Properties

Label 640.4.l.a.161.15
Level $640$
Weight $4$
Character 640.161
Analytic conductor $37.761$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [640,4,Mod(161,640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(640, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("640.161");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 640.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.7612224037\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.15
Character \(\chi\) \(=\) 640.161
Dual form 640.4.l.a.481.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30312 + 1.30312i) q^{3} +(-3.53553 + 3.53553i) q^{5} +17.9744i q^{7} -23.6037i q^{9} +(9.66542 - 9.66542i) q^{11} +(-19.1969 - 19.1969i) q^{13} -9.21448 q^{15} +103.565 q^{17} +(16.2553 + 16.2553i) q^{19} +(-23.4229 + 23.4229i) q^{21} +49.6583i q^{23} -25.0000i q^{25} +(65.9429 - 65.9429i) q^{27} +(68.7899 + 68.7899i) q^{29} +249.904 q^{31} +25.1905 q^{33} +(-63.5492 - 63.5492i) q^{35} +(-210.860 + 210.860i) q^{37} -50.0318i q^{39} +129.785i q^{41} +(-344.071 + 344.071i) q^{43} +(83.4518 + 83.4518i) q^{45} +174.483 q^{47} +19.9202 q^{49} +(134.958 + 134.958i) q^{51} +(-322.832 + 322.832i) q^{53} +68.3448i q^{55} +42.3653i q^{57} +(-21.0376 + 21.0376i) q^{59} +(-489.653 - 489.653i) q^{61} +424.264 q^{63} +135.742 q^{65} +(261.470 + 261.470i) q^{67} +(-64.7110 + 64.7110i) q^{69} +218.795i q^{71} +1085.01i q^{73} +(32.5781 - 32.5781i) q^{75} +(173.730 + 173.730i) q^{77} +1155.60 q^{79} -465.437 q^{81} +(777.042 + 777.042i) q^{83} +(-366.157 + 366.157i) q^{85} +179.283i q^{87} -15.9331i q^{89} +(345.052 - 345.052i) q^{91} +(325.656 + 325.656i) q^{93} -114.942 q^{95} -923.624 q^{97} +(-228.140 - 228.140i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 40 q^{11} - 120 q^{15} + 24 q^{19} - 264 q^{27} - 400 q^{29} - 16 q^{37} + 808 q^{43} - 1880 q^{47} - 2352 q^{49} + 2144 q^{51} - 752 q^{53} - 2728 q^{59} + 912 q^{61} + 2520 q^{63} - 2040 q^{67}+ \cdots - 4456 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.30312 + 1.30312i 0.250786 + 0.250786i 0.821293 0.570507i \(-0.193253\pi\)
−0.570507 + 0.821293i \(0.693253\pi\)
\(4\) 0 0
\(5\) −3.53553 + 3.53553i −0.316228 + 0.316228i
\(6\) 0 0
\(7\) 17.9744i 0.970528i 0.874368 + 0.485264i \(0.161276\pi\)
−0.874368 + 0.485264i \(0.838724\pi\)
\(8\) 0 0
\(9\) 23.6037i 0.874213i
\(10\) 0 0
\(11\) 9.66542 9.66542i 0.264930 0.264930i −0.562123 0.827054i \(-0.690015\pi\)
0.827054 + 0.562123i \(0.190015\pi\)
\(12\) 0 0
\(13\) −19.1969 19.1969i −0.409558 0.409558i 0.472027 0.881584i \(-0.343523\pi\)
−0.881584 + 0.472027i \(0.843523\pi\)
\(14\) 0 0
\(15\) −9.21448 −0.158611
\(16\) 0 0
\(17\) 103.565 1.47754 0.738770 0.673957i \(-0.235407\pi\)
0.738770 + 0.673957i \(0.235407\pi\)
\(18\) 0 0
\(19\) 16.2553 + 16.2553i 0.196275 + 0.196275i 0.798401 0.602126i \(-0.205680\pi\)
−0.602126 + 0.798401i \(0.705680\pi\)
\(20\) 0 0
\(21\) −23.4229 + 23.4229i −0.243395 + 0.243395i
\(22\) 0 0
\(23\) 49.6583i 0.450195i 0.974336 + 0.225097i \(0.0722700\pi\)
−0.974336 + 0.225097i \(0.927730\pi\)
\(24\) 0 0
\(25\) 25.0000i 0.200000i
\(26\) 0 0
\(27\) 65.9429 65.9429i 0.470027 0.470027i
\(28\) 0 0
\(29\) 68.7899 + 68.7899i 0.440481 + 0.440481i 0.892174 0.451692i \(-0.149180\pi\)
−0.451692 + 0.892174i \(0.649180\pi\)
\(30\) 0 0
\(31\) 249.904 1.44787 0.723937 0.689866i \(-0.242330\pi\)
0.723937 + 0.689866i \(0.242330\pi\)
\(32\) 0 0
\(33\) 25.1905 0.132882
\(34\) 0 0
\(35\) −63.5492 63.5492i −0.306908 0.306908i
\(36\) 0 0
\(37\) −210.860 + 210.860i −0.936897 + 0.936897i −0.998124 0.0612269i \(-0.980499\pi\)
0.0612269 + 0.998124i \(0.480499\pi\)
\(38\) 0 0
\(39\) 50.0318i 0.205423i
\(40\) 0 0
\(41\) 129.785i 0.494367i 0.968969 + 0.247183i \(0.0795050\pi\)
−0.968969 + 0.247183i \(0.920495\pi\)
\(42\) 0 0
\(43\) −344.071 + 344.071i −1.22024 + 1.22024i −0.252696 + 0.967546i \(0.581317\pi\)
−0.967546 + 0.252696i \(0.918683\pi\)
\(44\) 0 0
\(45\) 83.4518 + 83.4518i 0.276450 + 0.276450i
\(46\) 0 0
\(47\) 174.483 0.541511 0.270755 0.962648i \(-0.412727\pi\)
0.270755 + 0.962648i \(0.412727\pi\)
\(48\) 0 0
\(49\) 19.9202 0.0580764
\(50\) 0 0
\(51\) 134.958 + 134.958i 0.370547 + 0.370547i
\(52\) 0 0
\(53\) −322.832 + 322.832i −0.836687 + 0.836687i −0.988421 0.151735i \(-0.951514\pi\)
0.151735 + 0.988421i \(0.451514\pi\)
\(54\) 0 0
\(55\) 68.3448i 0.167557i
\(56\) 0 0
\(57\) 42.3653i 0.0984461i
\(58\) 0 0
\(59\) −21.0376 + 21.0376i −0.0464213 + 0.0464213i −0.729936 0.683515i \(-0.760450\pi\)
0.683515 + 0.729936i \(0.260450\pi\)
\(60\) 0 0
\(61\) −489.653 489.653i −1.02777 1.02777i −0.999603 0.0281617i \(-0.991035\pi\)
−0.0281617 0.999603i \(-0.508965\pi\)
\(62\) 0 0
\(63\) 424.264 0.848447
\(64\) 0 0
\(65\) 135.742 0.259027
\(66\) 0 0
\(67\) 261.470 + 261.470i 0.476771 + 0.476771i 0.904097 0.427327i \(-0.140545\pi\)
−0.427327 + 0.904097i \(0.640545\pi\)
\(68\) 0 0
\(69\) −64.7110 + 64.7110i −0.112903 + 0.112903i
\(70\) 0 0
\(71\) 218.795i 0.365720i 0.983139 + 0.182860i \(0.0585356\pi\)
−0.983139 + 0.182860i \(0.941464\pi\)
\(72\) 0 0
\(73\) 1085.01i 1.73960i 0.493401 + 0.869802i \(0.335754\pi\)
−0.493401 + 0.869802i \(0.664246\pi\)
\(74\) 0 0
\(75\) 32.5781 32.5781i 0.0501573 0.0501573i
\(76\) 0 0
\(77\) 173.730 + 173.730i 0.257122 + 0.257122i
\(78\) 0 0
\(79\) 1155.60 1.64576 0.822880 0.568215i \(-0.192366\pi\)
0.822880 + 0.568215i \(0.192366\pi\)
\(80\) 0 0
\(81\) −465.437 −0.638460
\(82\) 0 0
\(83\) 777.042 + 777.042i 1.02761 + 1.02761i 0.999608 + 0.0280004i \(0.00891397\pi\)
0.0280004 + 0.999608i \(0.491086\pi\)
\(84\) 0 0
\(85\) −366.157 + 366.157i −0.467239 + 0.467239i
\(86\) 0 0
\(87\) 179.283i 0.220933i
\(88\) 0 0
\(89\) 15.9331i 0.0189765i −0.999955 0.00948823i \(-0.996980\pi\)
0.999955 0.00948823i \(-0.00302024\pi\)
\(90\) 0 0
\(91\) 345.052 345.052i 0.397487 0.397487i
\(92\) 0 0
\(93\) 325.656 + 325.656i 0.363107 + 0.363107i
\(94\) 0 0
\(95\) −114.942 −0.124135
\(96\) 0 0
\(97\) −923.624 −0.966802 −0.483401 0.875399i \(-0.660599\pi\)
−0.483401 + 0.875399i \(0.660599\pi\)
\(98\) 0 0
\(99\) −228.140 228.140i −0.231605 0.231605i
\(100\) 0 0
\(101\) 385.353 385.353i 0.379644 0.379644i −0.491330 0.870974i \(-0.663489\pi\)
0.870974 + 0.491330i \(0.163489\pi\)
\(102\) 0 0
\(103\) 1445.05i 1.38238i −0.722672 0.691191i \(-0.757086\pi\)
0.722672 0.691191i \(-0.242914\pi\)
\(104\) 0 0
\(105\) 165.625i 0.153936i
\(106\) 0 0
\(107\) 488.994 488.994i 0.441802 0.441802i −0.450815 0.892617i \(-0.648867\pi\)
0.892617 + 0.450815i \(0.148867\pi\)
\(108\) 0 0
\(109\) 640.953 + 640.953i 0.563231 + 0.563231i 0.930224 0.366993i \(-0.119613\pi\)
−0.366993 + 0.930224i \(0.619613\pi\)
\(110\) 0 0
\(111\) −549.554 −0.469922
\(112\) 0 0
\(113\) 214.312 0.178414 0.0892069 0.996013i \(-0.471567\pi\)
0.0892069 + 0.996013i \(0.471567\pi\)
\(114\) 0 0
\(115\) −175.569 175.569i −0.142364 0.142364i
\(116\) 0 0
\(117\) −453.118 + 453.118i −0.358040 + 0.358040i
\(118\) 0 0
\(119\) 1861.52i 1.43399i
\(120\) 0 0
\(121\) 1144.16i 0.859624i
\(122\) 0 0
\(123\) −169.126 + 169.126i −0.123980 + 0.123980i
\(124\) 0 0
\(125\) 88.3883 + 88.3883i 0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) −68.9099 −0.0481478 −0.0240739 0.999710i \(-0.507664\pi\)
−0.0240739 + 0.999710i \(0.507664\pi\)
\(128\) 0 0
\(129\) −896.735 −0.612040
\(130\) 0 0
\(131\) 488.197 + 488.197i 0.325603 + 0.325603i 0.850912 0.525309i \(-0.176050\pi\)
−0.525309 + 0.850912i \(0.676050\pi\)
\(132\) 0 0
\(133\) −292.180 + 292.180i −0.190490 + 0.190490i
\(134\) 0 0
\(135\) 466.287i 0.297271i
\(136\) 0 0
\(137\) 2605.52i 1.62485i 0.583066 + 0.812425i \(0.301853\pi\)
−0.583066 + 0.812425i \(0.698147\pi\)
\(138\) 0 0
\(139\) 2138.54 2138.54i 1.30495 1.30495i 0.379944 0.925009i \(-0.375943\pi\)
0.925009 0.379944i \(-0.124057\pi\)
\(140\) 0 0
\(141\) 227.373 + 227.373i 0.135803 + 0.135803i
\(142\) 0 0
\(143\) −371.091 −0.217009
\(144\) 0 0
\(145\) −486.418 −0.278585
\(146\) 0 0
\(147\) 25.9585 + 25.9585i 0.0145648 + 0.0145648i
\(148\) 0 0
\(149\) −1394.57 + 1394.57i −0.766764 + 0.766764i −0.977535 0.210771i \(-0.932402\pi\)
0.210771 + 0.977535i \(0.432402\pi\)
\(150\) 0 0
\(151\) 1946.09i 1.04881i 0.851469 + 0.524405i \(0.175712\pi\)
−0.851469 + 0.524405i \(0.824288\pi\)
\(152\) 0 0
\(153\) 2444.52i 1.29168i
\(154\) 0 0
\(155\) −883.545 + 883.545i −0.457858 + 0.457858i
\(156\) 0 0
\(157\) 514.931 + 514.931i 0.261758 + 0.261758i 0.825768 0.564010i \(-0.190742\pi\)
−0.564010 + 0.825768i \(0.690742\pi\)
\(158\) 0 0
\(159\) −841.380 −0.419659
\(160\) 0 0
\(161\) −892.580 −0.436926
\(162\) 0 0
\(163\) 1228.72 + 1228.72i 0.590433 + 0.590433i 0.937748 0.347316i \(-0.112907\pi\)
−0.347316 + 0.937748i \(0.612907\pi\)
\(164\) 0 0
\(165\) −89.0618 + 89.0618i −0.0420209 + 0.0420209i
\(166\) 0 0
\(167\) 587.588i 0.272269i −0.990690 0.136135i \(-0.956532\pi\)
0.990690 0.136135i \(-0.0434679\pi\)
\(168\) 0 0
\(169\) 1459.96i 0.664525i
\(170\) 0 0
\(171\) 383.686 383.686i 0.171586 0.171586i
\(172\) 0 0
\(173\) −1062.06 1062.06i −0.466744 0.466744i 0.434114 0.900858i \(-0.357062\pi\)
−0.900858 + 0.434114i \(0.857062\pi\)
\(174\) 0 0
\(175\) 449.361 0.194106
\(176\) 0 0
\(177\) −54.8291 −0.0232836
\(178\) 0 0
\(179\) 1954.76 + 1954.76i 0.816234 + 0.816234i 0.985560 0.169326i \(-0.0541590\pi\)
−0.169326 + 0.985560i \(0.554159\pi\)
\(180\) 0 0
\(181\) 2384.68 2384.68i 0.979293 0.979293i −0.0204973 0.999790i \(-0.506525\pi\)
0.999790 + 0.0204973i \(0.00652494\pi\)
\(182\) 0 0
\(183\) 1276.16i 0.515499i
\(184\) 0 0
\(185\) 1491.01i 0.592546i
\(186\) 0 0
\(187\) 1001.00 1001.00i 0.391445 0.391445i
\(188\) 0 0
\(189\) 1185.29 + 1185.29i 0.456174 + 0.456174i
\(190\) 0 0
\(191\) −3326.75 −1.26029 −0.630145 0.776478i \(-0.717004\pi\)
−0.630145 + 0.776478i \(0.717004\pi\)
\(192\) 0 0
\(193\) 2489.93 0.928648 0.464324 0.885665i \(-0.346297\pi\)
0.464324 + 0.885665i \(0.346297\pi\)
\(194\) 0 0
\(195\) 176.889 + 176.889i 0.0649604 + 0.0649604i
\(196\) 0 0
\(197\) 1788.50 1788.50i 0.646829 0.646829i −0.305396 0.952225i \(-0.598789\pi\)
0.952225 + 0.305396i \(0.0987890\pi\)
\(198\) 0 0
\(199\) 1891.36i 0.673743i 0.941551 + 0.336872i \(0.109369\pi\)
−0.941551 + 0.336872i \(0.890631\pi\)
\(200\) 0 0
\(201\) 681.455i 0.239135i
\(202\) 0 0
\(203\) −1236.46 + 1236.46i −0.427499 + 0.427499i
\(204\) 0 0
\(205\) −458.860 458.860i −0.156333 0.156333i
\(206\) 0 0
\(207\) 1172.12 0.393566
\(208\) 0 0
\(209\) 314.229 0.103998
\(210\) 0 0
\(211\) −3007.32 3007.32i −0.981197 0.981197i 0.0186292 0.999826i \(-0.494070\pi\)
−0.999826 + 0.0186292i \(0.994070\pi\)
\(212\) 0 0
\(213\) −285.116 + 285.116i −0.0917176 + 0.0917176i
\(214\) 0 0
\(215\) 2432.95i 0.771749i
\(216\) 0 0
\(217\) 4491.88i 1.40520i
\(218\) 0 0
\(219\) −1413.91 + 1413.91i −0.436269 + 0.436269i
\(220\) 0 0
\(221\) −1988.12 1988.12i −0.605138 0.605138i
\(222\) 0 0
\(223\) 5155.90 1.54827 0.774136 0.633019i \(-0.218185\pi\)
0.774136 + 0.633019i \(0.218185\pi\)
\(224\) 0 0
\(225\) −590.093 −0.174843
\(226\) 0 0
\(227\) −363.535 363.535i −0.106294 0.106294i 0.651960 0.758254i \(-0.273947\pi\)
−0.758254 + 0.651960i \(0.773947\pi\)
\(228\) 0 0
\(229\) 2227.85 2227.85i 0.642884 0.642884i −0.308380 0.951263i \(-0.599787\pi\)
0.951263 + 0.308380i \(0.0997867\pi\)
\(230\) 0 0
\(231\) 452.784i 0.128965i
\(232\) 0 0
\(233\) 3753.04i 1.05524i −0.849482 0.527618i \(-0.823085\pi\)
0.849482 0.527618i \(-0.176915\pi\)
\(234\) 0 0
\(235\) −616.892 + 616.892i −0.171241 + 0.171241i
\(236\) 0 0
\(237\) 1505.89 + 1505.89i 0.412734 + 0.412734i
\(238\) 0 0
\(239\) 1005.32 0.272088 0.136044 0.990703i \(-0.456561\pi\)
0.136044 + 0.990703i \(0.456561\pi\)
\(240\) 0 0
\(241\) −1393.93 −0.372576 −0.186288 0.982495i \(-0.559646\pi\)
−0.186288 + 0.982495i \(0.559646\pi\)
\(242\) 0 0
\(243\) −2386.98 2386.98i −0.630144 0.630144i
\(244\) 0 0
\(245\) −70.4285 + 70.4285i −0.0183654 + 0.0183654i
\(246\) 0 0
\(247\) 624.101i 0.160772i
\(248\) 0 0
\(249\) 2025.16i 0.515420i
\(250\) 0 0
\(251\) −4032.99 + 4032.99i −1.01418 + 1.01418i −0.0142864 + 0.999898i \(0.504548\pi\)
−0.999898 + 0.0142864i \(0.995452\pi\)
\(252\) 0 0
\(253\) 479.969 + 479.969i 0.119270 + 0.119270i
\(254\) 0 0
\(255\) −954.297 −0.234354
\(256\) 0 0
\(257\) 2814.94 0.683234 0.341617 0.939839i \(-0.389025\pi\)
0.341617 + 0.939839i \(0.389025\pi\)
\(258\) 0 0
\(259\) −3790.09 3790.09i −0.909284 0.909284i
\(260\) 0 0
\(261\) 1623.70 1623.70i 0.385074 0.385074i
\(262\) 0 0
\(263\) 5568.12i 1.30549i −0.757576 0.652747i \(-0.773616\pi\)
0.757576 0.652747i \(-0.226384\pi\)
\(264\) 0 0
\(265\) 2282.77i 0.529167i
\(266\) 0 0
\(267\) 20.7628 20.7628i 0.00475904 0.00475904i
\(268\) 0 0
\(269\) −3381.13 3381.13i −0.766362 0.766362i 0.211102 0.977464i \(-0.432295\pi\)
−0.977464 + 0.211102i \(0.932295\pi\)
\(270\) 0 0
\(271\) −8497.20 −1.90468 −0.952339 0.305040i \(-0.901330\pi\)
−0.952339 + 0.305040i \(0.901330\pi\)
\(272\) 0 0
\(273\) 899.292 0.199369
\(274\) 0 0
\(275\) −241.635 241.635i −0.0529861 0.0529861i
\(276\) 0 0
\(277\) −776.937 + 776.937i −0.168526 + 0.168526i −0.786331 0.617805i \(-0.788022\pi\)
0.617805 + 0.786331i \(0.288022\pi\)
\(278\) 0 0
\(279\) 5898.67i 1.26575i
\(280\) 0 0
\(281\) 8079.78i 1.71530i −0.514234 0.857650i \(-0.671924\pi\)
0.514234 0.857650i \(-0.328076\pi\)
\(282\) 0 0
\(283\) −2189.72 + 2189.72i −0.459949 + 0.459949i −0.898639 0.438690i \(-0.855443\pi\)
0.438690 + 0.898639i \(0.355443\pi\)
\(284\) 0 0
\(285\) −149.784 149.784i −0.0311314 0.0311314i
\(286\) 0 0
\(287\) −2332.81 −0.479797
\(288\) 0 0
\(289\) 5812.70 1.18313
\(290\) 0 0
\(291\) −1203.60 1203.60i −0.242461 0.242461i
\(292\) 0 0
\(293\) −5552.61 + 5552.61i −1.10712 + 1.10712i −0.113596 + 0.993527i \(0.536237\pi\)
−0.993527 + 0.113596i \(0.963763\pi\)
\(294\) 0 0
\(295\) 148.758i 0.0293594i
\(296\) 0 0
\(297\) 1274.73i 0.249049i
\(298\) 0 0
\(299\) 953.284 953.284i 0.184381 0.184381i
\(300\) 0 0
\(301\) −6184.48 6184.48i −1.18428 1.18428i
\(302\) 0 0
\(303\) 1004.32 0.190419
\(304\) 0 0
\(305\) 3462.37 0.650016
\(306\) 0 0
\(307\) −4301.90 4301.90i −0.799747 0.799747i 0.183309 0.983055i \(-0.441319\pi\)
−0.983055 + 0.183309i \(0.941319\pi\)
\(308\) 0 0
\(309\) 1883.08 1883.08i 0.346682 0.346682i
\(310\) 0 0
\(311\) 4756.88i 0.867325i 0.901075 + 0.433663i \(0.142779\pi\)
−0.901075 + 0.433663i \(0.857221\pi\)
\(312\) 0 0
\(313\) 5433.84i 0.981274i −0.871364 0.490637i \(-0.836764\pi\)
0.871364 0.490637i \(-0.163236\pi\)
\(314\) 0 0
\(315\) −1500.00 + 1500.00i −0.268303 + 0.268303i
\(316\) 0 0
\(317\) 728.663 + 728.663i 0.129103 + 0.129103i 0.768706 0.639602i \(-0.220901\pi\)
−0.639602 + 0.768706i \(0.720901\pi\)
\(318\) 0 0
\(319\) 1329.77 0.233394
\(320\) 0 0
\(321\) 1274.44 0.221596
\(322\) 0 0
\(323\) 1683.48 + 1683.48i 0.290004 + 0.290004i
\(324\) 0 0
\(325\) −479.921 + 479.921i −0.0819115 + 0.0819115i
\(326\) 0 0
\(327\) 1670.48i 0.282501i
\(328\) 0 0
\(329\) 3136.24i 0.525551i
\(330\) 0 0
\(331\) 2514.44 2514.44i 0.417541 0.417541i −0.466814 0.884355i \(-0.654598\pi\)
0.884355 + 0.466814i \(0.154598\pi\)
\(332\) 0 0
\(333\) 4977.09 + 4977.09i 0.819047 + 0.819047i
\(334\) 0 0
\(335\) −1848.87 −0.301536
\(336\) 0 0
\(337\) 82.5425 0.0133424 0.00667118 0.999978i \(-0.497876\pi\)
0.00667118 + 0.999978i \(0.497876\pi\)
\(338\) 0 0
\(339\) 279.275 + 279.275i 0.0447438 + 0.0447438i
\(340\) 0 0
\(341\) 2415.43 2415.43i 0.383586 0.383586i
\(342\) 0 0
\(343\) 6523.28i 1.02689i
\(344\) 0 0
\(345\) 457.576i 0.0714059i
\(346\) 0 0
\(347\) 7202.76 7202.76i 1.11431 1.11431i 0.121745 0.992561i \(-0.461151\pi\)
0.992561 0.121745i \(-0.0388490\pi\)
\(348\) 0 0
\(349\) 2134.41 + 2134.41i 0.327370 + 0.327370i 0.851586 0.524215i \(-0.175641\pi\)
−0.524215 + 0.851586i \(0.675641\pi\)
\(350\) 0 0
\(351\) −2531.79 −0.385006
\(352\) 0 0
\(353\) 705.357 0.106352 0.0531761 0.998585i \(-0.483066\pi\)
0.0531761 + 0.998585i \(0.483066\pi\)
\(354\) 0 0
\(355\) −773.556 773.556i −0.115651 0.115651i
\(356\) 0 0
\(357\) −2425.79 + 2425.79i −0.359626 + 0.359626i
\(358\) 0 0
\(359\) 11015.7i 1.61946i −0.586803 0.809730i \(-0.699614\pi\)
0.586803 0.809730i \(-0.300386\pi\)
\(360\) 0 0
\(361\) 6330.53i 0.922952i
\(362\) 0 0
\(363\) −1490.98 + 1490.98i −0.215582 + 0.215582i
\(364\) 0 0
\(365\) −3836.10 3836.10i −0.550111 0.550111i
\(366\) 0 0
\(367\) 12269.4 1.74512 0.872560 0.488506i \(-0.162458\pi\)
0.872560 + 0.488506i \(0.162458\pi\)
\(368\) 0 0
\(369\) 3063.42 0.432182
\(370\) 0 0
\(371\) −5802.72 5802.72i −0.812028 0.812028i
\(372\) 0 0
\(373\) 1651.92 1651.92i 0.229312 0.229312i −0.583093 0.812405i \(-0.698158\pi\)
0.812405 + 0.583093i \(0.198158\pi\)
\(374\) 0 0
\(375\) 230.362i 0.0317222i
\(376\) 0 0
\(377\) 2641.10i 0.360805i
\(378\) 0 0
\(379\) −2757.81 + 2757.81i −0.373771 + 0.373771i −0.868849 0.495078i \(-0.835140\pi\)
0.495078 + 0.868849i \(0.335140\pi\)
\(380\) 0 0
\(381\) −89.7982 89.7982i −0.0120748 0.0120748i
\(382\) 0 0
\(383\) −10375.4 −1.38423 −0.692116 0.721787i \(-0.743321\pi\)
−0.692116 + 0.721787i \(0.743321\pi\)
\(384\) 0 0
\(385\) −1228.46 −0.162618
\(386\) 0 0
\(387\) 8121.37 + 8121.37i 1.06675 + 1.06675i
\(388\) 0 0
\(389\) 2933.34 2933.34i 0.382330 0.382330i −0.489611 0.871941i \(-0.662861\pi\)
0.871941 + 0.489611i \(0.162861\pi\)
\(390\) 0 0
\(391\) 5142.87i 0.665181i
\(392\) 0 0
\(393\) 1272.36i 0.163313i
\(394\) 0 0
\(395\) −4085.66 + 4085.66i −0.520435 + 0.520435i
\(396\) 0 0
\(397\) 2310.28 + 2310.28i 0.292065 + 0.292065i 0.837895 0.545831i \(-0.183786\pi\)
−0.545831 + 0.837895i \(0.683786\pi\)
\(398\) 0 0
\(399\) −761.492 −0.0955446
\(400\) 0 0
\(401\) −15396.7 −1.91740 −0.958698 0.284427i \(-0.908197\pi\)
−0.958698 + 0.284427i \(0.908197\pi\)
\(402\) 0 0
\(403\) −4797.37 4797.37i −0.592988 0.592988i
\(404\) 0 0
\(405\) 1645.57 1645.57i 0.201899 0.201899i
\(406\) 0 0
\(407\) 4076.10i 0.496425i
\(408\) 0 0
\(409\) 12575.6i 1.52036i 0.649715 + 0.760178i \(0.274888\pi\)
−0.649715 + 0.760178i \(0.725112\pi\)
\(410\) 0 0
\(411\) −3395.31 + 3395.31i −0.407490 + 0.407490i
\(412\) 0 0
\(413\) −378.138 378.138i −0.0450531 0.0450531i
\(414\) 0 0
\(415\) −5494.52 −0.649917
\(416\) 0 0
\(417\) 5573.56 0.654529
\(418\) 0 0
\(419\) 8665.37 + 8665.37i 1.01034 + 1.01034i 0.999946 + 0.0103906i \(0.00330748\pi\)
0.0103906 + 0.999946i \(0.496693\pi\)
\(420\) 0 0
\(421\) 7662.55 7662.55i 0.887054 0.887054i −0.107185 0.994239i \(-0.534184\pi\)
0.994239 + 0.107185i \(0.0341837\pi\)
\(422\) 0 0
\(423\) 4118.46i 0.473395i
\(424\) 0 0
\(425\) 2589.12i 0.295508i
\(426\) 0 0
\(427\) 8801.23 8801.23i 0.997474 0.997474i
\(428\) 0 0
\(429\) −483.578 483.578i −0.0544228 0.0544228i
\(430\) 0 0
\(431\) 1895.81 0.211874 0.105937 0.994373i \(-0.466216\pi\)
0.105937 + 0.994373i \(0.466216\pi\)
\(432\) 0 0
\(433\) −2200.34 −0.244207 −0.122104 0.992517i \(-0.538964\pi\)
−0.122104 + 0.992517i \(0.538964\pi\)
\(434\) 0 0
\(435\) −633.863 633.863i −0.0698653 0.0698653i
\(436\) 0 0
\(437\) −807.211 + 807.211i −0.0883619 + 0.0883619i
\(438\) 0 0
\(439\) 6043.58i 0.657049i 0.944495 + 0.328524i \(0.106551\pi\)
−0.944495 + 0.328524i \(0.893449\pi\)
\(440\) 0 0
\(441\) 470.191i 0.0507711i
\(442\) 0 0
\(443\) −2766.30 + 2766.30i −0.296684 + 0.296684i −0.839714 0.543030i \(-0.817277\pi\)
0.543030 + 0.839714i \(0.317277\pi\)
\(444\) 0 0
\(445\) 56.3320 + 56.3320i 0.00600088 + 0.00600088i
\(446\) 0 0
\(447\) −3634.60 −0.384588
\(448\) 0 0
\(449\) −17830.6 −1.87411 −0.937056 0.349179i \(-0.886461\pi\)
−0.937056 + 0.349179i \(0.886461\pi\)
\(450\) 0 0
\(451\) 1254.43 + 1254.43i 0.130973 + 0.130973i
\(452\) 0 0
\(453\) −2535.99 + 2535.99i −0.263027 + 0.263027i
\(454\) 0 0
\(455\) 2439.89i 0.251393i
\(456\) 0 0
\(457\) 14018.4i 1.43491i 0.696606 + 0.717454i \(0.254693\pi\)
−0.696606 + 0.717454i \(0.745307\pi\)
\(458\) 0 0
\(459\) 6829.38 6829.38i 0.694484 0.694484i
\(460\) 0 0
\(461\) −2477.06 2477.06i −0.250256 0.250256i 0.570819 0.821076i \(-0.306626\pi\)
−0.821076 + 0.570819i \(0.806626\pi\)
\(462\) 0 0
\(463\) 6279.68 0.630327 0.315163 0.949037i \(-0.397941\pi\)
0.315163 + 0.949037i \(0.397941\pi\)
\(464\) 0 0
\(465\) −2302.74 −0.229649
\(466\) 0 0
\(467\) 5797.97 + 5797.97i 0.574514 + 0.574514i 0.933386 0.358873i \(-0.116839\pi\)
−0.358873 + 0.933386i \(0.616839\pi\)
\(468\) 0 0
\(469\) −4699.77 + 4699.77i −0.462719 + 0.462719i
\(470\) 0 0
\(471\) 1342.04i 0.131290i
\(472\) 0 0
\(473\) 6651.19i 0.646558i
\(474\) 0 0
\(475\) 406.383 406.383i 0.0392550 0.0392550i
\(476\) 0 0
\(477\) 7620.04 + 7620.04i 0.731442 + 0.731442i
\(478\) 0 0
\(479\) −965.448 −0.0920927 −0.0460464 0.998939i \(-0.514662\pi\)
−0.0460464 + 0.998939i \(0.514662\pi\)
\(480\) 0 0
\(481\) 8095.70 0.767427
\(482\) 0 0
\(483\) −1163.14 1163.14i −0.109575 0.109575i
\(484\) 0 0
\(485\) 3265.50 3265.50i 0.305730 0.305730i
\(486\) 0 0
\(487\) 13452.2i 1.25170i −0.779942 0.625852i \(-0.784752\pi\)
0.779942 0.625852i \(-0.215248\pi\)
\(488\) 0 0
\(489\) 3202.34i 0.296145i
\(490\) 0 0
\(491\) −7716.82 + 7716.82i −0.709277 + 0.709277i −0.966383 0.257106i \(-0.917231\pi\)
0.257106 + 0.966383i \(0.417231\pi\)
\(492\) 0 0
\(493\) 7124.22 + 7124.22i 0.650829 + 0.650829i
\(494\) 0 0
\(495\) 1613.19 0.146480
\(496\) 0 0
\(497\) −3932.71 −0.354942
\(498\) 0 0
\(499\) 3025.88 + 3025.88i 0.271457 + 0.271457i 0.829686 0.558230i \(-0.188519\pi\)
−0.558230 + 0.829686i \(0.688519\pi\)
\(500\) 0 0
\(501\) 765.700 765.700i 0.0682813 0.0682813i
\(502\) 0 0
\(503\) 7264.11i 0.643918i 0.946754 + 0.321959i \(0.104341\pi\)
−0.946754 + 0.321959i \(0.895659\pi\)
\(504\) 0 0
\(505\) 2724.86i 0.240108i
\(506\) 0 0
\(507\) 1902.51 1902.51i 0.166654 0.166654i
\(508\) 0 0
\(509\) 6106.12 + 6106.12i 0.531727 + 0.531727i 0.921086 0.389359i \(-0.127303\pi\)
−0.389359 + 0.921086i \(0.627303\pi\)
\(510\) 0 0
\(511\) −19502.5 −1.68833
\(512\) 0 0
\(513\) 2143.84 0.184509
\(514\) 0 0
\(515\) 5109.04 + 5109.04i 0.437148 + 0.437148i
\(516\) 0 0
\(517\) 1686.45 1686.45i 0.143463 0.143463i
\(518\) 0 0
\(519\) 2767.98i 0.234106i
\(520\) 0 0
\(521\) 15120.8i 1.27151i −0.771893 0.635753i \(-0.780690\pi\)
0.771893 0.635753i \(-0.219310\pi\)
\(522\) 0 0
\(523\) 15970.5 15970.5i 1.33526 1.33526i 0.434671 0.900589i \(-0.356865\pi\)
0.900589 0.434671i \(-0.143135\pi\)
\(524\) 0 0
\(525\) 585.572 + 585.572i 0.0486790 + 0.0486790i
\(526\) 0 0
\(527\) 25881.3 2.13929
\(528\) 0 0
\(529\) 9701.05 0.797325
\(530\) 0 0
\(531\) 496.565 + 496.565i 0.0405821 + 0.0405821i
\(532\) 0 0
\(533\) 2491.47 2491.47i 0.202472 0.202472i
\(534\) 0 0
\(535\) 3457.71i 0.279420i
\(536\) 0 0
\(537\) 5094.60i 0.409401i
\(538\) 0 0
\(539\) 192.537 192.537i 0.0153862 0.0153862i
\(540\) 0 0
\(541\) −16156.7 16156.7i −1.28398 1.28398i −0.938385 0.345592i \(-0.887678\pi\)
−0.345592 0.938385i \(-0.612322\pi\)
\(542\) 0 0
\(543\) 6215.07 0.491186
\(544\) 0 0
\(545\) −4532.22 −0.356218
\(546\) 0 0
\(547\) 6368.79 + 6368.79i 0.497824 + 0.497824i 0.910760 0.412936i \(-0.135497\pi\)
−0.412936 + 0.910760i \(0.635497\pi\)
\(548\) 0 0
\(549\) −11557.6 + 11557.6i −0.898485 + 0.898485i
\(550\) 0 0
\(551\) 2236.40i 0.172911i
\(552\) 0 0
\(553\) 20771.2i 1.59726i
\(554\) 0 0
\(555\) 1942.97 1942.97i 0.148602 0.148602i
\(556\) 0 0
\(557\) 9746.29 + 9746.29i 0.741407 + 0.741407i 0.972849 0.231442i \(-0.0743443\pi\)
−0.231442 + 0.972849i \(0.574344\pi\)
\(558\) 0 0
\(559\) 13210.2 0.999519
\(560\) 0 0
\(561\) 2608.85 0.196338
\(562\) 0 0
\(563\) 7196.60 + 7196.60i 0.538722 + 0.538722i 0.923154 0.384431i \(-0.125602\pi\)
−0.384431 + 0.923154i \(0.625602\pi\)
\(564\) 0 0
\(565\) −757.707 + 757.707i −0.0564194 + 0.0564194i
\(566\) 0 0
\(567\) 8365.97i 0.619643i
\(568\) 0 0
\(569\) 5236.83i 0.385834i −0.981215 0.192917i \(-0.938205\pi\)
0.981215 0.192917i \(-0.0617948\pi\)
\(570\) 0 0
\(571\) −7407.25 + 7407.25i −0.542879 + 0.542879i −0.924372 0.381493i \(-0.875410\pi\)
0.381493 + 0.924372i \(0.375410\pi\)
\(572\) 0 0
\(573\) −4335.17 4335.17i −0.316063 0.316063i
\(574\) 0 0
\(575\) 1241.46 0.0900390
\(576\) 0 0
\(577\) −7726.80 −0.557488 −0.278744 0.960365i \(-0.589918\pi\)
−0.278744 + 0.960365i \(0.589918\pi\)
\(578\) 0 0
\(579\) 3244.69 + 3244.69i 0.232892 + 0.232892i
\(580\) 0 0
\(581\) −13966.9 + 13966.9i −0.997322 + 0.997322i
\(582\) 0 0
\(583\) 6240.62i 0.443327i
\(584\) 0 0
\(585\) 3204.03i 0.226445i
\(586\) 0 0
\(587\) −8359.85 + 8359.85i −0.587816 + 0.587816i −0.937039 0.349224i \(-0.886445\pi\)
0.349224 + 0.937039i \(0.386445\pi\)
\(588\) 0 0
\(589\) 4062.27 + 4062.27i 0.284181 + 0.284181i
\(590\) 0 0
\(591\) 4661.27 0.324432
\(592\) 0 0
\(593\) −8292.91 −0.574281 −0.287141 0.957888i \(-0.592705\pi\)
−0.287141 + 0.957888i \(0.592705\pi\)
\(594\) 0 0
\(595\) −6581.47 6581.47i −0.453469 0.453469i
\(596\) 0 0
\(597\) −2464.68 + 2464.68i −0.168966 + 0.168966i
\(598\) 0 0
\(599\) 27431.8i 1.87117i 0.353097 + 0.935587i \(0.385129\pi\)
−0.353097 + 0.935587i \(0.614871\pi\)
\(600\) 0 0
\(601\) 2790.89i 0.189422i −0.995505 0.0947112i \(-0.969807\pi\)
0.995505 0.0947112i \(-0.0301928\pi\)
\(602\) 0 0
\(603\) 6171.67 6171.67i 0.416799 0.416799i
\(604\) 0 0
\(605\) −4045.21 4045.21i −0.271837 0.271837i
\(606\) 0 0
\(607\) 10317.1 0.689882 0.344941 0.938624i \(-0.387899\pi\)
0.344941 + 0.938624i \(0.387899\pi\)
\(608\) 0 0
\(609\) −3222.52 −0.214422
\(610\) 0 0
\(611\) −3349.53 3349.53i −0.221780 0.221780i
\(612\) 0 0
\(613\) 2563.99 2563.99i 0.168938 0.168938i −0.617575 0.786512i \(-0.711885\pi\)
0.786512 + 0.617575i \(0.211885\pi\)
\(614\) 0 0
\(615\) 1195.90i 0.0784121i
\(616\) 0 0
\(617\) 9519.59i 0.621141i 0.950550 + 0.310571i \(0.100520\pi\)
−0.950550 + 0.310571i \(0.899480\pi\)
\(618\) 0 0
\(619\) 5737.81 5737.81i 0.372572 0.372572i −0.495841 0.868413i \(-0.665140\pi\)
0.868413 + 0.495841i \(0.165140\pi\)
\(620\) 0 0
\(621\) 3274.62 + 3274.62i 0.211604 + 0.211604i
\(622\) 0 0
\(623\) 286.388 0.0184172
\(624\) 0 0
\(625\) −625.000 −0.0400000
\(626\) 0 0
\(627\) 409.479 + 409.479i 0.0260814 + 0.0260814i
\(628\) 0 0
\(629\) −21837.7 + 21837.7i −1.38430 + 1.38430i
\(630\) 0 0
\(631\) 2962.42i 0.186897i −0.995624 0.0934485i \(-0.970211\pi\)
0.995624 0.0934485i \(-0.0297890\pi\)
\(632\) 0 0
\(633\) 7837.83i 0.492142i
\(634\) 0 0
\(635\) 243.633 243.633i 0.0152257 0.0152257i
\(636\) 0 0
\(637\) −382.405 382.405i −0.0237856 0.0237856i
\(638\) 0 0
\(639\) 5164.37 0.319717
\(640\) 0 0
\(641\) −14378.2 −0.885964 −0.442982 0.896530i \(-0.646079\pi\)
−0.442982 + 0.896530i \(0.646079\pi\)
\(642\) 0 0
\(643\) 6022.70 + 6022.70i 0.369381 + 0.369381i 0.867251 0.497870i \(-0.165884\pi\)
−0.497870 + 0.867251i \(0.665884\pi\)
\(644\) 0 0
\(645\) 3170.44 3170.44i 0.193544 0.193544i
\(646\) 0 0
\(647\) 14764.5i 0.897147i 0.893746 + 0.448573i \(0.148068\pi\)
−0.893746 + 0.448573i \(0.851932\pi\)
\(648\) 0 0
\(649\) 406.674i 0.0245968i
\(650\) 0 0
\(651\) −5853.48 + 5853.48i −0.352405 + 0.352405i
\(652\) 0 0
\(653\) −9815.04 9815.04i −0.588197 0.588197i 0.348946 0.937143i \(-0.386540\pi\)
−0.937143 + 0.348946i \(0.886540\pi\)
\(654\) 0 0
\(655\) −3452.08 −0.205929
\(656\) 0 0
\(657\) 25610.4 1.52078
\(658\) 0 0
\(659\) −19820.3 19820.3i −1.17161 1.17161i −0.981826 0.189783i \(-0.939221\pi\)
−0.189783 0.981826i \(-0.560779\pi\)
\(660\) 0 0
\(661\) −12939.4 + 12939.4i −0.761397 + 0.761397i −0.976575 0.215178i \(-0.930967\pi\)
0.215178 + 0.976575i \(0.430967\pi\)
\(662\) 0 0
\(663\) 5181.54i 0.303521i
\(664\) 0 0
\(665\) 2066.02i 0.120477i
\(666\) 0 0
\(667\) −3415.99 + 3415.99i −0.198302 + 0.198302i
\(668\) 0 0
\(669\) 6718.78 + 6718.78i 0.388285 + 0.388285i
\(670\) 0 0
\(671\) −9465.41 −0.544572
\(672\) 0 0
\(673\) −3822.26 −0.218926 −0.109463 0.993991i \(-0.534913\pi\)
−0.109463 + 0.993991i \(0.534913\pi\)
\(674\) 0 0
\(675\) −1648.57 1648.57i −0.0940053 0.0940053i
\(676\) 0 0
\(677\) −20574.4 + 20574.4i −1.16800 + 1.16800i −0.185324 + 0.982677i \(0.559334\pi\)
−0.982677 + 0.185324i \(0.940666\pi\)
\(678\) 0 0
\(679\) 16601.6i 0.938308i
\(680\) 0 0
\(681\) 947.463i 0.0533140i
\(682\) 0 0
\(683\) 5442.92 5442.92i 0.304931 0.304931i −0.538009 0.842939i \(-0.680823\pi\)
0.842939 + 0.538009i \(0.180823\pi\)
\(684\) 0 0
\(685\) −9211.90 9211.90i −0.513823 0.513823i
\(686\) 0 0
\(687\) 5806.33 0.322453
\(688\) 0 0
\(689\) 12394.7 0.685343
\(690\) 0 0
\(691\) 7826.48 + 7826.48i 0.430873 + 0.430873i 0.888925 0.458052i \(-0.151453\pi\)
−0.458052 + 0.888925i \(0.651453\pi\)
\(692\) 0 0
\(693\) 4100.69 4100.69i 0.224779 0.224779i
\(694\) 0 0
\(695\) 15121.8i 0.825325i
\(696\) 0 0
\(697\) 13441.2i 0.730447i
\(698\) 0 0
\(699\) 4890.68 4890.68i 0.264639 0.264639i
\(700\) 0 0
\(701\) 5762.25 + 5762.25i 0.310467 + 0.310467i 0.845090 0.534624i \(-0.179547\pi\)
−0.534624 + 0.845090i \(0.679547\pi\)
\(702\) 0 0
\(703\) −6855.19 −0.367779
\(704\) 0 0
\(705\) −1607.77 −0.0858896
\(706\) 0 0
\(707\) 6926.49 + 6926.49i 0.368455 + 0.368455i
\(708\) 0 0
\(709\) 16981.3 16981.3i 0.899502 0.899502i −0.0958899 0.995392i \(-0.530570\pi\)
0.995392 + 0.0958899i \(0.0305697\pi\)
\(710\) 0 0
\(711\) 27276.5i 1.43874i
\(712\) 0 0
\(713\) 12409.8i 0.651826i
\(714\) 0 0
\(715\) 1312.01 1312.01i 0.0686241 0.0686241i
\(716\) 0 0
\(717\) 1310.06 + 1310.06i 0.0682359 + 0.0682359i
\(718\) 0 0
\(719\) 1795.42 0.0931262 0.0465631 0.998915i \(-0.485173\pi\)
0.0465631 + 0.998915i \(0.485173\pi\)
\(720\) 0 0
\(721\) 25974.0 1.34164
\(722\) 0 0
\(723\) −1816.46 1816.46i −0.0934368 0.0934368i
\(724\) 0 0
\(725\) 1719.75 1719.75i 0.0880963 0.0880963i
\(726\) 0 0
\(727\) 15599.8i 0.795825i −0.917423 0.397912i \(-0.869735\pi\)
0.917423 0.397912i \(-0.130265\pi\)
\(728\) 0 0
\(729\) 6345.74i 0.322397i
\(730\) 0 0
\(731\) −35633.7 + 35633.7i −1.80296 + 1.80296i
\(732\) 0 0
\(733\) −12450.9 12450.9i −0.627401 0.627401i 0.320013 0.947413i \(-0.396313\pi\)
−0.947413 + 0.320013i \(0.896313\pi\)
\(734\) 0 0
\(735\) −183.554 −0.00921156
\(736\) 0 0
\(737\) 5054.43 0.252622
\(738\) 0 0
\(739\) 637.719 + 637.719i 0.0317441 + 0.0317441i 0.722801 0.691057i \(-0.242854\pi\)
−0.691057 + 0.722801i \(0.742854\pi\)
\(740\) 0 0
\(741\) 813.281 813.281i 0.0403193 0.0403193i
\(742\) 0 0
\(743\) 1952.47i 0.0964053i −0.998838 0.0482026i \(-0.984651\pi\)
0.998838 0.0482026i \(-0.0153493\pi\)
\(744\) 0 0
\(745\) 9861.12i 0.484944i
\(746\) 0 0
\(747\) 18341.1 18341.1i 0.898348 0.898348i
\(748\) 0 0
\(749\) 8789.38 + 8789.38i 0.428781 + 0.428781i
\(750\) 0 0
\(751\) 13710.1 0.666161 0.333081 0.942898i \(-0.391912\pi\)
0.333081 + 0.942898i \(0.391912\pi\)
\(752\) 0 0
\(753\) −10511.0 −0.508687
\(754\) 0 0
\(755\) −6880.46 6880.46i −0.331663 0.331663i
\(756\) 0 0
\(757\) −5425.87 + 5425.87i −0.260510 + 0.260510i −0.825261 0.564751i \(-0.808972\pi\)
0.564751 + 0.825261i \(0.308972\pi\)
\(758\) 0 0
\(759\) 1250.92i 0.0598227i
\(760\) 0 0
\(761\) 18568.0i 0.884481i −0.896896 0.442241i \(-0.854184\pi\)
0.896896 0.442241i \(-0.145816\pi\)
\(762\) 0 0
\(763\) −11520.8 + 11520.8i −0.546631 + 0.546631i
\(764\) 0 0
\(765\) 8642.68 + 8642.68i 0.408467 + 0.408467i
\(766\) 0 0
\(767\) 807.710 0.0380244
\(768\) 0 0
\(769\) 13501.1 0.633110 0.316555 0.948574i \(-0.397474\pi\)
0.316555 + 0.948574i \(0.397474\pi\)
\(770\) 0 0
\(771\) 3668.22 + 3668.22i 0.171346 + 0.171346i
\(772\) 0 0
\(773\) 19002.7 19002.7i 0.884191 0.884191i −0.109767 0.993957i \(-0.535010\pi\)
0.993957 + 0.109767i \(0.0350103\pi\)
\(774\) 0 0
\(775\) 6247.60i 0.289575i
\(776\) 0 0
\(777\) 9877.91i 0.456072i
\(778\) 0 0
\(779\) −2109.70 + 2109.70i −0.0970318 + 0.0970318i
\(780\) 0 0
\(781\) 2114.74 + 2114.74i 0.0968904 + 0.0968904i
\(782\) 0 0
\(783\) 9072.41 0.414076
\(784\) 0 0
\(785\) −3641.11 −0.165550
\(786\) 0 0
\(787\) −18237.9 18237.9i −0.826061 0.826061i 0.160908 0.986969i \(-0.448558\pi\)
−0.986969 + 0.160908i \(0.948558\pi\)
\(788\) 0 0
\(789\) 7255.95 7255.95i 0.327400 0.327400i
\(790\) 0 0
\(791\) 3852.13i 0.173156i
\(792\) 0 0
\(793\) 18799.6i 0.841858i
\(794\) 0 0
\(795\) 2974.73 2974.73i 0.132708 0.132708i
\(796\) 0 0
\(797\) −14529.0 14529.0i −0.645727 0.645727i 0.306230 0.951958i \(-0.400932\pi\)
−0.951958 + 0.306230i \(0.900932\pi\)
\(798\) 0 0
\(799\) 18070.4 0.800104
\(800\) 0 0
\(801\) −376.081 −0.0165895
\(802\) 0 0
\(803\) 10487.1 + 10487.1i 0.460874 + 0.460874i
\(804\) 0 0
\(805\) 3155.75 3155.75i 0.138168 0.138168i
\(806\) 0 0
\(807\) 8812.07i 0.384386i
\(808\) 0 0
\(809\) 35390.4i 1.53802i −0.639234 0.769012i \(-0.720748\pi\)
0.639234 0.769012i \(-0.279252\pi\)
\(810\) 0 0
\(811\) 3671.23 3671.23i 0.158957 0.158957i −0.623147 0.782104i \(-0.714146\pi\)
0.782104 + 0.623147i \(0.214146\pi\)
\(812\) 0 0
\(813\) −11072.9 11072.9i −0.477667 0.477667i
\(814\) 0 0
\(815\) −8688.34 −0.373422
\(816\) 0 0
\(817\) −11186.0 −0.479006
\(818\) 0 0
\(819\) −8144.53 8144.53i −0.347488 0.347488i
\(820\) 0 0
\(821\) 32787.6 32787.6i 1.39378 1.39378i 0.577131 0.816652i \(-0.304172\pi\)
0.816652 0.577131i \(-0.195828\pi\)
\(822\) 0 0
\(823\) 24158.6i 1.02323i 0.859216 + 0.511613i \(0.170952\pi\)
−0.859216 + 0.511613i \(0.829048\pi\)
\(824\) 0 0
\(825\) 629.762i 0.0265764i
\(826\) 0 0
\(827\) −24624.9 + 24624.9i −1.03542 + 1.03542i −0.0360706 + 0.999349i \(0.511484\pi\)
−0.999349 + 0.0360706i \(0.988516\pi\)
\(828\) 0 0
\(829\) −2211.20 2211.20i −0.0926394 0.0926394i 0.659268 0.751908i \(-0.270866\pi\)
−0.751908 + 0.659268i \(0.770866\pi\)
\(830\) 0 0
\(831\) −2024.89 −0.0845279
\(832\) 0 0
\(833\) 2063.03 0.0858102
\(834\) 0 0
\(835\) 2077.44 + 2077.44i 0.0860990 + 0.0860990i
\(836\) 0 0
\(837\) 16479.4 16479.4i 0.680540 0.680540i
\(838\) 0 0
\(839\) 14313.9i 0.589001i −0.955651 0.294501i \(-0.904847\pi\)
0.955651 0.294501i \(-0.0951533\pi\)
\(840\) 0 0
\(841\) 14924.9i 0.611952i
\(842\) 0 0
\(843\) 10529.0 10529.0i 0.430174 0.430174i
\(844\) 0 0
\(845\) 5161.74 + 5161.74i 0.210141 + 0.210141i
\(846\) 0 0
\(847\) −20565.6 −0.834289
\(848\) 0 0
\(849\) −5706.96 −0.230698
\(850\) 0 0
\(851\) −10471.0 10471.0i −0.421786 0.421786i
\(852\) 0 0
\(853\) 21680.6 21680.6i 0.870257 0.870257i −0.122243 0.992500i \(-0.539009\pi\)
0.992500 + 0.122243i \(0.0390088\pi\)
\(854\) 0 0
\(855\) 2713.07i 0.108520i
\(856\) 0 0
\(857\) 19741.2i 0.786870i −0.919352 0.393435i \(-0.871287\pi\)
0.919352 0.393435i \(-0.128713\pi\)
\(858\) 0 0
\(859\) −4986.65 + 4986.65i −0.198070 + 0.198070i −0.799172 0.601102i \(-0.794729\pi\)
0.601102 + 0.799172i \(0.294729\pi\)
\(860\) 0 0
\(861\) −3039.94 3039.94i −0.120326 0.120326i
\(862\) 0 0
\(863\) −38207.3 −1.50706 −0.753529 0.657415i \(-0.771650\pi\)
−0.753529 + 0.657415i \(0.771650\pi\)
\(864\) 0 0
\(865\) 7509.88 0.295195
\(866\) 0 0
\(867\) 7574.67 + 7574.67i 0.296712 + 0.296712i
\(868\) 0 0
\(869\) 11169.4 11169.4i 0.436012 0.436012i
\(870\) 0 0
\(871\) 10038.8i 0.390530i
\(872\) 0 0
\(873\) 21801.0i 0.845190i
\(874\) 0 0
\(875\) −1588.73 + 1588.73i −0.0613815 + 0.0613815i
\(876\) 0 0
\(877\) 24917.7 + 24917.7i 0.959421 + 0.959421i 0.999208 0.0397868i \(-0.0126679\pi\)
−0.0397868 + 0.999208i \(0.512668\pi\)
\(878\) 0 0
\(879\) −14471.5 −0.555302
\(880\) 0 0
\(881\) −28327.0 −1.08327 −0.541635 0.840614i \(-0.682195\pi\)
−0.541635 + 0.840614i \(0.682195\pi\)
\(882\) 0 0
\(883\) −18768.9 18768.9i −0.715314 0.715314i 0.252328 0.967642i \(-0.418804\pi\)
−0.967642 + 0.252328i \(0.918804\pi\)
\(884\) 0 0
\(885\) 193.850 193.850i 0.00736293 0.00736293i
\(886\) 0 0
\(887\) 26017.3i 0.984865i 0.870351 + 0.492433i \(0.163892\pi\)
−0.870351 + 0.492433i \(0.836108\pi\)
\(888\) 0 0
\(889\) 1238.62i 0.0467288i
\(890\) 0 0
\(891\) −4498.65 + 4498.65i −0.169147 + 0.169147i
\(892\) 0 0
\(893\) 2836.28 + 2836.28i 0.106285 + 0.106285i
\(894\) 0 0
\(895\) −13822.3 −0.516232
\(896\) 0 0
\(897\) 2484.49 0.0924803
\(898\) 0 0
\(899\) 17190.9 + 17190.9i 0.637762 + 0.637762i
\(900\) 0 0
\(901\) −33434.1 + 33434.1i −1.23624 + 1.23624i
\(902\) 0 0
\(903\) 16118.3i 0.594001i
\(904\) 0 0
\(905\) 16862.2i 0.619359i
\(906\) 0 0
\(907\) 26216.3 26216.3i 0.959757 0.959757i −0.0394644 0.999221i \(-0.512565\pi\)
0.999221 + 0.0394644i \(0.0125652\pi\)
\(908\) 0 0
\(909\) −9095.77 9095.77i −0.331889 0.331889i
\(910\) 0 0
\(911\) −1507.54 −0.0548265 −0.0274132 0.999624i \(-0.508727\pi\)
−0.0274132 + 0.999624i \(0.508727\pi\)
\(912\) 0 0
\(913\) 15020.9 0.544489
\(914\) 0 0
\(915\) 4511.90 + 4511.90i 0.163015 + 0.163015i
\(916\) 0 0
\(917\) −8775.06 + 8775.06i −0.316007 + 0.316007i
\(918\) 0 0
\(919\) 2424.43i 0.0870236i 0.999053 + 0.0435118i \(0.0138546\pi\)
−0.999053 + 0.0435118i \(0.986145\pi\)
\(920\) 0 0
\(921\) 11211.8i 0.401131i
\(922\) 0 0
\(923\) 4200.17 4200.17i 0.149784 0.149784i
\(924\) 0 0
\(925\) 5271.50 + 5271.50i 0.187379 + 0.187379i
\(926\) 0 0
\(927\) −34108.7 −1.20850
\(928\) 0 0
\(929\) −31265.1 −1.10417 −0.552086 0.833787i \(-0.686168\pi\)
−0.552086 + 0.833787i \(0.686168\pi\)
\(930\) 0 0
\(931\) 323.809 + 323.809i 0.0113989 + 0.0113989i
\(932\) 0 0
\(933\) −6198.81 + 6198.81i −0.217513 + 0.217513i
\(934\) 0 0
\(935\) 7078.13i 0.247572i
\(936\) 0 0
\(937\) 24317.7i 0.847839i −0.905700 0.423919i \(-0.860654\pi\)
0.905700 0.423919i \(-0.139346\pi\)
\(938\) 0 0
\(939\) 7080.97 7080.97i 0.246090 0.246090i
\(940\) 0 0
\(941\) −26684.6 26684.6i −0.924433 0.924433i 0.0729055 0.997339i \(-0.476773\pi\)
−0.997339 + 0.0729055i \(0.976773\pi\)
\(942\) 0 0
\(943\) −6444.92 −0.222561
\(944\) 0 0
\(945\) −8381.24 −0.288510
\(946\) 0 0
\(947\) −12759.1 12759.1i −0.437819 0.437819i 0.453458 0.891278i \(-0.350190\pi\)
−0.891278 + 0.453458i \(0.850190\pi\)
\(948\) 0 0
\(949\) 20828.8 20828.8i 0.712468 0.712468i
\(950\) 0 0
\(951\) 1899.08i 0.0647547i
\(952\) 0 0
\(953\) 4436.11i 0.150787i −0.997154 0.0753933i \(-0.975979\pi\)
0.997154 0.0753933i \(-0.0240212\pi\)
\(954\) 0 0
\(955\) 11761.8 11761.8i 0.398539 0.398539i
\(956\) 0 0
\(957\) 1732.85 + 1732.85i 0.0585320 + 0.0585320i
\(958\) 0 0
\(959\) −46832.7 −1.57696
\(960\) 0 0
\(961\) 32661.1 1.09634
\(962\) 0 0
\(963\) −11542.1 11542.1i −0.386229 0.386229i
\(964\) 0 0
\(965\) −8803.23 + 8803.23i −0.293664 + 0.293664i
\(966\) 0 0
\(967\) 37242.9i 1.23852i −0.785185 0.619261i \(-0.787432\pi\)
0.785185 0.619261i \(-0.212568\pi\)
\(968\) 0 0
\(969\) 4387.57i 0.145458i
\(970\) 0 0
\(971\) 28061.0 28061.0i 0.927414 0.927414i −0.0701242 0.997538i \(-0.522340\pi\)
0.997538 + 0.0701242i \(0.0223396\pi\)
\(972\) 0 0
\(973\) 38439.0 + 38439.0i 1.26649 + 1.26649i
\(974\) 0 0
\(975\) −1250.79 −0.0410846
\(976\) 0 0
\(977\) 11806.4 0.386611 0.193306 0.981139i \(-0.438079\pi\)
0.193306 + 0.981139i \(0.438079\pi\)
\(978\) 0 0
\(979\) −154.000 154.000i −0.00502744 0.00502744i
\(980\) 0 0
\(981\) 15128.9 15128.9i 0.492383 0.492383i
\(982\) 0 0
\(983\) 28865.2i 0.936579i 0.883575 + 0.468290i \(0.155130\pi\)
−0.883575 + 0.468290i \(0.844870\pi\)
\(984\) 0 0
\(985\) 12646.6i 0.409091i
\(986\) 0 0
\(987\) −4086.90 + 4086.90i −0.131801 + 0.131801i
\(988\) 0 0
\(989\) −17086.0 17086.0i −0.549347 0.549347i
\(990\) 0 0
\(991\) −37756.7 −1.21027 −0.605137 0.796121i \(-0.706882\pi\)
−0.605137 + 0.796121i \(0.706882\pi\)
\(992\) 0 0
\(993\) 6553.25 0.209427
\(994\) 0 0
\(995\) −6686.97 6686.97i −0.213056 0.213056i
\(996\) 0 0
\(997\) 11348.0 11348.0i 0.360478 0.360478i −0.503511 0.863989i \(-0.667959\pi\)
0.863989 + 0.503511i \(0.167959\pi\)
\(998\) 0 0
\(999\) 27809.5i 0.880733i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 640.4.l.a.161.15 48
4.3 odd 2 640.4.l.b.161.10 48
8.3 odd 2 80.4.l.a.61.7 yes 48
8.5 even 2 320.4.l.a.81.10 48
16.3 odd 4 80.4.l.a.21.7 48
16.5 even 4 inner 640.4.l.a.481.15 48
16.11 odd 4 640.4.l.b.481.10 48
16.13 even 4 320.4.l.a.241.10 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.4.l.a.21.7 48 16.3 odd 4
80.4.l.a.61.7 yes 48 8.3 odd 2
320.4.l.a.81.10 48 8.5 even 2
320.4.l.a.241.10 48 16.13 even 4
640.4.l.a.161.15 48 1.1 even 1 trivial
640.4.l.a.481.15 48 16.5 even 4 inner
640.4.l.b.161.10 48 4.3 odd 2
640.4.l.b.481.10 48 16.11 odd 4