Properties

Label 6384.2.a.cf.1.3
Level $6384$
Weight $2$
Character 6384.1
Self dual yes
Analytic conductor $50.976$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6384,2,Mod(1,6384)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6384, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6384.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6384 = 2^{4} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6384.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.9764966504\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.368464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 6x^{3} + 6x^{2} + 6x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 399)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.09027\) of defining polynomial
Character \(\chi\) \(=\) 6384.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +0.388134 q^{5} -1.00000 q^{7} +1.00000 q^{9} -6.41859 q^{11} +3.88714 q^{13} +0.388134 q^{15} -4.98727 q^{17} +1.00000 q^{19} -1.00000 q^{21} -3.44207 q^{23} -4.84935 q^{25} +1.00000 q^{27} +0.169801 q^{29} +8.62562 q^{31} -6.41859 q^{33} -0.388134 q^{35} +7.37540 q^{37} +3.88714 q^{39} -8.77968 q^{41} +9.11087 q^{43} +0.388134 q^{45} +4.80672 q^{47} +1.00000 q^{49} -4.98727 q^{51} +8.42933 q^{53} -2.49127 q^{55} +1.00000 q^{57} -2.97652 q^{59} +5.82287 q^{61} -1.00000 q^{63} +1.50873 q^{65} +14.9980 q^{67} -3.44207 q^{69} -4.24879 q^{71} +13.5757 q^{73} -4.84935 q^{75} +6.41859 q^{77} +1.01431 q^{79} +1.00000 q^{81} +4.32147 q^{83} -1.93573 q^{85} +0.169801 q^{87} +13.8955 q^{89} -3.88714 q^{91} +8.62562 q^{93} +0.388134 q^{95} -13.7743 q^{97} -6.41859 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{3} + 4 q^{5} - 5 q^{7} + 5 q^{9} - 8 q^{11} - 6 q^{13} + 4 q^{15} + 12 q^{17} + 5 q^{19} - 5 q^{21} - 12 q^{23} + 15 q^{25} + 5 q^{27} + 4 q^{29} + 8 q^{31} - 8 q^{33} - 4 q^{35} + 2 q^{37} - 6 q^{39}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 0.388134 0.173579 0.0867893 0.996227i \(-0.472339\pi\)
0.0867893 + 0.996227i \(0.472339\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −6.41859 −1.93528 −0.967638 0.252341i \(-0.918800\pi\)
−0.967638 + 0.252341i \(0.918800\pi\)
\(12\) 0 0
\(13\) 3.88714 1.07810 0.539049 0.842274i \(-0.318784\pi\)
0.539049 + 0.842274i \(0.318784\pi\)
\(14\) 0 0
\(15\) 0.388134 0.100216
\(16\) 0 0
\(17\) −4.98727 −1.20959 −0.604795 0.796381i \(-0.706745\pi\)
−0.604795 + 0.796381i \(0.706745\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) −3.44207 −0.717720 −0.358860 0.933391i \(-0.616834\pi\)
−0.358860 + 0.933391i \(0.616834\pi\)
\(24\) 0 0
\(25\) −4.84935 −0.969870
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 0.169801 0.0315313 0.0157656 0.999876i \(-0.494981\pi\)
0.0157656 + 0.999876i \(0.494981\pi\)
\(30\) 0 0
\(31\) 8.62562 1.54921 0.774604 0.632447i \(-0.217949\pi\)
0.774604 + 0.632447i \(0.217949\pi\)
\(32\) 0 0
\(33\) −6.41859 −1.11733
\(34\) 0 0
\(35\) −0.388134 −0.0656066
\(36\) 0 0
\(37\) 7.37540 1.21251 0.606254 0.795271i \(-0.292671\pi\)
0.606254 + 0.795271i \(0.292671\pi\)
\(38\) 0 0
\(39\) 3.88714 0.622440
\(40\) 0 0
\(41\) −8.77968 −1.37116 −0.685578 0.727999i \(-0.740450\pi\)
−0.685578 + 0.727999i \(0.740450\pi\)
\(42\) 0 0
\(43\) 9.11087 1.38939 0.694697 0.719302i \(-0.255538\pi\)
0.694697 + 0.719302i \(0.255538\pi\)
\(44\) 0 0
\(45\) 0.388134 0.0578596
\(46\) 0 0
\(47\) 4.80672 0.701132 0.350566 0.936538i \(-0.385989\pi\)
0.350566 + 0.936538i \(0.385989\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −4.98727 −0.698357
\(52\) 0 0
\(53\) 8.42933 1.15786 0.578929 0.815378i \(-0.303471\pi\)
0.578929 + 0.815378i \(0.303471\pi\)
\(54\) 0 0
\(55\) −2.49127 −0.335923
\(56\) 0 0
\(57\) 1.00000 0.132453
\(58\) 0 0
\(59\) −2.97652 −0.387510 −0.193755 0.981050i \(-0.562067\pi\)
−0.193755 + 0.981050i \(0.562067\pi\)
\(60\) 0 0
\(61\) 5.82287 0.745542 0.372771 0.927923i \(-0.378408\pi\)
0.372771 + 0.927923i \(0.378408\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) 1.50873 0.187135
\(66\) 0 0
\(67\) 14.9980 1.83230 0.916149 0.400837i \(-0.131281\pi\)
0.916149 + 0.400837i \(0.131281\pi\)
\(68\) 0 0
\(69\) −3.44207 −0.414376
\(70\) 0 0
\(71\) −4.24879 −0.504238 −0.252119 0.967696i \(-0.581127\pi\)
−0.252119 + 0.967696i \(0.581127\pi\)
\(72\) 0 0
\(73\) 13.5757 1.58891 0.794455 0.607323i \(-0.207757\pi\)
0.794455 + 0.607323i \(0.207757\pi\)
\(74\) 0 0
\(75\) −4.84935 −0.559955
\(76\) 0 0
\(77\) 6.41859 0.731466
\(78\) 0 0
\(79\) 1.01431 0.114119 0.0570594 0.998371i \(-0.481828\pi\)
0.0570594 + 0.998371i \(0.481828\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.32147 0.474343 0.237171 0.971468i \(-0.423780\pi\)
0.237171 + 0.971468i \(0.423780\pi\)
\(84\) 0 0
\(85\) −1.93573 −0.209959
\(86\) 0 0
\(87\) 0.169801 0.0182046
\(88\) 0 0
\(89\) 13.8955 1.47293 0.736463 0.676478i \(-0.236495\pi\)
0.736463 + 0.676478i \(0.236495\pi\)
\(90\) 0 0
\(91\) −3.88714 −0.407483
\(92\) 0 0
\(93\) 8.62562 0.894435
\(94\) 0 0
\(95\) 0.388134 0.0398217
\(96\) 0 0
\(97\) −13.7743 −1.39857 −0.699283 0.714845i \(-0.746497\pi\)
−0.699283 + 0.714845i \(0.746497\pi\)
\(98\) 0 0
\(99\) −6.41859 −0.645092
\(100\) 0 0
\(101\) 8.15009 0.810964 0.405482 0.914103i \(-0.367104\pi\)
0.405482 + 0.914103i \(0.367104\pi\)
\(102\) 0 0
\(103\) 12.8372 1.26488 0.632442 0.774608i \(-0.282053\pi\)
0.632442 + 0.774608i \(0.282053\pi\)
\(104\) 0 0
\(105\) −0.388134 −0.0378780
\(106\) 0 0
\(107\) 8.12463 0.785437 0.392719 0.919659i \(-0.371535\pi\)
0.392719 + 0.919659i \(0.371535\pi\)
\(108\) 0 0
\(109\) −20.3356 −1.94780 −0.973900 0.226978i \(-0.927115\pi\)
−0.973900 + 0.226978i \(0.927115\pi\)
\(110\) 0 0
\(111\) 7.37540 0.700042
\(112\) 0 0
\(113\) 4.16980 0.392262 0.196131 0.980578i \(-0.437162\pi\)
0.196131 + 0.980578i \(0.437162\pi\)
\(114\) 0 0
\(115\) −1.33598 −0.124581
\(116\) 0 0
\(117\) 3.88714 0.359366
\(118\) 0 0
\(119\) 4.98727 0.457182
\(120\) 0 0
\(121\) 30.1983 2.74530
\(122\) 0 0
\(123\) −8.77968 −0.791637
\(124\) 0 0
\(125\) −3.82287 −0.341927
\(126\) 0 0
\(127\) 6.20025 0.550184 0.275092 0.961418i \(-0.411292\pi\)
0.275092 + 0.961418i \(0.411292\pi\)
\(128\) 0 0
\(129\) 9.11087 0.802168
\(130\) 0 0
\(131\) −15.5667 −1.36007 −0.680034 0.733181i \(-0.738035\pi\)
−0.680034 + 0.733181i \(0.738035\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) 0.388134 0.0334052
\(136\) 0 0
\(137\) 10.7222 0.916058 0.458029 0.888937i \(-0.348556\pi\)
0.458029 + 0.888937i \(0.348556\pi\)
\(138\) 0 0
\(139\) −10.0987 −0.856560 −0.428280 0.903646i \(-0.640880\pi\)
−0.428280 + 0.903646i \(0.640880\pi\)
\(140\) 0 0
\(141\) 4.80672 0.404799
\(142\) 0 0
\(143\) −24.9499 −2.08642
\(144\) 0 0
\(145\) 0.0659056 0.00547316
\(146\) 0 0
\(147\) 1.00000 0.0824786
\(148\) 0 0
\(149\) 9.75279 0.798980 0.399490 0.916738i \(-0.369187\pi\)
0.399490 + 0.916738i \(0.369187\pi\)
\(150\) 0 0
\(151\) 2.20942 0.179800 0.0899002 0.995951i \(-0.471345\pi\)
0.0899002 + 0.995951i \(0.471345\pi\)
\(152\) 0 0
\(153\) −4.98727 −0.403197
\(154\) 0 0
\(155\) 3.34789 0.268909
\(156\) 0 0
\(157\) −10.3519 −0.826173 −0.413087 0.910692i \(-0.635549\pi\)
−0.413087 + 0.910692i \(0.635549\pi\)
\(158\) 0 0
\(159\) 8.42933 0.668490
\(160\) 0 0
\(161\) 3.44207 0.271273
\(162\) 0 0
\(163\) 8.52406 0.667656 0.333828 0.942634i \(-0.391660\pi\)
0.333828 + 0.942634i \(0.391660\pi\)
\(164\) 0 0
\(165\) −2.49127 −0.193945
\(166\) 0 0
\(167\) −6.99801 −0.541522 −0.270761 0.962647i \(-0.587275\pi\)
−0.270761 + 0.962647i \(0.587275\pi\)
\(168\) 0 0
\(169\) 2.10985 0.162296
\(170\) 0 0
\(171\) 1.00000 0.0764719
\(172\) 0 0
\(173\) 14.6403 1.11308 0.556542 0.830820i \(-0.312128\pi\)
0.556542 + 0.830820i \(0.312128\pi\)
\(174\) 0 0
\(175\) 4.84935 0.366577
\(176\) 0 0
\(177\) −2.97652 −0.223729
\(178\) 0 0
\(179\) 12.9009 0.964258 0.482129 0.876100i \(-0.339864\pi\)
0.482129 + 0.876100i \(0.339864\pi\)
\(180\) 0 0
\(181\) −12.3897 −0.920920 −0.460460 0.887680i \(-0.652316\pi\)
−0.460460 + 0.887680i \(0.652316\pi\)
\(182\) 0 0
\(183\) 5.82287 0.430439
\(184\) 0 0
\(185\) 2.86264 0.210466
\(186\) 0 0
\(187\) 32.0112 2.34089
\(188\) 0 0
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) −25.0544 −1.81287 −0.906436 0.422343i \(-0.861208\pi\)
−0.906436 + 0.422343i \(0.861208\pi\)
\(192\) 0 0
\(193\) 8.79939 0.633394 0.316697 0.948527i \(-0.397426\pi\)
0.316697 + 0.948527i \(0.397426\pi\)
\(194\) 0 0
\(195\) 1.50873 0.108042
\(196\) 0 0
\(197\) −4.80856 −0.342595 −0.171298 0.985219i \(-0.554796\pi\)
−0.171298 + 0.985219i \(0.554796\pi\)
\(198\) 0 0
\(199\) −9.61344 −0.681479 −0.340739 0.940158i \(-0.610677\pi\)
−0.340739 + 0.940158i \(0.610677\pi\)
\(200\) 0 0
\(201\) 14.9980 1.05788
\(202\) 0 0
\(203\) −0.169801 −0.0119177
\(204\) 0 0
\(205\) −3.40769 −0.238003
\(206\) 0 0
\(207\) −3.44207 −0.239240
\(208\) 0 0
\(209\) −6.41859 −0.443983
\(210\) 0 0
\(211\) −2.22174 −0.152951 −0.0764756 0.997071i \(-0.524367\pi\)
−0.0764756 + 0.997071i \(0.524367\pi\)
\(212\) 0 0
\(213\) −4.24879 −0.291122
\(214\) 0 0
\(215\) 3.53624 0.241169
\(216\) 0 0
\(217\) −8.62562 −0.585545
\(218\) 0 0
\(219\) 13.5757 0.917358
\(220\) 0 0
\(221\) −19.3862 −1.30406
\(222\) 0 0
\(223\) −18.2606 −1.22282 −0.611408 0.791315i \(-0.709397\pi\)
−0.611408 + 0.791315i \(0.709397\pi\)
\(224\) 0 0
\(225\) −4.84935 −0.323290
\(226\) 0 0
\(227\) 5.13736 0.340978 0.170489 0.985360i \(-0.445465\pi\)
0.170489 + 0.985360i \(0.445465\pi\)
\(228\) 0 0
\(229\) 10.4750 0.692206 0.346103 0.938197i \(-0.387505\pi\)
0.346103 + 0.938197i \(0.387505\pi\)
\(230\) 0 0
\(231\) 6.41859 0.422312
\(232\) 0 0
\(233\) 17.5271 1.14824 0.574118 0.818772i \(-0.305345\pi\)
0.574118 + 0.818772i \(0.305345\pi\)
\(234\) 0 0
\(235\) 1.86565 0.121702
\(236\) 0 0
\(237\) 1.01431 0.0658865
\(238\) 0 0
\(239\) 21.7777 1.40868 0.704341 0.709862i \(-0.251243\pi\)
0.704341 + 0.709862i \(0.251243\pi\)
\(240\) 0 0
\(241\) 10.3611 0.667417 0.333708 0.942676i \(-0.391700\pi\)
0.333708 + 0.942676i \(0.391700\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0.388134 0.0247970
\(246\) 0 0
\(247\) 3.88714 0.247333
\(248\) 0 0
\(249\) 4.32147 0.273862
\(250\) 0 0
\(251\) −10.9146 −0.688922 −0.344461 0.938801i \(-0.611938\pi\)
−0.344461 + 0.938801i \(0.611938\pi\)
\(252\) 0 0
\(253\) 22.0932 1.38899
\(254\) 0 0
\(255\) −1.93573 −0.121220
\(256\) 0 0
\(257\) −3.28123 −0.204677 −0.102339 0.994750i \(-0.532633\pi\)
−0.102339 + 0.994750i \(0.532633\pi\)
\(258\) 0 0
\(259\) −7.37540 −0.458285
\(260\) 0 0
\(261\) 0.169801 0.0105104
\(262\) 0 0
\(263\) 18.0034 1.11014 0.555069 0.831804i \(-0.312692\pi\)
0.555069 + 0.831804i \(0.312692\pi\)
\(264\) 0 0
\(265\) 3.27171 0.200979
\(266\) 0 0
\(267\) 13.8955 0.850394
\(268\) 0 0
\(269\) −0.886737 −0.0540653 −0.0270327 0.999635i \(-0.508606\pi\)
−0.0270327 + 0.999635i \(0.508606\pi\)
\(270\) 0 0
\(271\) −7.43917 −0.451898 −0.225949 0.974139i \(-0.572548\pi\)
−0.225949 + 0.974139i \(0.572548\pi\)
\(272\) 0 0
\(273\) −3.88714 −0.235260
\(274\) 0 0
\(275\) 31.1260 1.87697
\(276\) 0 0
\(277\) −7.40189 −0.444736 −0.222368 0.974963i \(-0.571379\pi\)
−0.222368 + 0.974963i \(0.571379\pi\)
\(278\) 0 0
\(279\) 8.62562 0.516402
\(280\) 0 0
\(281\) −1.98187 −0.118228 −0.0591141 0.998251i \(-0.518828\pi\)
−0.0591141 + 0.998251i \(0.518828\pi\)
\(282\) 0 0
\(283\) −7.83519 −0.465753 −0.232877 0.972506i \(-0.574814\pi\)
−0.232877 + 0.972506i \(0.574814\pi\)
\(284\) 0 0
\(285\) 0.388134 0.0229911
\(286\) 0 0
\(287\) 8.77968 0.518248
\(288\) 0 0
\(289\) 7.87283 0.463108
\(290\) 0 0
\(291\) −13.7743 −0.807463
\(292\) 0 0
\(293\) 3.83178 0.223855 0.111927 0.993716i \(-0.464298\pi\)
0.111927 + 0.993716i \(0.464298\pi\)
\(294\) 0 0
\(295\) −1.15529 −0.0672635
\(296\) 0 0
\(297\) −6.41859 −0.372444
\(298\) 0 0
\(299\) −13.3798 −0.773773
\(300\) 0 0
\(301\) −9.11087 −0.525142
\(302\) 0 0
\(303\) 8.15009 0.468211
\(304\) 0 0
\(305\) 2.26005 0.129410
\(306\) 0 0
\(307\) −1.46279 −0.0834861 −0.0417431 0.999128i \(-0.513291\pi\)
−0.0417431 + 0.999128i \(0.513291\pi\)
\(308\) 0 0
\(309\) 12.8372 0.730281
\(310\) 0 0
\(311\) 12.0213 0.681665 0.340832 0.940124i \(-0.389291\pi\)
0.340832 + 0.940124i \(0.389291\pi\)
\(312\) 0 0
\(313\) 5.36938 0.303495 0.151748 0.988419i \(-0.451510\pi\)
0.151748 + 0.988419i \(0.451510\pi\)
\(314\) 0 0
\(315\) −0.388134 −0.0218689
\(316\) 0 0
\(317\) −12.6674 −0.711471 −0.355735 0.934587i \(-0.615770\pi\)
−0.355735 + 0.934587i \(0.615770\pi\)
\(318\) 0 0
\(319\) −1.08988 −0.0610218
\(320\) 0 0
\(321\) 8.12463 0.453472
\(322\) 0 0
\(323\) −4.98727 −0.277499
\(324\) 0 0
\(325\) −18.8501 −1.04562
\(326\) 0 0
\(327\) −20.3356 −1.12456
\(328\) 0 0
\(329\) −4.80672 −0.265003
\(330\) 0 0
\(331\) −15.2575 −0.838630 −0.419315 0.907841i \(-0.637730\pi\)
−0.419315 + 0.907841i \(0.637730\pi\)
\(332\) 0 0
\(333\) 7.37540 0.404169
\(334\) 0 0
\(335\) 5.82123 0.318048
\(336\) 0 0
\(337\) −19.5379 −1.06430 −0.532148 0.846652i \(-0.678615\pi\)
−0.532148 + 0.846652i \(0.678615\pi\)
\(338\) 0 0
\(339\) 4.16980 0.226473
\(340\) 0 0
\(341\) −55.3643 −2.99814
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −1.33598 −0.0719268
\(346\) 0 0
\(347\) 17.7777 0.954356 0.477178 0.878807i \(-0.341660\pi\)
0.477178 + 0.878807i \(0.341660\pi\)
\(348\) 0 0
\(349\) 13.6987 0.733275 0.366637 0.930364i \(-0.380509\pi\)
0.366637 + 0.930364i \(0.380509\pi\)
\(350\) 0 0
\(351\) 3.88714 0.207480
\(352\) 0 0
\(353\) 8.81013 0.468916 0.234458 0.972126i \(-0.424668\pi\)
0.234458 + 0.972126i \(0.424668\pi\)
\(354\) 0 0
\(355\) −1.64910 −0.0875250
\(356\) 0 0
\(357\) 4.98727 0.263954
\(358\) 0 0
\(359\) 9.44808 0.498651 0.249325 0.968420i \(-0.419791\pi\)
0.249325 + 0.968420i \(0.419791\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 30.1983 1.58500
\(364\) 0 0
\(365\) 5.26917 0.275801
\(366\) 0 0
\(367\) 1.08439 0.0566044 0.0283022 0.999599i \(-0.490990\pi\)
0.0283022 + 0.999599i \(0.490990\pi\)
\(368\) 0 0
\(369\) −8.77968 −0.457052
\(370\) 0 0
\(371\) −8.42933 −0.437629
\(372\) 0 0
\(373\) −3.64971 −0.188975 −0.0944874 0.995526i \(-0.530121\pi\)
−0.0944874 + 0.995526i \(0.530121\pi\)
\(374\) 0 0
\(375\) −3.82287 −0.197412
\(376\) 0 0
\(377\) 0.660041 0.0339938
\(378\) 0 0
\(379\) −12.8846 −0.661840 −0.330920 0.943659i \(-0.607359\pi\)
−0.330920 + 0.943659i \(0.607359\pi\)
\(380\) 0 0
\(381\) 6.20025 0.317649
\(382\) 0 0
\(383\) 17.7242 0.905663 0.452831 0.891596i \(-0.350414\pi\)
0.452831 + 0.891596i \(0.350414\pi\)
\(384\) 0 0
\(385\) 2.49127 0.126967
\(386\) 0 0
\(387\) 9.11087 0.463132
\(388\) 0 0
\(389\) 10.4750 0.531102 0.265551 0.964097i \(-0.414446\pi\)
0.265551 + 0.964097i \(0.414446\pi\)
\(390\) 0 0
\(391\) 17.1665 0.868147
\(392\) 0 0
\(393\) −15.5667 −0.785236
\(394\) 0 0
\(395\) 0.393688 0.0198086
\(396\) 0 0
\(397\) −34.3679 −1.72488 −0.862438 0.506163i \(-0.831064\pi\)
−0.862438 + 0.506163i \(0.831064\pi\)
\(398\) 0 0
\(399\) −1.00000 −0.0500626
\(400\) 0 0
\(401\) −10.7403 −0.536346 −0.268173 0.963371i \(-0.586420\pi\)
−0.268173 + 0.963371i \(0.586420\pi\)
\(402\) 0 0
\(403\) 33.5290 1.67020
\(404\) 0 0
\(405\) 0.388134 0.0192865
\(406\) 0 0
\(407\) −47.3397 −2.34654
\(408\) 0 0
\(409\) 26.0559 1.28838 0.644191 0.764865i \(-0.277194\pi\)
0.644191 + 0.764865i \(0.277194\pi\)
\(410\) 0 0
\(411\) 10.7222 0.528886
\(412\) 0 0
\(413\) 2.97652 0.146465
\(414\) 0 0
\(415\) 1.67731 0.0823358
\(416\) 0 0
\(417\) −10.0987 −0.494535
\(418\) 0 0
\(419\) 1.36205 0.0665405 0.0332702 0.999446i \(-0.489408\pi\)
0.0332702 + 0.999446i \(0.489408\pi\)
\(420\) 0 0
\(421\) −1.93675 −0.0943912 −0.0471956 0.998886i \(-0.515028\pi\)
−0.0471956 + 0.998886i \(0.515028\pi\)
\(422\) 0 0
\(423\) 4.80672 0.233711
\(424\) 0 0
\(425\) 24.1850 1.17315
\(426\) 0 0
\(427\) −5.82287 −0.281788
\(428\) 0 0
\(429\) −24.9499 −1.20459
\(430\) 0 0
\(431\) −27.0267 −1.30183 −0.650915 0.759151i \(-0.725615\pi\)
−0.650915 + 0.759151i \(0.725615\pi\)
\(432\) 0 0
\(433\) −38.2404 −1.83771 −0.918857 0.394590i \(-0.870887\pi\)
−0.918857 + 0.394590i \(0.870887\pi\)
\(434\) 0 0
\(435\) 0.0659056 0.00315993
\(436\) 0 0
\(437\) −3.44207 −0.164656
\(438\) 0 0
\(439\) 2.76497 0.131965 0.0659823 0.997821i \(-0.478982\pi\)
0.0659823 + 0.997821i \(0.478982\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −14.0564 −0.667839 −0.333919 0.942602i \(-0.608371\pi\)
−0.333919 + 0.942602i \(0.608371\pi\)
\(444\) 0 0
\(445\) 5.39333 0.255668
\(446\) 0 0
\(447\) 9.75279 0.461291
\(448\) 0 0
\(449\) −14.3792 −0.678598 −0.339299 0.940679i \(-0.610190\pi\)
−0.339299 + 0.940679i \(0.610190\pi\)
\(450\) 0 0
\(451\) 56.3531 2.65357
\(452\) 0 0
\(453\) 2.20942 0.103808
\(454\) 0 0
\(455\) −1.50873 −0.0707303
\(456\) 0 0
\(457\) 27.8024 1.30054 0.650271 0.759703i \(-0.274655\pi\)
0.650271 + 0.759703i \(0.274655\pi\)
\(458\) 0 0
\(459\) −4.98727 −0.232786
\(460\) 0 0
\(461\) 21.0697 0.981312 0.490656 0.871353i \(-0.336757\pi\)
0.490656 + 0.871353i \(0.336757\pi\)
\(462\) 0 0
\(463\) −2.52304 −0.117256 −0.0586278 0.998280i \(-0.518673\pi\)
−0.0586278 + 0.998280i \(0.518673\pi\)
\(464\) 0 0
\(465\) 3.34789 0.155255
\(466\) 0 0
\(467\) −21.2342 −0.982602 −0.491301 0.870990i \(-0.663479\pi\)
−0.491301 + 0.870990i \(0.663479\pi\)
\(468\) 0 0
\(469\) −14.9980 −0.692544
\(470\) 0 0
\(471\) −10.3519 −0.476991
\(472\) 0 0
\(473\) −58.4789 −2.68886
\(474\) 0 0
\(475\) −4.84935 −0.222504
\(476\) 0 0
\(477\) 8.42933 0.385953
\(478\) 0 0
\(479\) 9.86851 0.450904 0.225452 0.974254i \(-0.427614\pi\)
0.225452 + 0.974254i \(0.427614\pi\)
\(480\) 0 0
\(481\) 28.6692 1.30720
\(482\) 0 0
\(483\) 3.44207 0.156619
\(484\) 0 0
\(485\) −5.34626 −0.242761
\(486\) 0 0
\(487\) −20.7038 −0.938181 −0.469090 0.883150i \(-0.655418\pi\)
−0.469090 + 0.883150i \(0.655418\pi\)
\(488\) 0 0
\(489\) 8.52406 0.385471
\(490\) 0 0
\(491\) 32.6041 1.47140 0.735700 0.677307i \(-0.236853\pi\)
0.735700 + 0.677307i \(0.236853\pi\)
\(492\) 0 0
\(493\) −0.846844 −0.0381399
\(494\) 0 0
\(495\) −2.49127 −0.111974
\(496\) 0 0
\(497\) 4.24879 0.190584
\(498\) 0 0
\(499\) −0.812534 −0.0363740 −0.0181870 0.999835i \(-0.505789\pi\)
−0.0181870 + 0.999835i \(0.505789\pi\)
\(500\) 0 0
\(501\) −6.99801 −0.312648
\(502\) 0 0
\(503\) 16.6285 0.741427 0.370714 0.928747i \(-0.379113\pi\)
0.370714 + 0.928747i \(0.379113\pi\)
\(504\) 0 0
\(505\) 3.16333 0.140766
\(506\) 0 0
\(507\) 2.10985 0.0937018
\(508\) 0 0
\(509\) 33.8641 1.50100 0.750499 0.660871i \(-0.229813\pi\)
0.750499 + 0.660871i \(0.229813\pi\)
\(510\) 0 0
\(511\) −13.5757 −0.600552
\(512\) 0 0
\(513\) 1.00000 0.0441511
\(514\) 0 0
\(515\) 4.98254 0.219557
\(516\) 0 0
\(517\) −30.8524 −1.35689
\(518\) 0 0
\(519\) 14.6403 0.642639
\(520\) 0 0
\(521\) 28.3645 1.24267 0.621336 0.783544i \(-0.286590\pi\)
0.621336 + 0.783544i \(0.286590\pi\)
\(522\) 0 0
\(523\) 1.32743 0.0580443 0.0290221 0.999579i \(-0.490761\pi\)
0.0290221 + 0.999579i \(0.490761\pi\)
\(524\) 0 0
\(525\) 4.84935 0.211643
\(526\) 0 0
\(527\) −43.0183 −1.87391
\(528\) 0 0
\(529\) −11.1522 −0.484878
\(530\) 0 0
\(531\) −2.97652 −0.129170
\(532\) 0 0
\(533\) −34.1278 −1.47824
\(534\) 0 0
\(535\) 3.15344 0.136335
\(536\) 0 0
\(537\) 12.9009 0.556715
\(538\) 0 0
\(539\) −6.41859 −0.276468
\(540\) 0 0
\(541\) −19.0875 −0.820637 −0.410319 0.911942i \(-0.634583\pi\)
−0.410319 + 0.911942i \(0.634583\pi\)
\(542\) 0 0
\(543\) −12.3897 −0.531693
\(544\) 0 0
\(545\) −7.89294 −0.338096
\(546\) 0 0
\(547\) 12.7660 0.545834 0.272917 0.962038i \(-0.412012\pi\)
0.272917 + 0.962038i \(0.412012\pi\)
\(548\) 0 0
\(549\) 5.82287 0.248514
\(550\) 0 0
\(551\) 0.169801 0.00723377
\(552\) 0 0
\(553\) −1.01431 −0.0431328
\(554\) 0 0
\(555\) 2.86264 0.121512
\(556\) 0 0
\(557\) 23.1620 0.981405 0.490703 0.871327i \(-0.336740\pi\)
0.490703 + 0.871327i \(0.336740\pi\)
\(558\) 0 0
\(559\) 35.4152 1.49790
\(560\) 0 0
\(561\) 32.0112 1.35151
\(562\) 0 0
\(563\) 9.19938 0.387708 0.193854 0.981030i \(-0.437901\pi\)
0.193854 + 0.981030i \(0.437901\pi\)
\(564\) 0 0
\(565\) 1.61844 0.0680883
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) 42.8405 1.79597 0.897984 0.440028i \(-0.145031\pi\)
0.897984 + 0.440028i \(0.145031\pi\)
\(570\) 0 0
\(571\) −10.6358 −0.445095 −0.222547 0.974922i \(-0.571437\pi\)
−0.222547 + 0.974922i \(0.571437\pi\)
\(572\) 0 0
\(573\) −25.0544 −1.04666
\(574\) 0 0
\(575\) 16.6918 0.696096
\(576\) 0 0
\(577\) 45.7190 1.90331 0.951653 0.307176i \(-0.0993842\pi\)
0.951653 + 0.307176i \(0.0993842\pi\)
\(578\) 0 0
\(579\) 8.79939 0.365690
\(580\) 0 0
\(581\) −4.32147 −0.179285
\(582\) 0 0
\(583\) −54.1044 −2.24078
\(584\) 0 0
\(585\) 1.50873 0.0623783
\(586\) 0 0
\(587\) −13.8685 −0.572414 −0.286207 0.958168i \(-0.592395\pi\)
−0.286207 + 0.958168i \(0.592395\pi\)
\(588\) 0 0
\(589\) 8.62562 0.355412
\(590\) 0 0
\(591\) −4.80856 −0.197798
\(592\) 0 0
\(593\) −31.7063 −1.30202 −0.651011 0.759068i \(-0.725655\pi\)
−0.651011 + 0.759068i \(0.725655\pi\)
\(594\) 0 0
\(595\) 1.93573 0.0793570
\(596\) 0 0
\(597\) −9.61344 −0.393452
\(598\) 0 0
\(599\) 3.91479 0.159954 0.0799771 0.996797i \(-0.474515\pi\)
0.0799771 + 0.996797i \(0.474515\pi\)
\(600\) 0 0
\(601\) 7.68790 0.313596 0.156798 0.987631i \(-0.449883\pi\)
0.156798 + 0.987631i \(0.449883\pi\)
\(602\) 0 0
\(603\) 14.9980 0.610766
\(604\) 0 0
\(605\) 11.7210 0.476525
\(606\) 0 0
\(607\) −4.11499 −0.167022 −0.0835112 0.996507i \(-0.526613\pi\)
−0.0835112 + 0.996507i \(0.526613\pi\)
\(608\) 0 0
\(609\) −0.169801 −0.00688069
\(610\) 0 0
\(611\) 18.6844 0.755890
\(612\) 0 0
\(613\) 14.0997 0.569482 0.284741 0.958604i \(-0.408092\pi\)
0.284741 + 0.958604i \(0.408092\pi\)
\(614\) 0 0
\(615\) −3.40769 −0.137411
\(616\) 0 0
\(617\) 26.1748 1.05376 0.526879 0.849941i \(-0.323362\pi\)
0.526879 + 0.849941i \(0.323362\pi\)
\(618\) 0 0
\(619\) −13.8200 −0.555473 −0.277736 0.960657i \(-0.589584\pi\)
−0.277736 + 0.960657i \(0.589584\pi\)
\(620\) 0 0
\(621\) −3.44207 −0.138125
\(622\) 0 0
\(623\) −13.8955 −0.556713
\(624\) 0 0
\(625\) 22.7630 0.910519
\(626\) 0 0
\(627\) −6.41859 −0.256334
\(628\) 0 0
\(629\) −36.7831 −1.46664
\(630\) 0 0
\(631\) −26.3799 −1.05017 −0.525084 0.851050i \(-0.675966\pi\)
−0.525084 + 0.851050i \(0.675966\pi\)
\(632\) 0 0
\(633\) −2.22174 −0.0883064
\(634\) 0 0
\(635\) 2.40653 0.0955001
\(636\) 0 0
\(637\) 3.88714 0.154014
\(638\) 0 0
\(639\) −4.24879 −0.168079
\(640\) 0 0
\(641\) −43.5850 −1.72151 −0.860753 0.509024i \(-0.830007\pi\)
−0.860753 + 0.509024i \(0.830007\pi\)
\(642\) 0 0
\(643\) 37.6911 1.48639 0.743195 0.669075i \(-0.233309\pi\)
0.743195 + 0.669075i \(0.233309\pi\)
\(644\) 0 0
\(645\) 3.53624 0.139239
\(646\) 0 0
\(647\) 41.8752 1.64628 0.823142 0.567835i \(-0.192219\pi\)
0.823142 + 0.567835i \(0.192219\pi\)
\(648\) 0 0
\(649\) 19.1051 0.749940
\(650\) 0 0
\(651\) −8.62562 −0.338065
\(652\) 0 0
\(653\) 20.9665 0.820484 0.410242 0.911977i \(-0.365444\pi\)
0.410242 + 0.911977i \(0.365444\pi\)
\(654\) 0 0
\(655\) −6.04196 −0.236079
\(656\) 0 0
\(657\) 13.5757 0.529637
\(658\) 0 0
\(659\) −19.0359 −0.741532 −0.370766 0.928726i \(-0.620905\pi\)
−0.370766 + 0.928726i \(0.620905\pi\)
\(660\) 0 0
\(661\) −18.6957 −0.727178 −0.363589 0.931559i \(-0.618449\pi\)
−0.363589 + 0.931559i \(0.618449\pi\)
\(662\) 0 0
\(663\) −19.3862 −0.752898
\(664\) 0 0
\(665\) −0.388134 −0.0150512
\(666\) 0 0
\(667\) −0.584467 −0.0226306
\(668\) 0 0
\(669\) −18.2606 −0.705994
\(670\) 0 0
\(671\) −37.3746 −1.44283
\(672\) 0 0
\(673\) 42.1036 1.62297 0.811487 0.584370i \(-0.198658\pi\)
0.811487 + 0.584370i \(0.198658\pi\)
\(674\) 0 0
\(675\) −4.84935 −0.186652
\(676\) 0 0
\(677\) −41.1045 −1.57977 −0.789887 0.613252i \(-0.789861\pi\)
−0.789887 + 0.613252i \(0.789861\pi\)
\(678\) 0 0
\(679\) 13.7743 0.528608
\(680\) 0 0
\(681\) 5.13736 0.196864
\(682\) 0 0
\(683\) 2.64451 0.101189 0.0505947 0.998719i \(-0.483888\pi\)
0.0505947 + 0.998719i \(0.483888\pi\)
\(684\) 0 0
\(685\) 4.16164 0.159008
\(686\) 0 0
\(687\) 10.4750 0.399645
\(688\) 0 0
\(689\) 32.7660 1.24828
\(690\) 0 0
\(691\) −8.59120 −0.326825 −0.163412 0.986558i \(-0.552250\pi\)
−0.163412 + 0.986558i \(0.552250\pi\)
\(692\) 0 0
\(693\) 6.41859 0.243822
\(694\) 0 0
\(695\) −3.91964 −0.148681
\(696\) 0 0
\(697\) 43.7866 1.65854
\(698\) 0 0
\(699\) 17.5271 0.662935
\(700\) 0 0
\(701\) 24.5073 0.925626 0.462813 0.886456i \(-0.346840\pi\)
0.462813 + 0.886456i \(0.346840\pi\)
\(702\) 0 0
\(703\) 7.37540 0.278168
\(704\) 0 0
\(705\) 1.86565 0.0702645
\(706\) 0 0
\(707\) −8.15009 −0.306516
\(708\) 0 0
\(709\) 30.1710 1.13310 0.566548 0.824029i \(-0.308278\pi\)
0.566548 + 0.824029i \(0.308278\pi\)
\(710\) 0 0
\(711\) 1.01431 0.0380396
\(712\) 0 0
\(713\) −29.6899 −1.11190
\(714\) 0 0
\(715\) −9.68391 −0.362158
\(716\) 0 0
\(717\) 21.7777 0.813303
\(718\) 0 0
\(719\) −22.5815 −0.842149 −0.421074 0.907026i \(-0.638347\pi\)
−0.421074 + 0.907026i \(0.638347\pi\)
\(720\) 0 0
\(721\) −12.8372 −0.478081
\(722\) 0 0
\(723\) 10.3611 0.385333
\(724\) 0 0
\(725\) −0.823426 −0.0305813
\(726\) 0 0
\(727\) −16.6904 −0.619013 −0.309507 0.950897i \(-0.600164\pi\)
−0.309507 + 0.950897i \(0.600164\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −45.4383 −1.68060
\(732\) 0 0
\(733\) 23.0956 0.853055 0.426528 0.904475i \(-0.359737\pi\)
0.426528 + 0.904475i \(0.359737\pi\)
\(734\) 0 0
\(735\) 0.388134 0.0143165
\(736\) 0 0
\(737\) −96.2660 −3.54601
\(738\) 0 0
\(739\) 23.6754 0.870913 0.435456 0.900210i \(-0.356587\pi\)
0.435456 + 0.900210i \(0.356587\pi\)
\(740\) 0 0
\(741\) 3.88714 0.142798
\(742\) 0 0
\(743\) 8.20020 0.300836 0.150418 0.988622i \(-0.451938\pi\)
0.150418 + 0.988622i \(0.451938\pi\)
\(744\) 0 0
\(745\) 3.78539 0.138686
\(746\) 0 0
\(747\) 4.32147 0.158114
\(748\) 0 0
\(749\) −8.12463 −0.296867
\(750\) 0 0
\(751\) 53.7070 1.95980 0.979899 0.199494i \(-0.0639299\pi\)
0.979899 + 0.199494i \(0.0639299\pi\)
\(752\) 0 0
\(753\) −10.9146 −0.397750
\(754\) 0 0
\(755\) 0.857552 0.0312095
\(756\) 0 0
\(757\) 48.5136 1.76326 0.881628 0.471945i \(-0.156448\pi\)
0.881628 + 0.471945i \(0.156448\pi\)
\(758\) 0 0
\(759\) 22.0932 0.801932
\(760\) 0 0
\(761\) 0.788644 0.0285883 0.0142942 0.999898i \(-0.495450\pi\)
0.0142942 + 0.999898i \(0.495450\pi\)
\(762\) 0 0
\(763\) 20.3356 0.736199
\(764\) 0 0
\(765\) −1.93573 −0.0699863
\(766\) 0 0
\(767\) −11.5702 −0.417774
\(768\) 0 0
\(769\) 9.62974 0.347257 0.173629 0.984811i \(-0.444451\pi\)
0.173629 + 0.984811i \(0.444451\pi\)
\(770\) 0 0
\(771\) −3.28123 −0.118171
\(772\) 0 0
\(773\) −35.2618 −1.26828 −0.634139 0.773219i \(-0.718645\pi\)
−0.634139 + 0.773219i \(0.718645\pi\)
\(774\) 0 0
\(775\) −41.8287 −1.50253
\(776\) 0 0
\(777\) −7.37540 −0.264591
\(778\) 0 0
\(779\) −8.77968 −0.314565
\(780\) 0 0
\(781\) 27.2712 0.975841
\(782\) 0 0
\(783\) 0.169801 0.00606820
\(784\) 0 0
\(785\) −4.01793 −0.143406
\(786\) 0 0
\(787\) 40.3469 1.43821 0.719106 0.694900i \(-0.244551\pi\)
0.719106 + 0.694900i \(0.244551\pi\)
\(788\) 0 0
\(789\) 18.0034 0.640938
\(790\) 0 0
\(791\) −4.16980 −0.148261
\(792\) 0 0
\(793\) 22.6343 0.803767
\(794\) 0 0
\(795\) 3.27171 0.116036
\(796\) 0 0
\(797\) 5.29192 0.187449 0.0937247 0.995598i \(-0.470123\pi\)
0.0937247 + 0.995598i \(0.470123\pi\)
\(798\) 0 0
\(799\) −23.9724 −0.848083
\(800\) 0 0
\(801\) 13.8955 0.490975
\(802\) 0 0
\(803\) −87.1365 −3.07498
\(804\) 0 0
\(805\) 1.33598 0.0470872
\(806\) 0 0
\(807\) −0.886737 −0.0312146
\(808\) 0 0
\(809\) −54.6544 −1.92155 −0.960774 0.277333i \(-0.910549\pi\)
−0.960774 + 0.277333i \(0.910549\pi\)
\(810\) 0 0
\(811\) −34.1414 −1.19887 −0.599433 0.800425i \(-0.704607\pi\)
−0.599433 + 0.800425i \(0.704607\pi\)
\(812\) 0 0
\(813\) −7.43917 −0.260903
\(814\) 0 0
\(815\) 3.30847 0.115891
\(816\) 0 0
\(817\) 9.11087 0.318749
\(818\) 0 0
\(819\) −3.88714 −0.135828
\(820\) 0 0
\(821\) −47.8638 −1.67046 −0.835229 0.549902i \(-0.814665\pi\)
−0.835229 + 0.549902i \(0.814665\pi\)
\(822\) 0 0
\(823\) 8.87160 0.309244 0.154622 0.987974i \(-0.450584\pi\)
0.154622 + 0.987974i \(0.450584\pi\)
\(824\) 0 0
\(825\) 31.1260 1.08367
\(826\) 0 0
\(827\) −22.8022 −0.792910 −0.396455 0.918054i \(-0.629760\pi\)
−0.396455 + 0.918054i \(0.629760\pi\)
\(828\) 0 0
\(829\) −17.9774 −0.624381 −0.312190 0.950020i \(-0.601063\pi\)
−0.312190 + 0.950020i \(0.601063\pi\)
\(830\) 0 0
\(831\) −7.40189 −0.256769
\(832\) 0 0
\(833\) −4.98727 −0.172799
\(834\) 0 0
\(835\) −2.71616 −0.0939967
\(836\) 0 0
\(837\) 8.62562 0.298145
\(838\) 0 0
\(839\) 41.0481 1.41714 0.708569 0.705641i \(-0.249341\pi\)
0.708569 + 0.705641i \(0.249341\pi\)
\(840\) 0 0
\(841\) −28.9712 −0.999006
\(842\) 0 0
\(843\) −1.98187 −0.0682591
\(844\) 0 0
\(845\) 0.818905 0.0281712
\(846\) 0 0
\(847\) −30.1983 −1.03762
\(848\) 0 0
\(849\) −7.83519 −0.268903
\(850\) 0 0
\(851\) −25.3866 −0.870242
\(852\) 0 0
\(853\) 10.2504 0.350966 0.175483 0.984482i \(-0.443851\pi\)
0.175483 + 0.984482i \(0.443851\pi\)
\(854\) 0 0
\(855\) 0.388134 0.0132739
\(856\) 0 0
\(857\) 35.3195 1.20649 0.603246 0.797555i \(-0.293874\pi\)
0.603246 + 0.797555i \(0.293874\pi\)
\(858\) 0 0
\(859\) 29.0481 0.991109 0.495555 0.868577i \(-0.334965\pi\)
0.495555 + 0.868577i \(0.334965\pi\)
\(860\) 0 0
\(861\) 8.77968 0.299211
\(862\) 0 0
\(863\) −37.0768 −1.26211 −0.631054 0.775739i \(-0.717378\pi\)
−0.631054 + 0.775739i \(0.717378\pi\)
\(864\) 0 0
\(865\) 5.68241 0.193208
\(866\) 0 0
\(867\) 7.87283 0.267375
\(868\) 0 0
\(869\) −6.51043 −0.220851
\(870\) 0 0
\(871\) 58.2994 1.97540
\(872\) 0 0
\(873\) −13.7743 −0.466189
\(874\) 0 0
\(875\) 3.82287 0.129236
\(876\) 0 0
\(877\) −40.8400 −1.37907 −0.689535 0.724253i \(-0.742185\pi\)
−0.689535 + 0.724253i \(0.742185\pi\)
\(878\) 0 0
\(879\) 3.83178 0.129243
\(880\) 0 0
\(881\) −20.8316 −0.701835 −0.350918 0.936406i \(-0.614130\pi\)
−0.350918 + 0.936406i \(0.614130\pi\)
\(882\) 0 0
\(883\) −17.8077 −0.599276 −0.299638 0.954053i \(-0.596866\pi\)
−0.299638 + 0.954053i \(0.596866\pi\)
\(884\) 0 0
\(885\) −1.15529 −0.0388346
\(886\) 0 0
\(887\) 12.0913 0.405985 0.202993 0.979180i \(-0.434933\pi\)
0.202993 + 0.979180i \(0.434933\pi\)
\(888\) 0 0
\(889\) −6.20025 −0.207950
\(890\) 0 0
\(891\) −6.41859 −0.215031
\(892\) 0 0
\(893\) 4.80672 0.160851
\(894\) 0 0
\(895\) 5.00727 0.167375
\(896\) 0 0
\(897\) −13.3798 −0.446738
\(898\) 0 0
\(899\) 1.46464 0.0488485
\(900\) 0 0
\(901\) −42.0393 −1.40053
\(902\) 0 0
\(903\) −9.11087 −0.303191
\(904\) 0 0
\(905\) −4.80886 −0.159852
\(906\) 0 0
\(907\) 48.9499 1.62536 0.812678 0.582713i \(-0.198009\pi\)
0.812678 + 0.582713i \(0.198009\pi\)
\(908\) 0 0
\(909\) 8.15009 0.270321
\(910\) 0 0
\(911\) −27.4903 −0.910796 −0.455398 0.890288i \(-0.650503\pi\)
−0.455398 + 0.890288i \(0.650503\pi\)
\(912\) 0 0
\(913\) −27.7377 −0.917985
\(914\) 0 0
\(915\) 2.26005 0.0747150
\(916\) 0 0
\(917\) 15.5667 0.514057
\(918\) 0 0
\(919\) −26.3177 −0.868141 −0.434070 0.900879i \(-0.642923\pi\)
−0.434070 + 0.900879i \(0.642923\pi\)
\(920\) 0 0
\(921\) −1.46279 −0.0482007
\(922\) 0 0
\(923\) −16.5156 −0.543618
\(924\) 0 0
\(925\) −35.7659 −1.17598
\(926\) 0 0
\(927\) 12.8372 0.421628
\(928\) 0 0
\(929\) 27.5260 0.903099 0.451550 0.892246i \(-0.350871\pi\)
0.451550 + 0.892246i \(0.350871\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) 12.0213 0.393559
\(934\) 0 0
\(935\) 12.4246 0.406329
\(936\) 0 0
\(937\) −18.9196 −0.618075 −0.309038 0.951050i \(-0.600007\pi\)
−0.309038 + 0.951050i \(0.600007\pi\)
\(938\) 0 0
\(939\) 5.36938 0.175223
\(940\) 0 0
\(941\) 33.7139 1.09904 0.549521 0.835480i \(-0.314810\pi\)
0.549521 + 0.835480i \(0.314810\pi\)
\(942\) 0 0
\(943\) 30.2202 0.984106
\(944\) 0 0
\(945\) −0.388134 −0.0126260
\(946\) 0 0
\(947\) 0.655109 0.0212882 0.0106441 0.999943i \(-0.496612\pi\)
0.0106441 + 0.999943i \(0.496612\pi\)
\(948\) 0 0
\(949\) 52.7705 1.71300
\(950\) 0 0
\(951\) −12.6674 −0.410768
\(952\) 0 0
\(953\) 33.6974 1.09157 0.545783 0.837927i \(-0.316232\pi\)
0.545783 + 0.837927i \(0.316232\pi\)
\(954\) 0 0
\(955\) −9.72446 −0.314676
\(956\) 0 0
\(957\) −1.08988 −0.0352309
\(958\) 0 0
\(959\) −10.7222 −0.346237
\(960\) 0 0
\(961\) 43.4013 1.40004
\(962\) 0 0
\(963\) 8.12463 0.261812
\(964\) 0 0
\(965\) 3.41534 0.109944
\(966\) 0 0
\(967\) 31.1237 1.00087 0.500436 0.865774i \(-0.333173\pi\)
0.500436 + 0.865774i \(0.333173\pi\)
\(968\) 0 0
\(969\) −4.98727 −0.160214
\(970\) 0 0
\(971\) −0.890148 −0.0285662 −0.0142831 0.999898i \(-0.504547\pi\)
−0.0142831 + 0.999898i \(0.504547\pi\)
\(972\) 0 0
\(973\) 10.0987 0.323749
\(974\) 0 0
\(975\) −18.8501 −0.603687
\(976\) 0 0
\(977\) −28.1686 −0.901192 −0.450596 0.892728i \(-0.648789\pi\)
−0.450596 + 0.892728i \(0.648789\pi\)
\(978\) 0 0
\(979\) −89.1898 −2.85052
\(980\) 0 0
\(981\) −20.3356 −0.649267
\(982\) 0 0
\(983\) 32.9894 1.05220 0.526099 0.850424i \(-0.323654\pi\)
0.526099 + 0.850424i \(0.323654\pi\)
\(984\) 0 0
\(985\) −1.86636 −0.0594673
\(986\) 0 0
\(987\) −4.80672 −0.153000
\(988\) 0 0
\(989\) −31.3602 −0.997197
\(990\) 0 0
\(991\) −32.9379 −1.04631 −0.523154 0.852238i \(-0.675245\pi\)
−0.523154 + 0.852238i \(0.675245\pi\)
\(992\) 0 0
\(993\) −15.2575 −0.484183
\(994\) 0 0
\(995\) −3.73130 −0.118290
\(996\) 0 0
\(997\) −36.5637 −1.15798 −0.578992 0.815334i \(-0.696554\pi\)
−0.578992 + 0.815334i \(0.696554\pi\)
\(998\) 0 0
\(999\) 7.37540 0.233347
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6384.2.a.cf.1.3 5
4.3 odd 2 399.2.a.g.1.4 5
12.11 even 2 1197.2.a.o.1.2 5
20.19 odd 2 9975.2.a.bp.1.2 5
28.27 even 2 2793.2.a.bg.1.4 5
76.75 even 2 7581.2.a.w.1.2 5
84.83 odd 2 8379.2.a.cb.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.a.g.1.4 5 4.3 odd 2
1197.2.a.o.1.2 5 12.11 even 2
2793.2.a.bg.1.4 5 28.27 even 2
6384.2.a.cf.1.3 5 1.1 even 1 trivial
7581.2.a.w.1.2 5 76.75 even 2
8379.2.a.cb.1.2 5 84.83 odd 2
9975.2.a.bp.1.2 5 20.19 odd 2