.0910323 0.995848i \(-0.470983\pi\)
0.0910323 + 0.995848i \(0.470983\pi\)
\(608\) 1.07257e7 1.17670
\(609\) 0 0
\(610\) 8.23950e6 0.896554
\(611\) −2.05262e6 −0.222437
\(612\) −7.90556e6 −0.853206
\(613\) −4.28409e6 −0.460476 −0.230238 0.973134i \(-0.573950\pi\)
−0.230238 + 0.973134i \(0.573950\pi\)
\(614\) −3.94675e6 −0.422492
\(615\) 4.73690e6 0.505017
\(616\) 0 0
\(617\) −1.62812e7 −1.72176 −0.860882 0.508805i \(-0.830087\pi\)
−0.860882 + 0.508805i \(0.830087\pi\)
\(618\) 503434. 0.0530239
\(619\) 3.98727e6 0.418262 0.209131 0.977888i \(-0.432936\pi\)
0.209131 + 0.977888i \(0.432936\pi\)
\(620\) −1.21045e7 −1.26464
\(621\) 1.75174e6 0.182281
\(622\) 7.50736e6 0.778056
\(623\) 0 0
\(624\) −310752. −0.0319486
\(625\) 5.12328e6 0.524624
\(626\) 2.97374e6 0.303296
\(627\) −937095. −0.0951951
\(628\) −9.59395e6 −0.970730
\(629\) −1.22834e7 −1.23791
\(630\) 0 0
\(631\) −1.74367e7 −1.74337 −0.871687 0.490064i \(-0.836973\pi\)
−0.871687 + 0.490064i \(0.836973\pi\)
\(632\) −1.98142e6 −0.197325
\(633\) −780942. −0.0774657
\(634\) 639420. 0.0631776
\(635\) 1.07377e7 1.05676
\(636\) 3.00684e6 0.294759
\(637\) 0 0
\(638\) 1.13642e6 0.110531
\(639\) 1.65059e7 1.59914
\(640\) −1.77501e7 −1.71298
\(641\) −1.70605e6 −0.164001 −0.0820005 0.996632i \(-0.526131\pi\)
−0.0820005 + 0.996632i \(0.526131\pi\)
\(642\) −1.69668e6 −0.162466
\(643\) −5.82462e6 −0.555572 −0.277786 0.960643i \(-0.589601\pi\)
−0.277786 + 0.960643i \(0.589601\pi\)
\(644\) 0 0
\(645\) 3.89626e6 0.368764
\(646\) −5.73995e6 −0.541161
\(647\) 4.68507e6 0.440003 0.220002 0.975500i \(-0.429394\pi\)
0.220002 + 0.975500i \(0.429394\pi\)
\(648\) 6.89105e6 0.644686
\(649\) −6.81744e6 −0.635345
\(650\) −2.25497e6 −0.209343
\(651\) 0 0
\(652\) −5.04773e6 −0.465026
\(653\) 5.58318e6 0.512387 0.256194 0.966625i \(-0.417531\pi\)
0.256194 + 0.966625i \(0.417531\pi\)
\(654\) −120340. −0.0110018
\(655\) 1.69999e7 1.54826
\(656\) 7.75338e6 0.703447
\(657\) 1.23313e7 1.11454
\(658\) 0 0
\(659\) −1.28185e7 −1.14980 −0.574901 0.818223i \(-0.694959\pi\)
−0.574901 + 0.818223i \(0.694959\pi\)
\(660\) 1.22465e6 0.109434
\(661\) 6.69964e6 0.596414 0.298207 0.954501i \(-0.403611\pi\)
0.298207 + 0.954501i \(0.403611\pi\)
\(662\) −196249. −0.0174045
\(663\) 752048. 0.0664449
\(664\) −1.06930e7 −0.941193
\(665\) 0 0
\(666\) 5.13626e6 0.448706
\(667\) 3.67771e6 0.320083
\(668\) −4.61719e6 −0.400347
\(669\) 715489. 0.0618070
\(670\) −2.77666e6 −0.238965
\(671\) −5.32852e6 −0.456878
\(672\) 0 0
\(673\) 1.93713e7 1.64862 0.824310 0.566139i \(-0.191563\pi\)
0.824310 + 0.566139i \(0.191563\pi\)
\(674\) −6.43310e6 −0.545470
\(675\) 9.37921e6 0.792332
\(676\) −758835. −0.0638676
\(677\) 3.25613e6 0.273043 0.136521 0.990637i \(-0.456408\pi\)
0.136521 + 0.990637i \(0.456408\pi\)
\(678\) 756255. 0.0631821
\(679\) 0 0
\(680\) 1.65360e7 1.37138
\(681\) −2.97305e6 −0.245660
\(682\) −1.60017e6 −0.131736
\(683\) 1.13168e7 0.928265 0.464133 0.885766i \(-0.346366\pi\)
0.464133 + 0.885766i \(0.346366\pi\)
\(684\) −1.17415e7 −0.959589
\(685\) −3.05374e7 −2.48659
\(686\) 0 0
\(687\) −812426. −0.0656738
\(688\) 6.37743e6 0.513658
\(689\) 5.53478e6 0.444173
\(690\) −810148. −0.0647801
\(691\) 2.03184e6 0.161881 0.0809404 0.996719i \(-0.474208\pi\)
0.0809404 + 0.996719i \(0.474208\pi\)
\(692\) −8.25196e6 −0.655077
\(693\) 0 0
\(694\) 5.50148e6 0.433591
\(695\) −2.33048e7 −1.83013
\(696\) −1.62217e6 −0.126933
\(697\) −1.87639e7 −1.46299
\(698\) −7.80774e6 −0.606578
\(699\) 2.54317e6 0.196872
\(700\) 0 0
\(701\) −1.12608e7 −0.865511 −0.432755 0.901511i \(-0.642459\pi\)
−0.432755 + 0.901511i \(0.642459\pi\)
\(702\) −645186. −0.0494131
\(703\) −1.82436e7 −1.39226
\(704\) 561285. 0.0426827
\(705\) −3.94847e6 −0.299196
\(706\) 849545. 0.0641467
\(707\) 0 0
\(708\) 4.41455e6 0.330981
\(709\) −1.07065e7 −0.799892 −0.399946 0.916539i \(-0.630971\pi\)
−0.399946 + 0.916539i \(0.630971\pi\)
\(710\) −1.56618e7 −1.16599
\(711\) 3.35419e6 0.248836
\(712\) 3.35038e6 0.247681
\(713\) −5.17852e6 −0.381489
\(714\) 0 0
\(715\) 2.25425e6 0.164906
\(716\) 1.77011e6 0.129038
\(717\) 1.92813e6 0.140068
\(718\) −4.79902e6 −0.347410
\(719\) −1.34883e7 −0.973053 −0.486526 0.873666i \(-0.661736\pi\)
−0.486526 + 0.873666i \(0.661736\pi\)
\(720\) 1.15667e7 0.831530
\(721\) 0 0
\(722\) −2.75466e6 −0.196664
\(723\) 6.09619e6 0.433723
\(724\) −4.51453e6 −0.320086
\(725\) 1.96913e7 1.39132
\(726\) −1.13508e6 −0.0799251
\(727\) 2.80788e7 1.97034 0.985172 0.171567i \(-0.0548831\pi\)
0.985172 + 0.171567i \(0.0548831\pi\)
\(728\) 0 0
\(729\) −1.02898e7 −0.717112
\(730\) −1.17007e7 −0.812651
\(731\) −1.54340e7 −1.06828
\(732\) 3.45042e6 0.238009
\(733\) −1.59894e7 −1.09919 −0.549593 0.835432i \(-0.685217\pi\)
−0.549593 + 0.835432i \(0.685217\pi\)
\(734\) −3.53628e6 −0.242274
\(735\) 0 0
\(736\) −5.99669e6 −0.408053
\(737\) 1.79567e6 0.121775
\(738\) 7.84609e6 0.530289
\(739\) 7.00735e6 0.472001 0.236001 0.971753i \(-0.424163\pi\)
0.236001 + 0.971753i \(0.424163\pi\)
\(740\) 2.38418e7 1.60051
\(741\) 1.11696e6 0.0747297
\(742\) 0 0
\(743\) −9.29455e6 −0.617670 −0.308835 0.951116i \(-0.599939\pi\)
−0.308835 + 0.951116i \(0.599939\pi\)
\(744\) 2.28415e6 0.151284
\(745\) 2.61253e7 1.72453
\(746\) −1.14600e7 −0.753939
\(747\) 1.81013e7 1.18689
\(748\) −4.85111e6 −0.317021
\(749\) 0 0
\(750\) −1.97016e6 −0.127893
\(751\) −6.36984e6 −0.412125 −0.206062 0.978539i \(-0.566065\pi\)
−0.206062 + 0.978539i \(0.566065\pi\)
\(752\) −6.46288e6 −0.416756
\(753\) 3.04724e6 0.195848
\(754\) −1.35454e6 −0.0867689
\(755\) 2.98874e7 1.90818
\(756\) 0 0
\(757\) −2.35253e7 −1.49209 −0.746047 0.665894i \(-0.768050\pi\)
−0.746047 + 0.665894i \(0.768050\pi\)
\(758\) 1.21863e7 0.770370
\(759\) 523926. 0.0330115
\(760\) 2.45597e7 1.54237
\(761\) 8.29811e6 0.519419 0.259709 0.965687i \(-0.416373\pi\)
0.259709 + 0.965687i \(0.416373\pi\)
\(762\) −919166. −0.0573465
\(763\) 0 0
\(764\) −4.82275e6 −0.298924
\(765\) −2.79925e7 −1.72937
\(766\) −9.73299e6 −0.599341
\(767\) 8.12599e6 0.498756
\(768\) 1.08170e6 0.0661762
\(769\) −1.77597e7 −1.08298 −0.541490 0.840707i \(-0.682139\pi\)
−0.541490 + 0.840707i \(0.682139\pi\)
\(770\) 0 0
\(771\) 3.28272e6 0.198883
\(772\) −1.99682e7 −1.20585
\(773\) 1.72118e6 0.103604 0.0518022 0.998657i \(-0.483503\pi\)
0.0518022 + 0.998657i \(0.483503\pi\)
\(774\) 6.45368e6 0.387218
\(775\) −2.77269e7 −1.65824
\(776\) 1.10047e7 0.656028
\(777\) 0 0
\(778\) −1.17985e7 −0.698842
\(779\) −2.78687e7 −1.64541
\(780\) −1.45971e6 −0.0859073
\(781\) 1.01285e7 0.594182
\(782\) 3.20918e6 0.187662
\(783\) 5.63401e6 0.328408
\(784\) 0 0
\(785\) −3.39709e7 −1.96758
\(786\) −1.45522e6 −0.0840182
\(787\) 1.13760e7 0.654717 0.327358 0.944900i \(-0.393842\pi\)
0.327358 + 0.944900i \(0.393842\pi\)
\(788\) 6.66781e6 0.382532
\(789\) 327060. 0.0187040
\(790\) −3.18267e6 −0.181436
\(791\) 0 0
\(792\) 4.47162e6 0.253310
\(793\) 6.35128e6 0.358656
\(794\) 8.55628e6 0.481653
\(795\) 1.06468e7 0.597451
\(796\) 252.725 1.41372e−5 0
\(797\) −1.06288e7 −0.592705 −0.296352 0.955079i \(-0.595770\pi\)
−0.296352 + 0.955079i \(0.595770\pi\)
\(798\) 0 0
\(799\) 1.56408e7 0.866745
\(800\) −3.21076e7 −1.77371
\(801\) −5.67160e6 −0.312338
\(802\) −6.51616e6 −0.357730
\(803\) 7.56688e6 0.414122
\(804\) −1.16277e6 −0.0634384
\(805\) 0 0
\(806\) 1.90731e6 0.103415
\(807\) −4.34905e6 −0.235077
\(808\) −1.87449e7 −1.01007
\(809\) 1.20321e7 0.646351 0.323176 0.946339i \(-0.395250\pi\)
0.323176 + 0.946339i \(0.395250\pi\)
\(810\) 1.10688e7 0.592774
\(811\) 2.01295e7 1.07468 0.537341 0.843365i \(-0.319429\pi\)
0.537341 + 0.843365i \(0.319429\pi\)
\(812\) 0 0
\(813\) −6.21840e6 −0.329953
\(814\) 3.15178e6 0.166723
\(815\) −1.78733e7 −0.942564
\(816\) 2.36790e6 0.124491
\(817\) −2.29230e7 −1.20148
\(818\) −174729. −0.00913021
\(819\) 0 0
\(820\) 3.64204e7 1.89152
\(821\) −5.15933e6 −0.267138 −0.133569 0.991040i \(-0.542644\pi\)
−0.133569 + 0.991040i \(0.542644\pi\)
\(822\) 2.61405e6 0.134938
\(823\) −8.50866e6 −0.437887 −0.218943 0.975738i \(-0.570261\pi\)
−0.218943 + 0.975738i \(0.570261\pi\)
\(824\) 8.53271e6 0.437793
\(825\) 2.80521e6 0.143493
\(826\) 0 0
\(827\) −258054. −0.0131204 −0.00656020 0.999978i \(-0.502088\pi\)
−0.00656020 + 0.999978i \(0.502088\pi\)
\(828\) 6.56465e6 0.332764
\(829\) −2.00650e7 −1.01404 −0.507018 0.861936i \(-0.669252\pi\)
−0.507018 + 0.861936i \(0.669252\pi\)
\(830\) −1.71757e7 −0.865405
\(831\) −960294. −0.0482394
\(832\) −669019. −0.0335066
\(833\) 0 0
\(834\) 1.99493e6 0.0993146
\(835\) −1.63489e7 −0.811468
\(836\) −7.20501e6 −0.356549
\(837\) −7.93315e6 −0.391410
\(838\) −3.78605e6 −0.186241
\(839\) −1.61723e7 −0.793169 −0.396585 0.917998i \(-0.629805\pi\)
−0.396585 + 0.917998i \(0.629805\pi\)
\(840\) 0 0
\(841\) −8.68278e6 −0.423320
\(842\) 1.44944e7 0.704563
\(843\) 99041.4 0.00480007
\(844\) −6.00440e6 −0.290144
\(845\) −2.68693e6 −0.129454
\(846\) −6.54016e6 −0.314168
\(847\) 0 0
\(848\) 1.74268e7 0.832200
\(849\) −443135. −0.0210992
\(850\) 1.71827e7 0.815723
\(851\) 1.01999e7 0.482806
\(852\) −6.55862e6 −0.309538
\(853\) 1.30290e7 0.613109 0.306555 0.951853i \(-0.400824\pi\)
0.306555 + 0.951853i \(0.400824\pi\)
\(854\) 0 0
\(855\) −4.15752e7 −1.94500
\(856\) −2.87570e7 −1.34140
\(857\) −9.33250e6 −0.434056 −0.217028 0.976165i \(-0.569636\pi\)
−0.217028 + 0.976165i \(0.569636\pi\)
\(858\) −192968. −0.00894883
\(859\) −2.41317e7 −1.11585 −0.557925 0.829892i \(-0.688402\pi\)
−0.557925 + 0.829892i \(0.688402\pi\)
\(860\) 2.99570e7 1.38119
\(861\) 0 0
\(862\) 2.77495e6 0.127200
\(863\) −1.35663e7 −0.620059 −0.310029 0.950727i \(-0.600339\pi\)
−0.310029 + 0.950727i \(0.600339\pi\)
\(864\) −9.18653e6 −0.418666
\(865\) −2.92191e7 −1.32778
\(866\) 1.11255e6 0.0504107
\(867\) −824078. −0.0372324
\(868\) 0 0
\(869\) 2.05824e6 0.0924586
\(870\) −2.60562e6 −0.116712
\(871\) −2.14034e6 −0.0955954
\(872\) −2.03964e6 −0.0908370
\(873\) −1.86290e7 −0.827281
\(874\) 4.76636e6 0.211061
\(875\) 0 0
\(876\) −4.89984e6 −0.215736
\(877\) 3.45398e7 1.51642 0.758212 0.652008i \(-0.226073\pi\)
0.758212 + 0.652008i \(0.226073\pi\)
\(878\) −4.30561e6 −0.188494
\(879\) 2.18929e6 0.0955720
\(880\) 7.09771e6 0.308967
\(881\) 1.05351e7 0.457296 0.228648 0.973509i \(-0.426570\pi\)
0.228648 + 0.973509i \(0.426570\pi\)
\(882\) 0 0
\(883\) −1.67328e7 −0.722215 −0.361108 0.932524i \(-0.617601\pi\)
−0.361108 + 0.932524i \(0.617601\pi\)
\(884\) 5.78224e6 0.248866
\(885\) 1.56313e7 0.670869
\(886\) −3.75091e6 −0.160529
\(887\) 8.35618e6 0.356614 0.178307 0.983975i \(-0.442938\pi\)
0.178307 + 0.983975i \(0.442938\pi\)
\(888\) −4.49899e6 −0.191462
\(889\) 0 0
\(890\) 5.38158e6 0.227737
\(891\) −7.15825e6 −0.302073
\(892\) 5.50115e6 0.231495
\(893\) 2.32301e7 0.974817
\(894\) −2.23637e6 −0.0935837
\(895\) 6.26772e6 0.261549
\(896\) 0 0
\(897\) −624489. −0.0259146
\(898\) −9.62547e6 −0.398319
\(899\) −1.66553e7 −0.687312
\(900\) 3.51486e7 1.44644
\(901\) −4.21745e7 −1.73076
\(902\) 4.81462e6 0.197036
\(903\) 0 0
\(904\) 1.28178e7 0.521665
\(905\) −1.59853e7 −0.648785
\(906\) −2.55841e6 −0.103550
\(907\) −2.67901e7 −1.08133 −0.540663 0.841239i \(-0.681827\pi\)
−0.540663 + 0.841239i \(0.681827\pi\)
\(908\) −2.28588e7 −0.920107
\(909\) 3.17318e7 1.27375
\(910\) 0 0
\(911\) 1.30483e7 0.520903 0.260451 0.965487i \(-0.416129\pi\)
0.260451 + 0.965487i \(0.416129\pi\)
\(912\) 3.51686e6 0.140013
\(913\) 1.11076e7 0.441004
\(914\) −1.29538e7 −0.512898
\(915\) 1.22175e7 0.482423
\(916\) −6.24647e6 −0.245978
\(917\) 0 0
\(918\) 4.91626e6 0.192543
\(919\) 4.76756e7 1.86212 0.931059 0.364868i \(-0.118886\pi\)
0.931059 + 0.364868i \(0.118886\pi\)
\(920\) −1.37312e7 −0.534859
\(921\) −5.85221e6 −0.227337
\(922\) 1.04246e7 0.403863
\(923\) −1.20726e7 −0.466442
\(924\) 0 0
\(925\) 5.46125e7 2.09864
\(926\) 1.46662e7 0.562070
\(927\) −1.44444e7 −0.552077
\(928\) −1.92867e7 −0.735172
\(929\) −4.29575e6 −0.163305 −0.0816525 0.996661i \(-0.526020\pi\)
−0.0816525 + 0.996661i \(0.526020\pi\)
\(930\) 3.66893e6 0.139102
\(931\) 0 0
\(932\) 1.95536e7 0.737373
\(933\) 1.11318e7 0.418661
\(934\) −1.98150e7 −0.743236
\(935\) −1.71771e7 −0.642572
\(936\) −5.32991e6 −0.198852
\(937\) 2.72511e7 1.01399 0.506996 0.861948i \(-0.330756\pi\)
0.506996 + 0.861948i \(0.330756\pi\)
\(938\) 0 0
\(939\) 4.40943e6 0.163200
\(940\) −3.03584e7 −1.12062
\(941\) −1.96932e7 −0.725006 −0.362503 0.931983i \(-0.618078\pi\)
−0.362503 + 0.931983i \(0.618078\pi\)
\(942\) 2.90797e6 0.106773
\(943\) 1.55813e7 0.570589
\(944\) 2.55855e7 0.934466
\(945\) 0 0
\(946\) 3.96020e6 0.143876
\(947\) 2.86451e7 1.03795 0.518974 0.854790i \(-0.326314\pi\)
0.518974 + 0.854790i \(0.326314\pi\)
\(948\) −1.33279e6 −0.0481661
\(949\) −9.01928e6 −0.325092
\(950\) 2.55201e7 0.917433
\(951\) 948126. 0.0339950
\(952\) 0 0
\(953\) 3.29296e7 1.17450 0.587252 0.809404i \(-0.300210\pi\)
0.587252 + 0.809404i \(0.300210\pi\)
\(954\) 1.76352e7 0.627348
\(955\) −1.70767e7 −0.605892
\(956\) 1.48248e7 0.524617
\(957\) 1.68507e6 0.0594754
\(958\) 1.36336e7 0.479952
\(959\) 0 0
\(960\) −1.28694e6 −0.0450692
\(961\) −5.17709e6 −0.180833
\(962\) −3.75674e6 −0.130880
\(963\) 4.86805e7 1.69157
\(964\) 4.68716e7 1.62449
\(965\) −7.07045e7 −2.44416
\(966\) 0 0
\(967\) 3.09880e7 1.06568 0.532841 0.846216i \(-0.321125\pi\)
0.532841 + 0.846216i \(0.321125\pi\)
\(968\) −1.92384e7 −0.659904
\(969\) −8.51114e6 −0.291191
\(970\) 1.76764e7 0.603203
\(971\) −4.87466e7 −1.65919 −0.829594 0.558366i \(-0.811428\pi\)
−0.829594 + 0.558366i \(0.811428\pi\)
\(972\) 1.52116e7 0.516427
\(973\) 0 0
\(974\) −2.22989e7 −0.753157
\(975\) −3.34365e6 −0.112644
\(976\) 1.99976e7 0.671976
\(977\) −1.70428e7 −0.571223 −0.285612 0.958345i \(-0.592197\pi\)
−0.285612 + 0.958345i \(0.592197\pi\)
\(978\) 1.52999e6 0.0511495
\(979\) −3.48028e6 −0.116053
\(980\) 0 0
\(981\) 3.45276e6 0.114550
\(982\) −9.76374e6 −0.323100
\(983\) −2.82661e7 −0.933001 −0.466501 0.884521i \(-0.654485\pi\)
−0.466501 + 0.884521i \(0.654485\pi\)
\(984\) −6.87260e6 −0.226273
\(985\) 2.36098e7 0.775357
\(986\) 1.03215e7 0.338103
\(987\) 0 0
\(988\) 8.58795e6 0.279896
\(989\) 1.28161e7 0.416645
\(990\) 7.18258e6 0.232912
\(991\) −3.72185e7 −1.20386 −0.601929 0.798550i \(-0.705601\pi\)
−0.601929 + 0.798550i \(0.705601\pi\)
\(992\) 2.71573e7 0.876209
\(993\) −290996. −0.00936512
\(994\) 0 0
\(995\) 894.863 2.86549e−5 0
\(996\) −7.19259e6 −0.229740
\(997\) −2.01775e7 −0.642880 −0.321440 0.946930i \(-0.604167\pi\)
−0.321440 + 0.946930i \(0.604167\pi\)
\(998\) −1.34355e7 −0.427000
\(999\) 1.56256e7 0.495362
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.6.a.e.1.4 8
7.6 odd 2 91.6.a.c.1.4 8
21.20 even 2 819.6.a.j.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.6.a.c.1.4 8 7.6 odd 2
637.6.a.e.1.4 8 1.1 even 1 trivial
819.6.a.j.1.5 8 21.20 even 2